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Abstract
In this paper, we present a systematic analysis of large-scale human mobility patterns obtained from a passive Wi-Fi tracking
system, deployed across different location typologies. We have deployed a system to cover urban areas served by public
transportation systems as well as very isolated and rural areas. Over 4 years, we collected 572 million data points from a
total of 82 routers covering an area of 2.8 km2. In this paper we provide a systematic analysis of the data and discuss how
our low-cost approach can be used to help communities and policymakers to make decisions to improve people’s mobility at
high temporal and spatial resolution by inferring presence characteristics against several sources of ground truth. Also, we
present an automatic classification technique that can identify location types based on collected data.

Keywords Passive sensing · Wi-Fi tracking · Mobility analysis

1 Introduction andmotivation

Understanding human mobility through wireless sensing
and social networks is now commonplace [15, 23]. Using
a wide range of sensors, researchers and practitioners
can collect data unobtrusively and cost-effectively. Hence,
we can now more easily analyze human mobility at
unprecedented spatial and temporal resolutions. This
information is useful for many domains. For instance,
mobility data can be used to understand patterns of human
movements in urban settings, [29]. Network connectivity
helps establish opportunistic linkages, which improves the
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connectivity and location detection of mobile devices [11].
In traffic management, mobility data can be used to
provide traffic reports and detecting commuting patterns
for planning of transport systems [12, 15]. Similarly,
studying contacts among residents on their daily routes
helps simulate the dynamics of disease transmission [5]
and detect site loads [23], among many other applications.
Therefore, collecting mobility data at scale enables data-
intensive services operating in real-time as well as offline
data mining. These methods are useful to extract data about
mobility-related domains such as tourism, visitors, interests,
and site loads from social media, and compare it to the
traditional sources [1, 10, 18]. By using traditional sources
as a term of comparison, we cannot only use it as ground
truth to fine-tune the footfall estimation models, but also
to see how those models behave in different locations
and against outside factors. This allows the system to be
deployed ubiquitously in locations that lack the traditional
counting methods, while locations that hold ground truth
support the data analysis with as an automatic source of
data and analytics, historical database, and human-free
alternative.

High-resolution mobility patterns of individuals and
entire social systems can be captured through a variety of
sensors and sensing technologies. Currently, the most com-
mon method to determine a smartphone location includes
using GPS technology as well as using fingerprinting meth-
ods to determine the users location by analyzing nearby
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Bluetooth and Wi-Fi APs (access points or routers) and
cellphone towers IDs. Conversely, mobility data may be col-
lected from systems designed to enable communication and
connectivity, such as mobile phone networks or Wi-Fi sys-
tems (e.g., at airports or on company campuses) [11, 17].
Large corporations such as Google, Apple, Microsoft, or
Skyhook generate large databases of Wi-Fi fingerprints and
combine them with GPS data to improve location accuracy,
a practice known as wardriving. In addition mobility data
can be collected from systems designed to enable commu-
nication. While widely used, the exact utility and mechanics
of wardriving are mostly unknown, with only small and
non-systematic studies reported in the literature [13, 25]. As
a consequence, it is generally not known how Wi-Fi net-
works can be used for sensing mobility on a societal scale;
this knowledge is mostly proprietary to large companies
and remains inaccessible to local communities and public
authorities.

In this paper, we present a community-based passive
wireless tracking system that uses passive Wi-Fi tracking
to understand mobility at scale. Our system was developed
and tested in Madeira Islands, a medium-sized European
archipelago in what is called in the wild [8]: The
deployment was conducted in real-world conditions without
supervision from the research team, being subject to non-
ideal placement and operation (e.g., subject to interference
and end-user intervention—e.g., moving or disconnecting
the routers).

During a period of 4 years, we deployed 82 Wi-Fi routers
in 81 points of interest (POIs) and collected anonymous
data, together with several sources of ground truth. Our
goal was to understand if a community-based passive Wi-
Fi infrastructure could be used to collect high-resolution
mobility data to the local community (including the public
authorities), which is typically proprietary of large tech
companies or telecommunication providers. To the best of
our knowledge, this is the first attempt to analyze this type
of data collected in the wild over a large geographical area,
which includes a medium-sized urban center and several
touristic hot spots as well as very rural and isolated locations
and terminals of transport system as the main entrance and
exit points of the island (port and airport).

1.1 Research questions and contributions

Through this research, we wanted to understand how a low-
cost passive Wi-Fi tracking community infrastructure could
be used to generate mobility data and apply data mining
techniques to effectively detect mobility patterns at scale.
Our approach contrasts existing traditional methods, which
are limited, especially when involving humans to assist or
perform the counts.

