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Abstract
Real risk status detection is an effective way to reflect risky or dangerous driving behaviors and therefore to prevent road traffic
accidents. However, a driver’s risk status is not only difficult to define but also uncontrollable and uncertain. In this study, a
simulated experiment with 30 drivers was conducted using a driving simulator to collect the multi-sensor data of road conditions,
humans, and vehicles. The driving risk status was classified into three states (0 - incident, 1 - near crash, or 2 - crash) on the basis
of the playback system of the driving simulator. The experimental data were pre-processed using the cubic spline interpolation
method and the time-windows theory. A driving risk status identification model was established using the C5.0 decision tree
algorithm, and the receiver operating characteristic curve (ROC) was adopted to evaluate the performance of the identification
model. The results indicated that respiration (RESP), vehicle speed (SPE), SM_FATIGUE, distance to the left lane (LLD), course
angle (CA), and skin conductivity (SC) had a significant correlation (p < 0.05) with the driving risk status. The identification
accuracy of the C5.0 decision tree algorithm was 78%, and the areas under the ROC were 0.934, 0.77, and 0.845, respectively.
Moreover, compared with other four identification algorithms, the algorithm performance evaluation indexes TPR (0.780),
precision (0.753), recall (0.78), F-measure (0.756), and kappa (0.884) of the C5.0 decision tree were all the best. The conclusion
can provide reference evidence for danger warning systems and intelligent vehicle design.
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1 Introduction

Road safety is an important issue in the transport field. It is
determined by drivers, vehicles, and the driving environment.
Previous research has revealed that more than 90% of the
traffic accidents are associated with unsafe driving behaviors
[1]. Real risk status detection is an effective way to reflect
risky or dangerous driving behaviors and therefore to prevent
road traffic accidents. However, the drivers’ risk status is not
only difficult to define but also uncontrollable and uncertain.

Dingus et al. [2] defined three types of traffic events as
follows:

Crash: situations in which there is physical contact be-
tween the subject vehicle and another vehicle, fixed ob-
ject, pedestrian, cyclist, or animal.
Near crash: situations requiring a rapid, severe, and eva-
sive maneuver to avoid a crash.
Incident: situations requiring an evasive maneuver of less
magnitude than for a near crash.

The different risk statuses of the drivers will result in the
three different abovementioned traffic events. If an automatic
alarm system or an automatic driving system can identify the
driver’s current driving risk status, it can avoid accidents or, in
the case of a dangerous status, remind or take over the driver
and complete the driving task safely [3–5].

The purpose of the present study was to classify and predict
the drivers’ risk status through a large amount of data from a
driving simulation experiment based on an advanced decision
tree (C5.0) algorithm. The decision tree visually explains the
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relationship between the risk status and the related factors. In
addition, the decision tree can achieve high prediction accura-
cy. Therefore, in this paper, we propose a C5.0 algorithm
based on the strong correlation between multiple information
and driving risk to predict the drivers’ risk status.

For real risk status detection, Charlton [6] investigated the
acceleration variation caused by the attention lapses in the
curves. Caird et al. [7] found that drivers’ attention lapses
would emerge with a decrease in the driving speed. Guo [8]
pointed out that the effective identification and early warning
for a dangerous status of driving behaviors are crucial for
preventing road traffic accidents. The basic thought of the
thesis is to use various cluster methods to classify the drivers’
status variation in the statistical dimension. The adopted state
variables included driving behavioral feature parameters and
vehicle state parameters.

A classification of driving styles was used as a surrogate to
reveal the potential driving risks in the existing research.
Acceleration and braking, time headway control, lane change,
and turning control were the main indexes for judgment [9,
10].Wang et al. [11] used a vehicle’s longitudinal acceleration
and acceleration jerk as the evaluation indexes and developed
a driving style detection system, which yielded a satisfactory
result in terms of improving the driving behavior and riding
comfort. Simons-Morton et al. [12] found that the drivers
overestimated driving abilities and had a relatively huge bias
for estimating the time headway. An incorrect estimation
poses a considerable threat for road safety. Macadam [13]
adopted the naturalistic driving data of 36 drivers to investi-
gate the relationship between the driving style and the
car-following behavior. The results showed that the frequency
of a close car-following phenomenon is strongly related with
the driving style.

Except for the direct parameters that can reveal the real risk
status, several indirect indexes need to be adopted to reflect
dangerous driving behaviors, such as distracted driving and
fatigue driving. There have been a number of studies showing
a driver’s eye movement characteristics related to the above
unsafe driving behavior. Dehban et al. [14] used a
cognitive-based driver’s steering behavior modeling method
to explain how the driver can acquire information in his/her
visual field and how the driver manipulates his/her environ-
ment. Hills et al. [15] explored the vertical eye movement
carryover from one task to another task and found that it is a
potentially distracting effect on the safety of novice drivers.
Lantieri et al. [16] explored the effect of gateways to reduce
the amount of distraction, by analyzing the drivers’ eye move-
ment data. Li et al. [17] studied the visual scanning behavior
of drivers at signalized and unsignalized intersections, and
found that intersection types made differences on drivers’
scanning behavior. As for a fatigue driving–related study,
Jimenez-Pinto et al. [18] obtained the shape of the eyes and
the mouth to predict whether the driver was yawning or

blinking. Zhang et al. [19] carried out a preliminary estimation
of the eye gaze from the elliptical features of an iris and ob-
tained the vectors describing the translation and the rotation of
the eyeball.

