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Abstract
In large-scale emotional events and complex emotional recognition applications, how to improve the recognition accu-
racy, computing efficiency, and user experience quality becomes the first problem to be solved. Aiming at the above
problems, this paper proposes an emotional computing algorithm based on cross-modal fusion and edge network data
incentive. In order to improve the efficiency of emotional data collection and the accuracy of emotional recognition,
deep cross-modal fusion can capture the semantic deviation between multi-modal and design fusion methods through
non-linear cross-layer mapping. In this paper, a deep fusion cross-modal data fusion method is designed. In order to
improve the computational efficiency and user experience quality, a data incentive algorithm for edge network is
designed in this paper, based on the overlapping delay gaps and incentive weights of large data collection and error
detection. Finally, the edge network is mapped to a finite data set space from the set of emotional data elements inspired
by heterogeneous emotional events. In this space, all emotional events and emotional data elements are balanced. In this
paper, an emotional computing algorithm based on cross-modal data fusion is designed. The results of simulation
experiments and theoretical analysis show that the proposed algorithm is superior to the edge network data incentive
algorithm and the cross-modal data fusion algorithm in recognition accuracy, complex emotion recognition efficiency,
and computation efficiency and delay.
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1 Introduction

Intelligent terminals and centralized servers are equipped with
software and hardware devices [1, 2] that can observe, under-
stand, and generate various emotional features and have the

ability of emotional computing [3]. By designing an emotion-
al computing algorithm, we can create a system capable of
edge perception, real-time recognition, and intelligent under-
standing [4] of emotions. The system can quickly make accu-
rate, reliable, and friendly responses to dynamic and random
emotional events. At present, the research [5] of emotional
computing mainly includes emotional mechanism reasoning,
emotional data collection, emotional recognition, emotional
network modeling, and human-computer communication.
However, the research on emotional computing mainly focus-
es on the acquisition and forwarding of emotional signals,
ignoring the networked management and data incentive of
emotional terminal devices.

About cross-modal fusion, the authors of ref. [6] proposed
a cross-modal correlation learning approach with multi-
grained fusion by hierarchical network. Reference [7] im-
proved the performance of recognizing objects by developing
a cross-modal attentional context learning framework. The
authors of ref. [8] described an alternative method to perform
high-level multi-modal fusion that leverages cross-modal
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translation by means of symmetrical encoders cast into a bi-
directional deep neural network.

About edge network data incentive, the article [9] studied the
coherent optics in topological insulator surface states with broken
time-reversal symmetry and develop a theory for the dynamical
Hall effect driven by an intense electromagnetic field. The au-
thors of ref. [10] proposed a novel approximation of the partici-
pation rate estimator that can significantly improve the tractabil-
ity and scalability of the resulting mixed integer optimization
model. The article [11] incorporated the consideration of data
quality into the design of incentive mechanism for crowdsensing
and proposed to pay the participants.

About emotional computing, a multi-layer affective deci-
sion model was proposed by establishing mapping relation
among character, mood, and motion in article [3]. The study
of article [5] established an emotional design tutoring system
and investigated whether this system influences user interac-
tion satisfaction and elevates learning motivation. The model
called the 3D Sphere Wave Database Computing Model pro-
posed in article [12] could search for designated data precisely.
The article [13] proposed a technique for transferring knowl-
edge from heterogeneous external sources, including image
and textual data, to facilitate three related tasks in understand-
ing video emotion, etc.

However, the above results ignored the cross-modal fusion
in large-scale edge network data excitation and emotional
computing. Therefore, based on the above research studies,
we proposed the emotional computing algorithms based on
cross-modal fusion and edge network data excitation.

The rest of this paper is organized as follows. Section 2
develops the cross-modal fusion network model. Section 3
shows the data incentive algorithms for edge networks.
Section 4 indicates the emotional computing algorithms for
cross-modal data fusion. Section 5 perform the simulation
analysis, followed by the conclusion in Section 6.

2 Cross-modal fusion network model

Multi-modal data is very common in large data collection,
processing, and analysis applications based on Internet of
Things and cloud computing platforms. Examples include
the following: different languages and forms of social
network news description and its promotion; multi-visual
feature extraction and representation in multimedia form
[14]; dynamic pictures, diversified texts, and dynamic la-
bels used in human-computer interaction applications to
describe. In the deep application of multi-domain, multi-
modal fusion can describe and process the same data from
different angles and aspects. However, the effective anal-
ysis of large data and network fusion shows that the
multi-modal network fusion scheme has some shortcom-
ings, such as the inability to detect data vulnerabilities and

the difficulty to accurately capture and optimize the large
data characteristics of heterogeneous network sources
[15]. Therefore, based on the shortcomings of multi-
modal data fusion analysis, this paper adopts a cross-
modal approach to in-depth fusion, combined with net-
work feature fusion [16, 17], and carries out data content
fusion, large data cross-modal retrieval, and deep mining
research.