Unlike previous controlled studies that remain strict to
either campuses, parks, or buildings [7, 19, 24, 26], we

deployed the system in the wild [8] across a community
of stakeholders of a medium-sized European Island.
Unlike previous work, our infrastructure was deployed and
maintained by the community itself for 4 years, spanning
different generations of devices and operating systems and
conditions. We also aimed at scaling the applicability of the
data capturing methods and techniques to different location
typologies and contexts, including specific POIs, served by
the regional transportation system to rural areas as well. We
define typology as a set of common physical characteristics
specific to a set of locations that enables us to categorize
it. These characteristics define the schedule according to
which citizens use the location and the locations’ capacity of
people. To assess the effectiveness of the methods, we asked
the local authorities and the tourism board to share island-
wide ground truth data about events and flows of people in
the main gateways such as airports and ports provided upon
request to the responsible authorities. The quick adoption
and roll-out of the infrastructure by local stakeholders and
small businesses suggests a high potential in developing a
low-cost community-based infrastructure for gathering and
sharing spatio-temporal data with citizens, visitors, local
business, and planning organizations. By being community-
based, this means that the stakeholders could acquire the
sensors to gather information about their businesses while
also helping to augment the network and contribute to the
large-scale analytics. The system is anonymous and cannot
identify citizens or owners of the mobile devices being used
thus respecting the privacy of people. The provided platform
enhances the mobility data with additional information that
can be voluntarily inputted by the community, providing
crowdsourced ground truth and helping stakeholders make
sense of automatically collected sensor information. In
summary, this paper reports on a real-world case study
deployment of a low-cost system that collects and enables
inquiry of large-scale spatio-temporal data obtained from
passive Wi-Fi tracking. We combined the information from
passive Wi-Fi with other qualitative and quantitative data
sources to answer the following research questions:

– RQ1: Can we reliably estimate the number of people
from passive Wi-Fi traces in the wild against different
sources of ground truth?

– RQ2: Do different location typologies affect the relation
between Wi-Fi detections and ground truth data?

– RQ3: What meaningful mobility analytics can be
extracted from passive Wi-Fi traces and how are they
useful to the underlying community?

The contributions of this paper lie in demonstrating the
feasibility of the deployment of a community-based passive
sensing infrastructure, showing how it is possible to extract
information about the estimation of people, and the different
location typologies, profiles, and connections. Moreover,
the possibility of data modeling and automatic classification
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of locations according to these traces is supported by
people estimation, validated against the provided ground
truth. Finally, this research shows how the different location
typologies hourly count behave in scenarios ranging from
event fairs, transportation, sports, nightclubs, and plazas.

2 Related work

Deploying large-scale wireless sensing networks is costly
and complicated. This kind of networks is usually part
of telecommunication infrastructure (e.g., GSM or Wi-
Fi network) or based on mainstream mobile devices
(e.g., Android or iOS). Therefore, commercial systems
are expensive and proprietary, enabling access only to
large corporations and telecom providers which own the
software and communication infrastructures, but are entirely
detached from the underlying community levels, realities,
and opportunities.

Several studies have attempted to locate or count the
number of people in specific locations using wireless
infrastructures. Most of them take advantage of known
protocols such as RFIDs [27] or Bluetooth [3]. Li et al.
[6] deployed a location-aware app at a sizeable Swiss event
for 3 days, leading to a large data set of visitor positions.
Their research extracts complex crowd dynamics from the
aggregation of location points [6]. GSM technology was
also explored [30] analyzing radio signals together with
signal strengths, cell IDs, mobile network code, mobile
country code, location area code, and channel numbers
from fixed sources, and then estimating the movement
of the users. Several studies used Wi-Fi technology to
capture human mobility information in highly crowded
areas such as football games, universities, campuses, and
hospitals [3, 7, 26]. The motivations behind these studies
are diverse, some look at energy waste on scanning methods
[3], realistic facility management, and planning [26]. At
the same time, others looked at crowding factors, flock
detection and waiting times, speed and frequent paths [14,
30], and even social information like popularity of events
(in the case of [7] singers in concerts). Many networking
infrastructure vendors offer geo-marketing solutions for
organizations deploying large Wi-Fi networks (such as
shopping malls, hotels, and airports). However, concerns
about the privacy issues related to these systems make
information about them hard to find. Several attempts
to deploy similar systems in public parks (e.g., London
Hyde Park and Olympic Park and New York Bryant Park)
and airports (e.g., Helsinki) have reached the media with
concerns about privacy and commercial use of tracking
information.

