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Abstract
In order to resolve the problem of unstable control of force in human–computer interaction based on surface EMG signals, the
adaptive neural fuzzy inference system is designed to achieve the grip strength assessment. As we know, the acquisition of
surface EMG signal is non-invasive, which provides a better evaluation index for rehabilitation training in the medical process.
By establishing the relationship between grip force and surface electromechanical signals, the effect of rehabilitation training can
be evaluated directly while reducing the types of sensors used. Firstly, the experimental equipment are introduced, which are
utilized to carry out simultaneous acquisition of surface EMG signals and forces. Then, the traditional features of sEMG and the
corresponding algorithms are illustrated, based on this, supplementing the energy eigenvalue with wavelet analysis and fuzzy
entropy. In which, fuzzy entropy is effective in characterizing muscle fatigue that can effectively reduce the impact of muscle
fatigue on force assessment. Finally, combining fuzzy logic implication and neural network, the adaptive neural fuzzy inference
system is designed, which is trained by extracted feature vectors. The experimental result shows the method used in this paper can
effectively predict the grip force. Further, force prediction based on sEMG can be used to guide rehabilitation therapy in virtual
space, combined with an electrical stimulator.
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1 Introduction

During the contraction process, the muscle generates a motion
unit action potential on the surface of the skin, which is

measured and recorded to form sEMG [1, 2]. Because of the
advantages of non-invasive and convenient, sEMG has been
widely studied in the control of prosthetic hands [3, 4]. With
the development of virtual reality technology, simulated reha-
bilitation training can provide more abundant training
methods for patients. Therefore, the use of sEMG can not only
provide a more diverse means of interaction, but also real-time
detection of patients’ muscle information, such as fatigue,
which can be applied to conduct patients’ rehabilitation train-
ing. With the maturity of wireless sensor technology, there
will be more and more human-computer interaction methods
based on multi-sensor networks [5–7]. Based on sEMG, pa-
tients with upper limb disability can independently control the
grasping mode and gripping power of the myoelectric artifi-
cial hand. Since sEMG cannot only be applied to recognize
patterns of human hand operations such as gestures and wrist
angles [8, 9], but also detect gripping strength during human
hand operation and speed control during gesture operation,
hence, many studies are looking for the relationship between
the output of hand force and surface electromyogram (SEMG)
signals [10]. At the same time, tactile feedback can also be
realized by combining the electromyographic stimulation,
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which enables people to have better on-the-spot perception
and interactivity in the process of operating and controlling
the manipulator [11]. Li et al. [12, 13] explored the importance
of tactile feedback in human perception by studying the way
of electrical stimulation, which can enhance the interaction
between human and machine. Therefore, the current research
on surface EMG signals is not limited to the control of myo-
electric artificial hands, but also has more research on human–
computer interaction. Thence, the research on sEMG signals
is not only limited to the control of myoelectric artificial
hands. Fang et al. [14] designed and developed a portable
acquisition device to achieve identification of several typical
gestures, which promoted greatly the application of sEMG in
human–computer interaction. At present, vision-based gesture
recognition already has good results [15–19]. He et al. [20, 21]
optimized the sparse representation method and improved the
real-time and accuracy of the gesture recognition process;
however, they ignored impact of background environment.
As the application of deep learning and intelligent algorithm
is more and more extensive and mature, such as CNN [22]and
evidential reasoning [23, 24], multi-sensor data information
processing system has also been widely concerned [25]. Li
et al. [26–29] further optimized and improved the effect of
gesture recognition by designing a corresponding deep learn-
ing model. Jiang et al. [30–32] achieved gesture recognition
and extraction in complex backgrounds by combining depth
information and skeleton extraction algorithm. Meanwhile,
Sun et al. [33–35] combined surface EMG signals and image
information to identify gestures, which further improved the
visual-based human–computer interaction performance under
dynamic environment for further improving the effect of
human–computer interaction in dynamic environment.
Although the visual-based human–computer interaction meth-
od has achieved a lot of research results [36–38], it can only
obtain the operation mode of the human hand and cannot
better obtain the information such as the magnitude of the
force during the crawling process, requiring additional sensors
such as data gloves and so on to do it. Additional equipment
may increase the complexity of the system, affecting the in-
teractive experience [39–43], while single-modal interactions
are no longer sufficient to meet existing market needs, so the
performance of interactive feedback need to be further im-
proved included haptic feedback. Gesture recognition based
on surface EMG signals has a lot of research results, which
can basically meet the effects of human–computer interaction.
Furthermore, some researchers hope the recognition of multi-
modal information based on sEMG. In order to establish the
relationship between the surface EMG signal and the force in
the human hand operation, a mathematical model and a ma-
chine learning method are generally adopted [44–47]. And
some researchers hope to improve the gesture recognition rate
with gaining some new features [48]. In order to reduce the
influence of date difference, Qi [49] utilized intelligence

