
Smart CAPs for Smart Its – Context Detection

for Mobile Users

Florian Michahelles1 and Michael Samulowitz2

1Institute for Scientific Computing, ETH, CH-8092 Zurich; 2Corporate Technology Siemens AG, Otto-
Hahn-Ring, Munich, Germany

Abstract: Context detection for mobile users plays a major role for enabling novel, human-centric interfaces. For this, we introduce a
context detection scheme applicable in a self-organized sensor network, which is formed of disseminated, computer empowered sensors,
referred to as Smart-Its [1]. Context-detection takes place without requiring any central point of control, and supports push as well as pull
modes. Our solution is based on an in-network composition approach relying on so-called smart Context-Aware Packets (sCAPs). These
packets act as a uniform interchange format, and allow single sensors to share sensed data and to cooperate to build up a meaningful
context model from manifold inputs. sCAPs travel through the sensor network governed by an enclosed retrieving plan, specifying which
sensors to visit in order to gain a specific piece of context information. For enhanced flexibility, the retrieving plan itself may be
dynamically altered in accordance with past sensor readings.

Keywords: Context awareness; Perceptual computing; Sensor networks; Smart infrastructure

1. Introduction

Processors and sensors are becoming smaller,
cheaper, less power consuming and unobtrusive.
Consequently, computing resources and devices
metamorphose as a matter of course, vanish into
the background and blend one into another.

Users wish to access computing resources
anytime and anywhere in a ubiquitous [2]
manner without restricting their mobility.
Thus, emerging computing resources will have
to be approached differently to traditional
systems. Human computer interfaces have to
reflect these facts.

The notion of proactive computing [3]
predicts that humans may get out of the
interaction loop completely, but may get ser-
viced specifically according to their needs and
current situation instead. Users may encounter
various different situations and changing envir-
onments. Measurable features such as light level,
conversations, the proximity to people or other
objects, temperature, etc., can be used as clues
with which to detect the user’s current situation.
This information can be used directly as input to
the system, which may result in a shift from
explicit to implicit human-computer interaction
[4]. We argued [5] that services should be aligned
to the user’s task. In particular, the system should

independently discover and execute services
considering the user’s context [6]. Therefore,
services should be offered in a user-centric way.
Hinckley calls the inability of a device to detect
important events and properties of the physical
world missed opportunities [7]. Buxton has even
observed that much technological complexity
results from forcing the user to explicitly
maintain the context of interaction [8].

Addressing these issues of ubiquity and
mobility involves a number of research chal-
lenges. The challenge of discovering computing
services and resources available in the user’s
current environment has been partly solved by
discovery protocols such as JINI [9], IETF SLP
[10] or SDP [11]. Another challenge is the
selection and execution of services respecting
the user’s context. As shown in Rodden et al
[12], context impacts upon mobile HCI. But how
can it be detected? Accordingly, a third chal-
lenge is to be solved: the user’s current context.
However, applying multiple distributed sensors
for revealing context is still in its infancy [13].

We believe that augmenting everyday devices
with sensors such as Smart-Its [1] has the
potential to address some of these issues.
Advances in wireless networking and micro-
fabrication (e.g. MEMS [13]) facilitate a new
generation of large sensor networks [1,14,15].

269

Ownership and Copyright
Springer-Verlag London Ltd 2002
Personal and Ubiquitous Computing (2002) 6:269–275

Applications of those sensor networks range from
tracking and identification to sensing, thus
deploying large numbers of sensors in everyday
environments becomes feasible. We will use
those sensors for context detection of mobile
users.

In this paper, we describe an approach
towards exploiting manifold sensors available in
a future environment for revealing the user’s
context. We present a uniform communication
scheme that allows explicit context detection
requests, initiated by the mobile user (pull), as
well as event-triggered context evaluation,
initiated by sensors’ percepts (push). Our docu-
ment-based approach – smart Context-Aware
Packets (sCAPs) – allows us to capture feature
data in self-organized sensor networks without
the need for central points of control. Further,
sCAPs provide adaptive sensor fusion based on
an online changeable execution plan and
parallel retrieving of various sensors.

The next section motivates the problem of
context detection. We present our vision of a
sensor network, discuss the benefits to humans,
and describe two scenarios. Section 3 gives a
discussion and detailed presentation of the
general concept of our packet oriented sCAP
approach. The following section then follows up
on that, and shows how push and pull interaction
between user and sensors can be implemented by
sCAPs. Finally, the sCAP approach is summar-
ized and an outlook is given.