Driven by the explosion of digital data, the possibilities
of understanding the dynamical and topological stability

of large networks are increasing. In [4], it is showed that
the development of large networks is governed by robust
self-organizing phenomena that go beyond the particulars
of the individual systems. By exploring several data sets
describing the typology of large networks, the authors
showed that large networks self-organize into a scale-free
state, an unexpected feature in existing random network
models [4]. There are several techniques used to analyze
and synthesize mobility information from data tracking. A
new work proposed by [32] used tree-based hierarchical
graphs from GPS trajectories to mine exciting locations
and classical travel sequences. Their work was based on
modeling GPS logs into trajectories (sequence of GPS logs
based on their time series) and stays (a geographic region
where a GPS log is observed over a period of time). In
[19], the authors inferred mobility data from Wi-Fi logs
in a university campus, using the RADIUS protocol. The
movement data was analyzed concerning stays, leaps, and
moves, i.e., the time a user remained in the proximity of
one Wi-Fi station and movements or leaps between stations
depending on the time differences one device was observed
in each station. In [22], the authors used a similar data
set from Wi-Fi access log data and tried to characterize a
university campus activity. They based their identification
on the pertinent variables derived by Principal Component
Analysis (PCA) and k-means for clustering groups with
common behaviors over multiple days, in different buildings
of the campus.

In [28], the authors present a study of human mobility
using 6 months of high-temporal resolution Wi-Fi and
GSM traces. The authors demonstrate how it is possible to
estimate the location and use of Wi-Fi access points using
only one GPS observation per day, per person. The results
reveal an opportunity for using ubiquitous Wi-Fi routers
for high-resolution outdoor positioning, but also significant
privacy implications of such side-channel location tracking
[28]. An advanced method used in a study from [9] used
the information broadcast from 8000 Wi-Fi devices in
Australia to perform what the authors called SSID profiling.
This technique involves analyzing the captured information,
focusing on the SSIDs (names of the saved networks
on the devices) to associate different devices with social
connections. It uses algorithms used on text similarity,
where each SSID is considered a word. Those connections
attempted to locate people that visit the same places,
share the same interests, or family bonds. The connections
were assessed with probabilistic algorithms based on the
popularity of the SSIDs, and weighing the intersection of
the same SSIDs through different devices according to their
popularity.

More recently, work has been done in an attempt
to localize crowds with Wi-Fi probes [21], applying
location fingerprinting interpolations from the received
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signal strength (RSSI) values from previously scanned
indoor locations. In [21], the interpolation techniques used
include linear, invDist, and Kriging. This technique allows
identifying frequented regions where many people are
gathered together. Another lens to use to examine passive
Wi-Fi tracking is through securities’ issues. In [31], the
authors describe an experiment, where using tcpdump in a
Linux environment, they simulated the sensing of criminal
crowds that shared a set of common features over a specific
time frame, in a 20-persons crowded lab. These features
include the locations in which a set of MAC addresses
and common SSIDs (that appear more than twice) were
detected. The information about the origins of the SSIDs
was gathered from the participants, thus linking them to
previous locations. However, the authors do not link these
SSIDs to any criminal activity logs, and the research
participants did not represent any specific criminal group,
nor behaved like one.

Similar to SSID profiling, the user demographics of
certain Wi-Fi locations have also been studied. Methods
range from passive scanning [16, 24] to active meta-data
access from HTTP accesses [2]. Li et al. [16] analyzed a
university campus area, providing video ground truth for
the footfall and infer repeated behaviors mapping it to 10
groups of people. In [24], the authors showed how the
users of a library were classified using Random Forest, k-
nearest-neighbours (kNN), and Naive Bayes (NB). Li et al.
[16] compared how kNN, Support Vector Machines (SVM),
NB, and Gradient Boosting machine learning techniques are
used to classify the gender and degree of education of the
users.

Most of the analyses reviewed above focus on either
small supervised tests in localized campuses, or more
extensive unsupervised tests in small cities. While campuses
and research labs and offices provide good test beds with
reliable ground truth, they have a joint biased user base and
typology. More extended tests ran in cities lack the ground
truth data to support the classification and classification.

To the best of our knowledge, there are no long-term
studies of passive Wi-Fi in the wild that target these many
location typologies over this long of a period of time,
and provide different ground truth comparisons, with test
cases in such widespread tests such as transport terminals
airport/port, football stadium, event fairs, plazas, and other
POIs. Our study focuses on the same monitoring technology
used across five different settings. We then compare our
results with governmental provided ground truth, in order to
test the reliability of our system.

