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Abstract
Scale-invariant feature transform (SIFT) is one of the widely used interest point features. It has been successfully applied in
various computer vision algorithms like object detection, object tracking, robotic mapping, and large-scale image retrieval.
Although SIFT descriptor is highly robust towards scale and rotation variations, the high computational complexity of the
SIFT algorithm inhibits its use in applications demanding real-time response and in algorithms dealing with very large-scale
databases. In order to be effective for image matching process in near real-time, the Compute Unified Device Architecture
(CUDA) application programming interface of a graphics processing unit (GPU) is incorporated to speed up or improve the SIFT
method. Experimental results show that the proposed GPU-based SIFT framework is suitable for image application in real time. It
can improve the image matching process both in time and accuracy compared with conventional SIFT method.
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1 Introduction

Currently, a graphics processing unit (GPU) has been widely
used in general-purpose computing [1]. Due to the program-
mability of hardware, the applications of earlier general-
purpose computing are limited; the development is also very
difficult. NVIDIA launched the Compute Unified Device
Architecture (CUDA) [2], a parallel computing device as a
data system of hardware and software. The programming style
is simple, and it uses a multi-thread parallel processing and
makes people take good advantage of GPU.

On the other hand, image matching is a key technology of
image processing; it is the basis for the more advanced image
processing technology. SIFT matching algorithm is a stable
feature-based matching algorithm. SIFT has better resistance
for scaling, rotation transformation, and illumination. It is a
hot research field of image processing [3].

While SIFT matching algorithm has many advantages, it is
a time-consuming operation. And since it is a matching algo-
rithm based on feature, the number of matching points is less.
The obtained matching points cannot satisfy the demand for
generating a disparity map. Therefore, the applications are
limited. SIFT matching algorithm exists with these two prob-
lems. On the one hand, this paper discusses the traditional pre-
processing algorithms, analyzes the parallelism of the algo-
rithms, and implements gray conversion, Gaussian filtering,
histogram equalization, and Wallis filtering on CUDA [4].
And the paper improves the original SIFT algorithm, it makes
matching points that get from the original algorithm as seed
points, and then make regional growth, traverse the entire
image, so you can get many matching points which are good
for generating the disparity map. On the other hand, the paper
uses the CPU and GPU heterogeneous platforms and analyzes
the CUDA programming model and memory model. We di-
vide the tasks of SIFT matching algorithm and analyze the
algorithm in detail so the algorithm can be carried out on
CUDA. GPU accelerates the speed of the algorithm [5].

The experiment of the regional growth algorithm based
on SIFT was carried out on the platform of binocular vi-
sion; it verified the effectiveness of the improved algorithm
[6]. In order to evaluate the acceleration of GPU more
directly, the experiment of the SIFT matching algorithm
based on GPU was carried out in a variety of different
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scenarios. The results show that the algorithm not only
improves the speed of the algorithm on CUDA, but also
ensures the stability of the original algorithm. The efficien-
cy of the algorithm has been improved in [6], where an
improved SIFT algorithm is proposed in this paper for the
problem of SIFT algorithm (scale-invariant feature
transform) which has high computational complexity and
long running time. In order to solve this problem, the im-
proved SIFT algorithm in this paper expands the range of
extremum points to reduce the number of extreme points so
as to increase the speed of operation. Furthermore, the
improved algorithm uses a circular window of 12 rings
instead of the traditional square window and simplifies
the construction of SIFT feature descriptors by generating
78-dimensional SIFT feature descriptors, which further im-
prove the operation speed of the algorithm. For the best
experimental results, a simple yet robust method is used
in this improved algorithm [7]. It is applied in the initial
registration search between feature point pairs and is used
to perform secondary processing on the feature point reg-
istration pairs to eliminate mismatching. Finally, this paper
combines the improved SIFT algorithm with the gradual
image fusion algorithm to realize the mosaic and fusion
of time series images. To evaluate the experimental effect,
this paper uses partial patch detection to evaluate after im-
age matching and SIFT feature extraction. The experimen-
tal results show that the algorithm of this paper has fast
computation speed, high robustness, and good fusion ef-
fect. The SIFT matching algorithm can extract feature
points that have a strong resistance to the external environ-
ment, and the matching using vectors is relatively stable.
However, since the algorithm itself is too complicated, and
it takes a lot of time to obtain the feature point, it will be
limited in practical applications. In order to speed up the
process, a simple yet robust SIFT algorithm based on GPU
acceleration platform is proposed for improving the run-
ning speed. The SIFT matching algorithm is optimized
parallelly, and the tasks are correctly assigned on the
CPU and GPU so that the SIFT matching algorithm is
implemented on the CUDA platform. Our proposed paral-
lel programming architecture is applied to the SIFT-based
region matching algorithm, where many standard images
are used to evaluate the efficiency of the algorithm.

2 Our improved SIFT algorithm

The SIFT algorithm constructs the scale space of the image to
detect the extreme points so as to determine the key point [8].
And then the key point is taken as the center to get its neigh-
borhood, which can construct the SIFT feature point descrip-
tor. And finally, the image is registered according to the ob-
tained feature descriptor.

2.1 Detection of key points in scale space

The SIFT algorithm constructs the Gaussian pyramid of the
image by Gaussian function and then uses the image differ-
ence between the adjacent Gaussian scale spaces in the
Gaussian pyramid to represent the response value image of
the difference of Gaussian (DoG). The DoG response image
can be expressed as

D x; y;σð Þ ¼ G x; y; kσð Þ−G x; y;σð Þð Þ⊗I x; yð Þ
¼ L x; y; kσð Þ−L x; y;σð Þ ð1Þ

where I is the original image, L is the scale space of the image,
the size of σ is denoted as the different scales, and the larger
the σ is, the more blurred the image is.