2. Background

In this section we first define our envisioned
sensor environment, and then motivate the role
of users by giving some short scenarios.

2.1. The envisioned Smart-Its
environment

We envision an environment with disseminated
computing empowered sensors, so-called Smart-
Its [1]. A large number of those autonomous units
form a wireless sensor network [16]. Due to
wireless communication, the sensor network can
be easily deployed. Accordingly, single sensors
are close to the phenomena, which should be
monitored by the network. Further, we assume
local awareness as proposed in Savvides et al [17]
and time synchronization [18] among Smart-Its.

In particular, Smart-Its are attached to every-

day devices such as cups, tables, chairs, etc.; they
can be equipped with various sensors for
perceiving temperature, light, audio, co-location,
movement, and so on. The sensor units deliver
defined abstractions of sensed information as
simple feature values (loudness, brightness,
speed, etc.).

Further, these tiny devices are supplied with a
wireless communication such as RF or Bluetooth
[19]. Accordingly, the connectivity of the net-
work is constrained by the reach of wireless
communication. Due to the provision of mobile
nodes and incremental addition and removal,
the communication quality may be weak and
encounter intermittent disconnection. The sta-
bility of the network is unpredictable.

An onboard micro-controller provides com-
puting power and enables simple feature calcula-
tion from the sensor’s inputs. These features (e.g.
loudness, brightness, speed, temperature, etc.)
are described by discrete values. The envisioned
Smart-Its operate autonomously with no central
point of control. Thus, there is no directory
service giving information about the sensors
available in the current environment. Coopera-
tion among sensor nodes is a general goal, as
streamlining the activity of several nodes can
increase the performance of the entire network.
Each device is self-aware, so that it knows about
its own sensing capabilities and can report those,
if inquired, to its neighbors.

Finally, there are two different types of
globally unique identifiers: one for distinguishing
Smart-It units, the other for distinguishing types
of feature values Smart-Its are capable of
delivering.

2.2. Bringing the user into the play

A mobile user is given access to services
available in the surrounding environment. In
our approach we want to gain the user’s context
from sensors available in the environment for
implicit human computer interaction [4]. By
making use of the term context, it is important
for us to go beyond pure location awareness, and
taking more meaningful measures as the seman-
tic proximity hierarchy [20] into account.
Context may be used as an invocation context
for configuring services the user intends to
access. This section gives a brief overview on
how (mobile) users may benefit from an
environment instrumented with sensors. In all

270

Florian Michahelles and Michael Samulowitz

scenarios system input is gained through sensors
from the user’s task and situation (context).

Smart Chemical Lab
In today’s biology laboratories, information is both
created and consumed at the lab bench. As workers
are focused on their task at hand, currently it is
extremely tedious to interface with computer at the
same time. On the other hand, biologists need to
access and disseminate information in digital form,
which is performed in a traditional office. The vision
of a smart chemical lab, such as Labscape [21], will
bridge the gap between today’s laboratories and
traditional offices. In the Smart Chemical Lab,
embedded technology is available in a pervasive
way, such that the process of experiments can be
observed, recorded and triggered in a flexible manner.
Facilities in the lab may be equipped with Smart-Its,
which have the potential to assist biologists in
laboratory work and gain user input implicitly from
observing his behaviour and work activities.

Smart Kitchen
Another possibility is to apply Smart-Its in the
everyday kitchen environment. A smart kitchen
could be able to detect what food is going to be
cooked and then assist the cook appropriately –
eliminating any possibility of user error. Similar to
smart chemical lab, a smart system may observe and
support kitchen users in their current task.

3. Context Detection

This section discusses how the context of a
mobile user can be detected by sCAPs. First we
present the general concept of sCAPs, and then
demonstrate how these packets are governed by a
so-called retrieving plan.

3.1. The concept of sCAPs

In contrast to mobile code concepts [22], ours is
more lightweight. sCAPs do not feature the
mobile code concept, but are passive packets.
They act as an interchange format for sharing
sensor-features among different sensor units,
such as Smart-Its. The concept of sCAP shares
some similarities with Context-Aware Packets
(CAP) [5] based on a document-based approach,
because it also uses context for implicit addres-
sing of the packet’s receiver. The sCAPs can be
understood as prepared containers for collecting
features from various sensors available in the
environment.

