Context-aware Retrieval: £xploring a New
Environment for Information Retrieval and
Information Filtering

P. J. Brown and G. J. F. Jones

Department of Computer Science, University of Exeter, Exeter, UK

Abstract: The opportunities for context-aware computing are fast expanding. Computing systems can be made aware of their environment
by monitoring attributes such as their current location, the current time, the weather, or nearby equipment and users. Context-aware
computing often involves retrieval of information: it introduces a new aspect to technologies for information delivery; currently these
technologies are based mainly on contemporary approaches to information retrieval and information filtering. In this paper, we consider
how the closely related, but distinct, topics of information retrieval and information filtering relate to context-aware retrieval. Our thesis is
that context-aware retrieval is as yet a sparsely researched and sparsely understood area, and we aim in this paper to make a start towards
remedying this.

Keywords: Context-aware; Information filtering; Information retrieval; Mobile computing

1. Introduction

Sensors are becoming ever cheaper and more
ubiquitous, and wearable computers are steadily
moving from being outlandish to being main-
stream. As a result, there is increasing interest in
context-aware mobile applications. A recent
analysis of promising future context-aware
applications [1] presents six areas; in five of
these a key component is context-aware retrieval
(CAR) of information. We believe the impor-
tant role of CAR applies to context-aware
applications in general, and the purpose of this
paper is to analyse the nature of CAR and to
relate it to the existing, well-developed fields of
information retrieval (IR) and information
filtering (IF). Typically CAR applications in-
volve a mobile user, i.e. a user whose context is
changing. We explain CAR in more detail
below; if the reader wants an example, the
archetypical CAR application is a tourist guide.
Here a user carries sensors that record their
context (perhaps their location, the current
temperature, etc.), and the application continu-
ally retrieves information that is relevant to the
current context. Thus, for a tourist guide the
information would relate to nearby tourist
attractions and facilities. After retrieval has

© Springer-Verlag London Ltd
Personal and Ubiquitous Computing (2001) 5:253-263

occurred, the application presents (parts of) the
retrieved documents in some way: for example,
information might be displayed to the recipient
on a PDA screen, a mobile phone or a head-up
display; alternatively the retrieved information
might represent a program to be run. We will
not, however, concentrate on the display aspects
here, as our topic is the retrieval stage.

The essential aims of IR and IF are to be
efficient and effective. Efficiency means deliver-
ing information quickly and without excessive
demands on resources, even when there is a
massive amount of information to be retrieved.
Clearly efficiency is extremely relevant to CAR
as late information is often useless information;
moreover, CAR applications often work in a
resource-hungry environment, where minimisa-
tion of use of storage and other resources is
crucial. Effectiveness is concerned with retriev-
ing relevant documents, i.e. documents that the
user will find useful. A significant amount of the
focus of IR/IF research has been concerned with
deriving weighting schemes to rank documents
most accurately according to their apparent
relevance to the user’s needs. Again, this carries
over to CAR, since it is a requirement of any
form of information delivery: indeed accuracy of
information delivery is likely to be of more




importance in CAR where display space is often
limited, and the CAR application may be
peripheral to the user’s current task. In particu-
lar, empirical evidence suggests that if a CAR
user keeps receiving information of doubtful
relevance they soon abandon the system [2].
Thus, overall we feel that IR/IF technology is
strongly related to CAR, and that there are many
potential gains and insights from relating them.

As an aside, it is a (sad?) current phenomenon
that the world of IR/IF and the world of
databases are usually seen as separate. Our work
relates to the former world, but some CAR
applications choose to use a database approach,
especially if all the data are well-structured and
uniform, and if there is no requirement for a
weighting score to measure quality of match.
Other CAR applications use a hybrid approach,
with a database as the underlying storage layer,
but with an IR/IF front-end (as in the “fuzzy-
query” database used by Rhodes [3]), and our
work does relate to these.

We believe that as context-aware computing
develops and deals with increasingly large
amounts of information and increasingly rich
contexts, context-aware retrieval, which most
applications need, will need to develop corre-
spondingly. So far, with relatively small amounts
of data, CAR has not been a focus of attention,
but we believe the time is now ripe to try to
understand this area properly, and our paper aims
to be an initial contribution.

