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Abstract
During the last few years, significant attention has been paid to surface electromyographic (sEMG) signal–based gesture
recognition. Nevertheless, sEMG signal is sensitive to various user-dependent factors, like skin impedance and muscle
strength, which causes the existing gesture recognition models not suitable for new users and huge precision dropping.
Therefore, we propose a dual layer transfer learning framework, named dualTL, to realize user-independent gesture
recognition based on sEMG signal. DualTL is composed of two layers. The first layer of dualTL leverages the correlations
of sEMG signal among different users to label partial gestures with high confidence from new users. Then, according to the
consistencies of sEMG signal from the same users, the rest gestures are labeled in the second layer. We compare our method
with three universal machine learning methods, seven representative transfer learning methods, and two deep learning–based
sEMG gesture recognition methods. Experimental results show that the average recognition accuracy of dualTL is 80.17%.
Comparing with SMO, KNN, RF, PCA, TCA, STL, and CWT, the performance improves 24.26% approximately.

Keywords Gesture recognition · Surface electro-myography · User-independent · Transfer learning · Dual layer

1 Introduction

With the development of surface electromyographic (sEMG)
signal sensing and analysis technology, it is widely used
in many applications [1–6], such as rehabilitation, entertain-
ment, robotics, wheelchairs control, and pedestrian position-
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ing. Hand gesture recognition is one of the representative
applications of sEMG signal. Compared with other ges-
ture recognition methods, such as Wi-Fi [7], computer
vision [8], inertial measurement unit [9], ultrasound [10],
electromagnetic wave [11], ultrasound imaging [12], sEMG
signal–based methods provide us with significant opportu-
nity to realize natural Human Computer Interaction (HCI)
by directly sensing and decoding human muscular activi-
ties [13, 14]. sEMG signal–based gesture recognition is not
only capable of distinguishing subtle finger configurations,
hand shapes, and wrist movements, but also insensitive
to environmental light and sound noise. Recently, sEMG
signal–based technique attracts more and more attention
from researchers. Many sEMG-based gesture recognition
methods are proposed [15, 16]. In addition, many commer-
cial gesture recognition productions are available, such as
Myo, Econ, and shimmer.

However, sEMG signal has user-dependent property [17],
which is the main factor that causes distribution diversities of
sEMG signal among different users. Even signals that are
acquired at the same position when performing the same
gesture are different. The distribution differences are due to
the fact that sEMG signal depends on many physical and
environmental factors, such as the quantity of subcutaneous
fat, skin impedance, muscle strength, the pattern of muscle
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Fig. 1 sEMG signals distribution. The signals come from six different users, performing five hand gestures

synergies, muscle geometry and tone, specific motor unit
sizes, length/size of the innervating nerves, and muscle
innervation locations [18].

Figure 1 shows the distribution difference between
sEMG signal over five hand gestures of six subjects. The
data showed in Fig. 1 is the two-dimensional projections of
sEMG signal by principal component analysis (PCA). From
the analysis of Fig. 1, we observe that signal distribution
varies from subject to subject, even when they perform the
same hand gesture. Fortunately, there is still some prior
knowledge that we can take advantage of. The data of
the same hand gesture from one user gather together, for
example, the red circles (data of gesture 1) in Fig. 1a. This
proves that the same hand gesture of the same user is highly
consistent. In addition, the distribution of data from the
same gesture of different subject is relational, for example,
the red circle in Fig. 1 a and b. This proves that the same
hand gesture of different users is weakly correlating.

Previous studies try to construct classifiers for each
individual user [19], which means each user must perform
quite a long-time gesture and collect enough training data.
To eliminate the inconvenience of retraining classifier and
data annotation, we propose a novel sEMG signal–based
gesture recognition method to realize an efficient and
convenient recognition system in this paper. Generally,
we design dual layer transfer learning framework, namely
dualTL. DualTL is designed based on the prior knowledge
attained from Fig. 1. Besides, dualTL is composed of two
layers. In the first layer, we use the weak correlation of
the same gesture from different users to realize preliminary
recognition for part of novel user’s gestures. In the second
layer, the strong consistency of the same hand gesture from
one user is used to realize ultimate recognition.

The structure of this paper is organized as follows:
Section 2 reviews the related works about sEMG signal–
based gesture recognition, especially some attempts to
realize user-independent recognition. Section 3 introduces
the proposed dualTL method in detail. Section 4 presents
the experiments, including data collection, preprocessing,
and recognition performance evaluation. Finally, Section 5
presents our conclusions and future works.

2 Related work

In this section, we briefly discuss the existing research on
sEMG-based gesture recognition, user-independent gesture
recognition, and transfer learning.