3.2. Lifecycle

After creation an sCAP gets injected into the
local sensor network. Each Smart-It receiving an
sCAP contributes to the required sensor features

and forwards it to other Smart-It devices in its
neighborhood. Accordingly, the sCAP gets filled
with sensed information on its way through the
environment. Combining these gained features
stored in the sCAP allows each Smart-It to make
an assumption about the current context. Based
on this knowledge, it can forward the sCAP to an
appropriate sensor for further investigation of the
context. Thus, there is a permanent in-network
recalculation of the context, which allows
continuous refinement of the assumption and
adaptation of the sCAP’s path through the
sensor network. The context information stored
in the packet is used for implicitly addressing
sensor units. Accordingly, the sCAP is governed
by a retrieving plan outlined in section 3.2.

3.3. Composition

As Fig. 1 depicts, an sCAP document is
organized into three parts: retrieving plan, context
hypothesis, packet trace. The retrieving plan embo-
dies the execution plan determining which
sensors should be involved into the context
detection. It describes which types of sensors
have to be queried for achieving the current
context. Due to single sensors percepts, this
retrieving plan can be continuously refined at
each receiving sensor unit, such that the
detection process can adapt to the actual sensor
inputs. The representation of the retrieving plan
will be discussed in more detail in the subsequent
section.

As already mentioned, the context hypothesis is
represented by the accumulation of feature values
retrieved from several sensors. At dedicated more
computing empowered nodes, referred to as
Compute-Its, the context hypothesis could be
shifted to another level of interpretation by
taking the retrieved features into account. The
context hypothesis is simple represented by a list of
feature already perceived. Here, each feature is
described by following entries: Feature ID, Feature
value, Sensor type ID, Smart It ID, Sensor location,
timestamp. Feature ID determines the type of the

271

Fig. 1. Smart Context-Aware Packet.

SmartCAPs for Smart Its – Context Detection for Mobile UsersSmartCAPs for Smart Its – Context Detection for Mobile Users

feature, e.g. whether it is loudness, temperature,
brightness etc.; Feature value is an actual number
value; Sensor type ID defines the type of sensor
the feature was gained from; Smart It ID is the
uniform identifier for the platform the feature was
sensed at; Sensor location and timestamp give the
physical location and time at which the feature
was perceived. The context results from these
sensor measurements.

The packet trace section is organized into two
stacks. The first stack maintains a route history of
travelled units in the wireless network. The
second stack directs an sCAP according to a
given route. If the second stack is empty the
packet just strays the network in order to meet
meaningful sensors at random. Both stacks aim at
gaining a rough estimate of the current topology
in the highly unstable wireless network. This
information is used to avoid loops, preventing
units from being revisited several times, and to
provide knowledge on network topology for
transmitting the context to the inquirer
(mobile user). The packet trace is core for
Smart Stack Routing, as explained in [23].

3.4. Retrieving plan

This section details the semantics and represen-
tation of the retrieving plan contained in sCAPs.
As mentioned above, the retrieving plan defines
the sensors to be visited for revealing the user’s
current context. Initially, the retrieving plan is
given by an initial sCAP template setup for
different context queries. However, what makes
our approach promising is the possibility of
continuous alteration and adaption and of the
retrieving plan to single sensor measurements.

As depicted in Fig. 2, the retrieving plan is
represented by three parts: execution plan, rewrit-
ing rules and inquirer. The execution plan contains
the list of sensor units (su) to be involved into
the context detection process. In particular, the
execution plan maintains a list of types of sensors
– it does not identify certain sensors specifically.

As the user is mobile, the environment can
always change. Accordingly, it seems to be more
reasonable to abstract from the actual sensor
units, but rather focus on sensor types.

By applying rewriting rules the execution plan
can be altered at any Smart-It to which the sCAP
is directed. The rewriting rules incorporate the
context hypothesis currently available in this
sCAP. Consequently, significant sensor inputs
and combinations of those trigger rewriting rules
to alter, replace, add or delete sensor units from
the execution plan. In our current prototype, we
do not allow changes of the rewriting rules
themselves, but this is feasible for future work.
The inquirer field finally identifies the mobile
user the context has to be delivered to.

4. Interaction Schemes: Pull
and Push

This section shows how the sCAPs can be
applied for context detection. Present day
context-awareness research employs sensors in a
master-slave manner, in which passive sensors
report their results to a superior authority upon
request. We call this traditional approach context
pull, as an inquirer – the user – explicitly requests
information und pulls it to his destination.