2. Terminology

In this paper we will generally follow IR/IF
terminology. We assume that the information is
a collection of discrete documents. Each document
may be sub-divided into fields. These fields
may be textual, such as title, author, keywords,
full text of paper — the focus of much IR/IF
research. Alternatively, they may represent data
types that relate to the document or accompany-
ing metadata, e.g. numbers, locations, dates,
images, sets (say, a set of people detected as
being in the same room by means of active badge
sensors). Numerical fields in CAR are often
ranges of values rather than single ones, e.g. a
temperature in the range 0 to 10, and a
numerical location within a certain circle or
rectangle. The retrieval needs are captured in a
query (in some situations referred to as a profile,
see later): the retrieval task is to deliver the

P. J. Brown and G. ]. F. Jones

documents that best match the current query;
each retrieved document may be accompanied
with a score that gives a weighting of how well it
matches.

We shall assume that the user’s current
context, like the documents, consists of a set of
discrete fields. A field may be set directly by a
sensor or, alternatively, fields may be set:

o directly by the user; for example the user may
set a field to represent their current interests,
or they may override a field that is normally
set directly by a sensor, either because the
sensor is faulty or because they want to
pretend a different value

e by automatically synthesising data from sen-
sors: for example, a field may be set to say
whether a user is currently in a meeting, and
this might be derived from the values of a lot
of sensors in their office environment (as used
in reactive environments [4] or in Pepys [5],
though Pepys works after the event rather
than in real time). A special case of this
involves recording the user’s computer activ-
ity; for example, a field may be set to record
the content of the web document the user is
currently viewing, or the notes they are
currently making. Here the underlying “sen-
sors” are recording the user’s interaction with
the computer and the computer’s responses.

Potentially, the current context may consist of a
large and diverse set of fields. Since it has the
same overall form as a document in the
collection — a set of fields — it can be treated, if
required, as a document like any other. As we
shall see, we may want to use the current context
in two possible ways:

e to derive a retrieval query in order to extract
information for the document collection

e to treat the current context as if it were a
document, and to use this as the target of
retrieval queries derived from the documents
in the collection.

There are potentially three parties involved in a
CAR application:

1. the author of the document collection, i.e. the
information provider

2. the user whose context is being recorded

3. the information recipient of the retrieved
documents.



In IR/IF the user and the information recipient
are almost invariably one and the same, but in
CAR this is often not so. Whether the two
parties are different does not, however, greatly
affect the retrieval process: it just affects where
the retrieved documents are ultimately delivered.

Each of the three above parties might be
single or multiple. Moreover, even if an applica-
tion is regarded as a single-user system, it will
gain from having as rich a context as possible for
that user, and this rich context will often involve
the context of other objects (people, vehicles,
farm animals, mobile office equipment, etc.) that
are relevant to that user.

3. Types of CAR Application

Many different kinds of application are described
as “context-aware”. It is useful to clarify the
different types of CAR application. In this
section we illustrate different types of CAR
application by means of a series of examples. For
simplicity we assume the user and the informa-
tion recipient are the same. Specific examples of
applications and the way they interact with the
user can be found in [6] — arguably the paper that
founded the discipline of context-aware applica-
tions.

A CAR application may be interactive, where
the user directly issues a request to retrieve
relevant documents, or (more usually) proactive,
where documents are presented to the user
automatically. We will start with the simplest
interactive case, taking the example of a
location-aware application; obviously real appli-
cations have a much richer context than just
location, but the simplest example is often the
best. We first assume that there are no automatic
sensors to determine current location, but
instead the user must specify their location
(e.g. by typing it in or by pointing to a location
on a map), and then interactively hit a Retrieve
button; the system then retrieves the documents
that match this location. This scenario just about
qualifies as a CAR application, but we can
extend the example and move more squarely
into CAR by having the location set automati-
cally, say by a GPS sensor. The retrieval
mechanism itself is the same as before. The
same query is used, and thus the same retrieved
output is generated, but the query is created
automatically using the location recorded by the
GPS sensor. We can further extend the example

to become proactive rather than interactive by
causing the retrieval requests to be sent auto-
matically instead of requiring the user to hit a
button.

The criteria for performing a proactive
retrieval request are normally based on change,
either in the user’s current context or in the
documents in the collection. Thus a retrieval
request may be issued automatically after (a)
every N second period, (b) whenever the user’s
location has changed by amount M, (c) when-
ever the content of the document collection has
changed, or (d) any combination of (a) to (c).
We are now deep into CAR, but in terms of
retrieval nothing has changed: as in all previous
cases, the retrieval query is derived from the
current context; we call this user-driven.