2.1 sEMG-based gesture recognition

Recently, due to the advantages showed by sEMG signal–
based gesture recognition, such as the ability to recognize sub-
tle gestures, insensitiveness to environmental light and sound
noise, and non-intrusion, there emerge numerous works
about sEMG signal–based gesture input and control meth-
ods in HCI area. Therefore, we review some related works
about sEMG-based gesture recognition in this subsection.

Amma et al. [20] used sEMG sensor arrays with 192
electrodes to record high-density sEMG signal of the upper
forearm muscles for finger gesture recognition. A baseline
system was built to discriminate 27 gestures on their dataset
with naive Bayes classifier. Finally, the averaged accuracy
was 90% for the within-session scenario and 75% for the
cross-session scenario. David et al. [21] designed a PC
mouse commanded by sEMG signal from two muscles
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of the forearm, palmar longus, and extensor digitorum.
The experimental result showed that the classification
accuracy was 87% on the predefined hand movement set:
rest, flexion, extension, and closure. Saponas et al. [22]
researched sEMG signal–based real-time gesture recognition
method, and the experimental result demonstrated that the
proposed real-time method acquired recognition accuracy
of 79%, 85%, and 88% in pinching, holding a travel
mug, and carrying a weighted bag gesture, respectively.
Further, they showed the generalizability of their method
across different arm postures and explored the trade-off of
providing real-time visual feedback. McIntosh et al. [15]
acquired four channels of sEMG signal and four channels
of Force Sensitive Resistor signal by wearable equipment
placed on the wrist. Then, they constructed a high-accuracy
hand gesture recognition system named EMPress.

2.2 User-independent gesture recognition

Though all works aforementioned reached acceptable recog-
nition accuracy, they did not consider the user-independent
challenges. Fortunately, there was already some research
trying to realize user-independent gesture recognition. In
this subsection, we will review some sEMG signal–based
user-independent gesture recognition methods in detail.

Khushaba et al. [23] proposed a framework for multiuser
myoelectric interfaces by using canonical correlation analy-
sis, where the data of different users were projected onto
a unified-style space. The proposed method was able to
overcome the individual differences with an acceptable
cross-user accuracy 83%. Nevertheless, their method can
not be used to recognize gestures of the new user. Matsub-
ara et al. [24] made use of the bilinear model to construct
a multiuser myoelectric interface, where the original sEMG
signal was decomposed into motion dependent part and
user-dependent part. However, as this paper mentioned, the
user-dependent factors were not precise enough and the
electrode placement problem was still open. What is more,
the dimensions of the style and the content variables were
experimentally selected by trial-and-error. In addition, it
was reported that the positioning of electrodes, the type of
features extracted, and their dimensionality could signifi-
cantly impact the model’s performance. Orabona et al. [25]
applied an adaption model by constraining a new model that
is mostly closed to multiple pre-trained models stored in the
memory at each step. The adaptation process attempted to
modify the best matched model to fit a new subject. Nev-
ertheless, this process was executed in a high-dimensional
parameter space, which required a large amount of data to
make the adaptation complete. Chattopadhyay et al. [26]
also presented, using sEMG signal, a user-independent com-
putational feature selection framework to monitor muscle
fatigue. A search mechanism toward the vicinity of the best

feature subset was guided by an objective function based
on the ratio of between-user to within-user variance for the
specific features, and this identified movements across mul-
tiple users. However, the main limitations of this method
included the time taken to find the best feature subset
and the large variance of sEMG signal, which limited the
applicability of this feature selection algorithm.

2.3 Transfer learning

Transfer learning aims to relax the assumption in traditional
machine learning that the training data and testing data should
have an identical probability distribution [27]. It has achieved
great success in many areas, such as Wi-Fi localization [28],
natural language processing [29], face recognition [30], and
human activity recognition [31]. The enlightening works
of [32, 33] indicate that many factors (e.g., user habit,
wearing position, and equipment fault) tend to influence the
distribution of data in behavior and gesture recognition. To
overcome these kinds of distribution evolution challenges in
gesture recognition, some researchers have made significant
explorations.

Goussies et al. proposed a novel algorithm to transfer
knowledge from multiple other sources to computer
vision–based gesture recognition tasks [34]. Comparative
experiments showed transfer learning outperformed other
baseline methods and achieved the best results. Costante
et al. focused on the view-dependent problem in computer
vision–based gesture recognition area and proposed a
domain adaptation framework that worked on robust view-
invariant self similarity matrix descriptors [35]. To realize
rapid construction of gesture recognition model, some
studies take advantage of transfer learning to fine-tune
the existing convolutional neural network model [36–38].
Among them, Ozcan et al. combined AlexNet model and
transfer learning together and verified it on computer
vision–based gesture recognition datasets [36]. Cote-Allard
aimed to alleviate the data acquisition burdens in sEMG-
based gesture recognition by leveraging the data from
other users [37]. Bu et al. proposed a Wi-Fi-based gesture
recognition method by transforming the amplitude of
channel state information into image matrix [38].

