
https://doi.org/10.1007/s00779-020-01388-1

ORIGINAL ARTICLE

A proposal and evaluation of new timbre visualization methods
for audio sample browsers

Etienne Richan1 · Jean Rouat1

Received: 9 December 2019 / Accepted: 5 March 2020
© Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Searching through vast libraries of sound samples can be a daunting and time-consuming task. Modern audio sample
browsers use mappings between acoustic properties and visual attributes to visually differentiate displayed items. There
are few studies focused on how well these mappings help users search for a specific sample. We propose new methods
for generating textural labels and positioning samples based on perceptual representations of timbre. We perform a series
of studies to evaluate the benefits of using shape, color, or texture as labels in a known-item search task. We describe the
motivation and implementation of the study, and present an in-depth analysis of results. We find that shape significantly
improves task performance, while color and texture have little effect. We also compare results between in-person and online
participants and propose research directions for further studies.
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1 Introduction

Modern sample libraries can contain thousands of syn-
thesized or recorded sound samples. A common approach
when searching for a sample is to filter the contents of the
library based on keywords or categories and then audition
the resulting samples one by one.

Several media browsers have been developed to accel-
erate this process by placing samples produced by query
results in a scatterplot visualization, or a starfield display
[4]. Some implementations allow users to specify what
metadata or audio descriptors to use as the axes of the
display [9, 15], while others use dimensionality reduction
(DR) methods to project a high-dimensional set of audi-
tory features to a 2D space [16, 18, 24]. The latter approach
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provides less meaningful axes but can produce an effective
clustering of similar sounds. This feature-based genera-
tion of sample coordinates is often augmented by a visual
labeling method. These visual labels can help the user to
recognize types of sounds or sounds that they have already
auditioned. In existing sample browsers, colors are mapped
to timbre features [9, 16–18], and shapes are used to either
distinguish categorical variables (e.g., instrument type) [9]
or to visualize time-varying features [18, 25].

1.1 A novel sample browser with textural labels

We developed a sound sample browser which lets users
visually label sounds using textural images. It uses a
pretrained neural network model [34] for artistic style
transfer [19] to synthesize visual labels for all samples in
the library based on a reference set of sound-image pairs.
Users can simply choose textural images that they wish
to associate with certain sounds and the software takes
care of the rest. The advantage of using this method is
that no explicit mapping between sound descriptors and
visual parameters needs to be defined. We think this is
an interesting alternative to the more common approach
of associating specific audio features to shape or color
parameters. Our browser also uses dimensionality reduction
of timbre features to place samples in the interface.
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1.2 Research questions

While we wish to evaluate the design choices of our sample
browser, to what degree any of these types of visual labels
improve sound search is still an open question. We designed
our study to address the following questions:

– Is there a difference between using color, shape, or
texture as visual labels in an audio sample browser?

– Does our timbre feature–based placement method assist
search, and if so, are these visual labels effective when
the information provided by placement is removed?

This article presents the design of the study as well as
methods for generating visual labels and placing musical
samples based on their timbre features. We provide in-depth
analysis of results from a group of 15 participants who were
recruited to perform the study in a controlled environment.
We find that the placement method and shape labels
improve participant efficiency, but do not significantly
improve task completion time. We also compare these
results with a second group of 14 participants who
performed the study remotely, but find few commonalities
between the two groups.

2 Related work

The field of information visualization provides a rich
resource of theory and guidelines for visual label design.
Borgo et al. [7] provide an extensive review of glyph visu-
alization, a general form of label designed to communicate
values visually. Chen and Floridi [13] propose a taxon-
omy for four types of visual channels: geometric channels
(e.g., size, shape, orientation), optical channels (e.g., hue,
saturation, brightness, texture, blur, motion), topological
and relational channels (e.g., position, distance, connection,
intersection), and semantic channels (e.g., numbers, text,
symbols).

While visualization theory principles can be applied to
arbitrary sources of information, visualizations of sound
can benefit from visual metaphors that appeal to intuitive
associations we might make between acoustic and visual
properties.

2.1 Cross-modal correspondences for timbre
visualization

Studies of cross-modal correspondences provide useful
insights into audio interface design as they highlight
associations between vision and audition that a large part of
the population might intuitively understand. The kiki-bouba
experiment [59] is an early study of such correspondences

which found that across cultures and ages, most people
associate the vocalized word “bouba” with rounded shapes
and “kiki” with pointed shapes. Recently, an investigation
of the cross-modal correspondence of timbre and shapes
[2] came to a similar conclusion with regard to musical
timbre.“Soft” timbres were associated with round shapes,
while “harsh”, brighter timbres were associated with spiky
shapes. The same work also highlighted a tendency to
associate the soft timbres with blues and greens and harsh
timbres with reds and yellows.