As a completely different example, the
matching of context can be turned back to
front: each document in the collection has a
trigger context. A trigger context might, for
example, be a certain location, or a certain
location plus a time-of-day; if the trigger context
on a document matches the user’s current
context, then the document is retrieved. For
example, a document representing a tourist site
might contain four fields: a location field
together with a time-of-day field (e.g. opening
hours) representing a triggering condition, plus a
title field together with an information field that
take no part in the matching operations but
which are delivered as part of the document if
the document is matched. The current context
here acts as the target document to be matched,
while the “document” in the collection is only
used to form a query. This form of retrieval is
attractive if the conditions necessary for retrieval
are most naturally set by the information
provider. It will normally be used proactively.
We call it author-driven retrieval to distinguish it
from the user-driven approach we have pre-
viously outlined, and we call the triggering
condition on a document its trigger context. The
more contextual fields the user has, the more
attractive author-driven retrieval becomes. This
relates to the quip about IR: “you can only find it
if you know it is there in the first place”. Thus, if
we assume there are 20 sensors, then it is hard to
create automatically a user-driven query that
involves the values of some or all of these sensors
and that finds the documents which really match
the user’s needs. Instead, it might be better to
drive retrieval from the author side: the author

Context-aware Retrieval: Exploring a New Environment for Information Retrieval and Information Filtering




knows what information is there, and is better
placed to design the query.

In all cases the CAR system might either be a
personal one, tied to a single user (who is also
the recipient), or a shared system. In a shared
system the users may be independent of each
other, in which case the system behaves for each
user in the same way as would a personal system,
or the users might be interdependent. An
example of the latter is where users are employ-
ees of the same company, and certain docu-
ments, when triggered, are sent to the most
senior person present in a room.

In summary, we have two possible types of
CAR: one driven by requests based on the user’s
current context, one driven by the information
provider. In practice, an application might
combine both sorts of retrieval; for example,
the documents that are triggered by author-
driven retrieval might be filtered by a second,
user-driven, pass, or the user might manually
override an author-driven retrieval application.
This combination of retrieval types is particu-
larly easy to do if there is a symmetry in form
between the documents and the current context,
i.e. the current context is a document like any
other.

4. Information Retrieval and
Information Filtering

We now move on to the relation of CAR to
other retrieval technologies. As introduced in
Section 1, the two main existing paradigms for
information delivery for unstructured data are
information retrieval (IR) and information
filtering (IF). In this section we give an
introduction to relevant details of these con-
cepts. Both IR and IF are concerned with the
finding of information, often in the form of text
documents, which is in some sense about a topic
that a user is interested in. Thus we can say that
both are concerned with satisfying the user’s
underlying information need. As outlined in
Section 2, users typically express their informa-
tion need as some form of search query, which is
then matched against the available documents.
Although for IR and IF the search queries are
traditionally mainly concerned with textual
information, they could also involve numerical
information such as dates. Those documents
“matching” the query are delivered to the user.
The user then inspects the documents to extract

P. J. Brown and G. ]. F. Jones

information relevant to their need. Thus IR and
IF are concerned only with the delivery of
documents, in the manner of a web search
engine, and not delivery of the information
itself.

Early IR and IF systems used Boolean queries
and retrieved those documents that exactly
matched each query. Most modern systems use
queries that are in a form more natural for users
to create, perhaps near to natural language, and
use best-match retrieval: a matching score is
computed between the search query and the
document, and returned documents are pre-
sented to the user in descending order of
matching score. The syntax of queries is not of
great concern to us here, since in CAR the
queries are often automatically derived from
other information, such as the current context,
rather than written directly by the user; we are,
however, strongly concerned with the type of
matching used, and we note that best-match
methods have generally proved best in meeting
the information needs of the majority of users
who are not skilled in the use of Boolean logic to
construct or interpret queries.

Regardless of the query type used, there are
many parallels between IR and IF. In particular,
both IR and IF are designed to handle unstruc-
tured or semi-structured data. (CAR data are, as
we have said, most often semi-structured.) The
sections that follow give a simple explanation of
the basic features of IR and IF and highlight
relevant differences; a much more detailed
analysis is contained in [7].

4.1. Information retrieval

At one time, IR systems were almost exclusively
the domain of the specialist librarian. The
advent of the World Wide Web has changed
this situation radically, and many people are now
familiar with the use of IR systems in the form of
web search engines. The user’s search query to an
IR system has an exact parallel with those CAR
systems that we have called user-driven. The
retrieval engine replies to the request by
returning a set of potentially relevant documents
to the user.