However, most of the studies above concentrate on com-
puter vision–based gesture recognition. The performance of
transfer learning on sEMG-based gesture recognition and
unsupervised cross-user tasks are still unclear.

3 Dual layer transfer learning

In this section, we introduce the proposed dual layer transfer
learning (dualTL) framework. Firstly, we present problem
definition in Section 3.1. Then, we will detail cross-user and
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within-user recognition in Sections 3.2 and 3.4. Candidate
optimization methods are presented in Sections 3.3 and 3.5
is the overall procedure of dualTL.

3.1 Problem definition

User-independent gesture recognition system usually con-
tains two kinds of data, the data of existing users De =
{(xi, yi)}ne

i=1 and the data of new users Dn = {xj }nn

j=1. De

and Dn have the same dimensionality and label spaces, i.e.,
xi, xj ∈ R

d , where d is the dimensionality of features, and
ci ∈ Ye = Yn is label space. In addition, ne is the size of
data of existing users and nn is the size of data of new users.

Figure 2 illustrates the main idea of dualTL. DualTL
includes three main steps. Initially, dualTL selects candi-
dates for data of new users trough cross-user transfer and
generates pseudo labels for the candidates. Then, it performs
candidate optimization to optimize the selected subset of
data. Finally, a cross-user transfer step is performed on the
final candidates and the residuals.

3.2 Cross-user transfer

Cross-user transfer is the first layer of dualTL. This layer
selects part of data of new users and generates pseudo labels
for these selected data. The data that are selected are called
candidates and the others are called residuals. The selected
operation is based on defined confidence index.

1.Cross-User
Transfer

Residual

Candidate

Residual'

Candidate'

3.Within-User
Transfer

Predict

Residual'

Candidate'

Data of 

existing users

Data of 

new users

Fig. 2 Framework of dual layer transfer learning, including three main
steps: (1) candidates generating via cross-user transfer; (2) candidate
optimization through further selection; (3) final label decision through
within-user transfer

The candidate selection and pseudo label generation are
based on similarity comparison. We define the similarity
measurement metric as the following:

disted(xi, xj ) = ‖xi − xj‖

=
√√√√ d∑

k=1

|xik − xjk|2 (1)

This euclidean distance metric measures the similarity of
different instances. In this layer, the data of exiting users
De are used as source data, and the data of new users Dn

are used as target data. Based on metric defined in (1), we
find the nearestK1 instances inDe for every instance inDn.
Then, information of the K1 nearest neighbors are used to
generate pseudo labels for instances in Dn.

Then, we denote these K1 instances as NK1(xj ). Based
on the label of these neighbors, category F1(xj ) of xj is
determined by the majority voting strategy showed in (2).
The classification confidence C1(xj ) is determined by the
probability of voting showed in (3), which represents the
degree of confidence that sets the label of xj as F1(xj ).

F1(xj ) = argmax
ci

∑
{xi′ ,yi′ }∈NK1 (xj ) sgn(yi′ , ci)

K1
(2)

C1(xj ) =
∑

{xi′ ,yi′ }∈NK1 (xj )

sgn(yi′ , F1(xj ))

K1
(3)

where {xi′, yi′ } represents an instance in set NK1(xj ), xi′
is the feature of this instance, and yi′ is the label of this
instance. In addition, sgn(yi′ , ci) is sign function. The value
of this function is 1 when yi′ is equal to ci and the value of
this function is 0 when yi′ is not equal to ci .

Due to the distribution difference of sEMG signal
among different users, it is arduous to realize high-accuracy
recognition just by majority voting. Thus, a filtering strategy
is needed to realize recognition with high recall rate.
Specifically, we select part of gestures D′

n with high
recognition confidence and keep their classification results:

yj =
{

F1(xj ) , C1(xj ) > μ

−1 , otherwise
(4)

The instances with confidence higher than μ are selected as
candidates and the others are residuals. After the first layer
of dualTL, the data of new users are transformed to Dn

′ ={
Dl

n,Du
n

}
, Dl

n =
{
(xl

j , F1(x
l
j ))

}m

j=1
, Du

n =
{
xu
j

}nn

j=m+1
.