Giannakis and Smith [20] studied correspondences
between acoustic descriptors and visual parameters, further-
ing work begun by Walker [54] on associations between
pitch, loudness, and visual features such as size, position,
and lightness. With Sound Mosaics, they studied associa-
tions between synthesized timbres and textural images con-
taining repeated elements with varying parameters such as
coarseness, distribution, and granularity. They found strong
associations between granularity and spectral compactness
as well as between coarseness and spectral brightness.

Grill and colleagues performed a study highlighting
several high-level perceptual qualities of textural sounds
[23] and proposed visualizations [22] as well as methods
for extracting descriptors [21] for each one. Two of their
proposed perceptual metrics, height and tonality (measuring
whether a sound is more tone-like or noise-like), are quite
similar to the timbral descriptors for brightness and spectral
flatness. Both were visualized using color: height was
mapped to a range of hue and brightness ranging from bright
yellow (high) to dark red (low) and saturation was mapped
to tonality.

Berthaut et al. [6] as well as Soraghan [51] studied
potential correlations between acoustic properties and those
of animated 3D objects. The former found a preference
for associating the spectral centroid with color lightness
and tonality with texture roughness. The latter found that
participants preferred to associate geometrical resolution
with attack time, spikiness with the spectral centroid, and
visual brightness with the ratio of even to odd harmonics.
Both found that a common preference among participants
was much less obvious when multiple mappings were in
effect.

When developing a sample browser incorporating timbre
visualization, designers can either decide on implementing a
fixed subset of these acoustic to visual mappings or provide
options for users to modify the mappings themselves.
This second option may increase the tool’s versatility but
is dependant on users’ knowledge and interpretation of
acoustic and visual descriptors. This is what inspired us
to develop our sample browser with a simple method for
users to associate textures and timbres by selecting pairs of
images and samples.
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2.2 Relevant work in audio browsers

Dimensionality reduction (DR) of low- and high-level audio
descriptors is a common practice in audio browser research.
A concise overview of commonly used DR methods in
audio browsers can be found in [47] and [53]. Islands of
Music [43] and MusicMiner [42] popularized using self-
organizing maps (SOM) to organize music libraries into
topographic maps of musical genres based on a large
number of extracted low-level and high-level features. As
songs are generally associated with visual metadata such as
album covers and pictures of the artists, these can be used
to visually differentiate and help users recognize specific
songs.

CataRT [49], a tool for concatenative sound synthesis
and exploration, presents sound grains (very short sound
samples) in a starfield display. Originally allowing users to
choose audio descriptors to define each axis and sample
colors, it was later augmented with a combination of DR
methods to assist sound search in large collections [48]. This
tool seems to have been influential in the design of recent
drum sample browsers and sequencers. The Infinite Drum
Machine [40] demonstrated the creative possibilities of
visualising t-SNE DR of drum samples in a web-based drum
machine, while XO [60] is an example of a professional
tool based on similar principles. Both tools use color and
placement to differentiate sample timbre and allow users
to select regions of the sample space to associate with
specific beats in a rhythm sequence. Sample color is used to
visualize the third dimension of the reduced space in [40],
while XO uses sample color to distinguish predicted drum
types (e.g., kick, snare, cymbal).

Stober and Nürnberger developed MusicGalaxy [52],
a music browser proposing an innovative solution to the
commonly occurring issue with dimensionality reduction
that some similar elements can be projected to different
regions of the reduced space. When focusing on a specific
song, its nearest neighbors in the high-dimensional feature
space are made obvious by increasing their size. In
subsequent user studies, this method compared favorably to
the more common “pan and zoom” method of navigating
large collections.

The following section describes the sample browsers that
are closest to ours in design that also incorporated user
studies in their development.

2.3 Studies of audio sample browsers

Heise et al. [24] developed SoundTorch, which uses a SOM
to organize environmental sound samples in 2D space.
Participants preferred their method to a list-based interface.
They later added a visualization of the temporal envelope
as the contour of each element [25], but did not study

the effects of this additional visual information on the
effectiveness of the tool.

Frisson et al. [18] developed AudioMetro, which uses t-
SNE DR of audio features and a proximity grid to place
sound samples in a starfield display. They also use color and
shape labels to differentiate samples. They map the timbre
descriptor for brightness to the color lightness channel
and the temporal evolution of sharpness to the contour of
the visual labels. Their study mainly evaluated the effect
of different methods of spatial organization of the sound
samples, and they offer little analysis of the effect of the
labels. They remark that simply using DRwould often result
in overlapping samples, which they solved by displacing
samples to points on a regular grid. We encountered the
same problem but implemented a different solution using
simulated springs to push samples apart (Section 3.4), an
approach also found in [48].