algorithm to make it. Since the surface EMG signal is a non-
linear dynamic signal, this makes it difficult to establish a
suitable mathematical model. The black box model is
established, with the surface EMG signal as the input, and
the force signal as the output to establish the corresponding
nonlinear relationship is a hot spot for researchers to focus on
[50–53]. Commonly used are support vector machines,
convolutional neural networks, LSTM, BP neural networks,
and fuzzy neural networks [54–56]. In order to accurately
recognize the force of the human hand during operation, a
force gauge is often applied to measure the magnitude of the
force. However, it is difficult to guarantee the accurate output
of force in the process of control, which is generally controlled
within a certain range, such as large force, general force, and
small force. In order to deal with this situation, the method of
fuzzy control is generally adopted. For better realizing the
control of the manipulator by the human hand, it is necessary
not only to establish the relationship between the force and the
surface EMG signal, but also to construct a corresponding
mechanical control scheme. Due to the presence of muscle
fatigue, the control effect of the force based on the surface
EMG signal is not ideal. Therefore, some researchers avoid
muscle fatigue by setting corresponding conditions. On the
other hand, by extracting new eigenvalues to judge the degree
of muscle fatigue, thereby reducing the effect of muscle fa-
tigue on model accuracy, such as fuzzy entropy [57–59]. In
this paper, the traditional features of surface muscle electrical
signals are analyzed and selected, and the fuzzy entropy value
is extracted as a new eigenvalue, which reduces the impact of
muscle fatigue on the system. Then, the fuzzy neural network
is constructed to establish the relationship between the surface
EMG signal and the force, and the force evaluation during the
manual operation is well realized.

2 Feature selection and extraction

2.1 Collection and segmentation of sEMG

The sEMG signal acquisition instrument used in this paper has
10-bit A/D conversion accuracy and sampling frequency of
1000 Hz. It communicates with the host computer through the
USB interface and can simultaneously collect 16 channels of
sEMG signals at the same time. The use of an electronic grip
gauge enables the acquisition of forces during manual opera-
tion. The acquisition of surface muscle electrical signals is
shown in Fig. 1. Although 16 channels are shown in the fig-
ure, channel 1st is chosen because only grasped gesture in the
following experiment and whose signal changes obviously
(Fig. 2).

Since the paper only explores the relationship between sur-
face EMG signals and grip strength, it is necessary to extract
the surface muscle electrical signals during the grasping
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process. The methods of segmentation of myoelectric signals
are generally manual segmentation, timewindows, and energy
based values. Manual splitting has a large workload, and it
takes a long time to process large data samples and is suscep-
tible to human factors. Extraction methods based on fixed-
time panes lead to the loss of data, which easily leads to the
loss of data. As shown in Figs. 3 and 4, the sliding window is
difficult to ensure accurate extraction of the full grip.
Therefore, this paper uses the energy envelope method
(Fig. 5) to extract the surface EMG signal that realizes a grip-
ping action of the surface EMG signal, as shown in Fig. 6.
Firstly, the envelope of EMG signal is extracted by calculating
and extracting, and then the minimum points are obtained.
Finally, signal segmentation is realized by locating the adja-
cent minimum points.