Dl
n is the set of candidates.Du

n is the set of residuals.m is the
number of instances that are selected with high confidence.
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3.3 Candidate optimization

The purpose of candidate optimization is to select a sub-
set of candidates Dl

n and this operation has two constraints.
Firstly, the classification confidence of selected instances
should be as high as possible. Secondly, the distribution
of selected instances should be as decentralized as possi-
ble. The first objective is easy to understand, and the second
objective is to avoid all selected instances distributing too
centrally so that they can not cover all sample spaces. Conse-
quently, the optimization function are formulated as following:

argmax
Dl′

n

|Dl′
n |∑

j=1

C1(x
l′
j ) + λDistr(Dl′

n ) (5)

where, Dl′
n is the selected subset of Dl

n. λ is coefficient and
Distr(Dl′

n ) is the divergence of set Dl′
n .

In addition, we build divergence model according to the
feature of instance Dl′

n and the procedure of this model is
demonstrated in Algorithm 1. Based on the idea of PCA, we
project the raw feature to one-dimensional space. And then,
we use variance of subset Dl′

n measures the divergence of
selected data set.

There are two complete solutions that can find the
optimal value of (5). One solution is to enumerate all
possible subsets of Dl

n, but this method need to iterate Cci

(calculated in (6)) subsets and it is time consuming.

Cci
=

(
Qci

Pci

)
(6)

Qci
=

|Dl
n|∑

j=1

sgn(F1(x
l
j ), ci) (7)

Pci
= ω ·

Dl
n∑

j=1

sgn(F1(x
l
j ), ci) (8)

where Qci
is the number of gestures predicted as the

ci gesture in set Dl
n and Pci

is the number of gesture
we will select. Another complete solution is to use the
idea of dynamic programming. If f [w1, w2, β, σ ] is the
optimal value when we select wth

2 data among the first wth
1

data under the restrictions that confidence sum is β and
divergence is σ , then the dynamic programming function
is f [w1, w2, β, σ ] = max(f [w1, w2 − 1, β, σ ], f [w1 −
1, w2 − 1, β − Cc1(x

l′
j ), σ − D̄l′

n ] + (D̄l′
n )2). The time

complexity of this solution is also high and it requires that
the confidence and divergence values are discrete.

Here, we use an approximate solution in our scenario.
We sort the confidence value C1(x

l
j ) firstly and choose top

κ percentage of data with highest confidence to find the
optimal value. So, we only need to enumerate C′

ci
(showed

in (9)) subsets.

C′
ci

=
(

κ · Qci

Pci

)
(9)

After candidate optimization, the data of new users

are transformed to Dn
′′ =

{
Dl′

n ,Du′
n

}
, Dl′

n ={(
xl′
j , F1

(
xl′
j

))}m′

j=1
, Du′

n =
{
xu′
j

}nn

j=m′+1
. Dl′

n is the new

set of candidates (i.e., candidate′ in Fig. 2), Du′
n is the new

set of residual (i.e., residual′ in Fig. 2), and m′ is the number
of instances that are selected.

3.4Within-user transfer

Following this, we build the concluding transfer (10)

with Dl′
n =

{
(xl′

j , F1(x
l′
j ))

}m′

j=1
as source data, Du′

n ={
xu′
j

}nn

j=m′+1
as target data.

F2(x
u′
j ) = argmax

ci

∑
(xl′

j ,F1(x
l′
j ))∈NK2 (xu′

j )
sgn

(
F1

(
xl′
j

)
, ci

)
K2

(10)

The decision strategy is also majority voting, same to the
method used in the first layer of dualTL. In this layer, we
use the data from new users to recognize his own gestures.
This can avoid the distribution drift of different users. After
the analysis above, all gestures are recognized accurately.
Equation (11) is the distance metric used in the second layer
of dualTL:

disted

(
xj

l′ , xu′
j

)

= 1 −
∑d

k=1

(
xl′
jk − x̄l′

k

) (
xu′
jk − x̄u′

k

)
√∑d

k=1

(
xl′
jk − x̄l′

k

)2√∑d
k=1

(
xu′
jk − x̄u′

k

)2 (11)
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x̄l′ = 1

|Dl′
n |

|Dl′
n |∑

j=1

xl′
j (12)

x̄u′ = 1

|Du′
n |

|Du′
n |∑

j=1

xu′
j (13)

where x̄l′ and x̄u′
are mean of xl′

j and xu′
j , respectively.

3.5 Overall procedure

The overall process of dualTL is described in Algorithm 2.
DualTL is a general framework for user-independent
gesture recognition based on sEMG signal. On the basis
of small data set, we provide the feasible implementation
of dualTL. It can also be implemented in different ways
according to the specific applications.

4 Experimental evaluation

In this section, we conduct extensive experiments to validate
the performance of the proposed dualTL. Except for data
acquisition, all experiments are conducted on a Lenovo
ThinkCentre M8600t-D065 (Intel Core i7-6700 / 16GB
DDR3) desktop computer with Matlab R2016a.