In their master’s thesis, Font [15] presented the results
of queries to the Freesound database [17] using a starfield
display. Their study found that participants were most
successful at finding sounds when they could choose sound
descriptors as axes. This was compared to placement
obtained via PCA DR which they found to perform worse
than random placement.

None of these studies looked in-depth into the effect of
their choices of visual labels, so we made measuring this
effect the main objective of our study design.

3 Study design

The goal of our study is to determine whether and to what
extent different types of labels (shape, color, and texture)
help in the task of searching for a specific sample in a
starfield display. The secondary objective is to evaluate
the effectiveness of our dimensionality reduction–based
placement approach (Section 3.4). We designed a known-
item search task that would allow us to test different
combinations of labeling and placement methods. In order
to obtain a baseline for comparison, we create baseline
variants for labels and placement. The label baseline uses
gray circles to represent each sample and the placement
baseline assigns random coordinates to each sample.

3.1 Task design and interaction

The task interface (with baseline labels) is shown in Fig. 1.
In each task, 30 sounds are picked at random from a dataset
and one is designated as the target sound the participant
must find. Individual sound samples are displayed as
circular shapes arranged on a light gray canvas. Samples
are played by mousing over the corresponding element.
Pressing the space bar plays the target sound and clicking on
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Fig. 1 The task interface used in the study. Left: The intermediary screen shown before each task. Right: An example of a baseline task. Red
outlines indicate an incorrectly clicked sound while a green outline highlights the current playing sound

the correct element completes the task. Before each task, the
participant must place their cursor in a corner of the canvas.
This corner rotates clockwise around the canvas between
tasks in order to vary the starting point.

3.2 Sets of tasks to introduce and evaluate timbre
visualizationmethods

Participants progress through the study by completing sets
of tasks that introduce and evaluate the placement method
and the visual labels. They first complete a practice task
with baseline labels and random placement that can be
repeated until they are certain they understand how the
interface works. They then complete a set of tasks with
baseline labels and random placement. This represents the
worst-case scenario, where no relevant information is being
visualized.

The rest of the study progresses by alternating between
familiarization and evaluation tasks. During familiarization
tasks, participants are encouraged to take their time and
explore the set of samples while searching for the target
sound. During evaluation tasks, participants are instructed
to find the target sound as quickly as possible. We
first introduce the dimensionality reduction (DR)–based
placement method with baseline labels. We then introduce
a visual labeling method (color, shape, or texture) with
a set of tasks that uses the DR placement. Finally, we
test the effectiveness of the labels on their own in a final
set of tasks with the same labeling method and random

placement. Before each set of tasks, participants read some
brief instructions, which can be found in the supplementary
materials of the paper (Online Resource 1, Section 6).

The two placement methods (random and DR) and four
label types (baseline, color, shape, and texture) combine
to form 8 different testing conditions. Participants also
complete three survey-style questionnaires during the study
referred to as Q0, Q1, and Q2. In Q0, participants
provide basic demographic information (e.g., age, listening
conditions, years of musical experience). In Q1 and Q2,
participants are asked to rate the extent to which they used
different search strategies for finding the target sound. They
are also asked to rate whether the positioning or labeling
of the sounds helped them in their search and how difficult
they found the task overall (see the supplementary materials
(Online Resource 1, Section 5)) for the full list of questions.

We designed the study to introduce and evaluate each
type of label individually. Table 1 summarizes how a
participant would progress through the entire study. For
each set of task conditions, the same task will be repeated

Table 1 Series of tasks that participants complete while progressing
through the study

Order 1 2 3 4 5 6 7 8

Task type Q0 P BR BDR LDR Q1 LR Q2

P = practice,Bx = baseline labels.Lx = color, shape, or texture labels,
XDR= dimensionality reduction placement, XR= random placement
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5–10 times (depending on the task) with different samples.
We designed the study to take approximately 30 min to
complete.

3.3 NSynth dataset and timbre feature extraction
for sample placement and label generation

We use musical samples from the NSynth dataset [14],
which consists of over 300,000 4-s samples produced by
virtual instruments in commercial sample libraries. We are
interested in differentiating timbre, so we use a subset of
∼800 samples with the same pitch and velocity. We use
samples at midi note 64, which corresponds to musical note
E4.

For each sample, we use a cochlear filterbank1 [3] to
extract three profiles related to the perception of timbre: a
spectral envelope, a roughness envelope (which measures
perceived auditory roughness over time), and a temporal
amplitude envelope. These timbre features are used both
to determine sample placement as well as generate visual
labels.

