
https://doi.org/10.1007/s00779-019-01276-3

ORIGINAL ARTICLE

Basic and personalized pattern-based workflow fragments
discovery

JinfengWen1 · Zhangbing Zhou1,2 · Fei Lei3 · Junsheng Zhang4

Received: 15 March 2019 / Accepted: 30 May 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
With an increasing number of scientific workflows accessible on public repositories, the mechanism for discovering and
recommending workflow fragments is important to facilitate the reuse and repurposing of legacy workflows when novel
workflows are to be constructed, where dependencies among workflow activities, which implies functional patterns with
different types and characteristics, are specified in the specification of workflows. Traditional approaches ignore or seldom
consider this aspect, which may have certain influence on the quality of personalized recommendation. To address this
challenge, this paper proposes a novel workflow fragment discovery mechanism for personalized requirements, where
discovery strategies of basic and personalized patterns are presented independently. Specifically, frequent basic subfunctions
are discovered from scientific workflows by applying the frequent subgraph mining algorithm. Similar subfunctions are
clustered considering their semantic relevance of topics, and clusters with high functional frequency are assumed as
basic patterns. Thereafter, the multi-dimensional representation of scientific workflows is constructed to explore workflow
relevance. Workflow clustering is conducted, and frequent personalized functions are discovered from clusters with similar
workflows and assumed as personalized patterns under respective contents. For a personalized requirement given in
terms of a workflow template, target basic patterns and candidate subfunctions are discovered, and they compose the
backbone structure of solution in a novel coverage strategy. Candidate personalized patterns are applied to cover remaining
functionalities of requirement. An optimal solution is obtained through atomic service optimization. Evaluation results show
that this technique is accurate on discovering fragment solutions for personalized requirements in comparison with the
state-of-the-art techniques.

Keywords Fragment discovery · Basic/personalized pattern · Coverage strategy · Personalized requirement

1 Introduction

With the mature and wide development of Web service tech-
nology, resources and processing functions are increasingly
encapsulated as Web services and accessible on the Web.
Effective approaches are needed urgently to recommend the
useful Web services with respect to a customer’s require-
ment [1, 2]. However, certain requirements to be solved
have not been satisfied by single or multiple services. In
this scenario, service composition is widely used to build
complex value-added composite services to meet various

This work was supported by the National Natural Science
Foundation of China (Grant nos. 61772479 and 61662021).

� Zhangbing Zhou
zbzhou@cugb.edu.cn

Extended author information available on the last page of the article.

coarse-gained requirements [3]. Thus, discovering relevant
services as the constituents of composite services is a cru-
cial task. In particular, a series of services compose into the
format of scientific workflows in a certain order as shown
in Fig. 1 [4, 5], which can be seen as a digital instrument
that allows scientists to encode a scientific experiment in the
form of a set of computational or data manipulation steps.
Currently, a large number of scientific workflows are pub-
licly accessible on the repository (e.g., myExperiment [6],
Crowdlabs, and Galaxy); these repositories store thousands
of workflows, which have been uploaded by scientists in
many different domains (ranging from life science to text
analytics or astronomy [7]). When novel scientific work-
flows are to be constructed, developing them from scratch is
typically a knowledge- and effort-intensive and error-prone
mission; reusing and repurposing mature best practices
which have been evidenced by legacy scientific workflows
in the repository is considered a cost-effective and error-
avoiding strategy [8]. In fact, potential dependencies among

/ Published online: 22 August 2019

Personal and Ubiquitous Computing (2021) 25:1091–1111

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-019-01276-3&domain=pdf
mailto: zbzhou@cugb.edu.cn

Fig. 1 A sample scientific
workflow from Taverna 2 of
myExperiment repository with
the title “NCBI BLAST (SOAP)”
and the description “Perform a
BLAST search using ...”

workflow activities are hidden in the specification of work-
flows, which have a great influence on the quality of the
service composition and fragment recommendation.

Relevant researchers present service patterns to reflect
these dependencies among services which are invoked
together to accomplish the novel experiment. In the early
stage of service computing research, a service pattern is
regarded as a high-level abstract “template” such that it
can be instantiated to different forms [9, 10]. Subsequently,
it is realized that the frequently occurring fragments in
historical service solutions are likely to appear in the
follow-up ones; thus, mining patterns from history by
data mining techniques (e.g., frequent itemset/subgraph
mining) becomes a dominating approach [11–14]. There
are two types of service pattern mining methods: top-
down and down-up. The former identifies patterns from

service process models, and the latter does from service
execution logs. These methods both try to automatically
find out repetitive process fragments, identify structurally
and functionally similar fragments, and then combine
them as patterns in a higher level of abstraction [13].
Therefore, understanding service patterns can promote the
creation of service composition. Besides, it is believable
that dependency information in service patterns is a kind of
strong indicative hint for recommendation work.

Inspired by experiment functionalities in reality, it is
observed that scientific workflows are mainly provided with
three obvious characteristics: (i)Generalization: Services or
composite services accomplish a certain goal that is always
related with multiple basic scientific functions, e.g., data
transformation and gene query. We call them basic func-
tional patterns here. (ii) Individuation: Some personalized

1092 Pers Ubiquit Comput (2021) 25:1091–1111

functions are required to achieve the corresponding specific
goal, e.g., KEGG pathway insertion and chemical solubil-
ity prediction. We call them personalized functional patterns
here. (iii) Context-aware: Text context or specification con-
stitutes an essential part of workflows. When the context
changes, service type and composite services may change.
It can be seen that scientific workflows are represented in
the format of the function-oriented, personalized way, and
a service pattern does not exist independently but has to
be bundled with the function context. Thus, the fragment
recommendation study upon patterns should not focus on
frequent patterns only. There are some differences among
discovered patterns, such as the generalized component to
reach the basic data transformation and the individuation
component to obtain a certain special implementation. In
this setting, discovering functional patterns with different
types and characteristics is important to facilitate the rec-
ommendation of personalized requirements. Unfortunately,
in most state-of-the-art approaches, this aspect is some-
how ignored, and researchers seldom consider and focus on
mining problems of different types of patterns for accom-
plishing novel and personalized scientific experiments. To
address this problem, this article proposes a novel workflow
fragment discovery mechanism for personalized require-
ments considering basic patterns and personalized patterns.
The contribution of this article can be summarized as fol-
lows:

• The discovery strategy of basic patterns is presented,
where frequent basic subfunctions are mined from sci-
entific workflows through frequent subgraph mining
method (gSpan). Semantic relevance of these sub-
functions is quantified leveraging topics, which are
generated by applying the biterm topic model (BTM)
on their documents represented by contained service
names. Community discovery clustering algorithm is
adopted to explore basic functionalities, where subfunc-
tions contained in a certain cluster with high functional
frequency are assumed to solve the same or similar
functionality thus can be abstracted as a basic pattern.

• Personalized patterns under different experiment con-
tents are generated by workflow similarity and frequent
subgraph mining. Specifically, the multi-dimensional
representation for scientific workflows is constructed to
express the workflow relevance from multiple aspects:
titles in string, descriptions in pain-text, and contained
services. Workflow similarity is calculated through rep-
resentation vectors, and community clustering algo-
rithm is applied on workflows. Frequent personalized
functions discovered from a certain cluster with similar
workflows are viewed as personalized patterns under
the current experiment content, and they are retained in
the corresponding personalized pattern container.

• For a given personalized requirement in the format of
workflow fragment and its title and description, target
basic patterns are selected considering functional simi-
larity, and candidate basic subfunctions are discovered
and ranked according to metrics: coverage ratio, redun-
dancy ratio, and cost value. A novel coverage strategy is
applied to generate the backbone structure of the solu-
tion. Thereafter, target personalized pattern container is
obtained, where contained personalized patterns are fil-
tered and applied to cover remaining functionalities of
requirement. Consequently, the current solution is opti-
mized by complementing atomic services, to generate
the optimal solution with respect to this requirement.

Extensive experiments are conducted, and evaluation
results demonstrate the accuracy of this technique on dis-
covering fragment solutions for personalized requirements
in comparison with the state-of-the-art techniques.

The rest of this article is organized as follows. Section 2
presents the discovery strategy of basic patterns. Section 3
explores the personalized pattern generation approach.
Section 4 discovers and recommends the optimal fragment
solution. Section 5 presents experimental settings, and
Section 6 compares the evaluation results of this technique
with the state of the art. Section 7 discusses related
techniques, and finally, Section 8 concludes this article.

2 Basic pattern discovery

This section aims to discover basic functional patterns
for accomplishing reuse of generalized functions. Gener-
ally, basic functional patterns represent recurrent valuable
components, which are composed of services frequently
invoked together in most of the experiments. Importantly,
the appeared frequency of this kind of function is higher
than individuation functions. For instance, 60∼70% exper-
iments may all deliver common basic functionalities, such
as information search and data transformation. Therefore,
such frequent fragments (subgraphs) can be identified as
basic functional patterns. However, since the habits from
developers are different, some subfunctions are in fact func-
tionally similar and can be interchangeable with each other
to a certain extent. In this setting, similar subfunctions can
be clustered together to represent the corresponding basic
pattern. To conclude, the main processes of the basic pattern
mining involve (i) frequency subfunction discovery, (ii) sub-
function similarity calculation and clustering, and (iii) basic
pattern discovery.

2.1 Frequency subfunction discovery

A service composition pattern documents a recurring
solution to the same problem that happens over and over

1093Pers Ubiquit Comput (2021) 25:1091–1111

again. Thus, we first mine frequent functional subgraphs
from all scientific experiments in the format of the directed
graphs. gSpan [15] algorithm is applied, which is the state-
of-the-art subgraph mining method for handling the directed
graphs. It is noteworthy that there are several techniques
developed in gSpan, including mapping each graph to a DFS
code (a sequence), building a novel lexicographic ordering
among these codes, and constructing a search tree based on
this lexicographic order. For the detailed illustration, refer to
[15]. Importantly, it combines the creation of new subgraph
candidates with subgraph isomorphism testing.