From the perspective of methodology, machine learning
algorithms have been applied as a typical data analysis method
in road safety studies. Abdelwahab et al. [20] applied an arti-
ficial neural network model to predict the traffic accident risk
at signalized intersections. The results showed that the multi-
layer perceptron (MLP) neural network model can achieve
ideal accuracy in intersection risk prediction, which indicates
that the modified algorithm has good generalization perfor-
mance. Hernandezgress et al. [21] combined multi-sensory
information and used a principal component analysis and neu-
ral networks to identify whether a driver was behaving nor-
mally. One of the main problems of machine learning is the
uncertainty of extending a given model to a new problem. To
determine whether an algorithm can be generalized well, the
datasets are divided into two (training and testing) or three
(training, validation, and testing) datasets for validation.
Huang et al. [22], using convolutional neural network
(CNN) for visual analysis, proposed a hybrid CNN framework
(HCF) to detect the behavior of distracted drivers, and deep
learning is used to process image features to help drivers
maintain safe driving habits. Jeberson et al. [23, 24] used
fog computing with the Internet of Things and machine learn-
ing to achieve intelligent healthcare data segregation.

Moreover, Wang et al. [25] used classified regression trees
to reveal the relationship between the driving risk level and the
influencing factors from three aspects of the road environ-
ment, driver characteristics, and vehicle characteristics. Li
et al. [26] proposed a feasible method of data analysis, learn-
ing, and parameter calibration based on an RBF neural net-
work to determine the corresponding decision support system
on the basis of the fact that an integrated simulation platform
for urban traffic was built. The Bayesian network (BN) clas-
sification algorithm has flexibility in the classification of ac-
cident datasets. It uses the previous data information and in-
creases the experience of decision makers. AlKheder et al.
[27] on the basis of three models comprehensively analyzed
the correlative factors of traffic accident severity; the results
showed that BNs are more accurate in predicting multiple
variables than other algorithms. Cura et al. [28] used LSTM
and CNN’s neural network model to classify and evaluate bus
driver behavior characterized by deceleration, engine acceler-
ation pedals, turns, and lane change attempts. Kumagai et al.
[29] proposed a dynamic BN algorithm to predict a dangerous
driving behavior, and the vehicle’s speed and acceleration
were regarded as the related variables. In addition, other ma-
chine learning algorithms such as SVM [30] were also applied
as prediction algorithms for risk status identification.

As there are many factors that affect the driving risk, var-
ious methods should be combined to improve the accuracy of
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driving risk classification and prediction. Yan et al. [31] used
BNs to analyze the main factors that significantly affect the
driving risk status and selected the most relevant factors to
establish the driving risk status prediction model logistically.
Panagopoulos et al. [32] used an extreme gradient boosting
(XGB) algorithm that provides a short-term forecast for dan-
gerous driving behaviors.

Previous studies have focused on exploring the relation-
ships among driving risk status, driver personality character-
istics, vehicle characteristics, road conditions, and the driving
environment. Although there are part of the study focused on
the use of sensors to assess the risks of driving, not many types
of data were collected by the sensors. Therefore, in this paper,
we propose a C5.0 algorithm based on the strong correlation
between multi-information and the driving risk. Then, a driv-
ing risk state detection model based on the relevant factors is
established by using the C5.0 algorithm. Finally, the ROC
curve is applied to judge the classification and detection re-
sults. Then, the true positive rate (TPR), false positive rate
(FPR), precision (P), recall rate (R), F-measure, and kappa
value were applied to evaluate the performance of different
prediction models.

The remainder of this paper is organized as follows.
Section 2 introduces the data processing method
adopted in this study and describes in detail the work-
ing principle of the C5.0 decision tree. Section 3 de-
scribes the RS experiment protocol and data collection.
Sections 4 and 5 discuss the results and the statistical
analysis. Section 6 presents the discussion and the con-
clusion. The flowchart of the research method is shown
in Fig. 1.

2 Methodology

2.1 Cubic spline interpolation

Spline interpolation is a commonly used method to obtain
smooth curves in data processing, and cubic spline interpola-
tion is a more widely used one. Cubic spline interpolation is
composed of piecewise cubic curves and has a continuous
second derivative at the connecting point, which can ensure
the smoothness at the connecting point. Therefore, cubic
spline interpolation has the best effect of piecewise
low-order interpolation. The cubic spline function is defined
as follows:

Usually, on the interval [A, B], n + 1 nodes and a set of
corresponding function values are given, and if the function
satisfies the following:

1) 1) S(xi) = f(xi)(i = 0, 1, …, n − 1) is satisfied at each
node,

2) There is a continuous second derivative on n + 1.

3) At every subinterval, [xi, xi + 1](i = 0, 1, …, n − 1) is a
cubic polynomial. Then, S(xi) is called the cubic spline
interpolation function.

Cubic spline interpolation polynomial is defined as
follows:

The cubic spline interpolation function S(x) is a piecewise
cubic polynomial. If asked to work out the function S(x), then
four undetermined parameters should be determined between
subinterval [xi, xi + 1], if Si(x) is used to represent its expres-
sion on the ith subinterval [xi, xi + 1], then

Si xð Þ ¼ ai0 þ ai1xþ ai2x2 þ ai3x3 i ¼ 0; 1;…; n−1ð Þ ð1Þ

2.2 C5.0 algorithm based on information gain rate

C5.0 algorithm is developed by Quinlan [33], which is an induc-
tive learning method based on the entropy of information in the
sample data. Entropy is a measure of the complexity (degree of
uncertainty) of a sample set. C5.0 takes the information gain rate
as the standard for selecting features, and information gain is the
degree of uncertainty reduction. Its decision-making method
from the root node calculates the information gain rate of all
feature attributes that have the ability to classify the results of
the decision tree, and selects the feature attribute pair with the
largest information gain rate as the decision tree node. Then, the
data are divided into two or more child datasets, and the splitting
is stopped when most of the data points are labeled to the similar
class within the same branch of the tree. In general, the decision
tree model is composed of one root node, multiple intermediate
nodes, and several leaf nodes. The root nodes and the intermedi-
ate nodes represent the corresponding test conditions, and the leaf
nodes represent the final classification results. The main advan-
tage of using the C5.0 algorithm is that the tree structure is more
concise and has better storage capacity. In addition, it is faster
than the C4.5 decision tree classification and has a better noise
reduction effect [34].