3.4 Sample placement through dimensionality
reduction

We obtain two-dimensional coordinates for the musical
samples through dimensionality reduction (DR) of the
extracted features. We first use PCA to reduce each profile
to a shorter feature vector, then apply UMAP [41] to
the concatenated vectors to produce a 2D arrangement of
the samples that represents the distances between their
high-dimensional timbre features. Recent related work [16,
18] has used t-SNE [35] for dimensionality reduction;
however, we find that UMAP obtains comparable results in
significantly less computation time.

During testing, samples would occasionally overlap in
the interface. To remedy this, before displaying each task,
we run a brief physical simulation by placing virtual springs
between samples causing them to push away from each
other if they are overlapping.

3.5 Visual label generation

Research on human visual perception has revealed that
separate pathways are used to process shape, color, and
texture [12]. While this indicates that shape, color, and
texture could be used to distinguish between visual samples
in a complementary fashion, this is not always the case.
Different types of visual information can also interfere with

1Available for download from https://github.com/NECOTIS/
ERBlet-Cochlear-Filterbank

each other [11], so we chose to test each of these pathways
separately.

We are interested in differentiating timbre, which is
often represented by continuous features describing some
of the spectral or temporal characteristics of the sound.
We generate labels that also vary continuously by using
mappings from timbral features to visual parameters.
Figure 2 shows how the same set of samples would appear
for each type of visual label. Labels could be of varying
sizes, but in our studies, their diameter was 64 pixels.

3.5.1 Shape

We use the temporal envelope to generate our shapes
because it visualizes the attack time and low-frequency
amplitude modulations in the signal, which are important
timbral descriptors [38]. We produce a unique shape for
each sound by mapping the amplitude of the temporal
envelope to the contour of a circular shape. We downsample
the envelope to obtain a 20-ms temporal resolution. This
produces 200 distinct points for our 4-s samples. The radius
of each point on a half-circle is described by (1).

R (θ) = envelope[i], θ = i · π

200
, i ∈ {0, 200} (1)

This half-circular shape is then rotated and mirrored
along the x-axis to produce a symmetrical shape. The
topmost point of the shape represents the amplitude of the
envelope at the beginning of the sound and the bottom-most
point the amplitude at the end of the sound. This method is
comparable to [25], with the main difference being that our
approach produces symmetrical shapes, which are known to
be easier to perceive and remember [55].

3.5.2 Color

For color, we use a simpler approach based on the
coordinates of the samples in the reduced 2D space. The
center of the spatial distribution of the entire set of samples
is calculated and each sample is assigned a color based on
its position relative to the center. The hue is determined by
its angle relative to the center point and the saturation is
determined by its distance to the center point. This can be
imagined as laying a color wheel over the entire sample
distribution and picking a color for each sample based on
their location within it. Each sample’s color reinforces the
spatial information which is based on timbral similarity.

3.5.3 Texture

We developed a software tool to synthesize textural images
for samples inspired by Li et al.’s method for “universal”
style transfer [34]. The method is based on a pre-trained
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Fig. 2 The three types of visual labels for the same set of randomly selected sound samples. From left to right: shape, color, texture

encoder-decoder neural network architecture (provided by
[34]). The encoder is an image classifier [50], while the
decoder has been trained to reconstruct images from the
activation patterns of the encoder. Noise is fed into the
encoder network and the activation pattern is transformed to
resemble that of a reference texture. The decoder can then
produce a new image with textural properties that greatly
resemble the original image. Our sample browser uses an
optimized version of this architecture and provides a simple
interface to extract, store, and interpolate between textural
representations.

For the samples used in the study, eight medioids [27]
are found in the timbre space and each one is manually
assigned a texture from the normalized Brodatz texture
database [1]. We use black and white texture images in
order to differentiate from the color method. We choose
visually distinct textures for each medioid and attempt to
relate properties of the sounds to textural characteristics
(e.g., a rapidly varying synth note is labeled with a chaotic
rootlike texture, while a percussive mallet note is labeled
with a texture of pebbles in an attempt to evoke the hardness
of the material being struck). Textures for all the other
sounds in the dataset are then produced by the texture
synthesis method by interpolating between these textures
based on their proximity to the medioids. Through this
process, samples are assigned textural images whose visual
properties vary in tandem with their timbral difference.