2.2 Extraction of electrical characteristics
of traditional surface muscles

Feature extraction of myoelectric signals is usually a time
domain method, a frequency domain method, and a time fre-
quency domain method. Commonly used time threshold fea-
ture extraction methods include absolute mean, variance, zero
crossings, and Willis amplitude.

Absolute value mean sEMG exhibits strong randomness in
amplitude, and the positive and negative amplitudes are

usually symmetrical. Absolute value operation converts the
amplitude of the signal all A positive value can intuitively
reflect the contractile strength of the muscle. The larger the
absolute value, the greater the contraction strength of the mus-
cle. The mathematical expression for the absolute value of the
mean value under the sliding window is as follows:

MAVi ¼ 1

N
∑
i

j¼i−Nþ1
jxij ð1Þ

In which, xj is current sampled data, N is sliding window
length.

VarianceVariance is a measure of the degree of dispersion of a
random variable or a set of data. The larger the variance value,
the larger the difference between most data and the mean. The
mathematical expression is:

σ ¼ 1

N
∑
i

i¼1
xi−x
� �

ð2Þ

In which, x is the mean of data, N is the length of data.

Zero crossings The zero-crossing (ZC) point describes the
number of times the signal passes through the 0-axis during
a period of time. This feature estimates the frequency domain
characteristics of the signal from the perspective of the time
domain. The mathematical expression of the zero-crossing
point under the sliding window can be:

ZCi ¼ ∑
i

j¼i−Nþ1
sgn x jx j−1
� � ð3Þ

In which, sgn xð Þ ¼ 1; x > 0;
0; x≤0;

�
.

Fig. 3 Original signal of sEMG

Fig. 1 Surface electromyography collection equipment

Fig. 2 Signal acquisition system interface
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Willison magnitude Willison’s magnitude is a measure pro-
posed by Willison in 1963 to calculate the number of changes
in signal amplitude over a period of time. The Willison am-
plitude under the sliding window can be expressed as:

WAi ¼ ∑
i

j¼i−Nþ2
f x j−xi−1
� � ð4Þ

In which, f xð Þ ¼ 1; jxj > threshold
0; others

�
.

Wavelet energy value sEMG is essentially a nonstationary
bioelectrical signal. Therefore, in addition to these tradi-
tional surface EMG signals, new features can be extract-
ed by wavelet packet transform. Wavelet packet trans-
form is a signal analysis method developed on the basis
of wave analysis theory. It has multi-scale analysis capa-
bility and good time–frequency localization characteris-
tics. It can provide higher time-frequency resolution than
wavelet transform, which is very suitable for non-
stationary analysis.

Fig. 5 Signal envelope

Fig. 4 Sliding pane signal acquisition error diagram
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Transient and time-varying characteristics of the signal
Wavelet packet transformation includes two processes: wave-
let packet decomposition and wavelet packet reconstruction.
The energy characteristic value of the surface muscle electrical
signal is extracted by wavelet decomposition.

Wavelet decomposition algorithm:

f d jþ1;2n
m ¼ ∑

l
d jþ1;2n
l hl−2m

d jþ1;2n
m ¼ ∑

l
d jþ1;2n
l gl−2mg ð5Þ

In which, hl − 2m and gl − 2m are two functions under scalej.

With decomposition algorithm, the coefficient d jþ1;n
l can be

used to calculate the coefficient d jþ1;2n
m andd jþ1;2n

m .
Wavelet reconstruction algorithm:

d jþ1;n
l ¼ ∑

m
d jþ1;2n
m hk−2m þ d jþ1;2nþ1

m gk−2m
� � ð6Þ

With this, the coefficient d jþ1;2n
m and d jþ1;2nþ1

m can be used

to rebuildd jþ1;n
l .