The basic principle of C5.0 is to split the sample on the basis
of the field that provides the maximum information gain. Then,
according to the field division, the subsamples are defined by the
first integral of each sample, and the process repeats until the
subsamples cannot be divided further. Finally, the bottom seg-
ment is checked again, and the segment that has no significant
effect on the model values is removed or trimmed.

Let the training set have m samples. Here, m is the number
of independent types of Ci, i = 1, 2,…, m Rj is a subset of Ci
in dataset S, Ri is used to represent the number of tuples in Rj,
and the expected value of set S in the classification can be
expressed as follows:

I r1; r2;…rmð Þ ¼ − ∑
m

i¼1
pilog2 pið Þ ð2Þ
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In the above formula, pi represents the probability that any
sample belongs to Ci, pi ¼ ri

jsj, and ∣s∣ is the tuple in the train-

ing set. Let A represent the attribute with a total of v different
values {a1, a2, …, av}. Then, divide the sample set into v
subsets according to A. Let Sj be the attribute in dataset S; the
value of Sj is equal to the subset of aj. In the classification, if A
is a decision attribute, the sample set can be divided into dif-
ferent branches. If Sij is used to represent the data of the tuples
belonging to class C in the subset, then the entropy of A for Ci,
i = 1, 2, …, m can be calculated as follows:

E Að Þ ¼ ∑
v

j¼1

S1 jþ…þ Smj
jsj I S1 jþ…þ Smjð Þ ð3Þ

Wj ¼ S1 jþ…þ Smj
jSj ð4Þ

In the above formula,Wj is the proportion of Sj in S, which
can be used as the weight of Sj. The expected I(S1j, S2j…Smj)
of each value of A for Ci can be calculated as follows:

I S1 jþ…þ Smjð Þ ¼ − ∑
m

i¼1
pijlog2 pijð Þ ð5Þ

At this moment, Pij ¼ Sij
jSjj represents the proportion that

belongs to Ci in Sj.
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With the above calculation and A as the measure of the
decision classification attributes, the information gain can be
calculated as follows:

Grain Að Þ ¼ I r1; r2;…rmð Þ−E Að Þ ð6Þ

Because the information gain divides the sample into a
smaller subset, there is a certain deviation in the value of the
variable. In order to reduce this deviation, the calculation can
be expressed as follows:

Split Info S; vð Þ ¼ ∑
m

i−1

jSij
jSj � log2

jSij
jSj ð7Þ

The gain rate is expressed as follows:

GrainRatio ¼ Grain S; vð Þ
Split Info S; vð Þ ð8Þ

Table 1 is the decision tree learning algorithm:

2.3 Evaluation methods

The ROC curve (receiver operating characteristic curve, sen-
sitivity curve) analysis method originated from the theory of
electronic signal observation and is used to evaluate the radar
signal receiving capability. This method is based on the sta-
tistical decision-making theory and is currently more mature
in applications such as medical diagnosis, human perception
and decision-making, militarymonitoring, and industrial qual-
ity control. In this study, we attempted to use this method to
distinguish among the different levels of the driving risk sta-
tus. The ordinate was the true positive rate (sensitivity), and
the abscissa was a false positive rate (1 − specificity).

AUC (area under the curve) is an evaluation index used to
measure the advantages and disadvantages of the binary clas-
sification model. It is generally defined as the area surrounded
by the coordinate axis under the ROC curve and ranges from
0.5 to 1.0. Because the ROC curve is generally above the
straight line (y = x), a larger AUC represents a better perfor-
mance. The closer the area of AUC is to 1.0, the more rational
is the model.

True positives (TP) is the number of positive examples that
are actually positive and are classified as positive by the clas-
sifier. False positives (FP) is the number of incorrectly classi-
fied as positive examples, i.e., the number of instances that are
actually negative but are classified as positive by the classifier.
False negatives (FN) is the number of instances that are
wrongly classified as negative examples, i.e., the number of
instances that are actually positive examples but are classified
as negative examples by the classifier. True negatives (TN) is
the number of instances correctly classified as negative exam-
ples, i.e., the number of instances that are actually negative
examples and classified as negative examples by the classifier.
The true positive rate (TPR) is defined as the percentage of
samples correctly judged to be positive in all the samples that
are actually positive. The false positive rate (FPR) is defined
as the percentage of samples that are misjudged to be positive
in all the samples that are actually negative. The ROC curve is
a curve that uses the composition method to describe the re-
lationship between the sensitivity (true positive rate, TPR) and
the specificity (true negative rate, TNR) of a diagnostic test
and reflects the diagnostic test as a comprehensive index of the
two continuous variables, sensitivity and specificity. In addi-
tion, two other indicators are commonly used in the process of
diagnostic tests, namely, the false negative rate (false negative
rate, FNR) and the false positive rate (false positive rate, FPR)
[35]. These indicators are shown in Eqs. (9)–(12).

The five detailed evaluation indicators are described as
follows: Accuracy indicates the proportion of positive sam-
ples that are actually positive. In general, in order to distin-
guish whether a model is good or bad, it is necessary to com-
bine the recall rate (recall) and the accuracy rate (precision).
The recall rate represents the percentage at which all instances

Table 1 C5.0 decision tree process

Algorithm: C5.0 decision tree

Input: Training set T={(x1,y1),(x2,y2),…,(xm,ym)};

Attribute set A={a1,a2…,an}.