Each matching score gives a weighting of how
well the document matches the query. In CAR
systems these matching scores are even more
important: as well as being useful for ranking,
they can be used in deciding whether to deliver
any documents at all. For example, a proactive



system may decide that, since the best matching
document still has a rather low score, it is not
sensible to distract the recipient with it; thus
nothing is delivered. The problem of setting a
cut off criteria is an ongoing research issue in IR
[8]. In practice, thresholds often have to be
empirically tuned for individual applications.
This problem is often less important for standard
IR systems, which usually return something, even
if of doubtful relevance: the user is left to decide
whether the returned documents contain any
useful information.

Most real-world applications involve retrieval
from a huge number of possible documents and,
unless some optimisations are made, there will
soon be performance problems. Thus much
research has been devoted to such optimisations:
the basic strategy is normally to take those parts
of the data that are relatively static and to
preprocess these parts so that the retrieval engine
can do its matching more quickly. One such
strategy used in information retrieval is that texts
are pre-processed to produce representations of
the text, which are then organised into a
database of text surrogates. This process is
referred to as indexing and often involves:

e the elimination of frequently-occurring words
such as function words, e.g. prepositions,
which have little utility for matching docu-
ments and queries but greatly increase the size

of the index file

e the conflation of words to a root form (referred
to as search terms) to encourage matching
between different word forms.

For best-match retrieval, performance can be
improved by the application of term-weighting
strategies that give higher weights to terms
which are more likely to be important in
retrieval of relevant documents. These weights
are statistical in nature and rely on evaluating
the distribution of terms within individual
documents and across the whole document
collection. Term weighting methods for informa-
tion retrieval are described in detail in [9] and
[10]. These techniques are equally useful in
processing textual fields in CAR, provided, of
course, that the data are relatively static, and the
overhead of preprocessing can be repaid by
enough gains in speed of matching before the
data has changed and it is time to preprocess it
again.

To summarise, the following features char-
acterise information retrieval systems:

1. There are large numbers of documents, and
these are to be matched against one query.

2. The document collection is usually assumed
to be relatively static.

3. The document file structure is optimised to
give rapid response to individual queries. The
most popular way of doing this is by using an
inverted file structure [11].

4. Queries usually describe transient information
needs.

4.2. Information filtering

Information filtering (IF) systems are aimed at
relatively stable, long-term information needs,
although IF systems usually allow these interests
to be modified gradually over time as conditions,
goals and knowledge change. In this environ-
ment, rather than actively searching collections,
users are often more passive, waiting for
individual documents to be brought proactively
to their attention. The user’s interests are again
represented by queries that describe their in-
formation need, but here these queries are
referred to as profiles. IF systems typically apply
the same text preprocessing strategies as IR
systems to improve efficiency and reliability of
matching between profiles and documents. An
example of IF is an environment where a user
wants to be kept informed of new papers that
relate to their interests: they therefore create a
profile that expresses these needs, and the system
continually checks whether new documents that
it receives match the needs. Those that do are
sent to the user. The needs are often described in
much more detail than in an IR search query,
and will have been developed over time to
match the user’s interests in detail.

Most IF systems have a (large) number of
users, and a system will maintain a number of
active profiles. Individual profiles may be shared
among more than one user where there are
common interests. Whenever a new document
arrives it is compared to each profile and
delivered to those users whose profile is matched.

Given a particular document from the
incoming document stream and a set of profiles,
an important issue here is to consider what
exactly does it mean to “filter” the document. In
the case of Boolean matching we are able to say
simply that it either matches the profile or it does

Context-aware Retrieval: Exploring a New Environment for Information Retrieval and Information Filtering




not. For the best-match case the situation is
rather more complicated. The best-match
matching score gives a probability that a given
profile is true for the incoming document. In the
case of retrieval this probability is simply used to
rank the documents. This situation would also
apply for IF if documents were batched together
and presented to each user in a ranked order.
This might be possible in some applications, but
in many filtering applications a decision must be
made on document relevance as each document
appears. Two options are:

e the document could be directed to the owners
of the top ranking profiles. In this case the
users are not independent, but the document
is sent to the people who most need it — this
might be a company’s employees to which the
document appeared to be most relevant

e a threshold could be set to define the
minimum score necessary to count as a
match, though a suitable threshold can be
difficult to determine. There are parallels in a
CAR system where the recipient only wants
to get information that matches the current
context very closely.

In IR, parameters such as term weights are
estimated from the static document collection.
For IF these parameters must be estimated from
large samples of previously-seen documents; new
documents are thus assumed to have similar
characteristics to those seen previously. IF
systems raise their own issues of efficiency. A
single document is compared in parallel to a
potentially very large number of profiles. Effi-
ciency can be achieved here by using an inverted
file of the search profiles [7].