2.3 Extraction of fuzzy entropy features

In the process of muscle movement, muscle fatigue is a phys-
iological function change that must occur, which has a rela-
tively large impact on the performance of subsequent pattern
recognition. At present, there is no uniform standard for the
definition, production mechanism, and evaluation index of
muscle fatigue. The commonly used methods of muscle

fatigue test include oxygen content in the blood, heart rate,
muscle strength, and surface electromyography signals. The
surface EMG signal contains the state of muscle activity dur-
ing muscle contraction, which provides information for the
analysis of muscle fatigue status and reflects the fatigue state
of the muscle. Muscle fatigue and surface EMG signals are a
nonlinear mapping relationship, and thus fuzzy theory is used
to evaluate and analyze muscle fatigue. Fuzzy entropy is a
nonlinear method used in fuzzy theory. It is mainly used to

Fig. 6 Schematic diagram of
signal segmentation

Fig. 7 Fuzzy logic system schematic
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characterize the complexity of the signal. The greater the com-
plexity, the larger the entropy value. Compared with the sam-
ple entropy, it has a smaller dependence on the length of the
acquired signal and has a better correlation. Compared with
the approximate entropy, it can give full play to the quantita-
tive and reliable advantages. Fuzzy entropy estimates the de-
scription of similarities in time series data sets.

For a given time series{u(i) : 1 ≤ i ≤N}, the vector se-
quence Xm

i

� �
, i = 1,…, N −m + 1 should be obtained accord-

ing to Eq. 7

Xm
i ¼ u ið Þ; u iþ 1ð Þ;⋯; u iþ m−1ð Þf g−u0 ið Þ ð7Þ

In which, u0 ið Þ ¼ 1
m ∑

m−1

j¼0
u iþ jð Þ.

Xm
i is a mdimensional vector, which is composed of nor-

malized mconsecutive samples starting from u(i). The maxi-
mum distance between Xm

i and Xm
j j≠ið Þ is defined as:

dmij ¼ d Xm
i ;X

m
j

h i
¼ maxk∈ 0;n−1ð Þj u iþ kð Þ−u0 ið Þð Þ− u jþ kð Þ−u0 jð Þð Þj

ð8Þ

Dm
ij n; rð Þ ¼ μ dmij ; n; r

� �
ð9Þ

In which, fuzzy function μ dmij ; n; r
� �

is exponential

function

μ dmij ; n; r
� �

¼ exp − dmij =r
� �n� �

ð10Þ

ϕm n; rð Þ ¼ 1

N−m
∑

N−m

i¼1

1

N−m−1
∑

N−m

j¼1; j≠i
Dm

ij

 !
ð11Þ

ϕnþ1 n; rð Þ ¼ 1

N−m
∑

N−m

i¼1

1

N−m−1
∑

N−m

j¼1; j≠i
Dmþ1

ij

 !
ð12Þ

So, the FuzzyEn(m, n, r) of time series is:

FuzzyEn m; n; r;Nð Þ ¼ lnϕm n; rð Þ−lnϕnþ1 n; rð Þ ð13Þ

3 Construction and training of adaptive fuzzy
neural networks

3.1 Introduction of fuzzy neural network

Fuzzy logic is used to study fuzzy thinking, language forms,
and their laws, which is close to human thinking and decision-
making methods but needs the relatively rich prior knowledge
[60–63]. As problems become more complex, it is difficult to
establish effective and complete fuzzy inference rules.
However, there is no limitation with the neural network which
has the ability of adaptive learning to extract corresponding
information from existing sample data. Thus, neural networks
are generally suitable for processing unstructured data, while
fuzzy systems are more effective for unstructured knowledge
representation. Therefore, fuzzy logic and neural networks are
properly combined to form a system with better performance.
Figure 7 shows a basic fuzzy inference system block diagram,
which mainly includes: fuzzy input, fuzzy inference mecha-
nism, rule base, database, and defuzzification. The most im-
portant part is the generation of rule base.

Since the fuzzy inference system relies heavily on the ex-
perience and knowledge of experts or operators, the experi-
ence is difficult to connect more and more complex problems.
The greatest advantage of neural networks lies in their ability
to self-learn. This adaptive neural network technology is ap-
plied to the analysis and modeling of model features and is
called adaptive neural network technology. A fuzzy system
based on adaptive neural network technology can learn fuzzy