3 Implementation and setup
Our system was built making use of off the shelves
inexpensive commercial Wi-Fi routers (40$ each) flashed

to run an open-source GNU/Linux-based firmware program
for embedded devices (openWRT 15.05.1). The routers
operate in monitoring mode and the probe request
information is stored in a central MySQL database. The
MAC addresses detected in the probe requests were locally
transformed into device IDs using a SHA-256 cryptographic
hash function [20] to prevent access to the original
identifiers that could be used to compromise the privacy of
users. The server side components perform the calculations
and optimizations required for analyzing the captured data
and provide the results through a Web server to the clients.
The Wi-Fi routers are connected to a VPN located on
the server to allow remote management, as well as the
scripts (processing the data) to interact with several external
services and APIs.

In the first 6 months (26 weeks), 14 routers were installed
at the airport, cruise port, and several large squares in
the city of Funchal, capital of Madeira Islands. After the
initial test phase, in week 29, we expanded the system to
57 routers, placed near the city main POIs (see Fig. 1).
After this initial period of 29 weeks, the system was
extended to 82 routers. We based the selection of POIs on
feedback from the tourism board and the analysis of sources,
such as Trip Advisor and other social networks (Twitter,
Instagram). As an in the wild deployment, during the 3-
year deployment, several routers had problems (hardware,
connectivity, coverage, etc.) leading to several weeks of
missing data (dashed line in Fig. 1 shows the number
of active routers per week). When the system is active,
67% of the routers are on average online and collecting
data.

The detection (see Fig. 1) started with an average of 1.7k
new devices per router per week, stabilizing to an average of
450 new devices per router, and per week once the system
reached 57 POIs on week 27. This corresponds to an average
of roughly 36k new devices detected per week.

The routers’ location typologies are summarized in
Table 1 and described below:

– Plazas and POIs: points of interest such as touristic
locations, view points, plazas, rural bars, and cafes.
We collected data though (67 routers) placed in the
vicinities of those POIs with physical infrastructures.

– Events pavilion: a 1800-m2 pavilion reserved for
various types of events, ranging from commercial
exhibitions to culture and fashion shows. The same
open space includes an everyday public bar, where we
placed a single router to cover the whole location and
monitor the devices.

– Football stadium: a small football stadium (max 10
932 seats) where data is collected from four different
monitoring devices, covering eight games of the local
team.
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Fig. 1 System deployment
chronology with deployed and
active routers, the new detected
devices (non-random) along
over 4 years

– Airport/port: the main entry/exit points of the Islands.
Routers were placed in passage locations (e.g., luggage
pickup or departure area) to track passengers’ flow of
devices.

– Nightclub: located in the city downtown, a router was
placed in the nightclub bar located near the dance floor
with a total area of 175 m2.

3.1 Ground truth collection

For the above location typologies, such as the football
stadium, airport, and port, we provide comparisons of
the collected data against ground truth (provided by the
authorities for small time intervals) in the following manner
(also detailed in Table 1):

– Football stadium: We compare data collected from our
four monitoring devices with ticketing. We account for
the unique devices detected since 30 min before the
game, until 15 min after the 90-min games (+ 15-min
half-time interval).

– Airport: The routers were located in the departures
(after security) and arrivals in the luggage pickup room
(1 router for each), and we compare the collected data

against provided by the airport authorities, for the same
date interval in the form of official passenger counts.

– Port: We compare our data collected by one router
located in the exit of the port terminal with the daily
number of ships that arrive (provided by the port
authorities), versus the number of devices detected by
our devices.

4 Dataset andmethods

Over 4 years (200 weeks), we have collected 572 million
data points from a total of 82 routers covering an area of
2.8 km2. From these, we are focusing on grouping a set of
locations.

Our data set is divided into different cases and time
intervals (according to the provided ground truth), reflecting
the Wi-Fi deployment in different location typologies and
targeting different user groups, ranging from unsupervised
locations with no ground truth, such as touristic points, rural
bars and cafes, to central city plazas, and ticket-controlled
locations, such as airport/port, a football stadium, and public
transports.

Table 1 Dataset with ground truth description

Typology No. of sensors Sensors used for classification No. of days Sensors w/ ground truth

Plazas and POIs 67 11 900 n/a

Events pavillion 2 8 n/a

Football stadium 7 7 8 - Official ticket validations at entry

Transp. (airPort) 3 2 232 2 - Official passenger counts provided by airport authorities

Transp. (port) 2 1 88 2 - Number of ships provided by port authorities

Nightclub 1 1 900 n/a
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For the airport, the analysis was done by comparing the
hourly and daily counts of distinct devices detected, calcu-
lating its Pearson’s correlation, and building a regression
model to estimate those counts, also calculating the ratio
of people detected vs the ground truth. In the port, due to
the lack of information about the number of passengers,
the router count was compared against the number of ships
arriving daily.