Deep cross-modal fusion can capture the semantic devia-
tion and design fusion between multi-modals through non-
linear cross-layer mapping. In this section, a deep fusionmeth-
od of cross-modal data fusion is designed. Combining the
deepmining network and the cross-modal data fusionmethod,
the fusion semantics of each cross-modal and large data space
can be learned in depth, and a cross-modal network model can
be constructed.

Suppose that the cross-modal data set X ¼ X k
i; j

n o
¼

X i;X j
� �k

L contains L data modes and i data instances belong-

ing to j data subsets, X k
L∈Z

C represents the kth cross-modal
eigenvalue matrix of the L-level modal for a subset of C com-

plete modal data samples. X k Lð Þ
i ∈ZC represents the sample of

the first subset of data in the kth L-level cross-modal.
Therefore, the data samples contained in the cross-modal

fusion have three constraints: cross-layer, mode, and fusion
degree. Compared with the multi-modal fusion scheme, each
cross-modal data sample has the characteristics of multi-
dimensional attribute reconstruction and feature fusion.
Because cross-modal data can define and store different di-
mension features of data samples from the same data set,
cross-modal fusion heterogeneous data sets are deeply fused
based on semantic bias in network fusion.

In network fusion and deep cross-modal analysis, based on
the heterogeneous semantic mapping of feature matrix decom-
position and data set clustering, the deep heterogeneous se-
mantic features and cross-layer mapping matrices between
cross-modal data clustering are deeply excavated.

As shown in Fig. 1, cross-modal deep network fusion maps

each cross-modal data set X ¼ X i;X j
� �k

L to the network data

sample set in depth and maps X into multi-dimensional feature
normalization processing by active learning, which is

expressed as DNk
i ¼ DNC;XCf g.

Based on depth normalization, the cross-modal fusion
scheme uses the non-negative data set fusion model of distrib-
uted data clustering, based on network fusion to represent
each cross-modal data set, and converts it into single-modal

matrix and normalization Nk
i ¼ NC;XN

C

� �
j based on linear

matrix decomposition.
Through network fusion, cross-modal deep fusion, hetero-

geneous class matrix transformation, and cross-modal normal-
ized matrix decomposition, the modal semantic features of
complex network models with obvious semantic deviation
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are simplified into semantically transparent cross-modal net-
work fusion semantics.

The heterogeneous semantic features shown in Fig. 1
refer to the semantic differences between the upper and
lower heterogeneous elliptic data samples. Cross-layer
mapping refers to the normalization of heterogeneous se-
mantic features through multi-layer semantics and cross-
modal fusion and the consistent results.

It is assumed that there exists a shared semantic space
for cross-modal fusion of random dimensions in cross-
level large data sample retrieval and visualization process-
ing. At this time, the query results and visualization pro-
cessing results of large data samples with different dimen-
sions and different layers of heterogeneous semantic map-
ping relations can be obtained from their respective cross-
modal heterogeneous semantic feature spaces to map low-
dimensional subspaces in the shared cross-modal fusion
semantic space. Thus, the constructor of mapping low-
dimensional subspaces can be expressed as

f Xð Þ ¼ FS ⋅WS

g Nð Þ ¼ WS ⋅DNd

�
ð1Þ

Here, d is the dimension of shared cross-modal fusion
semantic space, while FS and WS map the retrieval result
matrix and visualization result of large data samples of
heterogeneous semantic mapping relationship to the
weight matrix of low-dimensional subspace, respectively.

In order to eliminate the dimensionality randomness of
cross-modal fusion semantic space in mapping low-
dimensional subspace, we use Eq. (2) to obtain normal-
ized semantic correlation between cross-modal fusion re-
trieval sequence and visualization sequence of large data
samples expressed in low-dimensional subspace. Based
on the semantic correlation obtained by Eq. (2), we design
a shared space that can minimize the difference between
cross-modal fusion semantics and low-dimensional sub-
space in the emotional computation of data-driven edge
networks. The description of the optimization objective is
detailed in Eq. (3).