Start: Function Tree Produce(T,A)

1: Produce first node;

2: If all the samples in T belong to the same category C then

3: Mark node as a C-type leaf node; return

4: End if

5: If A=∅ or Sample T is the same as the value in A then

6: Mark the node as a leaf node, and mark its category as the category
with the largest number of samples in T; return

7: End if

8: Select the optimal partition attribute a∗ from A;

9: For a∗each value. av* do

10: Generate a branch for node, Tv⊆av*
12: Mark the node as a leaf node, and mark its category as the category

with the largest number of samples in T; return

13: Else

14: Mark TreeProduce Tv; A
a*f g

� �
as a node for the branch

15: End if

16: End for

Output: A decision tree with “node” as the root node

Three conditions for ending the program as follows:
1) Step 2: All samples in sample T belong to a category, and the division

stops.
2) Step 5: If the attribute set is empty or all the samples have the same

attribute value at this time, it is no longer possible to divide according
to the attribute, so find the category with the most number among the
remaining samples.

3) Step 12: If the data set does not have samples on an attribute, for
example, after multiple partitions, there are no samples of this attribute
in the remaining samples, we make the category of such samples equal
to the category with the largest number of samples in the current node’s
parent node.
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that are actually positive examples are predicted to be positive
examples and is equivalent to sensitivity. F-measure is a com-
prehensive evaluation index that can comprehensively evalu-
ate the accuracy and the recall rate. The higher the F-measure
is, the more effective is the model. Accuracy is a common
indicator that represents the percentage of correct predictions
in all the samples. The indicators are obtained using Eqs.
(13)–(16).

TPR ¼ TP
TP þ FN

ð9Þ

FPR ¼ FP
FP þ TN

ð10Þ

TNR ¼ TN
FP þ TN

ð11Þ

FNR ¼ FN
TP þ FN

ð12Þ

precision ¼ TP
FP þ TP

ð13Þ

recall ¼ TP
FN þ TP

ð14Þ

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

ð15Þ

F−measure ¼ 2
1

precision
þ 1

recall

ð16Þ

3 Experiments and results

3.1 Experimental conditions

In order to ensure the safety and the reliability of the experi-
ment, the driving simulation system (shown in Fig. 2), which
was developed by ITS Center at Wuhan University of
Technology, China, was applied. This system consists of four
subsystems: vehicle information data collection system, visual
system, sound support system, and the driver’s physiological
data collection system. The data such as brake signal, vehicle
speed, and course angle were collected by this system. In
addition, the traffic accident and illegal behaviors were auto-
matically recorded in the driving simulation system.

Two types of data were collected through the data acquisi-
tion system. One was the data related to the driver, including
blood volume plus (BVP), skin conductance (SC), respiration
rate (RR), and PERCLOS, which were mainly used to evalu-
ate the physiological status of the driver. The other was
vehicle-related data, and the evaluation of the vehicle status
often depended on the vehicle-related data, including speed,
acceleration, and steering wheel angle.

3.2 Participants

Thirty-two volunteers recruited on the university campus par-
ticipated in this study. Two of them dropped out because of
dizziness and other symptoms during the experiment, and 30
(22 male and 8 female) volunteers were finally considered.
Their ages ranged from 21 to 40 years (M = 24.6 years; SD
= 4.8 years). All of the invited volunteers had valid driving
licenses with an average driving experience of 4 years (SD =
1.5 years) and were required to operate as though they were
driving on an actual road. A summary of the participants’
characteristics is given in Table 2.

3.3 Road scenarios

In order to simulate the actual driving process more realisti-
cally, we enhanced the fidelity of the simulated driving and
the immersion of the subjects. The experimental scene was
designed according to the real road data from Wuhan, imple-
mented by using the RoadBuilder software, and loaded into
the driving simulator. The parameters of the final scene con-
sidered in this experiment are listed in Table 2.

Certain relevant studies have shown that the possibility of
vehicle–vehicle and vehicle–human conflict was considerably
increased when the traffic flow was large and the vehicles
were at the intersections or the bus stations. In order to rela-
tively balance the number of traffic incidents with different
driving behavior risk levels considered in this experiment, the
number of intersections and bus stations was increased in the
scene design process. The actual effect of the scenario is
shown in Fig. 3a–d.

3.4 Data collection and driving protocol

During the experimental process, two assistants were recruit-
ed; one of the assistants was responsible for debugging the
driving simulator and assisting the driver in wearing physio-
logical devices and the other equipment, and the other

Fig. 2 Experimental system
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assistant functioned as a recorder, recording the driver’s indi-
vidual characteristic information, including the record of spe-
cial traffic events during the experiment and the record of the
self-reported results of the driver. After the experiment, the
assistants were responsible for sorting out the data and the
video collected by the experiment. The detailed experimental
process was as follows:

Step 1: Preparation for the experiment: The assistants gave a
brief introduction to the experimental procedure and
explained the task and the requirements to the vol-
unteers. They informed the volunteers of the rules
related to the rewards and the punishments (Each
volunteer was paid RMB 100 for completing all of
the experimental tasks. If the experiment was termi-
nated early or the requirements were not met, the
experiment had to be restarted or no payment was
provided). The volunteers were asked to complete
individual information questionnaires and sign an
informed consent letter. The participants were asked
to complete a questionnaire, which included some of
the driver’s basic personal information (such as the
driver’s age and gender).