To summarise:

e [F is mainly concerned with selection or
elimination of documents from a dynamic
datastream.

e Normally one document is taken at a time,
but a large number of different queries
(profiles) are applied to it.

o IF is concerned with the delivery of docu-
ments to individuals whose profiles are
matched.

4.3. Document structure
For both IR and IF, the simplest approach to

matching queries/profiles with documents is to
treat the whole document as a single object.

P. J. Brown and G. ]. F. Jones

However, when the document is divided into
distinct fields, it is straightforward to take these
into account in the matching process if desired.
This relates to CAR retrieval, where documents
often have many separate fields.

The existence of multiple fields may lead to a
multi-stage retrieval process. For example, Boo-
lean queries could be applied to any appropriate
field and potentially used as a filter to remove
documents from further consideration. Best-
match queries may be applied separately to
individual fields and matching scores associated
with the individual fields summed in some way.
Alternatively, multifield matching may be used.
Multifield matching is relevant to many CAR
fieldwork applications, as illustrated by the
following example of work from a member of
our group [12]. This CAR application is
concerned, inter alia, with identifying rhino
footprints. When the user (who is typically out
in a game reserve) has found a footprint, the
current context will consist of various fields
representing dimensions and other properties of
the footprint (these fields could potentially be
derived from a sensor that was a camera),
together with the user’s current location. The
CAR application then wishes to retrieve, in
ranked order, documents representing previous
sightings, the aim being to find footprints that
most likely belong to the same rhino as the
present one. The matching algorithm, however,
needs to be cleverer than just accumulating
scores for how well each field matches; it needs
to do multifield calculations involving, for
example, the ratio of two field values, in order
to decide what is the best match. One way of
approaching this is to allow a field to be an
aggregate of sub-fields. Thus a rhino footprint
could be one such aggregate field, and it could
have its own matching algorithm, based on the
values of its sub-fields. Overall we see that
structuring of documents in CAR can be
stronger than is typical in IR/IF, though this
structuring will probably be less complete than
for a database application.

4.4. Relationship between CAR and
conventional IR and IF

If, in CAR, we assume there is a single user, and
thus a single current context, and if we ignore
any trigger contexts associated with the docu-
ments, we have a situation similar to conven-
tional IR, where a single query is able to retrieve



any document in the collection. Thus, obviously,
what we have called user-driven retrieval is simple
conventional IR where the query is automatically
constructed from the present context. In the
simplest case, the query can just represent each
field of the current context, e.g. if the current
context consists of a location L and a tempera-
ture T, then the query may ask for documents
that (best) match a location field of L and a
temperature field of T. In general, the query may
be constructed from a template where the values
of various fields are inserted.

If we then look at author-driven retrieval, and
consider trigger contexts attached to documents,
we have a situation similar to conventional IF
where some form of filter is applied to retrieve
the documents of potential interest; the only

difference is that in CAR:

1. the profile (i.e. trigger context) is associated
with the document, not with the user

2. the current context is treated as a document
which is the target of retrieval. Thus we have
a single, but constantly changing, target
document instead of, as in IF, a stream of
different target documents.

Thus author-driven retrieval is essentially identical to
information filtering.

We will now move on to two more elaborate
scenarios. Firstly, as we have said, a CAR
application might be part user-driven and part
author-driven. For example, the tourist might be
using author-driven triggering, but might wish to
apply a further user-driven retrieval stage to the
retrieved documents: he might only want to see
documents that concern architecture, or docu-
ments that have a field concerned with tem-
perature. We can regard these stages as two
separate activities, IF and then IR, but it is a
research question as to what efficiency gains can
be made from combining the two stages.

Table 1. The different types of retrieval in their basic forms.

Secondly, there may be multiple users being
served by author-driven retrieval, as there would
be in an author-driven tracking system (e.g. a
document might have a trigger that matched if
any of the tracked “users”, racehorses say, were
in a certain area). In some respects we now have
a hybrid situation with multiple queries, which is
characteristic of IF, and multiple documents (i.e.
multiple current contexts to be matched
against), which is characteristic of IR.

Thus many CAR application environments
represent novel retrieval environments in which
techniques from conventional IR and IF may
offer effective solutions to retrieval problems, but
which also pose new retrieval questions requiring
further research.

4.5. Summary of approaches to
information delivery

To summarise the overall position, Table 1
shows the typical qualities of the forms of
retrieval we have considered.