Ri; j
S ¼ ∑

i; j¼1
xi FS−xi; jWS

�� ��2

NS ¼ ∑
k¼1

RS
k RS−WSk k2

8>><
>>:

ð2Þ

The correlation matrix representing the cross-modal se-

mantic space of the first j-level is presented as Ri; j
S . NS repre-

sents the normalized matrix of FS semantic space based on RS

correlation.

min
RS ;NS

jFS j DN ⋅WS−FSð ÞT

s:t: DNTN ¼ 1

ð3Þ

In order to achieve the optimization goal of Eq. (3), the
number of data incentives computed by cross-modal edge
network data incentives can be used as the normalization
basis of matrix and visual semantic consistency for large
data fusion samples. In the emotional computing of edge
networks, most of the retrieval bases inspired by emotion-
al data are iterated in the form of visualization. The edge
network can traverse all edge network data samples before
collecting emotional data. Therefore, emotional comput-
ing in edge networks tends to be based on the correlation
between data incentive criteria and their sample semantic
retrieval criteria. Therefore, the mapping of emotional da-
ta in low-dimensional semantic space of edge network can
be used as the basis of emotional data motivation and
consistency of visual processing. Without losing general-
ity, the higher the number of data incentives in the edge
network, the smaller the consistency between the compu-
tational complexity and visual processing of the corre-
sponding large data emotion in the shared cross-modal
fusion semantic space. Therefore, from the semantic space
of low-dimensional cross-modal mapping, algorithm II.A,

Fig. 1 Heterogeneous semantic features and cross-layer mapping

Pers Ubiquit Comput (2019) 23:363–372 365



an emotional computing optimization algorithm based on
visual processing design of edge network data, can not
only achieve the goal shown in Eq. (3) but also give full
play to the advantages of cross-modal fusion.

3 Data incentive algorithms for edge
networks

In the cross-modal fusion model, based on the cross-modal
non-linear relationship of distributed cross-layer aggregation,
each edge terminal of the edge network updates the data they
collect and their sample space in depth. Then, the time com-
plexity of feature extraction of different edge terminals in low-
dimensional space is optimized, and the time complexity of
centralized service cluster and the delay of data collection are
reduced by cross-modal fusion with centralized service cluster
nodes in edge network.

However, in data incentive of edge network, there are sev-
eral challenges that need to be solved urgently.

(1) There are overlapping delay gaps in large data collection
and error detection. These gaps make the determination

of the incentive weight of large data linear correlation. If
the network topology of centralized cluster service nodes
changes dynamically, according to the linear correlation
of the weights of different large data incentives, the spe-
cial edge terminals must be reselected for the large data
incentive edge network requirements. These terminals
must join a centralized server cluster and establish a ro-
bust and reliable clustering topology with centralized
service nodes of dynamic topology. In the distributed
cross-modal aggregation model, the reduction of edge
terminals and the unbalanced weight of large data incen-
tives lead to the deviation of each emotional data and a
certain number of emotional device entities in the edge
network.

(2) There is a certain contradiction between edge network
data processing and incentive weight. These contradic-
tions arise from the unbalanced characteristics of data
collection costs and user needs in edge networks. In
cross-modal convergent edge networks, there is a certain
time interval between the selection of edge terminals and
the allocation of centralized server cluster service nodes,
and there is a large data incentive imbalance space of
cross-modal convergence. The large data query in these
unbalanced spaces and the determination of incentive
weights become more complex work.

(3) The choice of emotional data is the most important basis
for emotional computing. However, how to determine
the source of emotional data, whether it is consistent with
large data incentive edge terminals, and whether the
weight basis of data incentive is unique, has become a
difficult problem in emotional computing.

In order to solve the first problem, i.e., delay gap overlap,
after selecting the edge terminal node, we first stimulate the
cross-modal fusion of the edge network, which is the most
relevant centralized server cluster node entity-related large
data information. Then, the edge network updates the data
incentive matrix of the terminal nodes of the edge network
based on the emotional computing needs. In the process of
updating incentive matrix, it is necessary to construct a dy-
namic topology robustness guarantee strategy for centralized
server cluster. In the edge network of cross-modal fusion, the
spanning tree is obtained with the centralized server cluster
node as the starting point and the minimum forwarding node
as the goal. The spanning tree can well describe the overlap-
ping delay gap between large data collection and error detec-
tion. In the process of discovering delay gaps, emotional com-
puting needs to be consistent with the linear relationship of
edge network data incentives and to be responsible for the
generation and distribution of data incentive weights. The
spanning tree of delayed gap control in the cross-modal fusion
edge network is shown in Fig. 2. The circle in Fig. 2 represents
large emotional data, and the arrow represents the delayed
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direction of error detection. The dotted ellipse represents the
centralized server clustering emotional data sample space.