Apart from that conventional interaction
with sensors, we envision a context push design
as a counterpart: sensors observe events of
interest and become active, so they push the
context to their superior authority of the
traditional approach. There is no inquirer, only
a receiver who shows interest for the informa-
tion. This section outlines these two interaction
schemes: context pull and context push.

4.1. User request: Context pull

Context pull embodies the active intervention of
the user, such that the user (or, respectively, a
software agent acting on the user’s behalf)
explicitly inquires a context update. The user
initiates the context detection process by inject-
ing an empty sCAP template with a default
retrieving plan into the network. Accordingly,
the sCAP gets round routed throughout the
sensor network, being forwarded through Smart
Its’ neighbourhoods.

The sCAP collects data from various sensors
according to its retrieving plan. Meanwhile, all
visited sensors’ identifiers are stored in the

272

Fig. 2. Retrieving plan.

Florian Michahelles and Michael Samulowitz

packet trace section of the sCAP. Figure 3 shows
an example, where the user broadcasts an initial
packet to Smart-It 1. According to the packet’s
retrieving plan, the sensor adds information to
the packet (e.g. sound data), and forwards the
packet to its neighbours 2 and 3. Consequently,
the original packet P splits into P and P’. Nodes
2 and 3 contribute to the packet as well, and
forward it to their neighbours. Here, the packet’s
packet trace prevents P and P’ from revisiting
node 1 again. The context detection process
terminates as soon as the retrieving plan is
performed. Assuming that nodes 1 and 3 already
fulfil the packet’s retrieving plan, node 3
terminates the context detection process. It
recognizes the mobile user in its neighbourhood,

and returns the packet carrying the requested
context information. Generally, its duty is of
Smart Stack Routing [23], to locate the mobile
user in the network and to trace the packet back
to him.

4.2. Autonomous sensors: Context push

In contrast to context pull, the context push
scheme empowers sensors to collect data auton-
omously. Initially, certain sensors are empowered
for autonomous sCAP creation by their initial
configuration. This configuration retains an
application’s needs, and also contains the address
of the user or an entity interested in context
detection. In our current prototype, sensors can

273

Fig. 3. Context pull.

Fig. 4. Context push.

SmartCAPs for Smart Its – Context Detection for Mobile UsersSmartCAPs for Smart Its – Context Detection for Mobile Users

be configured for pushing data on a timely or
condition triggered basis.

Due to that configuration, the sensors’
precepts are used to trigger the context detection
process. As soon as a sensor encounters a certain
signal pattern, it can initiate the context
detection by injecting an sCAP into the sensor
network by itself. After that, the detection
process elapses as described in section 4.1.

As soon as the context has been revealed, the
mobile user is informed on a publish-subscriber
basis. Obviously, several sensors can actually
perceive different inputs stemming from the
same coincidence. As Fig. 4 depicts, both sensor
units 1 and 4 detect a certain feature in the
environment. Assuming units 1 and 4 carry
different sensors (e.g. light and audio), they
observe different aspects of the same phenom-
ena. Accordingly, several sCAPs can be created,
as packets P1 and P2 in Fig. 4, at the same time
detecting the same context. Packet P1 is split
into P1 and P1’ which are heading to node 3 and
5. Packet P2 stemming from node 4 also reaches
node 5. Node 5 is the gateway to the user, such
that it receives three packets, P1, P1’, P2,
reporting the same coincidence with input from
different sensors. Currently, we do not consoli-
date those packets, but interpret the occurrence
of several packets per coincidence as a quanti-
fication of certainty of an observed event. Again,
Smart Stack Routing takes care of returning
packets back to the user.

5. Conclusions

When envisioning interconnected future envir-
onments, several challenges have to be over-
come. To provide convenient human-computer
interaction in changing environments, the user’s
context should be taken into account and
detected automatically by the system. In this
work, we focused on context detection for
mobile users in sensor monitored environments.
Our work was heavily influenced by the Smart-Its
project [1] assuming unobtrusively intercon-
nected everyday objects with embedded sensors.
We proposed Smart Context-Aware Packets as an
intercommunication format among Smart-Its for
revealing mobile users’ contexts. Our approach
promotes sensor information exchange in sensor
networks without central points of control.
Further, our sCAP documents foster adaptive
fusion of feature inputs of diverse sensors.