Step 2: Introduction: The volunteers were provided the op-
erating specifications and matters that required the
attention of the driving simulation system. The staff
assisted them in wearing the physiological devices
correctly. Then, 10–15 min of adaptive driving was
conducted to ensure that the participants could op-
erate the driving simulator efficiently and make the
experiment more reasonable. When the adaptive
driving was completed, the volunteers rested for
5 min to adjust their physiological and psychologi-
cal states, and the staff launched the system into the
pre-designed driving scenarios, confirming that all
of the data output were in the normal state.

Step 3: Formal test: Firstly, the participants were asked to
complete the experiment within 20 min. During the

driving process, they were asked to obey the traffic
rules and to avoid traffic violations, such as
retrograding and going out of the driveway. The
assistants were asked to record the participants’
self-reporting and assess the current risk level of
the driving. At the same time, the time of start was
recorded. In order to ensure the integrity of the data
acquisition, all the volunteers were not allowed to
temporarily interrupt the experiment while driving
the simulation unless prior permission was obtained
from the staff.

Step 4: After experiment completion: An assistant held a
simple interview with the driver and gave him/her
RMB 100 for completing the experiment. The as-
sistant then copied and stored the experimental
data.

3.5 Data preprocessing

Because of the instability and the complexity of the entire
simulation system, it was inevitable to obtain some discrete
incorrect data. Thus, cubic spline interpolation was applied to
restore and supplement the artifacts or erroneous data. In all,
150 samples of valid data were selected as the test dataset, and
10 points were randomly selected from this dataset and delet-
ed. Then, cubic spline interpolation was used to restore these
points; the corresponding results are shown in Fig. 4. The
absolute value of the relative error between the original points
and the spline points was calculated as shown in Fig. 5. From
Figs. 4 and 5, we inferred that the cubic spline interpolation
could restore the reduction of data points effectively.

Considering that a dangerous traffic event is a process
event rather than a point event, the time window method
should be used when extracting the event. Studies have shown
that the length of the time window of traffic incidents has a
significant effect on the recognition accuracy of the construct-
ed model. If the time window length is too large, the data will

Table 2 Experimental scenario design parameters

Scenario requirements Detailed design parameters

Time Day (6:00–18:00)

Weather condition Sunny; cloudy; sufficiently dry road

Road type Urban road

Road condition The road section is 30 km long; the main trunk road is a six-lane two-way traffic road; the secondary trunk
road is a four-lane two-way traffic road and includes eight intersections and five bus stations; there are pedestrians
walking along the intersection crossings and in some other areas. The landscape greenbelt segregates the non-motor
vehicle lanes from the motor vehicle lanes.

Roadside environment Roadside environment including commercial buildings, billboards, and landscape green belts

Traffic background Randomly generated bus traffic flow. The main trunk road traffic volume is 2000 vehicles/h; the secondary
trunk road traffic volume is 1000 vehicles/h.
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be cumbersome and cannot be accurately calibrated. If the
time window is too small, the data characteristics may not
be obvious, and accurate decision-making on traffic incidents
may not be realized. Therefore, the recognition rate of the
target traffic event under different time windows was used
as the judgment condition of the time window length selec-
tion, and the recognition rate of the target traffic event under
different time windows was obtained as shown in Fig. 6.

In the process of selecting the length of the time window,
we first selected 0.5 s as the time interval for the calculation.
When the cell was determined (that is, the optimal time win-
dow was within a certain small interval, the interval was 1 s),
0.1 s was chosen as the time interval. We refined the calibra-
tion again and finally obtained the optimal time window
length. Figure 5 shows that when the time window length
was 3 s, the highest traffic incident recognition rate reached
94%. Therefore, we used 3 s as the time window to process
and analyze the data collected in the simulation experiment.

3.6 Parameter settings

To investigate the vehicle’s motion characteristics, driving
behavior characteristics, and road conditions in different traf-
fic scenarios, a data collection system was developed for the
driving simulator, and the vehicle’s motion characteristics da-
ta were collected in this system. The Biography Infiniti
System was equipped to collect the data of the driver’s phys-
iological indexes, such as blood volume pulse, skin conduc-
tivity, and respiration. An eye movement measurement

instrument was used to collect the data of the characteristics
of the eye movement. The data sampling rate, data type, and
symbols are presented in Table 3.

4 Prediction model results

4.1 Results of C5.0 classifiers

The C5.0 algorithm was used to classify the different levels of
the risk status, and the risk levels were predefined as the

Fig. 3 Road driving scenarios
constructed on the basis of the real
road data from Wuhan, China. a
Pedestrians crossing the road. b
Bus parking. c Roadside
buildings. d Intersection point

Fig. 4 Result of cubic spline interpolation
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following three levels: 2 - Crash, 1 - Near crash, and 0 -
Incident. Moreover, the decision tree was built as follows:

We calculated the information gain rates for all the feature
attributes and created the decision tree nodes. Then, all the
training sample data were entered as the initial training
dataset. The information gain rate of the feature attributes
was calculated, and the feature attribute with the maximum
information gain rate was selected as the decision tree node.
The RESP and SPE attributes with the highest information
gain rate were the attributes in the first and the second layers
of the decision tree. Starting from the third layer, the classifi-
cation probability values of FWA, SM, ACC, and the other
factors gradually became similar. The risk status decision tree
model was established and is illustrated in Fig. 7 (as the com-
plete decision tree is too large, only a part of it is shown).