PointThumb Adduct Abduct Palm

Fig. 3 The details of hand gesture set

Table 1 Physiological information of all subjects

Subject Age Sex Height Weight Circum Hand

s1 21 Male 175 cm 70 kg 24 cm Right

s2 23 Female 160 cm 50 kg 22 cm Right

s3 24 Male 176 cm 65 kg 33 cm Right

s4 22 Male 172 cm 60 kg 24 cm Right

s5 26 Male 180 cm 70 kg 26 cm Right

s6 24 Female 164 cm 45 kg 18 cm Right

4.1 Data acquisition

We design a gesture set with five static hand gestures:
thumb, adduct, abduct, palm, and point. The details of
gesture set are demonstrated in Fig. 3. We recruit a total
of six participants (four males and two females) for the
experiment. Table 1 details the physiological information of
all subjects. All shown in Table 1 are the age, height, weight,
and circumference of upper forearm range from 18 to 26,
160 to 180 cm, 45 to 70 kg, and 18 to 34 cm, respectively.
All participants are healthy and right-handed.

Data acquisition is conducted on a Dell Precision 7510
(Intel Core i7-6820HQ / 16 GB DDR3) laptop computer
with Visual Studio (VS) 2017 Integrated Development
Environment (IDE), OpenCV 2.4.11, and Myo armband.
Myo is a wearable myoelectric armband Myo from Thalmic
Labs. It has eight evenly distributed electrical chips, which
are used to collect sEMG signal and the sampling rate is
200 Hz. In the process of data acquisition, Myo is worn
on the subjects’ upper forearm, like Fig. 4. Before the
beginning of data acquisition of each gesture, the subject
has 5 s interval and meanwhile, the standard pose is
demonstrated by the guider in order to regularize the motion
of subject. The data acquisition time lasts 15 s for each
gesture. We perform the data acquisition for all gestures
orderly and repeat it eight times. Simultaneously, we also
record the motion of subject by the camera to make sure
whether the gesture is performed correctly or not. The real
scenario of data collection is showed in Fig. 5.

Fig. 4 Data acquisition position on upper forearm of subject
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Fig. 5 The real scenario of data
acquisition

4.2 Data preprocessing and feature extraction

To reduce the noise of sEMG signal, we will do some
preprocessing operation. To begin with, we apply a fourth
order butter-worth bandpass filter with pass-band of 30 −
70 Hz to remove the attenuate dcoffset, motion artifacts,
and low-frequency and high-frequency noise. Then, a fourth
order butter-worth low-pass filter with pass-low of 60 Hz
is also applied to capture the “envelope” of sEMG signal.
Raw sEMG signal and filtered sEMG signal from the first
subject are showed in Fig. 6. The five columns are signal of
five hand gestures. The first row and the second row are raw
sEMG signal and the filtered sEMG signal, respectively.

Besides, all gestures used in this experiment are static
gesture; we use sliding window to segment the data. The
length of each window is 1 s and the overlay of adjacent two
windows are 50%. Since the sampling rate of Myo is 200 Hz
and the scale of electrical chip is 8, there are 200 × 8 points
in each window.

Generally, most of the attempts extracting features
from sEMG signal can be classified into three categories,
including time domain, frequency domain, and time–
frequency domain [39, 40]. In our setting, we only consider
the first two categories for computational simplicity [41].
In feature extraction process, we separately extract seven

time-domain features and three frequency domain features
from raw sEMG signal, which are described in Table 2,
where xi represents the raw sEMG signal andN is the length
of xi . PSDi means power spectrum density and M means
the length of PSDi . Ai and fi indicate magnitude spectrum
and frequency respectively.

As we all know, the amplitude of sEMG signal differs
greatly among different subjects. To eliminate the influence
of distribution diversity of sEMG signal, we calibrate all
subjects’ feature by dividing the mean of all features of this
subject before using dualTL.

4.3 Comparisonmethods

We compare dualTL with 14 different methods, including
four universal machine learning methods, seven transfer
learning methods, two deep learning–based sEMG gesture
recognition methods, and one variation of dualTL:

– SMO: sequential minimal optimization [42];
– KNN: K-nearest neighbor [43];
– RF: random forest [44];
– PCA: principal component analysis [45];
– TCA: transfer component analysis [46];
– JDA: joint distribution adaptation [47];
– BDA: balanced distribution adaptation [48];

Fig. 6 The comparison of raw sEMG signal and filtered sEMG signal
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Table 2 Feature extraction