Basic features of gSpan are summarized, since it is essen-
tial to focus on those for functional discovery. In gSpan, a
graph represented as a linear sequence of its edges, called
a DFS code, with each edge being represented as 5-tuple
(i, j , li , li,j , lj) with i and j being the identifier numbers
of its incident services (assigned by their order of appear-
ance in the sequence) in a certain workflow graph, li and
lj being their service labels and li,j being the label of the
edge. Note that services with same name and description are
considered to belong to the same service label. In our exper-
iments, services are only specified as the invocation relation.
Thus, edge labels default to 0 uniformly. Not every possible
edge sequence forms a valid DFS code but only those rep-
resenting a depth-first traversal of a workflow graph. The
DFS code representation of a workflow graph is not unique,
but a linear order on DFS codes is defined by the insertion
position of the edges into the sequence and by the lexico-
graphic order of the label types. The smallest DFS code
representation of a workflow graph is defined as its mini-
mumDFS code, which is unique and used as canonical form
for the mining process. The search space is then defined as
a DFS code tree consisting of nodes that represent the DFS
codes and edges that indicate that the child node grows from
the parent node by adding one new edge at the end of its
DFS code. Yan and Han [15] also show that each minimum
DFS code is the child of another minimum DFS code so
that the search space for frequent subgraph mining can be
pruned wherever non-minimum DFS codes occur. Anyway,
the problem of mining frequent subgraphs is equivalent to
mining their corresponding minimum DFS codes.

Specifically, gSpan uses a sparse adjacency list represen-
tation to store workflow graphs. The discovery process of
frequent subgraphs is explained as follows:

• Step 1: Sort the labels in the graph dataset D (referred
to scientific workflow repository) by their frequency of
vertices and edges.

• Step 2: Remove infrequent vertices and edges.
• Step 3: Relabel the remaining vertices and edges and

arrange them in descending order.
• Step 4: Leverage the set S1 to save all frequent one-edge

graphs in D, and sort S1 in DFS lexicographic order,
which is a linear order.

• Step 5: Store elements in S1 to result set S.
• Step 6: Iterate unilateral edge e in S1. Execute step 7

and step 8.
• Step 7: Initialize the subgraph s with e. The symbol Ds

means the set of graphs in which s is a subgraph.
• Step 8: Mine frequent subgraphs for s through the

Subgraph Mining(D, S, s) function. This method is
recursively called to grow the graphs and find all their fre-
quent descendants. It stops searching when its code is not
a minimum DFS code, which means the graph and all its
descendants have been generated and discovered before.

To sum up, after initial identification of frequent and
minimum one-edge workflow subgraphs, the search space
is traversed in a depth-first manner, and for each frequent
and minimum DFS code encountered during the traversal,
all its occurrences in the database are accessed for support
computation of its candidate extensions. Whenever an
extension turns out to be infrequent or not minimal, it need
not be accessed for further extension but can be pruned from
the search space.

In this phase, the frequency threshold is not set, which
is theoretically greater than 1 to discover all frequent
subgraphs with their actual supports. Importantly, this
strategy contributes to avoiding the loss of subfunction
generation. It is worth noting that the number of services
is essential in a frequent functional subgraph. A functional
subgraph with very few services (e.g., 2 services) may
provide incomplete functionality for reuse. We propose that
a functional subgraph contains at least 3 services, which
can accomplish basic data functions in our scenario. Note
that the required number of services may vary in different
settings, and it can be set according to specific demands.
Some discovered subfunctions are shown in Table 1, which
contains subgraph ID, vertex information, edge information,
and subgraph support. For instance, there are three vertices
and two edges in subgraph 1, where (v 0 3) represents that
the service label of a vertex, whose identifier number is 0,
is service 3 while (e 0 1) denotes that this edge points from
0 to 1 in terms of identifier numbers in this graph. In fact,
edge information implies the connection between services.
We also obtain the corresponding support 10 for subgraph 1.

Particularly, a scientific workflow represents an experi-
ment as shown in Fig. 1. According to our previous work [4,
5], a scientific workflow can be defined through Definition 1.

Definition 1 (Scientific workflow) A scientific workflow
swf is a tuple (t l, des, S, SWFsub, E), where:

• t l is the title of swf .
• des is the description information of swf .
• S is a set of services contained in swf .
• SWFsub is a set of subworkflows contained in swf .
• E is a set of control flows on S.

1094 Pers Ubiquit Comput (2021) 25:1091–1111

Table 1 The structure illustration of mined subfunctions

Subgraph ID 1 2 ... 5

Vertex information v 0 3
v 1 1
v 2 4

v 0 3
v 1 7
v 2 4
v 3 8

... v 0 1406
v 1 1408
v 2 1407
v 3 1409
v 4 1410

Edge information e 0 1
e 1 2

e 0 1
e 0 3
e 1 2

... e 0 1
e 1 2
e 2 3
e 3 4

Subgraph support 10 5 ... 6

In fact, a subworkflow, such as “Retrive abstracts” in
Fig. 1, can be regarded as a service (function) with relatively
coarse granularity, which corresponds to the specific service
implementation. Note that the internal implementation in a
certain subworkflow is treated as a small directed graph,
and if it satisfies the defined condition (i.e, at least 3
services), it is also assumed to be a subfunction. In this
situation, frequent subfunctions with different granularities
are discovered.

2.2 Subfunction similarity calculation and clustering

Although the naming and structure of subfunctions may be
slightly different due to habits of developers, they are actu-
ally similar in functionalities. Thus, functionally similar
subfunctions are considered to solve the same or similar
problem. In this setting, the semantic relevance of these
frequent subfunctions is quantified through the similarity
evaluation mechanism. Services contained in every subfunc-
tion own their name and text description. Importantly, the
name, which is usually represented in terms of the con-
junction of very few carefully selected keywords or their
abbreviations, should contain more accurate information
than the words in relatively long text description. In this set-
ting, the document description of every subfunction can be
constructed leveraging names of contained services. Based
on subfunction documents, semantic relevance of subfunc-
tions is explored through the format of topics, which are
generated through applying the biterm topic model (BTM)
[16] on the document corpus of subfunctions. The specific
procedure is illustrated as follows:

• Phase 1:Document digitization.Documents of subfunc-
tions are digitized and transformed to required format
of BTM.

• Phase 2: Biterm extraction. Every subfunction docu-
ment is treated as a separate text fragment. Any pair of
distinct words is extracted as a biterm, and these biterms
are treated as the training dataset of topic learning.

• Phase 3: Topic learning. The corpus can be regarded as
a mixture of topics, where each biterm is drawn from a
specific topic independently.

• Phase 4: Document topic inferring. Since topic propor-
tions for subfunction documents cannot be discovered
directly by applying the topic learning, the expectation
of topic proportions of biterms is utilized to infer topics
for each subfunction.

In particular, the number of topics is a sensitive factor
for the topic extraction. Authors select perplexity as the
criterion for evaluation the model [17]. Generally, a smaller
value of perplexity determines the optimal number of topics,
and which supposes to generate a better predictive effect
and generalization ability. Tested topic number and the
corresponding perplexity are shown in Table 2. In our
corpus of subfunction documents, when the number of
topics is set as 360, it produces the smallest perplexity
14.776. Thus, the optimal number is determined as 360 in
our current experiments.

After obtaining the topic distribution of subfunction
documents st , the distance can be calculated between a
pair of subfunctions sti and stj through adopting Jensen-
Shannon (JS) divergence in formula (1):

DJS(sti , stj) = 0.5 × DKL(sti , (sti + stj)/2)

+ 0.5 × DKL(stj , (sti + stj)/2) (1)

where DKL denotes the Kullback-Leibler divergence. DJS
returns a value between 0 and 1, where 1 means totally
functionally different and 0 means the equivalent. Lever-
aging the distances between subfunctions, a network can
be constructed where vertices correspond to subfunctions,
and the weight upon edges specifies the distance between
a certain pair of subfunctions. Subfunctions with slight
functional relevance are far away from each other in the net-
work, which is useless for similarity exploration. Thus, the
edge between subfunctions whose distance exceeds a certain
distance threshold should be pruned. The edges between
functionally similar subfunctions, whose distances are rel-
atively small in value (i.e., they are closely related), are
retained in the network. Community structure is formed;
thus, a modularity-based clustering algorithm Louvain [18]
is applied to discover clusters with similar functionalities.
Particularly, the density of links within communities as

Table 2 Tested topic number and the corresponding perplexity

Topic number 300 310 320 330 340 350 360 370 380

Corresponding perplexity 15.098 15.071 15.023 14.987 14.956 14.950 14.776 14.874 14.946

The italicized data are used as examples in the article to explain

1095Pers Ubiquit Comput (2021) 25:1091–1111

compared with links between communities can be measured
leveraging modularity optimization. The specific process of
Louvain is explained:

1. Scan all subfunctions in the network, traverse the neigh-
bor subfunctions for each subfunction, and measure the
modularity gain brought by adding the subfunction to
the community where the neighbor is located. Select the
neighbor subfunction corresponding to the maximum
revenue and join the community in which it is located.
This process repeatedly guides each subfunction until
the community does not change anymore.

2. Fold the communities formed in the above step into
points, and calculate the border weights between newly
generated “community points” and the border weights
between all points in the community. Continue the
previous step for the next round.

The determination of the distance threshold is related to
the modularity value obtained by Louvain. Test multiple
distance thresholds to generate different subfunction-based
networks, then apply Louvain to them. Consequently, the
threshold and network with the optimal modularity are
determined together. In our case, the distance threshold is
determined as 0.25, and 22 clusters are generated in the
network where the optimal modularity is 0.388.

2.3 Basic pattern discovery

The discovery of functionally similar subfunctions allows
us to present functional patterns with a higher level of
abstraction and reflect basic functionalities of services and
their control flows. The valuable clusters are presented
to solve the same or similar functional problem, called
basic patterns in our scenario. The functional frequency
representing the cluster significant is calculated by the sum
of subfunction supports contained in the corresponding
cluster. Therefore, clusters are ranked according to the
functional frequencies, and top Kbp (e.g., 40% = 0.4)
clusters are selected as basic patterns (BP). The most
frequent subfunction is selected as the representative
subfunction for each basic pattern, which is considered to
prepare the basic pattern recommendation in Section 4. The
definition of a basic pattern (bp) is illustrated as follows:

Definition 2 (Basic pattern) A basic pattern bp is a tuple
(sfrpt, SF), where:

• sfrpt is the representative subfunction of bp .
• SF is the set of similar subfunctions of bp .