3.6 Technologies used

We use JATOS [31] to build and host our study on
a webserver, which allows us to easily distribute the
study to participants using a web link. JATOS studies are
executed in the browser so no installation is required for
the participants. The filterbank, dimensionality reduction
and label generation are implemented in Python, and the
resulting information is stored in a dictionary JSON file that
is loaded by the web application. Pre-calculated shape and
color information are stored as arrays in the dictionary. Each
sample entry also points to a pre-generated JPEG texture

file that is stored on the webserver. We use jsPsych [32] and
p5.js [39] to build the interactive components of the study
and toxiclibs.js [28] for the spring physics simulation.

3.7 Collected data

The measures we use to evaluate and compare labeling
methods are summarized in Table 2. We collect several other
data points from tasks, including the entire cursor trajectory,
cursor speed, the number of misidentified samples, and
the number of times the participant listened to the target
sound. The anonymized data collected in our studies will be
available in the supplementary materials repository [46].

In summary, we designed our study to evaluate the effect
of both visual labels and placement on searching for musical
samples using technologies allowing for simple and easy
distribution to participants. The studies we conducted using
this design were approved by the Comité d’éthique de la
recherche - Lettres et sciences humaines of the University
of Sherbrooke (ethical certificate number 2018-1795).

4 Studies

We conducted our study with 3 different groups of
participants. The preliminary study did not lead to
significant conclusions, prompting us to perform a study
in a controlled environment with specifically qualified
participants. Based on feedback from this second study, we

Table 2 Recorded measures used to evaluate task performance

Measure Description Units

Time Time taken to complete Seconds

the task

Hovered samples Number of samples the Count

cursor encountered

Distance Total distance the mouse Pixels

cursor traveled
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decided to change the manner in which color labels were
generated. We conducted a third iteration of the study with
two objectives in mind: testing the new color labels and
comparing the quality of results obtained in controlled and
uncontrolled environments.

4.1Winter 2019: initial study

The precursor to this article [45] summarized the results
from a group of 28 computer engineering students. Students
completed the study as part of coursework in a class on
human perception and performed the study on their own
computers. They were instructed to use a computer mouse
and earphones. Based on those results, we concluded that
it would be worthwhile to recruit a group of participants
with a minimum of 2 years musical experience to perform
the study in a controlled environment. We also realized the
need for the baseline task with random placement, which
was originally not part of the study. We only compared
completion times in this study, and decided to record more
data points in follow-up studies.

4.2 Summer 2019: qualified participants in a
controlled environment

Fifteen participants were recruited from the music and
engineering faculties of the University of Sherbrooke.
They were required to have at least 2 years of recent
experience working with sound in order to qualify them
for the task of differentiating sounds by timbre alone.
Participants completed the study in a secluded area on
tablet-style laptops with a connected mouse and keyboard.
The testing stations were equipped with Sennheiser HD 280
Pro headphones, connected via a Rega EAR amplifier and a
Roland UA-1G USB interface.

Participants completed three passes of the study, with
each iteration testing a different labeling method. Given that
there are 3 types of labels, there are 6 permutations of the
order in which they could be tested. These permutations
were distributed between participants as evenly as possible.

4.3 Summer 2019: new color labels and online
participants

A second group of participants, recruited in the same
manner as the initial study, performed the study on their
personal computers. For our analysis, we used results from
14 participants who reported more than 2 years musical
experience and having completed the study in good listening
conditions.

We changed the way in which color labels were generated
to better correspond other work in the field, particularly

[22] and [2]. Our new method uses direct mapping from
timbral descriptors to the hue and saturation of the circular
labels. The spectral centroid (measuring timbral brightness)
is mapped to a gradient from blue to red and spectral
flatness (measuring tonality) is then mapped to the color’s
saturation. Shape and texture labels remain unchanged.

5 Analysis methods

5.1 Data transformation

Initial inspection of the collected measures (completion
times, hovered samples, and total mouse cursor distance)
showed that distributions were quite heavily right-tailed.
After performing Box-Cox transformations [8] on each
set of measures, statistical models produce normally
distributed residuals.2 Mean values and confidence intervals
are calculated in transformed values and then back-
transformed to their original units. Histograms of the
collected measures and transformation parameters are
included in the supplementary materials (Online Resource
1, Section 2).

5.2 Statistical models used to determine the effect
of task conditions on performance

We use general linear mixed-effects models as they support
the repeated measures that characterize our study design and
account for variance between participants. The placement
method and label type are modeled as fixed effects
and a unique identifier assigned to each participant is
modeled as a random effect. We report estimated marginal
(least-squares) means and confidence intervals. Analysis
of variance (ANOVA) of fitted models estimates the
probability of equal means.

For significance testing in survey responses, we use the
Mann-Whitney U test [36] when comparing between two
groups and the Kruskal-Wallis one-way analysis of variance
[29] when comparing more than two groups.

5.3 Packages and notebooks

We provide R notebooks for reproducing our results in the
supplementary materials repository [46] and a list of R
packages used in Appendix.