5. Issues for CAR Applications

We will now consider some issues in CAR that
either do not arise at all in IR and IF, or only
arise weakly. These issues are concerned with
change and its partner, history. We will consider
history first, since it is the simpler. There are two
issues:

1. It is useful if the application remembers
which documents have already been retrieved
and presented to the user. Depending on the
application, this historical information can be
used: (a) to prevent the same information
continually being presented to the user; (b) to
indicate to the user that information has been
viewed previously; or (c) to indicate that a
previously-viewed document has changed.

Retrieval type Request Retrieved from Output

IR query from single user document collection matching documents

IF queries (profiles) from single document document + set of profiles it matches
many users

user-driven CAR queries derived from users’
current contexts, one query
for each user

author-driven CAR  each document in the

collection may incorporate

document collection

documents derived from users’
current contexts, one

matching pairs: document/user’s
current context

matching pairs: user’s current
context/document

a query document for each user

Context-aware Retrieval: Exploring a New Environment for Information Retrieval and Information Filtering




2. The application should remember past values
of each field of the present context, and it is
especially important to do this between one
retrieval operation and the next. This in-
formation can be used for prediction and
interpolation — see later examples.

We now move on to discuss change. The first
point to make is that for most CAR applications,
the current context is continually changing and
for many applications the collection of docu-
ments is changing too (e.g. for traffic informa-
tion). IR is geared to static collections of
documents, and IF to static queries; the case
where everything is dynamic has been referred to
as the “grand challenge” [13].

However, in most CAR applications based on
mobile users, change in the current context is
gradual. Indeed, if the user is moving, she will
think of herself as moving continuously, and
there is a mismatch between this world and the
world inside the computer, with change in
discrete steps. Even a static user may have a
time field in their current context which they
will perceive as advancing continuously, but in
the computer may be updated every few micro-
seconds. We have said that we would like to
perform a new retrieval operation every time
there is change, and we might like to reinforce
the user’s perception that change is continually
monitored, but we need to temper this to match
the speed of our retrieval engine and the costs
associated with it. Such issues do not arise with
conventional IR and IF, where change is much
less frequent. Sometimes in CAR, when there
has been a sudden radical change, we might want
to abort any current retrieval operation and start
a new one. In some key applications, such as
triggering when certain share price thresholds
are passed, speed of retrieval may have absolutely
vital importance, and be the driving force of the
application.

A further facet of the mismatch between what
the user sees as continuous change and what the
system sees as discrete change is the possibility of
missed information. An example is the follow-
ing: a document is to trigger when the tempera-
ture is O0; one retrieval is made when the
temperature is 1; the temperature is dropping
fast, and by the time the next retrieval is made,
the temperature is —2. The result may be that the
document is not triggered. In our experience,
however, such problems can usually be solved by
using ranges rather than single values: thus the

P. J. Brown and G. ]. F. Jones

author might set the trigger context as a
temperature in the range —2 to 2, rather than
0; alternatively the application, when setting the
current context prior to retrieval, can set each
field to the range of values that has occurred
since the last retrieval — this assumes, of course,
it is keeping some history: in our example this
interpolation would yield the range between 1
and -2, and would match the original document,
even if it specified a value of 0. Overall this
interpolation is a simple example of more general
inferences that may be made from contextual
data.

In other applications one might wish to take
the rate of change into account in deciding
which documents are important. For example, in
a system designed to automatically assist drivers
in avoiding traffic congestion it may be useful to
provide information with differing degrees of
granularity depending on the driver’s current rate
of progress. There is little point in suggesting
routes to avoid problems further into the journey
if the driver is enmeshed in local congestion
problems.

Finally, there is an important positive quality
of change: if change is gradual and consistent, it
may be possible to exploit this to perform
forecasting and optimisation. We discuss this
later.

6. Presentation to User

This is not an HCI paper — though HCI issues
are of course crucial in CAR applications as in
most mobile applications. Nevertheless, it is
foolish to consider retrieval in isolation, without
any thought for how the recipient can exploit it.

Overall we want to be sure that there is at
least one credible model for presenting informa-
tion to the recipient. There is indeed: an
approach similar to that used for presenting
incoming email is one that is already familiar to
most users and need not be intrusive. Individual
applications may well, however, have their own
user interfaces that are especially tailored to the
task in hand. Two interesting ones — both
potentially adaptable to a range of applications
— are described in papers by Rhodes [2,3]. The
first of these describes the “Wearable Remem-
brance Agent”, the output of which is viewed
using a head-up display; each retrieved document
is initially represented by a single line of text at
the bottom of the display. The second system,



“Marginal Notes”, assumes the user interface is a
web browser, and augments the web page the
user is reading by adding additional suggested
links in a margin beside the main page; these
added links are determined by the current
context.