In the football stadium, because it had multiple sensors
in a small location, a flow analysis was done by calculating
the number of leaps (detections in different routers from the
same device ID in a time series), thus calculating a leap
matrix with origin and destinations (flow) of people in the
location/event. The resulting data set is a table with entries
that contain the device ID, the origin/destination sensor, and
origin/destination timestamp.

For the locations without ground truth, the data was used
for the classification and for the peak count, described in
detail in the section below.

4.1 Classification

We classified a group of distinct locations through labelling
(see Table 1) by using a set of processed features for
each data set. The features were extracted by grouping
the data hourly for each: location; weekday vs weekend;
month; and also taking into account the number of leaps,
defined as a movement between locations by the same
device ID. Each row represented 1 h of data from a loca-
tion, during 852 days; thus, the total number of entries
used in the train/test combined was 470,304. This resulted
in the following features: hour, weekend flag no, week-
end flag yes, month, count, count random, in leap count,
out leap count.

After selecting the features, the data was normalized and
input into seven of the most common machine learning
classification methods:

– Decision Tree Classifier (DTC)
– K-Nearest Neighbors Classifier (KNN) - k = 100
– Linear Discriminant Analysis (LDA) solver = Least

squares
– Gaussian Naive Bayes (GNC)
– Random Forest Classifier (RFC) - Estimators = 100
– Extra Trees Classifier (ETC) - Estimators = 100
– Gradient Boosting Classifier (GBC) - Learning rate =

0.1, Estimators = 100

The parameter sweep was done for the train/test ratio,
ranging from 10 to 90%, with step increments of 10%.
These classifiers were run 1000 times for each of the steps
and the average accuracy for each classifier was taken for
the results.

5 Results

In the following section, we describe our results in terms of
the different location typologies covered in our deployment.
We start by presenting an overall view of the deployment
and then comparing the five different typologies, followed
by a detailed analysis of the different locations where
ground truth data was provided (e.g., pavilion, port and
airports and football stadium).

5.1 Overall

During the study, we analyzed the activity over the different
regions of the island. Results relating to the overall data,
from all locations, are reported below. The activity depicted
in Fig. 2 shows that most device detections occur in the main
islands’ city (south) and airport (east) of the island.

One of the parameters analyzed was the number of
random device IDs of the users’ devices. The latest device
operating systems use randomized MAC addresses when the
devices are just probing and not connected to any network.
For 4 years (200 weeks), the system tracked more than
3.2 million unique devices (excluding randomly generated
MAC addresses) which corresponds to an average of 20.5k
new devices detected per week. The overall percentage
of randomly generated MAC addresses detected by the
system started from 40% in the first weeks of deployment
and reached 94% on the last year. In Fig. 3, we depict
the percentage of detected random MAC addresses over
time for the 4-year period of deployment against the major
releases of smartphone and desktop operating systems. This
shows us how manufacturers have increased their security
measures to prevent tracking of their users by MAC address,
and how users have adopted for recent operating systems
over the years.

With these percentages, manufacturers partially achieve
their goal of anonymizing the requests, hindering the
possibility of these tracking platforms, such as the one
presented here, to perform large-scale trajectory analysis,
by tracking the movements of the same MAC address over
different POIs across time, since the percentage of random
MAC addresses has become so high, that every random
MAC address only appears once in the system. This makes
that trajectory analysis only represents a small fraction of
the total of trajectories performed.

The distribution of the devices based on their MAC
address was obtained from the IEEE vendor database, and
is shown in Fig. 4, represented by 35.5% from Samsung,
23.2% from Apple, 7% from Motorola, and 5% from Murata
and Huawei, with all the other vendors not exceeding a
percentage of 5% of the total 3.2 million non-random
devices detected.
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Fig. 2 Activity heat map of the island with the most crowded locations (red) against the less popular (green)

Fig. 3 Ratio of random devices
from the total detected for the
4 years of the deployment,
plotted against the major
Android and iOS release dates

Fig. 4 Top 15 of the vendor
distribution obtained from the
MAC address OUI
(Organizational Unique
Identifier) and crossed with the
IEEE vendor database
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Fig. 5 Average hourly distribution of over 900 days (left) and box plots of 5 typologies(right)

5.2 Classification

To empirically illustrate how our system (a community-
based passive Wi-Fi network) can be used to estimate
the number of people (RQ1) present and flowing across
different location typologies (corresponding to different
presence and movement patterns) and (RQ2) we describe
the comparison between our data and the ground truth
(when provided), of the average count of detected devices
for the time interval of 1 month, across the five distinct
locations (see Fig. 5). From the data, we detected
that the football stadium is mostly empty across the
day, occasionally detecting some passing devices (e.g.,
maintenance staff); the pavilion has two peaks, one in the
morning and one in the afternoon, where the event begins
and ends with a dip at lunchtime.