2For a linear regression model to be considered appropriate, the
distribution of prediction errors (residuals) should resemble a normal
distribution [37].
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6 Results

We evaluate the effect of different labels and placement
methods by comparing means of the recorded measures
of task performance. We interpret P values under 0.05
as strong evidence that the difference between means is
significant (not due to chance) [56].

6.1 Controlled study with qualified participants

We first investigate the effect of the placement method,
followed by that of the labels. Finally, we present survey
responses of interest.

6.1.1 Effect of placement method

Table 3 shows the mean measures grouped by placement
method and by label type. In Fig. 3, we plot these means
with 95% confidence intervals. We observe that for tasks
with baseline labels, participants hovered 3 less samples
with dimensionality reduction (DR) placement compared
to random placement. Tasks with shape labels also show
an ∼4 sample improvement with DR placement. For
color and texture labels, while mean values of samples
hovered are lower with DR placement, the difference is
not statistically significant. The differences in time and

Table 3 Means of measures grouped by placement and labeling
methods. Bold p values indicate when the difference of mean measures
between placement methods is significant

Measure Label Placement p value

DR Random

Time (s)

Baseline 12.3 12.7 0.54

Shape 10.7 14.3 0.0008

Color 11.6 13.7 0.051

Texture 11.6 15.7 0.0005

Hovered samples

Baseline 14.9 17.9 0.04

Shape 8.7 12.5 0.004

Color 13.8 15.7 0.16

Texture 13.5 15.3 0.30

Distance (pixels)

Baseline 2807 3094 0.12

Shape 2313 3123 0.0005

Color 2765 3588 0.002

Texture 2681 3403 0.009

DR: placement by dimensionality reduction

distance between placement methods are insignificant for
baseline tasks. For all label types aside from the baseline,
the distance traveled by the mouse cursor with random
placement is approximately 700 to 800 pixels longer than
with DR placement. There is also a significant difference in
completion times (approximately 3–4 s) in tasks with shape
and texture labels.

6.1.2 Effect of labeling methods

We analyze the effect of labeling methods by comparing
them to the baseline tasks. Table 4 summarizes the
differences between means. Our main takeaway from these
results is that with shape labels, participants need to
investigate significantly fewer samples before finding the
target sound. Compared to the baseline, participants visited
∼6 less samples in tasks with shape labels before finding
the target sound.

Times are not significantly changed when adding visual
labels, except in the case of texture labels with random
placement, where participants took ∼3 s longer to find the
target sound.

6.1.3 Effect of iteration

Given that participants complete the study multiple times,
we are curious whether they improve at the different tasks
over time. Overall, we do not see a significant effect of
iteration on measures. However, in the first set baseline
tasks with DR placement, there is a significant difference
between completion times (p=0.0078) and mouse speed
(p=0.00020) compared to subsequent iterations. We hypoth-
esize that participants were still becoming accustomed to
using the interface during this first task in the study. There
are no significant differences between iterations for tasks
with random placement. When inspecting the data visually
across iterations, there is a noticeable downward trend for
tasks with labels and DR-based placement times, but the
differences do not pass significance testing.

6.1.4 Questionnaire results

The responses to many questions did not show significant
differences between label types. This section highlights the
most interesting responses. A full list of the questions can
be found in the supplementary materials (Online Resource
1, Section 5).

Figure 4 shows Likert plots of responses to questions
about the perceived consistency of the placement of
samples and the labeling methods in labeled tasks with DR
placement. When rating label consistency, participants are
quite evenly divided on texture labels and lean towards color
being more consistent. In the case of shapes, none rated their

730 Pers Ubiquit Comput (2021) 25:723–736



Fig. 3 Means of task measures
grouped by label type and
placement. 95% confidence
intervals shown as error bars
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consistency below 3. When asked to rate whether similar
sounds were located closer together, more participants
responded with lower ratings after tasks with shape labels
(p=0.032).

Figure 5 shows Likert plots of ratings of the perceived
helpfulness of the placement of the samples during labeled
tasks with DR placement. After tasks with color and texture

Table 4 Mean difference of measures for tasks with labels compared
to baseline, grouped by placement method. Positive values indicate
an improvement. Bold p values indicate that the difference from the
baseline is significant

Measure Label Placement

DR Random

B − L p val. B − L p val.