As shown in Fig. 7a, the C5.0 decision tree method was
adopted for the risk status classification. For the purpose of

explanation and prediction, the result of classification through
visual processing was reflected. The first node at the top of the
decision tree shows the first optimal split of the risk status,
sending cases (respiratory rate) with less than or equal to
39.170 to the left and all the others to the right. In other words,
the best variable among all the variables to explain the vari-
ability of the classified risk status was RESP.We assumed that
when the risk status was at the node, the RESP was greater
than 39.170. Under these conditions, the next best classifica-
tion variable was the vehicle speed (SPE).When SPEwas less
than or equal to 24 km/h, the risk status path moved to the left,
and when the SPE was larger than 24 km/h, the risk status path
moved to the right, forming a terminal node or a leaf node.
The remaining splits, for the risk status path with SPE less
than or equal to 24 km/h, were made on the basis of the front
wheel angle (FWA), acceleration (ACC), and SM_FATIGUE
(SM). In general, to estimate the path of the risk status, we
moved down the branches of the tree in the abovementioned
manner until we reached the terminal node. Obviously, as
shown in Fig. 7a, the more important variable seemed to be
the FWA at the lower risk status, while for the higher risk
status, the vehicle speed seemed to be the most important. It
seemed reasonable that risky driving was associated with a
higher speed. However, when the vehicle was moving at a
high speed, the main cause of the accident was driver fatigue,
rendering SM as the more important variable.

Figure 7 b shows the result of applying the C5.0 method to
classify the three levels of the risk status, which generated a
more compact decision tree. The node of the first optimal split
was also the variable RESP. Thus, it seemed that RESP was
the best variable to classify the risk status into the three levels.
Note that FWA was an important variable in the case of a low
vehicle speed, and for a higher speed, the driver’s fatigue was
more important in the safe driving process. Thus, respiration
(RESP) and SM_FATIGUE (SM) once again proved to be
important variables when the level of risk increased. For the
purpose of prediction, the two-level risk status path was used
to check the three-level risk status, as their tree structure was
similar, while the decision tree was used to determine the
prediction. For instance, suppose that we had to make a risk
status prediction for the sample. First of all, from the top of the
decision tree to the root node, we branched right (RESP
>39.170), left (SPE ≤24.000), right (FWA >1.771), or right
(SM >0.044) to obtain the risk status level of 0. Some variables
were selected several times during the algorithm classification
process. Considering that all the left branches were to the leaf
node, the SPE appeared twice. Because one of the goals of C5.0
was to categorize the data and generate a tree-like structure,
relatively few variables appeared explicitly in the segmentation
criteria, and some very important variables appeared more than
once (such as the SPE in this tree structure). This might mean
that these variables were not important to the dependent vari-
able at the time of prediction but could be considered very

Fig. 5 Error graph
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important to the independent variable, even if it never appeared
as the primary segmentation node.

4.2 Results of model test

Based on the simulation experiment, a large amount of sample
data was acquired and selected; we used 100 groups of the
sample data to test the C5.0 prediction accuracy of the algo-
rithm. The comparison between the results of the true value
and the predicted value is shown in Fig. 8, and Table 4 shows
the test accuracy. As the chart shows, the prediction had high
accuracy. When predicting the three-level risk status, only six
test samples incorrectly predicted the risk status. In particular,
the prediction results for the risk status levels of 2 and 1 only
had three and two sample prediction errors, respectively.

As can be seen from the test results given in Table 4, in the
sample test, the recognition accuracy of C5.0 in the third-level
risk state was almost 94%. Figure 8 uses C5.0 to establish a
mapping relation of the sample comparison at different risk
states, which indicated that the real value corresponded to the
predicted value. For example, if the true value was 2 and the
corresponding prediction value was 1, the prediction of the
individual sample was inaccurate. The higher the number of
samples was, the lower was the prediction accuracy (Table 4).

The ROC curves for the three-level risk status were gener-
ated to evaluate the performance, and the corresponding re-
sults are shown in Fig. 9. The risk status classification based
on the C5.0 algorithm demonstrated high predictive power for
the three different risk status levels [0 vs. 1 or 2 (Fig. 9a), 1 vs.
0 or 2 (Fig. 9b), and 2 vs. 1 or 0 (Fig. 9c)]. The areas under the
curve (AUC) (Fig. 9d) reached 0.934, 0.77, and 0.845.
Moreover, the ROC curves showed that the risk level of 0
was the most accurate one (the AUC reached 93.40%, which
was close to the ideal value of 1, and the accuracy was 76.8%)
when identifying the different levels of the risk status. The
10-fold cross validation method was used to evaluate the ac-
curacy of the C5.0 algorithms.

4.3 Results of different algorithms

Figure 10 lists six evaluation indexes used to evaluate the
classification performance of these five algorithms, which is
C5.0 decision tree (C5.0), Radial Basis Function (RBF),
Lagrangian Support Vector Machines (LSVM), Iterative
Dichotomiser 3 (ID3), and Bayesian network (BNs), respec-
tively. The results showed that these five algorithms could
classify the risk states, but the classification effect was differ-
ent. In addition, the best FPR (0.145) was obtained by the ID3

Table 3 Independent variable
description ID Variables Symbol Type Sampling rate (Hz)

1 Speed SPE Continuous 20

2 Brake signal BRA Continuous 20

3 Left-turn LT Qualitative 20

4 Right-turn RT Qualitative 20

5 Front wheel angle FWA Qualitative 20

6 Acceleration of front wheel angle AFWA Qualitative 20

7 Acceleration ACC Continuous 20

8 Course angle CA / 20

9 Pitch angle PA / 20

10 Tilt angle TA / 20

11 Blood Volume pulse BVP / 256

12 Skin conductivity SC / 20

13 Respiration RESP / 32

14 The distance to center lane CLD / 15

15 The distance to the left lane LLD / 15

16 The distance to the right lane RLD / 15

17 SM_FATIGUE SM / 32

18 MICROSLEEP MIC / 32

19 PERCLOS PER / 50

20 Acceleration(X) ACCX / 50

21 Acceleration(Y) ACCY / 50

22 Acceleration(Z) ACCZ / 50

23 Risk Status RS Qualitative /
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 (a)   (b) 

Fig. 7 Results of decision trees. a Decision tree for level-two risk status. b Decision tree for level-three risk status
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algorithm (The lower the value of FPR, the better was the
effect of the prediction.). The C5.0 achieved the best TPR
(0.78), precision (0.753), recall (0.78), and kappa (0.884),
which proved that C5.0 performed better than the other four
models. Although the FPR in C5.0 was not the best among the
five algorithms, it did reach 0.158 and was second only to that
of ID3, which was 0.145.