The airport has fairly distributed peaks across the day,
decreasing during the nighttime because, due to local
policies, no flights occur during those times; the plaza has a
fairly consistent detection load across the day; the nightclub

has an inverted peak compared with the remaining ones,
where the most affluence occurs at night remaining the rest
of the day with only detection of passersby users. From our
data, it is possible distinguish different types of usage, from
sporadic peaks, to constant load, and day vs night usage of
each location (see Fig. 5).

Analyzing the hourly data for each location typology, as
seen in Fig. 5, we can also estimate the number of parasitic
devices, such as local computers, smart TVs, or embedded
systems. We can assess this by looking at the device counts
at nighttime when we know that the people count is close to
none. This technique also enables the gathering of labeled
data in these environments.

Using the location typology classification methods
described in Section 4.1, our data shows that the highest
accuracy achieved was used with the Random Forest
classifier with 89.6%, noting that the methods RFC, ETC,
and GBC all scored above 86% from the train/test ratio of
20%, while the methods GNB and LDA scored the lowest
with 68% and 50% respectively (see Fig. 6)

Fig. 6 Accuracy score for 7
methods of classification across
different train/test sizes of the
data set
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5.3 Pavilion fair

In regard to the data collected in the Fair Pavilion, despite
the usual daily activity monitoring, we covered a car
exhibition fair. In total, we monitored the space and the
flux of people for 8 days. We divided the time span into
two categories: (i) 4 days during the car fair event (between
Friday and Sunday); (ii) 4 days with no special events
occurring in the building. The data was averaged over 24 h
for the two sets of 4 days and shows the discrepancies in the
occupancy (see Fig. 7).

During the weekdays, the occupancy is higher during
the lunch hour, due to the bar activity located in the same
open space as the event pavilion, regaining calm during the
rest of the hours. However, during the car fair event, the
opposite happens: there is significant activity during the
hours between 10:00 until 20:00, except for the lunchtime.
This can be explained by the fact that during the weekend,
the visitors only visit the car fair location but do not remain
there after the visit.

We monitored a second exhibition fair, which occurred
indoors, in the outer ring of the football stadium, from which
we have no ground truth. The focus of this activity was to
collect data and then analyze the flow of people between
7 sensor-equipped locations around the outer ring of the
stadium for 7 days (as shown in Fig. 8).

The flow was detected by tracing the movement of the
device IDs across the different Wi-Fi sensors consecutively
during the event with an origin/destination sensor for the
same MAC address for each leap. Data shows that the
majority of leaps occur in the entrance area (sensors 108
and 109) and in the food area (sensor 102 and 103). In the
entrance, the visitors had to follow a predetermined path
between sensors 108 and 109 before being able to roam
freely. And the dining area had two sensors close together
where the leaps were also frequent between the food kiosks.

Fig. 8 Matrix plot of the number of flows between points in the event

Although the remaining locations had leaps between all the
other locations (visitors passing by in a rapid manner may
not be captured by all the sensors due to the probe request
intervals), there is a major flow between all the sensors to
the dining area and between the sensors 104 and 105 located
in an indoor area of the stadium outer ring. Results are
visualized in Fig. 9 with a total of 130,847 leaps.

Although this experiment returned these results, due to
the high percentage of random MAC addresses (94% that
only appear once in the system), the remaining 6% of
real MAC addresses are not enough of a sample to be
representative of the real movements of people. Also since
most location typologies only have 1 or 2 sensors in each
location, it is not feasible to detect the flows across the same
typologies.

5.4 Airport/port

In relation to RQ1, data shows that over the period analyzed
of 17 weeks, results show a Pearson’s correlation of 0.64
for the arrivals and 0.62 for the departures, between the
number of official passengers on the airplanes and the
devices detected by our system (Fig. 10).

The captured data represents a ratio between the
unique devices detected and the official passenger counts
with ratios of (μ=0.47, σ=0.23, n=116) for the arrivals

Fig. 7 Weekday and weekend comparisons between ordinary and fair days
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Fig. 9 Representation of the flow of people roaming the different
sensed locations of the event

and (μ=0.37, σ=0.22, n=116) for the departures. This
correlation was done during 17 weeks, with a total of
181,184 and 158,438 device IDs detected for arrivals and
departures respectively (difference may be due to people
turning off phones before takeoff, not having Wi-Fi turned
on, or being missed by the system).