Time (s)

Shape 1.59 0.18 −1.58 0.26

Color 0.76 1.0 –0.9 1.0

Texture 0.73 0.96 –2.91 0.03

Hovered samples

Shape 6.1 4e−07 5.5 0.002

Color 1.1 0.89 2.3 0.52

Texture 1.3 0.33 2.7 0.13

Distance (pixels)

Shape 494 0.04 –30 1.0

Color 41 1.0 –493 0.20

Texture 120 0.94 –307 0.61

B: mean of measures with baseline labels,

L: mean of measures with shape, color, or texture labels

DR: placement by dimensionality reduction

labels, ratings skew towards the placement being helpful,
but after tasks with shape labels they rate the placement as
being less helpful (p= 0.04). This indicates that participants
were paying less attention to the placement when shape
labels were provided. Participants are quite evenly divided
between positive and negative responses when rating the
helpfulness of all of the label types.

6.2 Online study

Participants performed this study on their own computers
and were less experienced than participants in the previous
study. While we used the same minimum experience criteria
for both studies, 10 out of the 15 participants in the
controlled environment study had at least 10 years of
musical experience while 13 out of the 14 participants in
this study had between 2 and 5 years of experience.
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Fig. 4 Responses to the questions about the perceived consistency of
the labeling and placement methods
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Fig. 5 Responses to the questions about the perceived helpfulness of
the labels and the sample placement

6.2.1 Effect of placement methods

Figure 6 shows mean measures grouped by placement and
labeling method with 95% confidence intervals. The only
significant difference between placement methods is found
in tasks with texture labels, where participants moved their
cursor over ∼1200 more pixels searching for the target
sound when positions were randomized. The exact means
and p values are provided in the supplementary materials
(Online Resource 1, Section 3, Table S1).

6.2.2 Effect of labeling methods

Table 5 shows the differences between labeled tasks
and the baseline. There are two significant differences in
completion times: on average, tasks with color labels and DR
placement took 2.5 s longer than the baseline, while tasks with
texture labels and random placement took 3 s longer than
the baseline. Five less samples were visited on average in
tasks with color labels and random placement compared to

Fig. 6 Means of measures
grouped by label type and
placement. 95% confidence
intervals shown as error bars.
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Table 5 Mean difference of measures compared to baseline, grouped
by placement method. Positive values indicate an improvement. Bold
p values indicate that the difference is significant

Placement

DR Random

Measure Label B − L p val. B − L p val.

Time

Shape -0.1 1.0 -0.4 0.97

Color –2.5 0.05 0.8 0.82

Texture –1.1 0.56 –3.0 0.05

Hovered samples

Shape 1.0 0.96 3.1 0.50

Color –1.4 0.92 5.0 0.05

Texture –1.3 0.93 –2.7 0.71

Distance

Shape 71 0.99 –131 0.98

Color –333 0.72 272 0.82

Texture –150 0.95 –1136 0.02

B: mean of measures with baseline labels

L: mean of measures with color, texture, or shape labels

DR: placement by dimensionality reduction

the baseline. Finally, when comparing mouse travel distance,
in tasks with texture labels and random placement, participants
covered ∼1100 more pixels than the baseline.

7 Discussion

We designed our study to address the following two
questions on the effectiveness of visual labels and sample
placement in sound sample browsers.
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7.1 Does our timbre feature–based placement
improve search, and if so, are visual labels still
effective when the information provided by
placement is removed?

In the controlled study with qualified participants, we see
significant differences in all three measures (completion
time, hovered samples, and cursor travel distance distance)
when comparing our dimensionality reduction (DR) place-
ment and random placement (Table 3). In baseline tasks,
the only significant effect of sample placement was a low-
ering of the number of hovered samples. However, in tasks
with labels, we see a significant reduction in mouse travel
distance when using the DR placement. This could be
explained by participants jumping between visually similar
labels when positions are random, in contrast to performing
a sort of nearest-neighbor or grid-like search pattern with
baseline labels. We expected completion times in baseline
tasks to significantly differ between placement methods,
but they did not. This indicates that the tasks with random
placement were easier than we expected.

As to whether labels remained effective after placement
information was removed, we saw that the number of
hovered samples with shape labels was ∼6 samples lower
when compared to the baseline (Table 4). Additionally, the
number of hovered samples is significantly lower when
comparing DR and random placement within the shape label
tasks (∼4 less), so we can conclude that these two methods
were complementary.

In the online study, we do not see the same effect of
placement methods on participant performance. This could
be explained by the fact that participants completed fewer
tasks with DR placement overall and may not have had
enough time to learn to use the placement effectively. This
somewhat contradicts our conclusion from the analysis that
the effect of iteration in the controlled environment study
was negligible.