Note that each subfunction in SF is a tuple (S, E), where
S is the set of services and E represents a set of their control
flows on S.

3 Personalized pattern discovery

Personalized subfunctions are related with the designed
content; similar scientific experiments usually reuse certain
same and specific subfunctions. In this setting, we aim to
mine the personalized patterns from a group of workflow
experiments with same or similar contents, where rele-
vance of workflows should be explored considering multiple
aspect information. Thus, the personalized pattern discovery
mainly involves two parts: (i) multi-dimensional represen-
tation generation of workflows and (ii) personalized pattern
discovery.

3.1 Multi-dimensional representation generation
of workflows

As shown in Fig. 1, the title, description, and contained
services are basic information of scientific workflows. To
better utilize them, workflows are represented in a novel
way from different significant aspects.

Aspect 1: Workflow-topic distribution. The title of work-
flows is composed of a few keywords, which actually
express its designed meaning. Due to the briefness of
title, it may hardly convey complete information. Thus,
considering the topic distribution on biterms in the cor-
pus based on short documents, the above problem can
be addressed at the document-level through BTM. In this
setting, topics are learned to generate workflow-topic dis-
tribution (wt), which means a group of correlated words
are used to represent the title information in another way.
Note that the current topic number is also determined
(e.g., 370) like the same way in Section 2.2. Conse-
quently, the workflow-topic distribution is generated, and
an example is shown in Table 3, where the row of this dis-
tribution represents the identifier number of workflows,
and the column represents the identifier number of top-
ics. tn in Table 3 denotes the number of topics while
N denotes the number of workflows in our experiment.
Specially, wtik expresses the probability value of the kth
topic in the ith workflow, i.e.,wtik = 1.3e−05 in Table 3.
In this setting, the similarity (denoted SimJS(wti, wtj))
between two workflows swfi and swfj can be calculated
in terms of topics through formula (2), where bases on
JS divergence in formula (1). When SimJS trends to 1, it
illustrates the more similar between swfi and swfj .

SimJS(wti, wtj) = 1 − DJS (2)

Aspect 2: Workflow-feature distribution. The redundancy
of description makes the information expression unclear.
Some words are even useless to understand its intention.
Therefore, how to utilize the more valuable information
to enhance the expression of workflow descriptions is

1096 Pers Ubiquit Comput (2021) 25:1091–1111

Table 3 Workflow-topic distribution (wt)

swf

Topic t1 ... tk ... ttn

swf1 5.9e − 07 ... 2.5e − 07 ... 4.3e − 07

...

swfi 1.0e − 05 ... 1.3e − 05 ... 7.6e − 06

...

swfN 4.9e − 06 ... 2.1e − 06 ... 6.6e − 07

The italicized data are used as examples in the article to explain

becoming an important issue. In this setting, we extract
keywords efficiently from the descriptions. When the
term is assigned its weight, the more important this word
in the description, the greater the weight of words. The
TF-IDF [19] method is adopted to select feature words.
This method bases on the bag-of-word scheme in which
a document can be represented by a collection of words
used in the document. TF-IDF also assumes that if a
word is important for a document, it should repeatedly
appear in that document whereas it should rarely appear
in other documents. The TF is associated with the former
assumption whereas the IDF is associated with the latter
assumption. The parameter tfij is defined as the number
of times word i appears in description document j ; the
larger the value, the more important the word is. The
parameter dfi is the number of description documents in
which word i appears at least once; the larger the value, the
more common the word is. If word i can be considered
important for description document j , it should have a
large tfij and a small dfi . For example, words such
as “workflows” and “show” would frequently appear
in each description document. However, they cannot be
considered important words because they are prevalent in
all documents. Hence, TF-IDF is defined as follows:

T F − IDFij = tfij × idfi

= tfij × log(N/(dfi + 1)) (3)

where the IDF takes the logarithm of the ratio of the
number of total description documents in the corpus to
the description document frequency of word i with IDF
smoothing to prevent it from being divided by zero, i.e.,
idfi = log(N/(dfi + 1)).

Each word located in description documents calculates
the corresponding value of TF-IDF according to formula
(3). Given a certain description document, their scores of
words are ranked, and words with top 20% high TF-IDF
scores are selected as representative features. Note that
the top 20% words selected are appropriate to express
the actual semantic of each description document through
analyzing information accuracy in our experiments.
Features selected from description documents are loaded
into a feature set. The word frequency of each feature is

calculated to generate the corresponding word frequency
vector for each description document. Consequently, a
workflow-feature distribution (wf) is constructed by
respective vectors as shown Table 4, where the row
represents the identifier number of workflows, and the
column represents the identifier number of features. f n

denotes the number of features (e.g., 403) while N

denotes the number of workflows in our experiments.
wfik expresses the frequency of the kth feature in the
ith workflow, i.e., wfik = 2 in Table 4. In particular,
the similarity (denoted SimED(wfi, wfj)) between two
workflows swfi and swfj can be calculated leveraging
Euclidean distance and the corresponding transformation
in terms of features in formula (4). SimED returns a value
between 0 and 1, where 1 means totally equivalent and 0
means different.

SimED(wfi, wfj) = 1

1 +
√∑f n

k=1(wfik − wfjk)2
(4)

Aspect 3: Workflow-service distribution. Obviously, ser-
vices play an important role in scientific experiments. We
intend to establish workflow-service distribution (ws)
for evaluating the similarity of workflows and show in
Table 5, where the row represents the identifier number of
workflows, and the column represents the identifier num-
ber of services. sn denotes the number of services (e.g.,
609) while N denotes the number of workflows in our
experiments. wsik expresses whether the ith workflow
contains the kth service, i.e., wsik = 1 in Table 5. wsik is
set to 1 when the kth service exists in the ith workflow,
otherwise 0. The similarity (denoted SimED(wsi, wsj))
between two workflows swfi and swfj is calculated in
terms of contained services through formula (4).

Based on the similarity evaluation of distributions
from various aspects, the eventual similarity of a pair of
workflows swfi and swfj is calculated through formula (5).
When Sim(swfi, swfj) trends to 1, it represents the more
similar between two workflows.

Sim(swfi, swfj) = α × SimJS(wti, wtj)

+β × SimED(wfi, wfj) + γ × SimED(wsi, wsj) (5)

Table 4 Workflow-feature distribution (wf)

swf

Feature f1 ... fk ... ff n

swf1 0 ... 4 ... 0

...

swfi 1 ... 2 ... 0

...

swfN 0 ... 0 ... 2

The italicized data are used as examples in the article to explain

1097Pers Ubiquit Comput (2021) 25:1091–1111

Table 5 Workflow-service distribution (ws)

swf

Service s1 ... sk ... ssn

swf1 1 ... 0 ... 1

...

swfi 0 ... 1 ... 0

...

swfN 1 ... 1 ... 0

The italicized data are used as examples in the article to explain

where the sum of α, β, and γ equals to 1, and these factors
reflect the importance of different aspects. In our scenario,
topics and services have relatively higher significance than
features. Adopting multiple similarity testing, when α and
γ are both set as 0.4 while β is set as 0.2, actually, the
relevance of workflows is relatively accurate. Thus, the
optimal parameters are determined in our experiments, and
they can be adjusted according to other data or experiment
applications. In fact, similar workflows are closely related
to each other in terms of distance and show the community
structure. However, for irrelevant workflows, their distances
are far and similarities are small, which are useless for
discovering similar workflows. Thus, define a similarity
threshold and prune such connected links. Similarly, we test
multiple variable similarity thresholds to detect which one
can obtain a workflow-based network with the maximum
modularity after applying Louvain. Consequently, a network
is generated, and a series of clusters are discovered. For
instance, 0.35 is the optimal pruned threshold, and 23
workflow clusters are obtained when the optimal modularity
of network is 0.809, which synthesizes the overall structural
relevance to balance the entire situation of the clustering
process.

3.2 Personalized pattern discovery

In this section, we intend to discover personalized patterns
separately from each cluster with the specific content and
similar scientific experiments. The gSpan algorithm is the
best way to handle the directed graphs. For each cluster,
the corresponding frequency threshold is determined by the
factor thrdfrq (e.g., 30% = 0.3), i.e., thrdfrq × |SWFcluster|,
where |SWFcluster| is the number of workflows contained
in the given cluster. In particular, when the number of
workflows in a certain cluster is relatively small, frequency
threshold may be less than 2, which is meaningless to
discover frequent personalized patterns. Thus, in order to
guarantee that the mined personalized subgraphs will appear
at least twice, the minimum value of frequency threshold is
set to 2.

In addition, we need to select the corresponding repre-
sentative workflows from these clusters, which contribute to

find similar scientific workflows for a certain requirement in
the recommendation phase. According to the workflow sim-
ilarities, a workflow that makes the important connection
can be found compared with the average similarity of one
workflow to other workflows in a certain cluster. The work-
flow with the largest average similarity is assumed as the
representative workflow corresponding to this cluster. After
the above process, personalized patterns (PP) are generated
under different contents and saved in respective personal-
ized pattern containers (PPC). Particularly, the definition
of a personalized pattern container (ppc) is illustrated under
a certain content as follows:

Definition 3 (Personalized pattern container) A
personalized pattern container ppc is a tuple (swfrpt, PP),
where:

• swfrpt is the representative workflow of ppc.
• PP is a set of personalized patterns of ppc.

Information of swfrpt is represented as multiple dimen-
sional vectors. PP shows a group of discovered personal-
ized patterns under the similar experiments and contents.

4 Pattern-based workflow fragment
discovery

This section presents our pattern-based fragment discovery
approach for personalized requirements considering basic
patterns and personalized patterns. In fact, pattern can be
viewed as a big granularity service entity and represents
a service process fragment that is frequently used and
proven by applications. We use different types of service
patterns as the fundamental units to service composition to
obtain service solution more quickly and efficiently with
respect to certain personalized requirements. For a given
requirement in the format of workflow fragment and its
title and description, select a set of basic subfunctions,
personalized patterns, and atomic services from candidate
service sets to generate an optimal service solution. A
sample requirement Reqsampl is shown in Fig. 2, where 9
services cooperate to accomplish this scientific experiment.