Whereas context pull is used for determining
the user’s context when the user explicitly needs
the current context information, the push
scheme is more appropriate for emerging events
and interrupts, such as detecting rapid changes in
the environments, states of emergencies or other
sporadic coincidences. Up to now, we have not
tried to consolidate parallel context detection
processes. Accordingly, the user might receive
several sCAPs reporting the same context. We
interpret this as a quantification of the evidence
for the reported contexts. However, future work
should focus on these issues, and merging
strategies for sCAPs have to be found to
consolidate related detection processes.

6. Outlook

Future directions of the work will focus on the
following issues: (1) online reconfiguration of
sensors for different push behaviors; (2) merging
strategies for related sCAPs; (3) spreading
strategies of sCAPs for parallelizing the context
detection process; (4) online alterable rewriting
rules; and finally, (5) tackling communication
breakdowns [23,24].

Acknowledgements

The Smart-Its project is funded in part by the
Commission of the European Union under
contract IST-2000-25428, and by the Swiss
Federal Office for Education and Science
(BBW 00.0281).

References

1. Smart-Its. http://www.smart-its.org

2. Weiser M. The computer for the 21st century. Scientific
American 1991; 265(3): 94–104

3. Tennenhouse DL. Proactive computing. Communica-
tions of the ACM 2000; 43: 43–50

4. Schmidt A. Implicit human-computer interaction
through context. 2nd workshop on human computer
interaction with mobile devices, Edinburgh, Scotland,
August 1999

5. Samulowitz M, Michahelles F, Linnhoff-Popien C.
Adaptive interaction for enabling pervasive services.
MobiDE01, Santa Barbara, CA, May 2001

6. Dey A, Abowd GD. Towards a better understanding of
context and contex-awareness. Technical Report 22,
GeorgiaTech, 1999

7. Hickley K, Pierce J, Sinclair M, Horvitz E. Sensing
techniques for mobile interaction. Symposium on User
Interface Software and Technology, CHI Letters 2000;
2(2): 91–100

8. Buxton W. Integrating periphery and context. Graphics
Interface 1995; 239–246

274

Florian Michahelles and Michael Samulowitz

9. JiniTM. 1998. http://java.sun.com/products/jini

10. Perkins C. Service Location Protocol White Paper, May
1997.

11. Czerwinski S, Zhao B, Hodes T, Joseph A, Katz R. An
architecture for a secure service discovery service.
Proceedings of MobiCom ’99, Seattle, WA, August 1999

12. Rodden T, Cheverst K, Davies N, Dix A. Exploiting
context in HCI design for mobile systems. Proceedings
1st workshop on human computer interaction for mobile
devices, Glasgow, UK, May 1998; 12–17

13. Micro Electro Mechanical Systems (MEMS). http://
mems.isi.edu/

14. The Ultra Low Power Wireless Sensors Project. http://
www-mtl.mit.edu/~jimg/project_top.html

15. The WINS Project. http://www.janet.ucla.edu/WINS/

16. Pottie JG, Kaiser WJ. Wireless integrated network
sensors. Communications of the ACM 2000; 3(5): 51–58

17. Savvides A, Han C-C, Srivastava M. Dynamic fine-
grained localization in ad-hoc networks of sensors.
Mobicom 2001

18. Elson J, Estrin D. Time synchronization for wireless
sensor networks. Workshop on parallel and distributed

computing issues in wireless and mobile computing, San
Francisco, CA, April 2001

19. The Bluetooth SIG. http://www.bluetooth.com

20. Schiele B, Antifakos S. Beyond position awareness.
Proceedings Workshop on Location Modelling at
Ubicomp, October 2001

21. Labscape. http://csi.washington.edu/comsystec/labscape/

22. Qi H, Iyengar S, Chakrabarty K. Distributed multi-
resolution data integration using mobile agents. Proceed-
ings IEEE Aerospace Conference 2001

23. Michahelles F, Samulowitz M, Schiele B. Detecting
context in distributed sensor networks by using Smart
Context Aware Packets. International Conference on
Architecture of Computing Systems (ARCS), 2002,
Karlsruhe, Germany, April 2002.

24. Goff T, Abu-Ghazaleh N, Phatak D, Kahvecioglu R.
Preemptive route maintenance in ad hoc networks.
Mobicom 2001

Correspondence to: F. Michahelles, Institute for Scientific
Computing, ETH Zentrum, CH-8092 Zurich, Switzerland.
Email: florian.michahelles@inf.ethz.ch

275

SmartCAPs for Smart Its – Context Detection for Mobile UsersSmartCAPs for Smart Its – Context Detection for Mobile Users