Figure 11 shows the performance comparison of the five
algorithms. In general, the higher the ratios of TPR to FPR and
the other four indicators (precision, recall rate, F-measure, and
kappa) were, the better was the classification method. In this

study, six performance evaluation indexes of the algorithms
were selected for comparison. The kappa statistic of the algo-
rithms (C5.0 > RBF > BNs > ID3 > LSVM) indicated that
among the five algorithms, the difference between the predict-
ed value and the actual value was minimal when using C5.0,
which implied that the C5.0 algorithm had the highest accu-
racy. In terms of the FPR, the C5.0 had worse performance
than the ID3 algorithm but better performance than the RBF,
LSVM, and BNs. Overall, the C5.0 was optimal among the
five algorithms and was effective enough to be used to classify
the different levels of risk status.
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Fig. 9 ROC curve. a 0 vs. 1/2, b 1 vs. 0/2, c 2 vs. 1/0, and d area under curve/precision

Table 4 Identification accuracy
rate based on C5.0 (test sample) Driving risk level Accuracy amount Accuracy rate Missing amount Missing rate

0 54/55 98.10% 1/55(1) 1.81%

1 9/12 75% 2/12(0)1/12(1) 25%

2 31/33 93.93% 1/33(0)1/33(1) 6.06%

Average 94/100 94% 6/100 6%

0 55/55 100% 0/55 0%

1 23/45 51.11% 22/45 49%

Average 78 78% 22 22%
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5 Result analysis

5.1 Statistical analysis

Pearson’s correlation analysis was used to examine the corre-
lation between the eight influencing factors and the risk status.
As shown in Table 5, the results showed that six factors
(RESP, SPE, SM, LLD, CA, and SC) were significantly cor-
related with the risk situations (p < 0.05). Three factors (FWA,
ACCX, PER) were weakly correlated with risk status. Among
the significantly correlated factors, three factors were nega-
tively correlated with the risk status, namely, RESP, SM,
and LLD, which indicated that with the increase of the risk
status, all these four factors presented a downward trend. The
remaining three significant correlation factors (SPE, CA, SC)
showed a positive correlation with the risk status, indicating
that these six factors also showed an increasing trend with the
increase of the risk status. We all know that the faster, the
more dangerous. Therefore, it is not difficult to understand

that an increase in speed, skin conductance, and course angle
leads to an increase in increased risk status. It can also be
known from the table that the SPE is positively correlated with
CA and SC respectively, which indicates from another per-
spective that the three increase when the risk status rises at the
same t ime . S imi la r ly , i t seems reasonable tha t
SM_FATIGUE, the distance to the left lane, and respiration
will decrease as the risk status increases.

5.2 One-way ANOVA analysis

As can be seen from Table 6, all the eight factors except ACC
have significant differences. From the correlation analysis,
ACC is also weakly correlated with risk status, and it can be
seen from the analysis of the two that the rise of risk status is
not closely related to ACC. LSD (least significant difference)
showed that SPE, SC, FWA, ACCX, and CA of level 0 risk
status are significantly less than levels 1 and 2, and RESP and
SM are significantly greater than levels 1 and 2. The analysis
of LSD showed that the respiration decreased from the begin-
ning of the accident to the end of the crash. SM_FATIGUE
results show that when accidents occur, they are usually
caused by a high degree of fatigue. The purpose of this study
was to classify and predict the risk status of current driving
based on an improved decision tree (C5.0) algorithm through
the driving performance indicators. The on-road experiment
collected multi-sensor data, and the relationship between dan-
gerous driving behaviors and influencing factors was visual-
ized through decision trees. The repeated measurement anal-
ysis of variance (ANOVA) was used to analyze the specific
influence characteristics of the physiological indicators and
the vehicle indicators of 30 drivers under the risk state, and
the results of ANOVA are shown in Table 6. The results
confirmed that these six factors had a strong relationship with
the risk status. From the two abovementioned analyses, we

Fig. 10 Accuracy of the five algorithms
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of the five classification algorithm
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inferred that all the six driving factors (respiration, left lane
distance, speed, SM_FATIGUE, course angle, and skin con-
ductivity) were significantly affected by the driving risk sta-
tus. Pearson’s correlation analysis of the results between the
two indicators clearly showed the source of the significant
difference.

5.3 Factor analysis

Six strongly correlated indicators were selected for the de-
scriptive analysis. The statistical deviation of the respiration
for the three levels of risk status was 0.943, 9.596, and 9.817,
respectively, as shown in Fig. 12a, which indicated that an
increase in the level of the risk status could cause a more
significant change in respiration while driving. The means
and the standard deviations of the other five factors are pre-
sented in Fig. 12b–f. As can be observed, the mean of the
vehicle speed in level 2, which reached approximately 80.81
km/h (SD = 23.19 km/h), was the highest of the three levels.
The values of the SM (mean = 0.065, SD= 0.035) and the left
lane distance (mean = 1.74 m, SD = 1.32 m) in the case of the
risk status of level 0 were the highest. In addition, when the
level of risk status was 0, the values of the skin conductivity

(mean = 8.44, SD = 0.928) and the course angle (mean =
146.411, SD = 34.8527) were the lowest. Finally, the
one-way ANOVA results (p ≤ 0.001) shown in Table 6 indi-
cated that the values of the six factors in the three different
levels of the driving risk status had significant differences.
When the significance level was 0.05, the three levels of the
risk status could be predicted by using these six features.