4.1 Preliminary knowledge

A requirement fragment can be abstracted to a directed
graph. Similarly, a service pattern and an atomic service
can be abstracted to a directed subgraph and a node,
respectively. We call that a service pattern can cover
a requirement fragment, if and only if there is overlap
between the subgraph representing the service pattern
and the graph representing the requirement fragment,
which means the service pattern can implement the

1098 Pers Ubiquit Comput (2021) 25:1091–1111

Fig. 2 A sample requirement
with the title “Pathways and
gene annotations for QTL
region” and the description “This
workflow searches for genes ...
KEGG gene identifiers...”

functionalities of the requirement fragment partly or
completely, and the mapping relationship between service
activities in the overlapped part of the service pattern and
the requirement fragment is identical. Thus, pattern-based
service composition approach is attributed to a kind of
covering problem. We use three performance indicators to
evaluate the coverage degree and coverage effectiveness,
i.e., coverage ratio, redundancy ratio, and cost value.

The coverage ratio of a certain pattern cvr(pi, Req) is
the ratio between the number of services |CSpi

| that service
pattern pi can cover the service process of Req and the total
number of services |Spi

| of service pattern pi . Thus, it is
calculated through formula (6):

cvr(pi, Req) = |CSpi
|/|Spi

| (6)

where the result returns a value between 0 and 1. Coverage
ratio implies to what degree that a service pattern meets the
requirement. For instance, Fig. 3 has two sample service
patterns p1 and p2. For p1, the structure of {s6 -> s3} can
satisfy the part of the given requirement in Fig. 2. Thus,
cvr(p1, Reqsampl) equals to 2/3 = 2

3 in this situation. For p2,
the structure of this service pattern is covered to Reqsampl as
a whole, so cvr(p2, Reqsampl) equals to 4/4 = 1.

The redundancy ratio rdd(pi, Req) is the ratio between
the number of atomic services in service pattern pi which
are useless to cover the service process and the total number
|Spi

| of atomic services in pi . rdd is calculated for a certain
pattern as follows:

rdd(pi, Req) = |Spi
− CSpi

|/|Spi
| (7)

Fig. 3 An example of service
patterns covering the sample
requirement in Fig. 2

1099Pers Ubiquit Comput (2021) 25:1091–1111

where result returns a value between 0 and 1. In some case,
not all atomic services in a service pattern are able to cover
requirement fragment; redundancy ratio of a service pattern
is used to measure the redundancy degree. Service pattern
works as a whole whose redundant atomic services cannot
be cut down; otherwise, it will affect the whole service
pattern. For instance, the redundancy of p1 can be calculated
as rdd(p1, Reqsampl) = (3 − 2)/3 = 1

3 in Fig. 3. Since
the whole structure of p2 is used, its redundancy ratio is
rdd(p2, Reqsampl) = (4 − 4)/4 = 0.

In service composition, we’d better choose the service
patterns which have lower redundancy ratio and higher
coverage ratio. Thus, we define the cost value rdd cvr of
each pattern leveraging rdd and cvr through formula (8):

rdd cvr(pi, Req) = rdd(pi, Req)/cvr(pi, Req) (8)

where rdd cvr is relatively small in value; the correspond-
ing service pattern is assumed to be optimal. For instance,
the cost value of p1 is calculated as rdd cvr(p1, Reqsampl)

= 1
3 /

2
3 =

1
2 in Fig. 3, while rdd cvr(p2, Reqsampl) = 0/1 = 0.

Note that cvr(pi, Req) is guaranteed not to be 0 in our exper-
iments; we filter out patterns without services contained in
the requirement, which can accelerate the pattern selection.

The above metrics are the measure of a certain pattern.
In a similar way, we also establish evaluation metrics for
the solution being constructed Solnow, whose coverage ratio
is obtained compared with a certain requirement Req. Thus,
cvr(Solnow, Req) reflects the ratio between the number of
services that the current solution Solnow can cover the Req

and the total number of services contained in Req.
Assume that only two patterns p1 and p2 in Fig. 3
are selected to generate the current solution for Fig. 3,
cvr(Solnow, Reqsampl) = 6/9 = 2

3 . The redundancy ratio
rdd(Solnow, Req) shows the ratio between the num-
ber of atomic services in Solnow which are useless to
cover the Req and the total number of atomic ser-
vice in Solnow. For instance, rdd(Solnow, Reqsampl) =
1/7 = 1

7 in Fig. 3. According to cvr(Solnow, Req) and
rdd(Solnow, Req), the cost value of the current solution
being constructed is calculated by rdd cvr(Solnow, Req)

= rdd(Solnow, Req)/cvr(Solnow, Req). In this setting, the
current solution is calculated as rdd cvr(Solnow, Reqsampl)

= 1
7 /

2
3 = 3

14 .

4.2 Basic pattern recommendation

This section aims to select appropriate subfunctions
contained in different basic patterns, to construct the
backbone structure of the corresponding solution for the
given requirement. Firstly, candidate basic patterns and
corresponding subfunctions are determined according to the
fragment similarity evaluation. Then, our novel coverage
strategy is designed to generate the backbone structure of

the solution with respect to the given requirement. The
procedure is explained as follows:

Phase 1: The basic pattern discovery. The requirement
may involve several generalized functionalities; basic
patterns are acquired to discover and reuse. In this setting,
leveraging the representative subfunctions sfrpt of basic
patterns, functional similarities to a certain partial
function in the requirement can be calculated in order to
select the candidate representative subfunctions set. The
specific strategy is designed, the functional similarity
between any sfrpt and Req is obtained leveraging the
respective contained services. Each service in each sfrpt

calculates service similarities with services in Req, in
order to obtain the most similar service in Req and
form the service mapping in terms of semantic relevance
of services. Note that service similarity is calculated
by comparing their name similarity, which adopts the
minimum cost and maximum flow algorithm where
WordNet is used calculate the semantic similarity for
words in English. The average functional similarity of
every sfrpt is got through service mappings; thus, we can
infer the correlation of sfrpt and the (partial) requirement.
Set the threshold to select sfrpt; in our experiments, the
average of these functional similarities about all sfrpt
is calculated and determined as the selected threshold.
Traverse each sfrpt; if whose similarity exceeds the
threshold, this sfrpt is retained and the corresponding
basic pattern is chosen as target candidates.

Phase 2: The basic subfunction discovery and ranking.
According to candidate basic patterns, contained sub-
functions are added to a temporal basic subfunction set.
Note that we need to remove subfunctions that do not
contain any covered services in Req from this tempo-
ral set, since their coverage degree of such subfunctions
is zero which does not make any sense to our combina-
tion plan. Consequently, the satisfied basic subfunctions
are saved in BFS. The coverage ratio, redundancy ratio,
and cost value of subfunctions in BFS are calculated,
and they are ranked according to their cost value. First
and foremost, we present the metric calculation process
in Algorithm 1, where Req is a given requirement in
format of the directed graph. The main idea is these
relevant metrics are calculated leveraging the mapping
relation between a certain subfunction p and Req. In
detail, obtain the edge set P .E from p and handle each
edge pedge. The information of pedge is represented
through identifier numbers in p; thus, it is required to
transform into the edge in terms of service labels (lines
3–6). The source and sink nodes with the identifier num-
ber pidfsrc and pidfsnk are separated from pedge (lines
3 and 4). By using the search function getSvcLbl, ser-
vice labels of pidfsrc and pidfsnk are found in order to

1100 Pers Ubiquit Comput (2021) 25:1091–1111

match partial fragments of Req (lines 5 and 6). Accord-
ing to the edge set Req.E of the given requirement, judge
whether the service relation edge edge(psvcsrc, psvcsnk)

in p has mapping structures compared with Req (line
7). If it exist, establish its corresponding mapping set
NdSet , where redge is the matched edge in edge set
Req.E of Req, and matched source and sink nodes with
the identifier number in Req are added into respec-
tive sets (NdSetpidfsrc and NdSetpidfsnk) (lines 8 and
9). Note that a certain node in p may exist many map-
ping nodes of Req, since Req may be composed of
multiple same service labels. In this setting, the gener-
ated multiple mapping structures are equally considered
to the next composition phase. After accomplishing the
discovery of mapping pairs of p, the coverage ratio,
redundancy ratio, and cost value are calculated (lines 12–
14). |p.map.keySet | represents the node number in the
mapping set of p. In addition, |p.N | denotes the node
number in p. When p does not produce any mapping
relation, which its coverage ratio will be 0 even if p exists
relevant services, such subfunctions will be removed by
us. Consequently, satisfied subfunctions with metrics are
retained in a new set BFSnew (lines 15–17).

Phase 3: The backbone structure generation of solution.
According to BFSnew obtained from Algorithm 1,
the pattern-based coverage strategy is presented to
generate the current solution with the minimum cost
value leveraging Algorithm 2. Particularly, given the
candidate basic subfunction set BFSnew with the
respective coverage ratio, redundancy ratio, and cost
value, subfunctions in BFSnew are first ranked according
to their rdd cvr in ascending order (line 1). Next,
we need initiate solutions to facilitate the coverage
expansion with respect to Req. Since we have illustrated
that multiple mapping relations may generate for a
certain subfunction with respect to Req, thus, multiple
solutions are considered in this phase. In this situation,
the set of solutions SOL is initiated by using the ranked
p1 with the minimum cost value (lines 2–12). The set
of multiple mapping graphs MG of p1 is got through
the function getMpGrph, where the mapping pairs are
saved (line 2). Iterate each mapping graphmg inMG and
produce initiated solutions sol, where seven important
properties are calculated to update the representation
information of sol, e.g., SgId , CN , RN , SG, cvr ,
rdd, and rdd cvr (lines 4–10). For each solution, the
subfunction label of p1 needs to record and add into
the set sol.SgId , which contributes to understanding
the situation of covered subfunctions in sol (line 4).
According to the current mapping graph, the set of
mapping requirement nodes mg.Nreq is obtained and
saved in the covered node set sol.CN of sol (line 5).
Certainly, the node set that doesn’t produce mapping
nodes of p1 (i.e., p1.N − mg.Np1) is assigned to the
redundancy node set sol.RN of sol. Note that the symbol
mg.Np1 represents the mapping node set generated in p1

(line 6). In addition, the edge structure of p1 becomes a
part of solution sol.SG (line 7). As regards the calculation
of coverage ratio, redundancy ratio and cost value for
a certain solution, we have explained their calculation
method in Section 4.1. We will not introduce them (lines
8–10). Consequently, initiated solutions are generated
and added to the set of solutions SOL (line 11).