A more general point concerns the informa-
tion that may need to be made available to the
recipient: when document D has matched
current context C, the recipient may wish to
look both at material extracted from D and
material extracted from C — remember that the
recipient may be different from the user and may
wish to know about the context C of the tracked
user. The technology needed to extract and
suitably present this information to the user is an
area for further study in HCI for CAR. Rhodes
[2] advocates the use of “ramping interfaces”,
whereby information is provided at increasing
layers of detail: “the idea is to get useful
information to a user quickly, while at the
same time allowing them to bail out [of
unwanted retrieval] with as little distraction as
possible”.

In proactive retrieval, the issue of controlled
change impacts the user interface. At one
extreme the user interface might consist of a
single template into which some value from the
most recently received document is inserted. For
example, in a CAR application only concerned
with locating restaurants the display might
consist of a template of the form “The nearest
restaurant that meets your needs is currently X”.
Whenever a new document is triggered its
“restaurant name” field can be extracted and
filled into the template in place of X. The user
perceives a continually changing world and the
quicker the change is made by the CAR
application the better. At another extreme, an
application may retrieve lengthy descriptive
information for the user to read; the user would
be upset if, when she was half way through
reading such a document, it was suddenly
overridden by a newly retrieved one. In this
case user requirements for discrete steps and
graceful change may dampen the need for
frequent retrieval.

7. Implementation

CAR is an emerging discipline, and most current
systems have labels such as “pilot” or “proto-
type”. Most have limited amounts of data, and

have not yet had to face retrieval performance
problems. Thus they have been able to make do
with simplistic retrieval approaches.

Our own practical experience mirrors this
[14], and the main limitations on performance
have been the setting of the current context, in
particular:

o the slowness of sensors and the problems of
communicating with them

o the slowness of “clever” sensors, specifically
software sensors that intelligently try to
combine physical sensors into information at
a higher level of abstraction, e.g. that the user
is in a meeting.

We believe, however, that in the future, with
such applications as context-aware information
provided as part of a standard mobile phone
service, efficiency of retrieval will become the
central issue. Indeed, recent discussions with
colleagues concerned with a context-aware
exhibition guide show that serious problems
can emerge even with only a thousand docu-
ments and a few hundred independent users.

8. Performance Optimisation

Performance optimisation, together with weight-
ing of matches, is the essence of IR/IF. If these
two issues were ignored, much retrieval work
would be almost trivial to implement (and,
indeed, trivial in its usefulness). As we have said,
the main strategy of optimisation is to take
advantage of the static nature of some element of
the matching, and to do some preprocessing to
make that element faster to process. We have a
number of approaches for handling large volumes
of data, as outlined earlier. There are also
techniques for optimising the match of 1D, 2D,
and multiple-dimensional numerical values, e.g.
quadtrees or R-trees. All of this potentially
carries over to CAR in cases where the relevant
fields are static. If the CAR application involves
a multiplicity of data types, each requiring its
own form of optimisation, then the total
optimisation task may represent a big challenge.
Nevertheless, it is a challenge that must be faced
because, when CAR applications become more
widespread, there will be massive amounts of
data, but still the requirement for good real-time
performance.

The most promising route to progress is not to
focus on the areas where CAR is harder than

Context-aware Retrieval: Exploring a New Environment for Information Retrieval and Information Filtering




normal IR/IF, but instead to look at the special
characteristics of CAR that can be exploited: the
most obvious of these is that change in the
current context may be gradual and, to a degree,
predictable. Several optimisations, based not on
unchanging static data but on gradual change,
then become possible:

e The query may be a constant template, with
slightly different values plugged in for each
retrieval.

e If a history is maintained, the application may
be able to extrapolate in order to forecast
future values of some fields (“the user is
travelling at 3 mph in a certain direction;
therefore when we next need to retrieve the
location is likely to be X”). This allows
retrieval to be performed in advance, although
of course there is a danger of a forecast being
upset by a change of direction. The issues here
are similar to those encountered in design of
computer memory architectures, and also arise
in tracking cellphone users [15].

e If the retrieved documents are ranked, and if
the data have the property that a small change
in the user’s current context will produce a
correspondingly small change in the retrieved
documents and their rankings, then a possible
strategy is as follows. First perform a full
retrieval, and remember the 100 (say) best
matches in a cache; show the best few of these
to the recipient; for the next retrievals, just
look at the 100 documents in the cache,
calculate the new weightings, and again
present the best few to the user; periodically
do a full retrieval to reset the cache — in
particular do this if there is a radical change in
the present context. (This optimisation also
clearly has potential for reducing network
traffic, as well as for reducing retrieval time.)

e Use forecast values as an additional factor in
setting matching scores: e.g. documents that
relate to locations the user is moving towards
weigh more than those behind or off to the
side.