6 Discussions and conclusions

As shown in Fig. 13, the C5.0 algorithm was compared with
the LSVM, RBF, ID3, and BN algorithms. A number of per-
formance evaluation indexes were applied to compare the five
models. In general, the prediction accuracy of the C5.0 algo-
rithm for the risk status was 78%, which was significantly
higher than that of the other algorithms. Thus, a risk status
prediction model using C5.0 was the best method to predict
risk levels.

Figure 14 shows the accuracy of the corresponding risk
status obtained using five different models. C5.0 scored the
highest for the three levels of risk status. When the risk level
was 0 and 2, respectively, the prediction and the recognition

Table 5 Correlation of the factors

Cor. RESP FWA SPE SM LLD ACC CA ACCX PER SC RS

RESP 1 0.028 0.475** 0.079** 0.026 0.032 0.082** 0.070** 0.122** 0.019 0.549**

FWA 1 0.070** 0.033 0.000 0.015 0.059** 0.041* 0.007 0.008 0.049*

SPE 1 0.162** 0.049* 0.015 0.165** 0.066** 0.003 0.130** 0.489**

SM 1 0.012 0.027 0.029 0.056** 0.081** 0.102** 0.121**

LLD 1 0.050** 0.021 0.035 0.013 0.032 0.061**

ACC 1 0.076** 0.078** 0.007 0.056** 0.033

CA 1 0.004 0.011 0.098** 0.081**

ACCX 1 0.033 0.006 0.049*

PER 1 0.040* 0.038*

SC 1 0.052**

RS 1

* Correlation is significant at the 0.05 level; ** Correlation is significant at the 0.01 level

Table 6 One-way ANOVA
analysis Risk status SPE FWA RESP SC LLD ACC SM ACCX CA

Mean Mean Mean Mean Mean Mean Mean Mean Mean

Incident (0) 45.258 0.732 54.985 8.445 1.897 0.136 0.066 0.055 146.411

Near-crash (1) 77.379 1.669 45.481 8.746 1.873 0.156 0.050 0.052 156.145

Crash (2) 80.811 1.485 45.451 8.535 1.739 0.175 0.058 0.052 151.671

Sig. 0 0.015 0 0 0.004 0.232 0 0.015 0

F 469.833 4.189 690.552 15.066 5.441 1.463 39.257 4.195 16.479

LSD 0<1,2 0<1, 2 0>1, 2 0<1, 2 0> 2 0>1, 2 0<1, 2 0<1, 2
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accuracy of the C5.0 algorithm were 0.858 and 0.694, respec-
tively. When the risk level was 1, C5.0 was second only to
LSVM (it achieved the best accuracy of 0.524). All in all, the
C5.0 algorithm proved to be the optimal method for identify-
ing different types of risk states.

The risk status experiment involved the collection of vari-
ous types of driving data, such as vehicle speed, heading an-
gle, front wheel angle, and the driver’s physical indexes.
These different types of data made it possible to predict the
driving risks in a timely manner while driving. The C5.0 re-
sults showed that the driving risk conditions of the different
drivers and for the different situations differed significantly,
and these changes were consistent with actual road driving. At
the same time, they proved that other factors such as human–
vehicle–road conditions and the environment also affected the
occurrence of dangerous driving conditions. In addition, the

results of Pearson’s correlation, one-way ANOVA, and the
classification indicated that respiration, left lane distance,

Fig. 12 Characteristics analysis
for different levels of driving risk
status. a Respiration. b Speed. c
SM_FATIGUE. d Left lane
distance. e Course angle. f Skin
conductivity

Fig. 13 Average accuracy of different classification algorithms
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vehicle speed, SM_FATIGUE, course angle, and skin con-
ductivity had significant influences. Therefore, these six fac-
tors were taken as the independent variables to establish the
driving risk prediction model.

In this study, we mainly investigated whether these six
factors could effectively predict the driving risk status.
Therefore, on the basis of the simulated experimental data,
C5.0 was used to establish the driving risk status prediction
model. In order to ensure that the model could effectively and
timely identify driving risks, 30 samples of driver simulation
experiments were collected and the accuracy of five different
prediction models was tested. These results indicated that
C5.0 was highly accurate in predicting the driving risk status.
The traffic accidents were caused by risky driving, but the
frequency of traffic accidents was occasionally high in daily
life. In various real driving scenarios, it is difficult to assess
different driving risk states, but virtual experiments provide an
opportunity to assess the state of driving risk by formulating
specific scenarios or events. Through the analysis of the ex-
perimental data, we found all the factors leading to a traffic
accident. A previous study [36] used natural driving data to
predict the risk of individual drivers. However, because of the
consideration of the sample size, collisions and near-collision
accidents were considered to be collisions in the analysis,
which led to the problem of defining a near-collision [37]. In
a driving simulator experiment, this problem is easy to solve
because there is absolute safety. Most of the accident data can
be acquired through simulation experiments, which are a good
means to assess the driving risk status. This study had some
limitations. First, because of the study’s voluntary nature, the
sample might be not sufficiently large with only 30 partici-
pants. Such a small sample size might ignore the relationship
between individual differences in drivers and driving risk fac-
tors. Moreover, we only analyzed the simulation data for a
specific scenario, and the driving risk status varies in different
scenarios and for different types of roads. The scenario report-
ed in this paper is that of the most common type of road, and

whether this model can be extended to other scenarios, such as
highways and mountain roads, remains to be studied. In the
future, the driving risk status prediction model should include
more aspects such as the driver’s personality and the type of
vehicle.
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