The extension strategy of the backbone structure is
presented based on SOL, we follow the principle of
“priority to minimum cost value” to use candidate basic
subfunctions to quickly cover the requirement process
(lines 13–37). Each solution of SOL finally generates
an optimal pattern-based composition fragment by means
of our method. Particularly, the tested subfunctions are
taken starting at the second of ranked BFSnew because
the subfunction with the minimum cost value (i.e., p1)
has carried the initialization operation (line 14). In order
to ensure that the structure is not lost before adding a
new subfunction pi , solnow is used to retain the original

1101Pers Ubiquit Comput (2021) 25:1091–1111

structure sol. The multiple mapping graphs MGtmp are
obtained leveraging the function getMpGrph in the same
way (line 15). Iterate each the mapping relation mg of
MGtmp to start the coverage operation (lines 16–35).
The mapping requirement nodes of pi are respectively
assigned into different sets solnow.CN and solnow.RN

through the function addNd (line 17). Note that if a
mapping requirement node does not exist in the solution
sol, it will belong to the covered node set solnow.CN to
become a node that will be overwritten in Req; otherwise,
it is added into the redundancy node set solnow.RN as a
redundant node since its involved structure has been covered
in Req. In addition, some nodes nd that do not generate
mapping pairs for pi (i.e., (pi .N − mg.Npi

)) belong to the
redundancy node set solnow.RN (line 18). After updating
the two key sets, relevant three metrics will be calculated
for solnow (lines 19–21). The principle is that if the cost
value of solnow is smaller than the original solution sol,
it is illustrated that this pi can further cover the part of
Req appropriately on the basis of sol (line 23). The current
subfunction label pi .sgid and edge structure pi .E of pi are
appended to solnow.SgId and solnow.SG individually (lines
24 and 25). In this setting, solnow becomes the structural
basis sol for the next composition (line 26). However, in
the solutions generated during the initialization phase, p1

may be completely covered, such as the sample service
pattern p2 in Fig. 3. In that case, sol.RN is 0 so that
sol.rdd and sol.rdd cvr are also 0. Thus, cost values
between the current solution solnow and sol cannot be
compared, the other indicators, e.g., the coverage ratio and
the number of new coverage nodes, will be leveraged in this
article. When the coverage ratio becomes larger as certain
mapping requirement nodes are added into solnow.CN , such
subfunctions are considered to compose the origin solution
(line 29). But, if only one coverage node is added, the
redundancy obtained is relatively large for solnow. In this
situation, we calculate the number of new coverage nodes
(|solnow.CN |−|sol.CN |). When it is not less than 2, solnow

satisfies the coverage condition to extend on sol (lines 28–
34). The corresponding graph information saves into solnow,
and solnow becomes the current solution sol for the next
composition (lines 30–32).

However, if pi cannot meet these coverage conditions,
this algorithm will go into the next service subfunction in
current subfunction list BFSnew in turn until finding an
available one. Generated solutions in SOL are ranked in
ascending order according to their rdd cvr . The solution
with minimum cost value is selected as the optimal solution
solmin at this stage, which is assumed as the backbone
structure of solution with the given requirement.

4.3 Personalized pattern recommendation

After generating the backbone structure, there may still
be parts of the personalized functions to implement to
the remaining structure of requirement, especially, in the
context-oriented experimental background.

1102 Pers Ubiquit Comput (2021) 25:1091–1111

Phase 1: Personalized pattern container selection. Since
the title, description, and services are contained in Req,
we can learn and obtain the corresponding multi-vector
representation (i.e., workflow-topic vector, workflow-
feature vector, and workflow-service vector). Similar
experiments are found according to the multiple infor-
mation of Req, in order to reuse their personalized
functional patterns. Particularly, leveraging representa-
tive workflow of each personality pattern container,
their similarities can be determined with respect to Req

through vector similarity calculation in formula (5). The
personalized pattern container with the most similarity is
selected as the target personalized pattern container.

Phase 2: Personalized pattern discovery and coverage.
According to the target personalized pattern container,
included personalized patterns are checked whether
whose services exist in the uncovered parts of Req.
Remove unsatisfied personalized patterns, and cal-
culate metrics (i.e., cover ratio, redundancy ration,
and cost value) of each saved pattern through Algorithm
1. Personalized patterns are ranked through their cost
values in ascending order and retained to the PPS. Simi-
larly, the pattern coverage strategy is carried out based on
PPS through Algorithm 2, where lines 13–37 are executed
analogously to assign personalized patterns in PPS to
the backbone structure solmin in the previous stage. Con-
sequently, the current structure is further covered by
satisfied personalized patterns, to generate a more suit-
able solution with the smaller cost value to accomplish
the composition work based on personalized patterns.

4.4 Atomic service recommendation

Appropriate patterns compose together to achieve the
solution with the minimum cost value with respect to Req.
Although service patterns can cover more service activities
in Req with a higher coverage ratio and lower redundancy
ratio, the remaining uncovered part of Req lacks of
atomic functions to help optimize the experimental design.
Candidate services are selected from service repository
according to the uncovered services in Req. When a certain
candidate service is added, make sure that it owns the
invocation relationship with related connected services on
sol. In this situation, this service is allowed to insert to the
current solution sol; otherwise, it is discarded. Final metrics
of sol are calculated and updated. Obviously, this step
makes the cost value of the solution smaller. The optimal
solution is generated with respect to a certain requirement.

Supposing that the number of candidate subgraphs is
p (basic subfunctions and personalized patterns) and the

average size of these service subgraphs is s, there are n

services in a certain requirement and g mapping graphs
are produced for each service subgraph on average with
respect to the requirement. In this situation, the time
complexity of Algorithm 2 reflects in line 1, lines 3–
12, and lines 13–37. In detail, line 1 iterates candidate
patterns to calculate the coverage ratio, redundancy ratio,
and cost value through Algorithm 1 and ranks patterns
by the ranking algorithm. For the calculation part of
Algorithm 1, O(psn) is obtained while O(p logp) is time
complexity for ranking patterns. Thus, the time complexity
of line 1 is max(O(psn),O(p logp)) = O(psn). For
the initiation phase of solutions in lines 3–12, depending
on the number of mapping graphs for p1, O(g) is its
time complexity. In addition, for lines 13–37, the pattern
coverage strategy is presented and the time complexity is
O(gpsg). Obviously, the time complexity of our entire
Algorithm 2 is max(O(psn),O(g2ps)). Generally, the
number of produced mapping graphs g is relatively small
while the service number of requirements n is comparatively
large in our experimental setting. Thus, O(psn) is the
final time complexity of Algorithm 2. Note that the
pattern-based approach reduces the complexity of service
composition compared with atomic services composition
O(nt) (assumed t is the number of all services in the
repository; generally, t is relatively large). Further, different
types of pattern mining will speed up the scope of discovery
and facilitate the reuse of workflow fragments.

5 Experimental setting

The prototype has been implemented in Python and
Java projects. Scientific workflows in the category of
Taverna 2 of the myExperiment repository are cleansed
for the experimental verification and evaluation, where
1573 scientific workflows are contained in this category.
Experiments are conducted on a desktop with an Intel(R)
Core(TM) i5-6500 processor, a 12.00GB memory, and a
64-bit Window 10 system and a virtual Linux system.

5.1 Data collection and cleansing

Before conducting our experiments, these workflows are
cleansed as follows. Firstly, we remove scientific work-
flows where the title or description lacks corresponding
declarative information. In this case, the multi-dimensional
representation of workflows cannot be generated to promote
the personalized pattern discovery. Secondly, workflows
with incomplete structure are removed, since the mining

1103Pers Ubiquit Comput (2021) 25:1091–1111

works of basic and personalized patterns is closely related
to the graph structure. Thirdly, services with the slim type
should be filtered out. These services are mostly the glue
codes not to represent invocation relations between func-
tionalities. Consequently, semantic similarity between ser-
vices is required to evaluate similarity for them. Importantly,
improper noisewords are not recognized byWordNet, which
are also meaningless word entities in similarity calculation.
Thus, we need to supplement and transform them to recog-
nizable formalization. The specific process is explained as
follows:

• These are 334 abbreviations used in the bioinfomatics
domain, but they cannot be recognized byWordNet. An
example is “snp,” which means “single nucleotide poly-
morphism” after searching on the Web. A conversion
table is manually established, which aims to transform
these abbreviations into their full description. If a full
description cannot be found through browsing the web
like “martijn,” it is assumed to be dissimilar to any other
words. These abbreviations should be removed.

• Regarding the abbreviation which is just a part of a
word, we can convert it to the full description. An
example is “bio” which corresponds to “biology.”

• Words, whose meaning is not clear and information is
incomplete, are complemented according to context and
Web network. An example is “cpath,” which is rewritten
as “Canadian Professional Association for Transgender
Health” in the life science domain.

• When two or several words are joint without delim-
iters, they are separated manually. An example is “docu-
mentfind,” which is transferred into two words “docu-
ment” and “find.”

• When some words are incorrect in spelling, they are
corrected according to the word dictionary. An example
is “searcg,” which is corrected as “search.”

In addition, the multi-dimensional representation of
workflows is leveraged to calculate similarities between
workflows by formula (5) in the personalized pattern

discovery. However, topic model and feature extraction
techniques are sensitive for word entities. Thus, we also
need to handle the title and description of workflows to
improve the efficiency of the BTM and TF-IDF algorithm:

• Words like accessed, accesses, and accessing have a
common word root access. Affixes are removed to keep
the root only. The lemmatization technology is applied
by establishing common reduction rules.