At the same time, the spanning tree structure shown in
Fig. 2 can quickly find the emotional data needed in the
emotional computing task in heterogeneous semantic
space. Figure 3 shows the cross-layer logic of the span-
ning tree shown in Fig. 2. The logical relationship LR1

requires data incentives from two tiers of edge network
terminals and centralized server clusters. Therefore, in or-
der to weaken the overlapping delay gap and its logical
relationship LR1, the spanning tree can be updated by the
logical relationship LR2, and the mapping subspace of
LR2 can be found in cross-modal fusion. Of course, in
order to achieve rapid weakening, the distributed edge
network topology and centralized server cluster relation-
ship are further coordinated according to the large data
incentive weight matrix.

After solving the first challenge, we design the edge
network data incentive algorithm. The algorithm aims at
solving the second and third challenging problems. Before
the design of the algorithm, the data structure and the
incentive weight of each emotional data in the edge net-
work are given. For each edge network sentiment data in
the cross-modal fusion space, they have their own unique
number, data structure, and cross-modal attributes. In ad-
dition, each emotional data records emotional events and
their data processing intervals. Aiming at the contradic-
tion between edge network data processing and incentive
weight, based on the analysis results of contradiction
sources, the structure of emotional data is optimized. In
the optimization, both the cost of data collection and user
needs of edge network are considered. Starting from the
data space of emotional events and their preservation and
completion events, according to the contradiction imbal-
ance, mapping factors Q1, Q2,…, Qn are established for
each data structure of emotional data, where n is the rank
of the corresponding edge network data incentive matrices
for cross-modal fusion and cross-layer data incentives.
The mapping factor is the weight of the weight matrix
to coordinate the edge network data incentives. Mapping
factors help to update data incentive weights and discover
shared attributes across modal fusion subspaces. These
shared attributes can improve the efficiency of emotional
data selection and effectively determine the source of
emotional data, while maintaining consistency with large
data incentive edge terminals.

As the objects of Figs. 2 and 3, the computation of
safety data and the corresponding emotional events and
the time interval of data incentive in the edge network
of the cross-modal fusion model can update the mapping
relationship of emotional events, the extraction of emo-
tional features, and the input of large data incentives in
real time. Each emotional event producer of the edge net-
work uses vector occurrence and affiliate to store the in-
formation of the current emotional event and affiliated
emotional event in the spanning tree logic relationship
shown in Fig. 3 and uses positive real DPH to record
the number of branches from the edge network terminal
node of the current emotional event to the leaf node of the
spanning tree (Table 1).

LR1

LR2

Fig. 3 Cross-layer logical relations of spanning trees

Fig. 2 Spanning tree for delayed gap control
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4 Emotional computing algorithms
for cross-modal data fusion

The edge network ismapped to a finite data set space from the set
of emotional data elements inspired by heterogeneous emotional
events. All emotional events and emotional data elements in the
space are balanced. The probability of emotional events in the
cross-modal fusion model is both independent. Emotional com-
puting relies on the current cross-modal fusion of emotional data
collection efficiency of edge networks and the input data incen-
tive status of dynamic capture of emotional events. It is assumed
that the data incentive state of emotional events has the charac-
teristics of distributed randomness, such as emotional event sub-
ject, emotional data forwarding node, emotional data incentive
node, and edge network topology. These characteristics can not
only help the dynamic updating of the cross-modal fusion model
but also improve the accuracy of emotional event data incentive
in the edge network. They can also help the mapping variable
transformation of multi-level data incentive and cross-modal fu-
sion and the determination of their relationships. Therefore, emo-
tional computing has a cross-modal category of emotions at dif-
ferent times. These different kinds of emotions are directly

related to the random environment of the edge network. The
emotional data incentives and computational behaviors of
cross-modal data fusion are identified by probability distribution.
In order to calculate the probability distribution, we represent the
cross-modal emotional data as a distributed edge probability ma-
trix. These probability matrices are helpful for calculating the
stochastic state transition matrix, as shown in Fig. 4.