Regarding RQ1, these results mean that we are able to
create a linear regression intersecting the zero (see Fig. 11)
with the parameters y = 2.53x for arrivals and y =
1.99x for departures. This successfully estimates around
half of the passengers in the arrivals, with the difference for
the departures being possibly due to the placement of the
router.

In the port, the router was installed at the arrivals, and
we compared the number of daily detected unique devices,
with the number of ships that arrived in that day. Data shows
corresponding spikes of people counting when there is a
ship arrival in the port (with the exceptions being for small
ships), being visualized as events.

Moreover, in terms of RQ1, we show a reliable detection
of people passing by the port station with the event of a
ship arrival, with the results being shown in Fig. 12, and
a Pearson’s correlation between the number of daily ships
and daily device count yields a result of 0.74, n=49. The
total number of device IDs detected during these 49 days
was 37,566.

5.5 Football stadium

The data gathered in the football stadium shows a clear
detection of when a game occurs, acting as an event in the
data with a distinct peak from the remaining days. The data
reveals the days in which games occur distinguished from
the remaining, at 09 March 2019 and 31 March 2019 as
shown in Fig. 13 (left).

When analyzed by hour, we can also infer the time at
which people started arriving at the stadium and at what
time they left, returning back to normality, when compared
against an average of the days when the game does not
occur.

For the particular day of 31 March 2019 (Sunday),
Fig. 13 (right) reveals where the game started at 15:00 with
the duration of 90 min + 15 min interval. This information
can be easily used to train event detection algorithms to
automatically identify the game days, or days of affluence
in the area.

During the monitored eight games, we compared our data
against the ground truth, provided by the official ticketing
information and compared it against the router’s count (see

Fig. 10 Ground truth comparison for airport arrivals (left) and departures (right)
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Fig. 11 MAC address count vs passenger count for airport arrivals (left) and departures (right)

Fig. 12 Daily device counts for
port arrivals vs daily ship arrival
count

Fig. 13 Daily counts for one month (left), and hourly count for ordinary vs game days (right)
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Fig. 14 Comparison between
stadium official ticketing and
the router counts

Fig. 14) resulting in a Pearson’s correlation of 0.81, n=8
and a ratio of devices detected vs official ticketing counts of
(μ=0.81, σ=0.12, n=8).

Lastly, although each location typology has significantly
different ratios of detected devices and ground truth counts,
they all provide low standard deviations for each, meaning
that a regression model can be accurately applied to each
typology to obtain the real counts.

5.6 Summary

To finalize the “Results” section, we present a summary of
the different results obtained from the different analyses and
data sets. These results presented above show the versatility
of this data set and how we analyzed different typologies
separately, and providing custom ground truth for specific
controlled locations. In summary, we achieved 12 main
results grouped in Table 2.

6 Discussion

The first RQ in this study was related to the reliability
of estimating the presence and movement of people from
deployments of passive Wi-Fi sensors. In order to answer
this question, we analyzed the data collected over the
period of 4 years in five different location typologies (fair,
football stadium, nightclub, plazas, and transport) where we
observed the differences of device counts in hourly patterns
over a large period of time. These patterns mark different
trends for each location, which can be categorized according
to their site load fingerprint. However, when comparing with
the ground truth data, we conclude that the models differ
from location to location, and need to be tuned for each case
of location.

There are many factors leading to the need for fine-tuning
the classification methods. First and foremost, the “in the
wild” nature of our deployment introduces some sources

Table 2 Summary of the different datasets and methods used and the main results obtained from each one

Methods Data set Result

Overall 200 week random MAC address evolution 40 to 94%

Wi-Fi vendor distribution in the island Distribution

Classification Classifying typologies from hourly counts 89.6% accuracy

Crowded locations Hourly counts Visualizing busy hours

Ground truth Airport arrivals (passenger correlation) 0.64

comparison Airport departures (passenger correlation) 0.62

Airport arrivals (passenger ratio) μ=0.47, σ=0.23

Airport departures (passenger ratio) μ=0.37, σ=0.22

Port (Nr of ships correlation) 0.74

Football stadium (ticketing correlation) 0.81

Event fair Device ID flows in football stadium Origin/Dest. Matrix

Detect peak usages Football stadium Detecting game days
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of interference (from non-ideal location causing under as
well as over devices’ detection). When trying to infer the
number of people in different locations from the detected
devices, the airport arrival and departure example tells us
that the modeling results show different ground truth ratios
for these two different locations (RQ1), and how monitoring
and modeling one location may not be applicable to every
typology, as they are conditioned by the type of traffic, and
dependable if people are stationary (e.g., waiting) or passing
by (e.g., visiting fair).