• Stopwords such as can, of, and and are removed in order
to improve the accuracy of topic and feature selection.
A stopword table is established according to the dataset,
which contributes to the dataset cleansing.

After data cleansing, workflows with relatively accurate
title, description, service structure, and service information
are retained to conduct our technique. In the next section,
we intend to present experimental setup to conduct our
experiments.

5.2 Experimental setup

In order to explore the experimental effect of sample
requirements with various scales, we select scientific
workflows in the repository as experimental sample
requirements. Thus, these scientific workflows are counted
in terms of the number of contained services, where the
corresponding proportions are generated and shown in
Fig. 4. It is seen that the service number of most workflows
focuses on 5∼9 services at a scale. The proportion of
workflows decreases as the number of services increases
from the overall trend. In this situation, requirement scales
to be selected are divided into 7 intervals, which are [4–10,
13], and [15, 25]. For the sake of notation, these intervals
are denoted as scale1, scale2, scale3, scale4, scale5, scale6,
and scale7. We respectively extract 5 sample requirements
from each interval to explore the accuracy of our technique
under different requirement scales. The detailed information
for sample requirements are shown as Table 6, where
contained workflows are illustrated. In addition, the special

Fig. 4 The proportion of
workflows under the various
numbers of contained services

1104 Pers Ubiquit Comput (2021) 25:1091–1111

Table 6 Selected sample requirements according to various scales

Scale

swf 1 2 3 4 5

scale1 swf12 swf24 swf58 swf77 swf111

scale2 swf20 swf44 swf68 swf72 swf100

scale3 swf3 swf19 swf35 swf50 swf122

scale4 swf8 swf18 swf31 swf69 swf92

scale5 swf0 swf5 swf10 swf30 swf60

scale6 swf1 swf15 swf36 swf48 swf112

scale7 swf2 swf23 swf41 swf34 swf90

situation is considered, which some changes are applied to
sample requirements to achieve the purpose of testing novel
personalized requirements.

5.3 Pattern-based workflow fragment discovery
when no changes are applied to sample
requirements

Experiments are conducted when sample requirements
remained as they are retrieved from dataset. A requirement
is to discover basic subfunctions, personalized patterns,
and atomic services that can be reused through our
technique, which arrives the minimal cost value on the
final solution. Experiments for 35 sample requirements
return their respective final solutions. For instance, the
sample requirement reqswf0 developed from swf0 in Table 6
that has 9 service nodes. Our technique can discover 2
basic subfunctions and 1 personalized pattern to reuse;
these subgraphs cover the most of service structure (i.e., 7
services) in reqswf0 . In addition, 2 reusable atomic services
are recommended to optimize the experimental design. In
this situation, in addition to generating some redundant
services, all functions that should be implemented can
be found in reusable parts. To sum up, our technique
maximizes the use of basic and personalized patterns to

accomplish the given requirement, and the optimal solution
can be recommended by our strategy.

5.4 Pattern-based workflow fragment discovery
when changes are applied to sample requirements

Novel requirements may not be equivalent to sample
workflow requirements in the repository. In this case, certain
sample requirements are changed to generate additional
testing requirements. Changing operation include insertion,
deletion, and replacement as follows:

• Insertion. Services not included in a sample require-
ment reqsmpl are inserted as part of a testing require-
ment reqtst. Generally, if some services belong to
another, workflows or new services are constructed, and
they express similar meanings as reqsmpl; reqtst is usu-
ally more appropriate to share the text information with
reqsmpl. For instance, service nodei0 named pathway
gene file is inserted in Fig. 5.

• Deletion. Services are deleted from a sample require-
ment. An example is the service node0 named pathway
description, which is deleted from a requirement as
shown in Fig. 5.

• Replacement. Services in a sample requirement reqsmpl

are replaced by the others which are not specified in
reqsmpl. Similar to the case of insertion, if services have
similar meanings to the replaced services, the testing
requirement is similar with reqsmpl. An example is the
service node6 = “kegg gene id” which is to be replaced
by another similar service noder6 = “create kegg id” as
shown in Fig. 5.

Experiments are conducted for changes applied upon
sample requirements, which are changed through insertion,
deletion, and replacement operations. In addition, some
novel services may be constructed in sample requirements,
which is more in line with new features of real applications

Fig. 5 A testing requirement is
developed from Fig. 2. Changes
are made through inserting 1
service, deleting 1 service, and
replacing 1 service

1105Pers Ubiquit Comput (2021) 25:1091–1111

such that certain requirements put forward by scientists
may be different but similar with previous experiments.
Consequently, 10 modified requirements are generated to
conduct experiments of specified requirements. An example
is shown in Fig. 5, where 1 service is inserted, 1 service is
deleted, and 1 service is replaced. Specifically, the service
nodei0 named pathway gene file is inserted into node7 to
build a new connection (node7 -> nodei0). The service
node0 is deleted, and service node6 is replaced by noder6

that has similar meaning as node6.
Regarding these 10 testing workflow requirements,

results for 7 testing requirements return the solutions
that contained services in the requirement that can be
covered by patterns and atomic services discovered from
our technique. Three experiments, whose solutions can
not cover all functional services, are set to add newly
constructed services, e.g., nodei0 in Fig. 5. Their generated
solutions can only be composed of existing structures
(patterns) and services in the repository to obtain relatively
optimal designs. According to recommendation results, it
is shown that our technology is appropriate and reasonable
when certain changes are applied to sample requirements.

6 Experimental evaluation

The assessment approach is taken when experiments are
conducted, and performance metrics, evaluation strategy,
and the corresponding result are presented as follows.

6.1 Performancemetrics

The important performance measure is considered in
evaluating the effectiveness of the proposed method: F1-
measure is calculated by leveraging the precision and
recall in the recommendation process. In particular, the
recommended solution is generated for every personalized
requirement, which contains several basic subfunctions,
personalized patterns, and atomic services to accomplish the
given experiment. Since recommended solutions generally
cover most structures of requirements through basic pattern
recommendation, personalized pattern recommendation,
and service recommendation, the recall is the relatively high
value, but the precision plays a sensitive role depending on
redundancy services. In this situation, it is a key issue to
evaluate the whole effect of recommendation. Therefore,
the F1-measure is finally confirmed as our evaluated
performance metric, which combines precision and recall
with an equal weight in formula (9):

F1 = (precision × recall)

(precision + recall)/2
(9)

where (i) the precision is the ratio between the number of
correctly covered services |CSsol | that the recommended
solution sol can cover the process fragment of the given
requirement Req and the total number of services |Ssol |
in sol and (ii) the recall is the ratio between |CSsol | and
the total number of services |SReq | in Req. Particularly,
precision and recall are computed as follows:

precision = |CSsol | ÷ |Ssol | (10)

recall = |CSsol | ÷ |SReq | (11)

6.2 Evaluation strategy and result

In this section, we present our evaluation strategy and results
of our technique, and they are illustrated as follows:

• The impact and determination of key parameters
• The effect of our technique compared with two baseline

covering approaches

The results of our experiments in (i) Section 5.3, where
sample requirements remained as they are, are retrieved
from the dataset, and Section 5.4, where changes are applied
to sample requirements, are adopted for comparisons.

6.2.1 Key parameter determination

In this article, there are two crucial and undetermined key
parameters. They are considered influential factors to be
explored and explained as follows:

• Kbp: It influences the number of subfunction clusters
selected as basic patterns in Section 2.3.

• thrdfrq: It is the frequency threshold factor of mining
personalized patterns from respective workflow clusters
in Section 3.2.

A solution is generated leveraging basic pattern rec-
ommendation, personalized pattern recommendation, and
atomic service recommendation. Importantly, the reuse ratio
about subgraphs is different at each stage, which can reflect
the covering effect of our technique as the key parameter
changes. Thus, in the basic subfunction and personalized
pattern compositions, their respective reuse ratios are con-
sidered to determine the optimal parameters. Note that the
reuse ratio of basic subfunctions (or personalized patterns)
is the percentage of the number of candidate reused basic
subfunctions (or personalized patterns) to the total number
of basic subfunctions (or personalized patterns) produced in
the corresponding phase. We call it as BP-based reuse ratio
(or PP-based reuse ratio).

To investigate the impact of Kbp to BP-based reuse ratio,
PP-based reuse ratio, and F1 value, we set thrdfrq to 0.2,

1106 Pers Ubiquit Comput (2021) 25:1091–1111

Fig. 6 BP-based reuse ratio,
PP-based reuse ratio, and F1
value for our technique, when
thrdf rq is set to 0.2, and Kbp is
set from 0.1 to 0.9 with an
increment of 0.1

and Kbp to a value from 0.1 to 0.9 with an increment
of 0.1. Figure 6 shows that the BP-based reuse ratio and
F1 value increase and PP-based reuse ratio drops along
with the increasing of Kbp. Specifically, more and more
basic subfunctions are reused when Kbp increases, since
more basic patterns are selected to consider generalized
function reuse. However, when Kbp is set to be relatively
large (from 0.4 to 0.9), Fig. 6 shows that BP-based reuse
ratio is relatively stable, since the majority of reusable
basic subfunctions have been recommended to composite
solutions. It is shown that BP-based reuse ratio remains at
the 4.6% level. In addition, PP-based reuse ratio decreases
to an extent as the use of basic subfunctions increases
where Kbp is set from 0.1 to 0.4, since the backbone
structure of the solution has been covered by the more
basic subfunctions. When Kbp is adjusted from 0.4 to 0.9,
PP-based reuse ratio tends to a steady state and its values
remains 1.5%, because the backbone structure has been
stably determined by the basic pattern recommendation.
After analyzing of BP-based and PP-based reuse ratios,
the whole recommendation effect (i.e., F1-measure) is also
obtained in Fig. 6. It is shown that F1 value is gradually
rising as Kbp increases. Besides, when Kbp is set from 0.1
to 0.4, results show that F1 value begins to increase to a
small extent from 0.94 to 0.95, since more and more correct

subfunctions are recommended to solutions leveraging our
technique. Meanwhile, when Kbp is set from 0.4 to 0.9,
F1-measure keeps at a stable value (0.95), because most of
expected structure and services have been discovered and
included in solutions. According to the above explanation,
an optimal Kbp is got and determined as 0.4 in our
experiments, where BP-based reuse ratio, PP-based reuse
ratio, and F1-measure are high values.