Figure 4 shows the random state transition matrices of
probability distribution composed of four different edge prob-
ability matrices. Cross-modal fusion edge terminal data exci-
tation is used as the transition entry of Fig. 4. These data
incentives are the initial state of emotional events in emotional
computing. The transition probabilities of these states are

Fig. 4 Stochastic state transition matrix

Table 1 Symbols and their definitions

Label Definition

Occurrence Information of current emotional events in spanning tree
logical relations

Affiliate Information on affiliated emotional events

DPH The number of branches from the edge network terminal
node of the current emotional event to the generating
leaf node

368 Pers Ubiquit Comput (2019) 23:363–372



determined by the transition probabilities and iteration delays
of the four different matrices in Fig. 4. Each matrix given in
Fig. 4 is a dynamic real-time matrix inspired by cross-modal
fusion model and edge network data. There is a strong ran-
domness in any emotional computation in the set of heteroge-
neous and different categories of emotional events. Moreover,
for any emotional event capture and emotional computation,
they all have the possibility of transferring as shown in Fig. 4.

To sum up, the process of emotional computing is an iterative
process of random state capture and transfer. Because this pro-
cess occurs in the shared space of cross-modal fusion and the
subspace of linear mapping, each emotional event is a discrete
event independent of each other, and the probability of emotional
state transition of each emotion can be obtained by formula (4).

p eventjX½ � ¼
∑
i
xi α;βð Þγ

∑
j
h event j
� �

h yð Þ ¼ ∑
k
FS yð ÞQk

8>>><
>>>:

ð4Þ

The function h(y) denotes the emotional state of solving
FS(y) according to the mapping factor Q. p[event | X] can be
transferred according to the emotional state of h(y), and emo-
tional computation is carried out in gamma space under the
cross-modal fusion of vectors alpha and beta.

In the process of emotional computing, the edge network
data incentive of emotional event mapping directly affects the
discrete degree of the state distribution of the emotional com-
puting results. The clustering core position of the weight dis-
tribution of emotional events and emotional data incentive

states collected by edge networks plays a decisive role.
According to the previous cross-modal fusion model, edge
network data collection algorithm, and data incentive mecha-
nism, the probability distribution of emotional data can be
calculated according to the centralized server cluster state of
emotional events recognized by edge network and the data
cluster state of emotional events collected at present, based
on the active emotional events, cross-modal states, and dis-
tributed edge network. The network state shows the possible
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Fig. 5 Emotional computing average performance: a accuracy of
emotional computing, b number of iterations, and c delay

Table 2 Emotional
proportion Emotion Proportion (%)

Happiness 5

Anger 5

Disgust 10

Fear 12

Sadness 10

Surprise 5

Interest 2

Surprise 6

Pain 8

Disgust 10

Pleasure 15

Anger 23

Fear 25

Sadness 26

Shyness 10

Contempt 8

Guilt 9
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output results and the output probability of emotional compu-
tation in cross-modal data fusion.

5 Simulation experiment and analysis

We use the mixed programming of MATLAB and C++ to
realize all the contrast algorithms. Due to the disorder of emo-
tional images and multimedia data submitted by edge terminals
after network forwarding, the time delay of cross-modal, multi-
modal, and fusion perception emotional computing will also be

affected. We classify emotional data across layers according to
the size of edge terminals and their delay in submitting emo-
tional data. Each emotional subclass contains 1250 emotional
event users in the data set. These emotional events will be
randomly divided into 52 groups based on cross-modal fusion
and its mapping weights. Each time, we do experiments in a
group, and finally we calculate the average and standard devi-
ation of the performance. The proportion of different emotions
in the experimental data set is detailed in Table 2.

We compare the performance of different-scale edge network
emotional data for heterogeneous emotional computing. The
Edge Network data Incentive algorithm (ENI) and Cross-modal
data Fusion Emotional Computing algorithm (CFEC) are used as
the comparison algorithms. The proposed algorithm is recorded
as ECENE. The average performance of emotional computing
using different emotional data incentives and different processing
methods is shown in Fig. 5 (abscissa is the scale of emotional
events), where (a) shows the accuracy of emotional computing,
(b) shows the number of iterations, and (c) shows the delay.