Extracted feature Description

Mean absolute MAVk = 1
N

∑N
i=1 |xi |

value
Modified mean MMAV 1k = 1

N

∑N
i=1 wi |xi |

Absolute value 1 w(i) =
{
1, 0.25N ≤ i ≤ 0.75N
0.5, otherwise

Modified mean MMAV 2k = 1
N

∑N
i=1 wi |xi |

Absolute value 2 w(i) =

⎧⎪⎨
⎪⎩

1, 0.25N ≤ i ≤ 0.75N
4i
N

, 0.25N > i
4(i−N)

N
, 0.75N < i

Mean absolute MAV Sk = MAVk+1 − MAVK

value slope

Root mean square RMSk =
√

1
N

∑N
i=1 x2

i

Variance V ARk = 1
N

∑N
i=1 xi − x̂2

Waveform length WLk = ∑N−1
i=1 xi+1 − xi

Frequency median FMD = 1
2

∑M
i=1 PSDi

Frequency mean FMN =
∑M

i=1 fiPSDi∑M
i=1 PSDi

Modified MFMN =
∑M

j=1 fj Aj∑M
j=1 Aj

Frequency mean

– GFK: geodesic flow kernel [49];
– CLGA s: coupled local–global adaptation with single-

source [50];
– CLGA m: coupled local–global adaptation with multi-

source [50];
– STL: stratified transfer learning [51];
– Spectrograms: deep learning–based sEMG gesture

recognition method with spectrograms as input [52];
– CWT: deep learning–based sEMG gesture recognition

method with continuous wavelet transform (CWT) as
input [52];

Table 3 Comparisons of accuracy over all subjects, the average accuracy, and standard deviation of recognition accuracy

s1 s2 s3 s4 s5 s6 av. std

SMO 47.83% 45.97% 37.74% 38.12% 41.09% 38.23% 41.50% ± 4.39%
KNN 45.87% 43.62% 49.80% 34.38% 35.43% 37.22% 41.05% ± 6.28%
RF 51.30% 45.32% 45.32% 45.62% 40.88% 38.13% 44.43% ± 4.53%
PCA 49.13% 23.83% 33.77% 36.88% 41.30% 26.20% 35.18% ± 9.45%
TCA 46.30% 20.00% 32.67% 31.25% 29.77% 23.55% 30.59% ± 9.10%
JDA 40.65% 32.13% 27.37% 30.42% 31.87% 22.63% 30.84% ± 5.98%
BDA 39.35% 31.91% 31.57% 28.96% 28.30% 22.32% 30.40% ± 5.58%
GFK 44.35% 23.62% 30.02% 33.96% 33.12% 27.42% 32.08% ± 7.11%
GLGA s 46.52% 25.74% 31.79% 35.83% 38.57% 24.87% 33.89% ± 8.21%
GLGA m 45.87% 29.36% 37.53% 34.17% 43.40% 25.18% 35.92% ± 7.99%
STL 45.43% 24.89% 30.36% 36.67% 33.96% 27.83% 33.19% ± 7.32%
Spectrograms 62.13% 54.62% 58.61% 54.33% 55.91% 49.85% 55.91% ± 4.17%
CWT 60.60% 52.32% 58.56% 53.69% 54.04% 48.19% 54.57% ± 4.45%
dualTL wo 70.30% 81.67% 79.34% 72.83% 82.34% 54.77% 73.54% ± 10.40%
dualTL 79.39% 86.38% 86.53% 79.54% 86.15% 63.05% 80.17% ± 9.04%

The bold entries are used to highlight the best results achieved within every subject and emphasized the method that achieves the best result

– dualTL wo: variation of dualTL, and the candidates
are not optimized with the second step, i.e., candidate
optimization.

where SMO, KNN, RF, and PCA are four universal machine
learning methods. TCA, JDA, BDA, GFK, CLGA s,
CLGA m, and STL are seven representative transfer learn-
ing methods. Spectrograms and CWT are deep learning—
based sEMG gesture recognition methods and these two
methods are initially supervised transfer learning methods
to recognize gestures of new user. However, this setting is
different from dualTL. Thus, we remove the fine-tune pro-
cess of spectrograms and CWT. DualTL wo is a variation of
dualTL, which remove the candidate optimization process
in the second step.

4.4 Experimental setting

In experimental process, the parameters Θ = {K1,K2,

λ, μ} of dualTL are set to K1 = 5,K2 = 1, λ = 0.5, μ =
0.4, respectively. These four parameters are calculated by
grid search. For SMO, the kernel function is radial basis
function and the punishment factor is 100. For KNN, the
number of neighbor is 5. For RF, the number of tree is 30.
All other eight methods require dimensionality reduction.
Therefore, we set them the same dimension 30.

4.5 Recognition performance

We evaluate the performance of dualTL by recognition
accuracy of novel subject using the leave-one-out validation.
In this process, the sEMG signals of one subject are used as
testing data, and the remaining signals are used as training
data to construct the recognition model. We repeat the
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performance evaluation process until all subjects’ data are
once used as testing data.