To explore the impact of thrdfrq to BP-based reuse
ratio, PP-based reuse ratio, and F1 value, we set Kbp

to 0.4 and thrdfrq to a value from 0.1 to 0.9 with an
increment of 0.1. As shown in Fig. 7, BP-based reuse
ratio remains unchanged, PP-based reuse ratio decreases,
and F1 value increases. Specifically, when Kbp is set to
a certain fixed value, no matter how thrdfrq changes,
candidate reusable basic subfunctions does not change
at the basic pattern recommendation, which makes BP-
based reuse ratio invariable at 4.6% value. Importantly,
thrdfrq only influences the process of personalized pattern
recommendation. In this setting, the backbone structure of
the solution has been determined; the remaining structure
needs to be covered by personalized patterns. Figure 7
shows that PP-based reuse ratio decreases to a large extent
(from 6.4 to 1.5%) when thrdfrq is set from 0.1 to 0.4,
since the demand of frequency threshold is more strict

Fig. 7 BP-based reuse ratio,
PP-based reuse ratio, and F1
value for our technique, when
Kbp is set to 0.4 and thrdfrq is
set from 0.1 to 0.9 with an
increment of 0.1

1107Pers Ubiquit Comput (2021) 25:1091–1111

for mining personalized patterns from workflow clusters,
and the number of candidate reusable personalized patterns
becomes smaller. Thus, PP-based reuse ratio shows the
decreased trend. When thrdfrq is adjusted from 0.4 to 0.9,
PP-based reuse ratio tends to be stable, as most of expected
personalized patterns have been minded to composite the
solution. In addition, Fig. 7 also shows that F1 value
is gradually rising when thrdfrq increases. Through our
analysis, although BP-based reuse ratio remains unchanged
and PP-based reuse ratio decreases, our technique can
still obtain appropriate atomic services to accomplish
requirements. Since the number of redundancy services
decreases, F1 value will increase. Consequently, an optimal
thrdfrq is determined as 0.4, where PP-based reuse ratio and
F1-measure are relatively high values.

6.2.2 Baseline techniques comparison

The following two covering strategies are chosen as the
baseline for comparison with our technique:

• Random strategy: It is to choose the basic subfunctions
or personalized patterns with the highest coverage ratio
to conduct composition work according to the current
uncovered structure of the requirement.

• Continuous strategy: It is to choose the basic sub-
functions or personalized patterns, which will cover
the services neighboring the covered services, to con-
duct composition work according to the neighboring
structure of the requirement.

This section presents and discusses the evaluation results
of our technique, random covering strategy, and continuous
covering strategy in terms of different requirement scales.
Note that requirement scales have been illustrated in
Section 5.2. As discussed in Section 6.2.1, the optimal
Kbp and thrdfrq have been determined according to the
above experimental comparisons. In this setting, to explore
the respective effects of our technique, random strategy,

and continuous strategy to F1-measure under different
scales, we set Kbp to 0.4 and thrdfrq to 0.4. As shown in
Fig. 8, our technique performs better than random strategy
and continuous strategy in F1-measure. As the scale of
requirements increases, our technique can maintain a high
F1 value range (between 0.94 and 0.98). However, random
strategy and continuous strategy are not stable in the
covering composition. In particular, when the requirement
scale is scale3, F1 value of random strategy is only 0.75.
Since random strategy chooses the optimal subgraph to
cover at the early composition stage, it is easy to leave
a large number of “discrete fragment” (including less
services and more redundancy services), and at the late
composition stage, that will reduce the using efficiency
of service patterns. Figure 8 also shows that F1 value of
continuous strategy is 0.71 when the requirement scale is
scale5, which is the lowest F1 value under all experiments
distributed in different requirement scales. Through our
analysis, it is found that the continuous strategy will not
cause discrete fragments like random strategy; however, it
may not find the optimal subgraph to compose the solution.
Thus, continuous strategy shows the lower recommended
effect compared with our technique and random strategy.
Importantly, our technique uses three meaningful metrics
(i.e., coverage ratio, redundancy ratio, and cost value) to
select the optimal subfunctions and personalized patterns,
and the cost value metric of the current solution is also
considered to evaluate quality of solutions. According to the
above explanation, it is concluded that our technology can
arrive optimal recommendations compared with other two
covering strategies for supporting real-word applications.

7 Related work and comparison

As the number of available Web services and scientific
workflows is rapidly increasing, the discovery of relevant
services and workflow fragments from massive candidates

Fig. 8 F1 values for our
technique, random strategy, and
continuous strategy in different
requirement scales, when Kbp is
set to 0.4 and thrdf rq is set to
0.4

1108 Pers Ubiquit Comput (2021) 25:1091–1111

is quite crucial and demands a lot of efforts [20]. For
example, Wenmin et al. propose the history-based method;
the solution is determined according to actual recorded
Qos of candidate services in the history [2]. However, the
efficiency of this method is low because the historical
Qos values stand alone, and it causes the loss of implicit
relevance information, which is the connection among
different functionalities or services in historical experience.
In addition, the QoS may be not accurate enough due to a
dynamic environment which is always full of uncertainty;
all these will impact the optimality of service solutions.
Therefore, a large number of approaches and composition
techniques are proposed to enhance efficiency, bringing a
hot topic in the research community. Among these tools and
techniques, frequent pattern-based composition approaches
receive a great deal of attention [21].

Given the dataset of previously proposed scientific work-
flows, it can always find out some frequently occurred frag-
ment patterns from history and then based on these patterns
make service composition in the future. A great number
of service composition approaches based on this idea are
proposed and proved to be very successful. These frequent
pattern usually give rules that summarize the relationships
of correlations, collaborations, and complements between
services in historical compositions. Original research on
“patterns” emphasized on the “abstraction” characteristic
with the objective of “reuse” [9]. Developers write pat-
terns in terms of high-level functionalities and decide on
the function signature they want to associate to a func-
tionality appearing in a pattern [10]. Hu et al. define the
reusable logic in the business processes as the patterns,
which can be shared among users to facilitate the construc-
tion of new service solution [11]. In [12], frequent process
fragments appeared in the service composition (including
a set of frequently co-occurring services and the control
flows among these services) are extracted to prepare for
the follow-up service composition be requisitioned by using
data mining technique. In developing service-oriented appli-
cations, similarly, a service pattern is defined as a set of
services that are repetitively used together in various appli-
cations and records the best practices [13]. Zhang et al.
extract the repeated process fragments in the service flow
to expect service reuse in new solution construction [22].
It has been proven that the utilization of patterns can dras-
tically improve the efficiency of service composition and
service mashup [23]. Huang et al. further utilize fragment
service process for composite service selection including
control flow and bound services [14]. However, experimen-
tal requirements are usually shown as the function-oriented
personalized way; certain functions have to bundle with spe-
cific demands. For instance, the generalized component to
reach the basic transformation and the individuation com-
ponent to obtain certain special functionalities are required.

Thus, service composition studies upon patterns should not
focus on frequent composite solutions only. Unfortunately,
in the above state-of-the-art approaches, this key aspect is
somehow ignored, and relevant researchers seldom consider
and focus on the mining task of different type patterns. It
is crucial to figure out how to reuse these diverse pattern
fragments at the right time for accomplishing personalized
requirements. Importantly, in our article, we work on dis-
coveries of basic patterns and personalized patterns and
leverage them to composite the optimal solution through a
novel composition strategy with respect to requirements.

It is noteworthy that service composition remains a
functional topic in the field of service-oriented computing
[24]. A typical service composition process carries two
fundamental assumptions. First is that a planning phase has
resulted in a structured workflow plan [25], i.e., a reference
model. Second is that identified service components will be
linked to each other directly [26], meaning that the output
of a service component has to be plugged into another
service component as input. In contrast, our work raises the
bar and aims to fill the gap by composing service patterns
mined by their past collaboration history [27, 28]. Service
relationships are remained to promote service composition.
These service connections in our work come from historical
successful service connections happened in past workflows.
For scientific researchers, such service connections are
more trustworthy.

In addition, in this article, we leverage the significant
technique of frequency pattern mining. In the pattern sce-
nario or graph mining, the frequent subgraph discovery is
a challenge task, which deals with identifying frequently
occurring subgraphs in a given graph dataset. A subgraph
can be considered frequent when the number of its occur-
rences within the dataset exceeds a specified threshold.
There are two variants of this problem, in the first vari-
ant [29, 30], the input graph data contain a set of small to
medium-size graphs, which are called transactions. In the
second variant [31, 32], a single input graph data is used
(i.e., one very large graph, graph with hundreds of thou-
sands nodes). Obviously, our frequent subfunction mining
belongs to the first variant in this article. In the transaction
scenario, miner/frequent subgraph mining algorithm recur-
sively generates all possible extensions from empty graph
by adding edges and nodes to already-generated subgraphs.
Then, isomorphism testing will be performed in each new
possible extensions to determine whether it appears fre-
quently. Early miner/frequent subgraph mining algorithms
generated extensions in a breadth-first search (BFS) way,
e.g., AGM [33] and FSG [34] based on Apriori properties.
In view of the shortcoming that a large number of candidate
subgraphs will be produced. Thus, the depth-first search
(DFS) approaches are presented, which need less memory
and almost show better performance. Authors in [35] have

1109Pers Ubiquit Comput (2021) 25:1091–1111

summarized three main subproblems (i.e., purposive refine-
ment, efficient enumeration, and focused isomorphism test-
ing) and made a quantitative and detailed comparison of
some typical DFS algorithms, e.g.,Mofa, FFSM [36], gSpan
[15], and Gaston and some special extensions of them, e.g.,
CloseGraph. In this situation, the DFS algorithms will be
applied into our work. Due to the directivity of workflow
structure, gSpan is considered, which is the state-of-the-art
subgraph mining method for handling the directed graphs.