This results in different ratios of detected devices vs
ground truth counts. However, this does not necessarily
mean that the sensors are capturing differently, and
sometimes, their counts are representative of the real
number of people in the sensor range, which is not always
represented by the ground truth counts of barriers or
ticketing, that ignore the remaining people around those
locations. For instance, in the case of controlled locations,
the Wi-Fi sensors were placed for the specific purpose
of counting the number of people within the vicinities of
the controlled area (e.g., airport, port, stadium). However,
in many of these locations, the data does not account
for multiple devices carried by a single person or by
support personnel, or for devices detected outside the area
of interest and for Wi-Fi devices which are not used by
people (e.g., other routers, wireless sensors or printers).
Notwithstanding, once the estimation models are fine-tuned
for the different location ground truths, our models provided
a very good level of accuracy against the ground truth
methods which are also subject to errors and interferences
(e.g., manual or barrier counting).

By having information of the normal counts for each
typology, and the day of the week, or simply weekdays
vs weekends, it further provides a baseline to compare the
detection of peak events, such as the ones at the football
stadium, which can be applied to sporadic gatherings of
people powering automatic event detection algorithms.

Regarding the second RQ, trying to understand if dif-
ferent location typologies impact the relationship between
detection across typologies, we used several known classi-
fication methods to automatically identify the typology of
the sensed locations. We used a set of features relevant to
the time series information of the data, and also reflect-
ing the leaps occurring between each place and at which
times of the day, month, and weekend. Our model results in
a successful classification with average accuracy for three
of the methods above 86%, with the best achieving 89.6%
(random forest). These results suggest that we can use the
model to automatically categorize locations based on their
usage fingerprint from the already known POIs, enhancing
the location meta-data and enabling the generalization of
our results to different locations and deployments.

Finally with respect to the third RQ (what kind of
meaningful mobility analytics can be extracted from our
data?), we analyzed the people in the stadium by their leaps,
representing their movement between POIs in the exhibition
fair. This was done according to the same device ID analysis
over time during the whole event. The results show a
heatmap and matrix of leaps between routers which can help
organizers understand how people visit the exhibition.

As mobility data is not easily available to local/regional
authorities and may have also too small spatial resolution
we provide an alternative approach for stakeholders and
small businesses by providing a low-cost community-based
infrastructure for gathering and sharing spatiotemporal
data with citizens, visitors, local business and planning
organizations. One example of how such an infrastructure
could be useful for local/regional planning is during
emergencies. The system was recently adapted as a fast
response to the COVID-19 pandemic as the island saw
major changes in flows of people. Even at the European
level, telecom operators started sharing mobility data to
help national authorities manage and monitor changes in
mobility patterns. However, this telecom data is not easily
available for local authorities in smaller communities and
also is not easily available in near real-time.

7 Conclusions and future work

In this paper, we present the collection and discussion of a
data set describing the flow and presence of people, through
several distinct points of interest situated in different
location typologies.

We presented the setup, deployment, and the analysis
of the data, together with ground truth comparisons for
a wide range of date intervals, locations, and typologies,
showing how the data can be used to automatically classify
the location based on its Wi-Fi traces.

One clear limitation is the dependence on the people
having their device Wi-Fi turned on. The precision of
our data is limited to the regions covered by each
sensor, which hinders us from doing flow analysis with
precision. Nevertheless, the data collected was enough to
classify location typologies and test the flow methods. The
methods could be further explored and expanded through
parameter sweeps for the methods that scored lower, and
deriving more meta-information about the Wi-Fi traces,
such as model derivation from the device ID, grouping
data with another time window beyond the hourly counts
used.

Building upon the presented results, this work will be
expanded to evaluate further aspects of human behavior
and to provide insights from multi-sourced data from
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the different locations, such as transportation, schedules,
and other variables like the environment and the social
media impact on those locations. Future work can explore
further the categorization of each location, according to the
typology and interests of its communities of use, providing
citizens with personalized information and interactive
information adapted to each location and its typology.
Decision makers and citizens could also benefit from
real-time dashboards with information regarding the site
loads and historic data from the different locations, where
data forecasting can be also used from the gathered data
sets. Future work, already underway, includes inverting the
approach reported in this article and apply the classification
methods we described, to the traces and derived data from
the device ID, instead of the locations, in order to classify
the users of each location typology.
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