7.2 Is there a difference between using color, shape,
or texture as visual labels in an an audio sample
browser?

In our controlled study with qualified participants, we
found that shape labels significantly lowered the number
of hovered samples compared to the baseline (Table 4).
We interpret the reduced number of hovered sounds as an
improvement in participants’ ability to visually differentiate
samples, and thus avoid listening to irrelevant samples.
Interestingly, this gain in efficiency did not translate to
a significant gain in time, which could be explained by
participants spending more time visually processing the
scene. We did not find any differentiation between color
labels and the baseline, so we can conclude that our

approach to coloring samples in this study was ineffective.
In their written comments, some participants expressed
that the labels produced by the color mapping were in
opposition with their preconceived associations between
colors and timbres. Textural labels did not differentiate
from baseline tasks except in the case where participants
took significantly longer to complete tasks with random
placement. This indicates to us that the visual complexity
of the textures was slowing them down. Many participants
expressed that colored textures would have been much
easier to differentiate.

The responses to the survey questions did not provide
much additional insight into the differences between
labeling approaches. They do however correlate with our
previous observation that shape labels affected participants
differently than the other two label types.

In the online study, the lower number of hovered
samples in tasks with colored labels and random placement
(Table 5) indicates that the new color labels could be helping
participants find the target sound more effectively. This
improvement is not present in the tasks with color labels and
DR placement. In contrast with the previous study, shape
does not seem to have much effect in reducing the number
of hovered sounds when compared to the baseline.

7.3 Comparing the controlled study to the online
study

Comparing both studies, the ranges of measures obtained
are quite similar, but the measures from the online study
have a higher variance than those from the controlled
environment study (Figs. 3 and 6), making it difficult to
draw many conclusions from the results.

The difference in experience noted in Section 6.2 could
explain why we do not find many commonalities in
the results from the two studies and suggests that our
minimum criteria for experience should be raised. Given
that we do not observe similar effects of visualization
methods within the two groups, we are unsure whether
we can recommend collecting data with this study in an
uncontrolled environment. So far, our studies have been
exploratory with small group sizes and our interpretations of
results should be considered with this in mind. We remain
optimistic that distributing this study online to a sufficient
number qualified individuals would have a good chance of
producing useful results.

7.4 Further work

In the studies we conducted, texture labels seemed to hinder
participants more than help them. While we believe our
new method for associating timbre to visual textures could
prove useful for visualizing sounds in other contexts, future
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studies of this type of task could omit texture labels and
concentrate on shapes and colors. Further work could look
into whether a combination of shape and color information
can outperform shape alone. A significant advantage of
using color is that it is much more tolerant to large changes
in scale, while shapes need to be a minimum size in order to
be visually distinct.

Increasing the number of samples presented in each task
would raise the overall difficulty and potentially accentuate
the differences between the visualization methods being
tested. We will likely also reduce the number of questions
in future versions of the study, which would allow us to
increase the number of tasks while maintaining the same
overall duration. This study design could also be used
to compare various methods of generating shapes. For
example, we considered using the spectral envelope for
shapes, as it contains other important timbral information
such as the distribution of harmonic partials. A variant of
our study worth developing would allow participants to
customize each visual labeling system. This would help
mitigate some issues related to visual accessibility as our
current color schemes do not take color blindness into
account. It would also give participants the advantage of
already understanding the underlying labeling system.

8 Conclusion

We have conducted three studies using the study design
presented in this article. Based on results from our
first group, we decided upon minimal qualifications for
participants and updated the study. Using the web based
JATOS framework allowed us to quickly iterate on the
study design and easily share it with our participants. Our
second study brought qualified participants into a controlled
environment and revealed a significant improvement when
using shape labels, while texture and color labels did not
provide noticeable advantages over the baseline. The final
study produced few significant results, but provided some
indications that our new colored labels are a step in the right
direction.

Adding shape labels did not significantly improve task
completion times, but did reduce the number of sounds
visited before finding the correct one. It seems that the
gain in efficiency of listening to less samples was offset
by the extra time spent processing the additional visual
information. We observed that this improvement persisted
when information provided by the dimensionality reduction
placement was removed, and that the two methods were
complementary.

We consider our study design to have succeeded in
allowing us to test a variety of placement and labeling
methods and we were able to measure their individual and

combined effects. We hope other researchers will use our
open-source implementation of the study3 as a starting point
to pursue their own research questions related to sample
browsers and sound search.
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Appendix: R packages

We use R [44] for our data analysis and figures. We use
forecast [26] to estimate the optimal Box-Cox transform
parameters as well as perform the forward and inverse
transformations. We use general linear mixed-effect models
from lme4 [5] and lmerTest [30]. Estimated marginal means
and confidence intervals of fitted models are calculated with
emmeans [33]. Figures were produced with ggplot2 [57] and
likert [10]. dplyr [58] is used for data wrangling.
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