4.5.1 Recognition accuracy

The recognition accuracy over all subjects and the average
accuracy are showed in Table 3. From Table 3, we
can know that the average accuracies of four universal
methods are 41.50%, 41.05%, 44.43%, and 35.18%. The
average accuracies of seven traditional transfer learning
methods are 30.59%, 30.84%, 30.40%, 32.08%, 33.89%,
35.92%, and 33.19%, respectively. These results are
not very good that it is hard to realize natural HCI
using hand gestures. Moreover, common transfer learning
methods can not achieve better recognition results compared
with SMO, KNN, RF, and PCA (Fig. 7). The average
accuracy of two deep learning–based sEMG gesture
recognition methods, i.e., spectrograms and CWT, are
55.91% and 54.57%, respectively. Compared with universal
four learning methods and seven transfer learning methods,
spectrograms and CWT achieve better results (Fig. 7).
DualTL achieves the best performance among all 15
methods. The accuracy of dualTL is 80.17% and 24.26%
better than the first 13 methods, including four traditional
machine learning method, seven transfer learning methods,
and two deep learning methods that are designed for sEMG
gesture recognition. Also, dualTL is 6.63% better than
dualTL wo, proving the effectiveness of the second step
(i.e., candidate optimization).

4.5.2 Confusionmatrix

Besides, we also analyze the confusion matrix among all
users. Here we only present the average confusion matrix

Fig. 7 Average accuracy comparison of five types of methods.
T represents average accuracy of four universal machine learning
methods. TL represents average accuracy of seven transfer learning
machines. DL represents average accuracy of two deep learning–based
sEMG gesture recognition methods

of all subjects, which is showed in Fig. 8a, and the
confusion matrix of the fourth subject, which is showed in
Fig. 8b. From the analysis of averaged confusion matrix,
we can know that the fifth hand gesture “point” reaches
the highest recognition accuracy 91%. But the accuracy of
the second hand gesture is only 58%, which is the lowest
among all gestures. Compared with the averaged confusion
matrix, there are some differences in confusion matrix of
the fourth subject, which reaches the highest recognition
accuracy 91% in the third hand gesture “abduct” and the
fourth hand gesture “palm.” The gesture with the lowest
recognition accuracy is “adduct,” which is consistent with
the averaged confusion matrix. By comparing these two
confusion matrices, we can know that the performance is
good among the third, the fourth, and the fifth hand gestures
while the performance is poor on the second gesture. The
lesson we can learn from the analysis aforementioned is
that excellent gesture set design is essential to constructing
high-accuracy hand gesture recognition system.

4.5.3 Pseudo label analysis

DualTL is a kind of unsupervised gesture recognition
method to recognize the unlabeled data of the new user.
To realize high-accuracy gesture recognition, dualTL firstly
labels part of gestures from the new user with high
confidence. Then, all data of the new user are classified with
the help of these pseudo labels. The reliability of the pseudo
label is important for final gesture recognition results. Thus,
we analyze the recognition accuracy of candidates after
cross-user transfer in the first step, the accuracy of new

Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5

Gesture 1

Gesture 2

Gesture 3

Gesture 4

Gesture 5

(a) all users
Gesture 1 Gesture 2 Gesture 3 Gesture 4 Gesture 5

Gesture 1

Gesture 2

Gesture 3

Gesture 4

Gesture 5

(b) the fourth subject

Fig. 8 Confusion matrix
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Table 4 Gesture recognition
accuracy for candidates after
cross-user transfer and
candidate optimization, and
final recognition accuracy for
all instances

Cross-user transfer (step 1) Candidate optimization (step 2) dualTL (step 3)

s1 80.23% 84.12% 79.39%

s2 84.89% 92.90% 86.38%

s3 87.12% 91.65% 86.53%

s4 83.61% 85.10% 79.54%

s5 86.68% 90.45% 86.15%

s6 70.70% 72.13% 63.05%

av. 82.21% 86.06% 80.17%

candidates after candidate optimization in the second step,
and final gesture recognition accuracy in the third step.
Table 4 presents the analysis results. As Table 4 shows, the
recognition accuracy of new candidates in the second step is
highest, proving the effectiveness of candidate optimization.
Besides, the recognition results in the first and the second
step are not 100% correct. The average recognition accuracy
in the first, the second, and the third step are 82.21%,
86.06%, and 80.17%, respectively. Compared with the
results in the second step, the results in the third step have
some degrees of decline. Fortunately, these declines are not
very serious, proving the reliability of dualTL.