These examples cover just a few of the areas of
possible further study for CAR research.

9. Conclusions

We have identified two basic types of CAR: user-
driven and author-driven. These are logically

P. J. Brown and G. ]. F. Jones

equivalent to IR and IF respectively. Many CAR
applications are hybrids between the two and, in
addition, many have multiple documents and
multiple queries, whereas IR/IF concentrate on
one degree of multiplicity.

Given that CAR is so strongly related to both
IR and IF, we believe that the two cornerstones
of past — and present — IR/IF research, efficiency
and effectiveness, will be equally crucial to CAR.

In order to improve efficiency of retrieval, the
focus of IR/IF research has been on preprocessing
static parts of the data. CAR applications are less
static and we believe that a promising avenue for
further research is not to focus optimisation on
the static, but instead to focus it on change that
is gradual and partly predictable.

We believe that in CAR, as in IR/IF, best-
match technology will eventually dominate.
Again if change is predictable, weightings can
be useful in creating caches, and in deciding
whether information is relevant enough for it to
be worthwhile to interrupt the user’s current
activity.

Acknowledgements

Several of our colleagues have contributed
greatly to this work: we would especially like to
mention Nick Ryan and Jason Pascoe. The paper
was originally inspired by the clear thinking and
superb insights shown in an MSc dissertation
[16]. We are grateful to one of the referees for
their particularly careful analysis, and conse-
quent suggestions. Peter Brown appreciates the
Leverhulme Trust’s support.

References

1. Brown PJ, Burleston W, Lamming M, Rahlff O-W,
Romano G, Scholz J. Snowdon D. Context-awareness:
some compelling applications. Submitted for publication,
http://www.dcs.ex.ac.uk/~pjbrown/papers/acm.html, 2000

2. Rhodes BJ. Margin Notes: building a contextually aware
associative memory. In: Proceedings of the Conference
on Intelligent User Interfaces (IUI'00), New Orleans,
LA, 2000

3. Rhodes BJ. The Wearable Remembrance Agent: a system
for augmented memory. Personal Technologies 1997; 1:
218-224

4. Cooperstock ], Fels S, Buxton W, Smith KC. Reactive
environments: throwing away your keyboard and mouse.
Communications of the ACM 1997; 40: 65-73

5. Newman WM, Eldridge MA, Lamming MG. Pepys:
generating autobiographies by automatic tracking. In:
Proceedings ECSCW ’91, Amsterdam, September 1991

6. Schilit WN, Adams NI, Want R. Context-aware
computing applications. In: Proceedings of the Workshop
on Mobile Computing Systems and Applications, Santa



10.

11.

12.

Cruz, California, 1994. IEEE Computer Society Press:
85-90

. Belkin NJ, Croft WB. Information filtering and informa-

tion retrieval: two sides of the same coin? Communica-

tions of the ACM 1992; 35: 29-38

. Robertson S, Walker S. Threshold setting in adaptive

filtering. Journal of Documentation, 2000; 56, 3:312-331

. Sparck Jones KS, Walker S, Robertson SE. A probabil-

istic model of information retrieval: development and
status. Technical Report 446, Computer Laboratory,
University of Cambridge, 1998

Salton G, Buckley C. Term-weighting approaches in
automatic text retrieval. Information Processing and
Management 1988; 24: 513-523

van Rijsbergen CJ. Information retrieval. Butterworths,
London, 1979

Pascoe J. Context-aware software. PhD thesis, University

of Kent at Canterbury, 2001

14.

15.

16.

. Oard DW, Marchionini G. A conceptual framework for

text filtering. Report EE-TR-96-25, University of Mary-
land, 1996

Brown PJ, Bovey JD, Chen X. Context-aware applica-
tions: from the laboratory to the marketplace. IEEE
Personal Communications 1997; 4: 58-64

Das RE, Sen SK. Adaptive location prediction based on a
hierarchical network model in a cellular mobile
environment. Computer Journal 1999; 42: 474-486

Kennaugh R]. An agent based information dissemination
system. MSc dissertation, Imperial College, London,
1998

Correspondence to: Peter ]J. Brown, Department of Computer
Science, University of Exeter, Exeter EX4 4PT, UK. Email:
P.J. Brown@exeter.ac.uk

Context-aware Retrieval: Exploring a New Environment for Information Retrieval and Information Filtering