Fig. 8 Schematic diagram of fuzzy neural network structure

Fig. 9 Output of raw data
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membership functions and fuzzy rules from a large number of
known data, avoiding the experience or conscious dependence
on humans. Since the model of surface EMG signal and force
is a very complex system, adaptive fuzzy neural network has
important research significance for analyzing and solving this
problem. A typical structural diagram of a fuzzy neural net-
work is shown in Fig. 8. It greatly simplifies the mechanism of
the traditional fuzzy inference system through the distributed
neural network, and realizes the functions of self-tuning and
self-learning of the fuzzy neural network. Since the fuzzy
inference system relies heavily on the experience and knowl-
edge of experts and operators, it is difficult to achieve the
desired control effect without such experience. The greatest
advantage of neural networks lies in their ability to self-learn.
This adaptive neural network technology is applied to the
analysis and modeling of model features and is called adaptive
neural network technology. A fuzzy system based on adaptive
neural network technology can learn fuzzy membership func-
tions and fuzzy rules from a large number of known data,
avoiding the experience or conscious dependence on humans.
Since the model of surface EMG signal and force is a very
complex system, adaptive fuzzy neural network has important

research significance for analyzing and solving this problem.
A typical structural diagram of a fuzzy neural network is pre-
sented in Fig. 8. It greatly simplifies the mechanism of the
traditional fuzzy inference system through the distributed neu-
ral network, and realizes the functions of self-tuning and self-
learning of the fuzzy neural network.

3.2 Adaptive fuzzy neural network modeling based
on Takagi-Sugeno model (Figs. 9, 10, 11, 12, 13,
and 14)

Neural network modeling refers to the use of neuro-fuzzy
systems to approximate unknown nonlinear dynamics, thus
approaching the entire system. Neural networks have shown
good performance in the modeling of unknown nonlinearities.
An adaptive fuzzy neural network modeling method based on
the Takagi-Sugeno model is provided in the fuzzy logic tool-
box of Matlab, in which the BP backpropagation algorithm
and the least squares algorithm are used to model the input/
output data pairs. In the modeling process, the method can
extract the corresponding information (fuzzy rules) learning
method from the data set, which is very similar to the neural
network method. By self-learning to obtain the best member-
ship function parameters, the designed Takagi-Sugeno-type
fuzzy inference system can better simulate the desired input/
output relationship. In order to ensure that the subject can
output a stable force as much as possible, the subject experi-
menter has a little time to pre-train. The data used in this
experiment had a hand output force of 10–100 N, and the
interval between each value was 1 N and maintained for
10 s. The obtained data were randomly divided into training
data and test numerical data according to 2:8, and 11 charac-
teristic values of the surface electromyogram signal were ex-
tracted as a feature matrix, and the force was taken as an
output. The final evaluation index is the maximum root mean
square error.

Fig. 10 Fuzzy neural network structure

Fig. 11 The fuzzy rule before training
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4 Conclusion

In order to further promote the application of surface EMG
signals in human–computer interaction, this paper proposes an
adaptive fuzzy neural network-based hand grip assessment
method. Based on the characteristics of traditional surface
EMG signals, the fuzzy entropy value is introduced to reduce
the influence of muscle fatigue on the performance and accu-
racy of the model, so that the recognition based on surface

EMG signals can be better applied in real life. Because fuzzy
reasoning mechanism and neural network have their own ad-
vantages and disadvantages, this paper combines them to con-
struct an adaptive fuzzy neural network and evaluate the grip
of the opponent. The contribution of this paper lies in the
effective realization of the control force output of human
hand, which can overcome the problem of unstable control
of human hand force in the process of grasping. According
to the experimental results, the hand grip strength evaluation

Fig. 12 The fuzzy rule after training

Fig. 13 Training error

Fig. 14 Checking error
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based on the adaptive fuzzy neural network has better perfor-
mance, and the error is about 10%, which satisfies the basic
control requirements. Fuzzy theory is widely used in the con-
trol of robots, and it is very necessary to construct an adaptive
fuzzy neural network system because it is difficult for human
to achieve accurate control of grip force. The method benefits
that the health status of patients during rehabilitation training
can also be effectively monitored using sEMG. Because of the
lack of experimental equipment, the model cannot be applied
to the actual myoelectric false hand to further verify the reli-
ability of the proposed method, and more experiments and
researches are needed.
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