5 Conclusions and future works

5.1 Conclusions

In this work, we propose dualTL, a dual layer transfer
learning method to realize user-independent hand gesture
recognition. The weak correlation of the same hand gesture
from different users and the strong consistency of the same
hand gesture from one user are both used in this method.
To evaluate the effectiveness of the proposed approach, a
verification experiment is designed. From the analysis of
experiment result, the recognition accuracy of the proposed
method is 80.17%, which improves about 24.26% compared
with conventional machine learning algorithm, such as
SMO, KNN, and RF, and even state-of-the-art transfer
learning and other methods specifically designed for sEMG
gesture recognition.

5.2 Future works

However, there are still some limits in our approach. Firstly,
the gesture set is small and only static gesture is taken
into consideration. We will apply our method on other
gesture set in the future. Secondly, we will explore how to
combine the dual layer recognition framework with other
conventional machine learning algorithm to realize more
accurate and robust user-independent gesture recognition.

Funding information This work is financially supported by
the National Key Research and Development Plan of China
(2017YFB1002801); Natural Science Foundation of China under
Grant No. 61502456 and No. 61972383; R & D Plan in Key Field of
Guangdong Province (No. 2019B010109001); and by Alibaba Group
through Alibaba Innovative Research (AIR) Program.

References

1. Zhang Y, Chen Y, Yu H, Yang X, Lu W, Liu H (2018) Wearing-
independent hand gesture recognition method based on emg
armband. Personal and Ubiquitous Computing 22(3):511–524

2. Moseley JB, JR FW, Pink M, Perry J, Tibone J (1992) Jobe Emg
analysis of the scapular muscles during a shoulder rehabilitation
program. Am J Sports Med 20(2):128–134

3. Kawamoto H, Lee S, Kanbe S, Sankai Y (2003) Power assist
method for hal-3 using emg-based feedback controller. In: 2003
IEEE international conference on systems, man and cybernetics,
vol 2. IEEE, pp 1648–1653

4. Sears HH, Shaperman J (1991) Proportional myoelectric hand
control: an evaluation. Am J Phys Med Rehabil 70(1):20–28

5. Neto AF, Celeste WC, Martins VR, Bastos Filho TF, Sarcinelli
Filho M (2006) Human-machine interface based on electro-
biological signals for mobile vehicles. In: 2006 IEEE International
Symposium on Industrial Electronics, vol 4. IEEE, pp 2954–2959

6. Gao N, Zhao L (2016) A pedestrian dead reckoning system using
semg based on activities recognition. In: 2016 IEEE Chinese
guidance, navigation and control conference (CGNCC). IEEE,
pp 2361–2365

7. Chen J, Li F, Chen H, Yang S, Wang Y (2019) Dynamic gesture
recognition using wireless signals with less disturbance. Pers
Ubiquit Comput 23(1):17–27

8. Song J, Sörös G, Pece F, Hilliges O (2015) Real-time hand gesture
recognition on unmodified wearable devices. In: IEEE conference
on computer vision and pattern recognition

9. Ducloux J, Colla P, Petrashin P, Lancioni W, Toledo L (2014)
Accelerometer-based hand gesture recognition system for inter-
action in digital tv. In: 2014 IEEE international instrumentation
and measurement technology conference (I2MTC) Proceedings.
IEEE, pp 1537–1542

10. Nandakumar R, Iyer V, Tan D, Gollakota S (2016) Fingerio: using
active sonar for fine-grained finger tracking. In: Proceedings of
the 2016 CHI conference on human factors in computing systems.
ACM, pp 1515–1525

11. Lien J, Gillian N, Karagozler ME, Amihood P, Schwesig C, Olson
E, Raja H, Poupyrev I (2016) Soli: ubiquitous gesture sensing with
millimeter wave radar. ACM Trans Graph (TOG) 35(4):142

12. McIntosh J, Marzo A, Fraser M, Phillips C (2017) Echoflex: hand
gesture recognition using ultrasound imaging. In: Proceedings of

584 Pers Ubiquit Comput (2022) 26:575–586



the 2017 CHI conference on human factors in computing systems.
ACM, pp 1923–1934

13. Zhang X, Chen X, Li Y, Lantz V, Wang K, Yang J (2011) A
framework for hand gesture recognition based on accelerometer
and emg sensors. IEEE Trans Syst Man Cybern-Part A Syst
Humans 41(6):1064–1076

14. Zhang X, Chen X, Wang W-H, Yang J-H, Lantz V, Wang K-Q
(2009) Hand gesture recognition and virtual game control based
on 3d accelerometer and emg sensors. In: Proceedings of the
14th international conference on intelligent user interfaces. ACM,
pp 401–406

15. McIntosh J, McNeill C, Fraser M, Kerber F, Löchtefeld M, Krüger
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