From the experimental results, we find that:

(1) Generally, the performance of cross-modal fusion of dif-
ferent kinds of emotional events is better than that of
single-modal and multi-modal feature fusion, which
may be because cross-modal feature extraction of emo-
tional events can effectively mine different emotional
event features using cross-layer mapping space

(2) The proposed ECENE algorithm can adapt to almost any
scale of emotional events. The average performance of
sensory events is better than that of baseline method

Algorithm IV.A 
1 Input: Q1, Q2, ·  ·  ·  , Qn, α, β, γ

2 for p=1 to n

3 for q=1 to 2

4 invoking Algorithm II.A

5 if

2

2
1

S S

S S

DN W F

DN W F

6 if Qp<Qp-1

7 update α

8 end if

9 update β

10 end for

11 end for

12 update γ

13 while x!=null do

14 calculating p with formula (4)

15 calculating h with formula (4)

16 end while

17 Output: p, h

Table 3 Accuracy of emotion recognition

Emotion ENI (%) CFEC (%) ECENE (%)

Happiness 35 45.7 94.6

Anger 45 52.7 93.5

Disgust 50 55.6 92.6

Fear 52 62.4 95.2

Sadness 60 71.6 92.6

Surprise 15 15.6 90.5

Interest 52 51.8 95.6

Surprise 61 62.5 95.7

Pain 18 21.8 90.5

Disgust 10 30 89.5

Pleasure 14.5 16 92..5

Anger 20.3 25 87.8

Fear 22.5 28 90

Sadness 76 72 87.9

Shyness 70 71 88.9

Contempt 78 79 90.2

Guilt 69 70 89.5
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(3) With the increase of emotional events, the characteristics
of discriminating emotional data of different modes and
edge networks are different; but only by combining
cross-modal fusion with emotional incentives of edge
networks, and carrying out emotional computation based
on random distribution, can we better meet the needs of
emotional computing

(4) For emotional events containing similar emotional states,
only the proposed algorithm ECENE has satisfactory
accuracy

(5) The overall accuracy, iteration times, and delays of ENI
and CFEC algorithms are subject to external interfer-
ence, especially the dynamic changes of cluster topology
of centralized servers, indicating that only distributed or
centralized algorithms are used to deal with heteroge-
neous emotional events. Recognition and emotional
computation are not enough

Table 3 shows the recognition accuracy of three contrast
algorithms for all emotions in Table 2. The proposed algorithm
ECENE has an average recognition rate of more than 92.5% for
all kinds of emotions, 52.5% higher than ENI and 42.5% higher
than CFEC. The performance improvement of the proposed
algorithm ECENE can be attributed to three reasons:

(1) The deep cross-modal fusion scheme of the proposed
algorithm ECENE can capture the semantic deviation
between multi-modals through non-linear cross-layer
mapping. The cross-modal data fusion method of the
proposed algorithm ECENE can combine the deep min-
ing network and the cross-modal data fusion method to
learn the fusion semantics of each cross-modal and large
data space and construct the cross-modal network model.

(2) The low-dimensional space of the proposed algorithm
ECENE aggregates the features of different edge termi-
nals and reduces the time complexity of feature extrac-
tion. Then, the proposed algorithm ECENE can optimize
the time complexity of centralized service cluster and
reduce the latency of large data collection through
cross-modal fusion with centralized service cluster nodes
in edge network.

(3) The proposed algorithm ECENE can not only update the
cross-modal fusion model dynamically but also improve
the data incentive accuracy of emotional events in the
edge network. It can also accurately determine the map-
ping variable transformation between multi-level data
incentive and cross-modal fusion and their relationships.

6 Conclusions

This paper presents an emotional computing algorithm which
combines cross-modal fusion and edge network data

incentive. The proposed deep cross-modal fusion scheme
can give full play to the advantages of non-linear cross-layer
mapping, deeply capture the semantic deviation between
multi-modals, and design the corresponding deep fusion
method. The above research designs a cross-modal data fusion
method based on deep fusion. Starting from the overlapping
delay gap, incentive weight, and balance contradiction be-
tween large data collection and error detection, this paper de-
signs a data incentive algorithm for edge network. Based on
the above research, a cross-modal data fusion algorithm is
designed by combining edge network data incentive and
cross-modal fusion. Emotional computing mapping and emo-
tional data element set inspired by heterogeneous emotional
events are shared, and a finite data set space is constructed.We
have carried out a series of simulation experiments and theo-
retical analysis. Our main contribution concludes the follow-
ing: (1) The cross-modal fusion network model was devel-
oped. (2) The data incentive algorithms for edge networks
was designed. (3) We indicated the emotional computing al-
gorithms for cross-modal data fusion.

The results show that the average performance of the pro-
posed algorithm is 25% higher than that of ENI and 18.5%
higher than that of CFEC. The proposed algorithm has an
average recognition rate of more than 92.5% for all kinds of
emotions, 52.5% higher than that of ENI and 42.5% higher
than that of CFEC.
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