8 Conclusion

This article proposes a novel workflow fragment discov-
ery mechanism for personalized requirements considering
basic patterns and personalized patterns. Specifically, the
discovery strategy of basic patterns is presented, where fre-
quent subfunctions are mined from scientific experiments
leveraging the frequent subgraph mining approach. Seman-
tic relevance of these subfunctions is quantified leveraging
their topics obtained from the biterm topic model. Sub-
functions with same or similar functionality are clustered
together, and clusters with high functional frequency are
assumed to be basic patterns. In addition, the discov-
ery strategy of personalized patterns is presented, where
the multi-dimensional representation for scientific work-
flows is constructed to express the workflow relevance from
multiple aspects: title, description, and contained services.
Workflow similarities are calculated through representation
vectors. Workflow clustering is conducted, where frequent
personalized subgraphs discovered from a certain cluster
with similar workflows are viewed as personalized patterns
under the current content. Given a personalized requirement
specified in terms of its title, description, and workflow
template, target basic patterns and candidate basic subfunc-
tions are discovered to compose the backbone structure of
solution according to related metrics and a novel coverage
strategy. Based on the backbone structure and requirement
template, candidate personalized patterns are conducted to
cover the remaining structure of requirement. Consequently,
the current solution is optimized through complementing
atomic services, to generate the final solution with respect
to the given requirement. Evaluation results show that our
technique is accurate on discovering fragment solutions for
personalized requirements in comparison with the state of
the art.

References

1. Zheng Z, Ma H, Lyu MR, King I (2010) Qos-aware web service
recommendation by collaborative filtering. IEEE Trans Serv
Comput 4(2):140–152

2. Lin W, Dou W, Luo X, Chen J (2011) A history record-based
service optimization method for qos-aware service composition.
In: IEEE international conference on web services, pp 666–673

3. Lemos AL, Daniel F, Benatallah B (2016) Web service
composition: a survey of techniques and tools. ACMComput Surv
(CSUR) 48(3):33

4. Zhou Z, Cheng Z, Zhang L-J, Gaaloul W, Ning K (2018)
Scientific workflow clustering and recommendation leveraging
layer hierarchical analysis, vol 11

5. Wen J, Zhou Z, Shi Z, Wang J, Duan Y, Zhang Y (2018)
Crossing scientific workflow fragments discovery through activity
abstraction in smart campus. IEEE Access 6:40530–40546

6. Goble CA, Bhagat J, Aleksejevs S, Cruickshank D, Michaelides
D, Newman D, Borkum M, Bechhofer S, Roos M, Li P (2010)
Myexperiment: a repository and social network for the sharing of
bioinformatics workflows. Nucleic Acids Res 38(suppl 2):W677–
W682

7. Garijo D, Alper P, Belhajjame K, Corcho O, Gil Y, Goble C
(2014) Common motifs in scientific workflows: an empirical
analysis. Futur Gener Comput Syst 36(3):338–351

8. Eshuis R, Lecue F, Mehandjiev N (2016) Flexible construction
of executable service compositions from reusable semantic
knowledge. ACM Trans Web 10(1):5

9. Tut MT, Edmond D (2002) The use of patterns in service
composition. In: International workshop on web services, e-
business, and the semantic web. Springer, pp 28–40

10. Melloul L, Fox A (2004) Reusable functional composition
patterns for web services. In: IEEE international conference on
web services, pp 498–505

11. Wang X, Niu W, Li G, Yang X, Shi Z (2012) Mining frequent
agent action patterns for effective multi-agent-based web service
composition. In: Agents and data mining iteration, pp 211–227

12. Zhang M, Zhang B, Na J, Zhang X (2009) Composite service
selection based on dot pattern mining. In: SERVICES-I, pp 740–
746

13. Upadhyaya B, Tang R, Zou Y (2013) An approach for mining
web service composition patterns from execution logs. Journal of
Software: Evolution and Process 25(8):841–870

14. Huang Z, Huai J, Liu X, Zhu J (2010) Business process decom-
position based on service relevance mining. In: International Con-
ference on Web Intelligence and Intelligent Agent Technology,
pp 573–580

15. Yan X, Han J (2002) gspan: Graph-based substructure pattern
mining. In: IEEE international conference on data mining,
pp 721–727

16. Cheng X, Yan X, Lan Y, Guo J (2014) Btm: Topic modeling over
short texts. IEEE Trans Knowl Data Eng 26(12):2928–2941

17. Blei D, Ng A, Jordan M (2003) Latent dirichlet allocation.
Machine Learning Reasearch, pp 933–1022

18. Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E (2008) Fast
unfolding of communities in large networks. J Stat Mech: Theory
Exp 2008(10):155–168

19. Kim D, Seo D, Cho S, Kang P (2019) Multi-co-training for
document classification using various document representations:
Tf–idf, lda, and doc2vec. Inf Sci 477:15–29

20. Liu J, Jiang J, Cui X, Yang W, Liu X (2015) Power consumption
prediction of web services for energy-efficient service selection.
Pers Ubiquit Comput (PUC) 17(7):1063–1073

21. Chen J, Zhou X, Jin Q (2013) Recommendation of optimized
information seeking process based on the similarity of user access
behavior patterns. Pers Ubiquit Comput (PUC) 17(8):1671–1681

22. Hu H, Han Y, Huang K, Li G, Zhao Z (2004) A pattern-
based approach to facilitating service composition. In: Grid and
cooperative computing workshops, pp 90–98

23. Daniel F, Rodriguez C, Chowdhury SR, Nezhad HRM, Casati F
(2012) Discovery and reuse of composition knowledge for assisted

1110 Pers Ubiquit Comput (2021) 25:1091–1111

mashup development. In: International conference companion on
world wide web, pp 493–494

24. Rodriguez-Mier P, Mucientes M, Lama M (2015) Hybrid opti-
mization algorithm for large-scale qos-aware service composition.
IEEE Trans Serv Comput 10(4):547–559

25. Deng S, Wang D, Li Y, Cao B, Yin J, Wu Z, Zhou M (2016) A
recommendation system to facilitate business process modeling.
IEEE Transactions on Cybernetics 47(6):1380–1394

26. Bevilacqua L, Furno A, Di Carlo VS (2011) E. zimeo, “composi-
tions from owl-s described services. In: IEEE international confer-
ence on software, knowledge information, industrial management
and applications (SKIMA) Proceedings. IEEE, pp 1–8

27. Bie R, Mehmood R, Ruan S, Sun Y, Dawood H (2016) Adaptive
fuzzy clustering by fast search and find of density peaks. Pers
Ubiquit Comput (PUC) 20(5):785–793

28. Verkasalo H (2009) Contextual patterns in mobile service usage.
Pers Ubiquit Comput (PUC), 13(5):331–342

29. Thomas LT, Valluri SR, Karlapalem K (2010) Margin: Maximal
frequent subgraph mining. ACM Trans Knowl Discov Data
(TKDD) 4(3):10

30. Chaoji V, Hasan MA, Salem S, Zaki MJ (2008) An integrated,
generic approach to pattern mining: data mining template library.
Data Min Knowl Disc 17(3):457–495

31. Elseidy M, Abdelhamid E, Skiadopoulos S, Kalnis P (2014)
Grami: frequent subgraph and pattern mining in a single large
graph. Proceedings of the Vldb Endowment 7(7):517–528

32. Teixeira CH, Fonseca AJ, Serafini M, Siganos G, Zaki MJ,
Aboulnaga A (2015) Arabesque: a system for distributed graph
mining. In: The 25th symposium on operating system principles.
ACM, pp 425–440

33. Inokuchi A, Washio T, Motoda H (2000) An apriori-based
algorithm for mining frequent substructures from graph data. In:
European conference on principles of data mining & knowledge
discovery, pp. 13–23

34. Kuramochi M, Karypis G (2001) Frequent subgraph discovery. In:
IEEE International Conference on Data Mining, pp 313–320

35. Worlein M,Meinl T, Fischer I, PhilippsenM (2005) A quantitative
comparison of the subgraph miners mofa, gspan, ffsm, and gaston.
In: European conference on principles & practice of knowledge
discovery in databases, pp 392–403

36. Huan J, Wang W, Prins J (2003) Efficient mining of frequent
subgraphs in the. In IEEE international conference on data mining.
IEEE, pp 549–552

Publisher’s note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Affiliations

Jinfeng Wen1 · Zhangbing Zhou1,2 · Fei Lei3 · Junsheng Zhang4

� Fei Lei
leifei@bjut.edu.cn

Jinfeng Wen
wenjinfeng.cugb@gmail.com

Junsheng Zhang
zhangjs@istic.ac.cn

1 School of Information Engineering, China University
of Geosciences (Beijing), Beijing, 100083, China

2 Computer Science Department, TELECOM SudParis,
91011, Evry, France

3 Faculty of Information Technology, Beijing University
of Technology, Beijing, 100124, China

4 Institute of Scientific and Technical Information of China,
Beijing, 100038, China

1111Pers Ubiquit Comput (2021) 25:1091–1111

mailto: leifei@bjut.edu.cn
mailto: wenjinfeng.cugb@gmail.com
mailto: zhangjs@istic.ac.cn

	Basic and personalized pattern-based workflow fragments discovery
	Abstract
	Introduction
	Basic pattern discovery
	Frequency subfunction discovery
	Subfunction similarity calculation and clustering
	Basic pattern discovery

	Personalized pattern discovery
	Multi-dimensional representation generation of workflows
	Personalized pattern discovery

	Pattern-based workflow fragment discovery
	Preliminary knowledge
	Basic pattern recommendation
	Personalized pattern recommendation
	Atomic service recommendation

	Experimental setting
	Data collection and cleansing
	Experimental setup
	Pattern-based workflow fragment discovery when no changes are applied to sample requirements
	Pattern-based workflow fragment discovery when changes are applied to sample requirements

	Experimental evaluation
	Performance metrics
	Evaluation strategy and result
	Key parameter determination
	Baseline techniques comparison

	Related work and comparison
	Conclusion
	References
	Publisher's note
	Affiliations