After establishing the differential Gaussian pyramid [9], the
DoG local extremum points are initially detected and their
spatial positions and scales are accurately located. Since the
candidate extreme points for coarse search include unstable
points with weak contrast and strong edge response, the curve
fitting strategy is used to eliminate unstable extreme points in
the candidate sets. After removing the unstable key points, the
gradient direction distribution characteristics of the neighbor-
ing pixels of the remaining qualified key points are calculated
to determine the direction of the key points. The direction of
some key points includes the main direction and other direc-
tions, and finally the SIFT feature area can be obtained.

2.2 Local feature description

The calculated key points are described to obtain a local fea-
ture descriptor, which includes three parts: correcting the main
direction of rotation, generating descriptors, and normalizing.
After adjusting the coordinate axes according to the direction
of the key points to make the two consistent, in the scale space
corresponding to each key point, a square window centered on
the key point and having a size of 16 × 16 is selected as a
neighborhood range [10]. The range is divided into 4 × 4
sub-regions, and the gradient magnitude and direction of the
pixels on each sub-region are calculated to obtain a cumula-
tive histogram of the gradient information, and a seed point
containing eight-direction vector information is generated.
Thus, a key point can generate a 4 × 4 × 8 = 128-dimensional
SIFT feature descriptor [11]. Each feature descriptor includes
not only key points, but also pixels that contribute to it around
the key points. This has indicated that the image information
of the area is unique. Finally, the feature descriptors are nor-
malized to eliminate the effects of illumination changes.

The SIFT matching algorithm can extract feature points
that have a strong resistance to the external environment,
and the matching using vectors is relatively stable. However,
since the algorithm itself is too complicated, and it takes a lot
of time to obtain the feature point, it will be limited in practical
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applications. In order to speed up the process, a simple yet
robust SIFT algorithm based on GPU acceleration platform is
proposed for improving the running speed. The SIFT
matching algorithm is optimized parallelly, and the tasks are
correctly assigned on the CPU and GPU so that the SIFT
matching algorithm is implemented on the CUDA platform
[12]. Our proposed parallel programming architecture is ap-
plied to the SIFT-based region matching algorithm, where
many standard images are used to evaluate the efficiency of
the algorithm.

3 GPU-based heterogeneous architecture
for SIFT

The so-called heterogeneous computing refers to the collabo-
rative computing of CPU + GPU or CPU + other devices
(such as FPGA [13–16]). Generally, our program is calculated
on the CPU. However, when a large amount of data needs to
be calculated, the CPU seems unable to solve it. Therefore,
heterogeneous computing can be adopted to improve calcula-
tion speed. For example, the computing power of a computing
device such as a CPU (central processing unit), a GPU
(graphics processing unit) [17], or even an APU
(Accelerated Processing Units) [18] can be utilized to increase
the speed of the system. Heterogeneous systems are becoming
more common and are receiving increasing attention for com-
puting [19].

Recently, the most used heterogeneous computing is to use
the GPU to accelerate [20]. The mainstream GPUs all use a
unified architecture unit. With a powerful programmable
stream processor, the GPU is far behind the CPU in single-
precision floating-point operations [21]. The complete process
based on GPU architecture is shown in Fig. 1.

Firstly, the data is initialized on the CPU, and then the task
is divided; the task suitable for GPU parallel is sent to the GPU
for processing. Therefore, the parallel analysis and implemen-
tation on the CUDA platform are achieved, and finally the

calculated result is transmitted back to the CPU, where the
final result is generated.

According to the above process, a parallel analysis of the
SIFT matching algorithm is implemented on the CUDA plat-
form, which can accelerate the algorithm performance. It is
necessary to divide the algorithm into correct tasks. Different
task partitioning will produce different acceleration effects,
and the wrong task partitioning may even have counter-ef-
fects, so it is very important to analyze the parallelization of
the algorithm [22].

In the SIFT algorithm, tasks with strong logic or less com-
putation are placed on the CPU. For example, image input,
image initialization, etc. can be placed on the CPU for pro-
cessing, and the Gaussian pyramid establishment and key
point extraction are placed on the GPU. The specific process
is to input an image on the CPU and calculate the Gaussian
kernel function data and pass the obtained convolution tem-
plate to the GPU constant memory, and in addition, the image
data is delivered to the GPU to establish a Gaussian pyramid.
Then, the adjacent image layers are subtracted in the CPU so
as to obtain a differential pyramid. The feature points are
detected in the differential scale space; the position and scale
information of the detected feature points are loaded into the
GPU. Thus, the key points are accurately located in the GPU,
and the main direction of the key points is extracted, and the
key point information is passed back to the CPU, then extract
the SIFT feature, and finally complete the SIFT feature
matching in the GPU.

In the process of completing the assignment task, the SIFT
algorithm should make full use of the advantages of the GPU
to optimize the parallel process. In general, the management
of stream can play the role of optimization algorithm. In
CUDA, a stream is an operation sequence. However, when
different streams are used for data transmission, they can per-
form parallel calculations at the same time. Stream processing
can reduce the delay in data processing between the host and
the device, which needs to use page-locked to store data on the
host to perform asynchronous transmission. The general

Global memory

Shared memory

P0 P1 Pn-1 Pn

P0 P1 Pn-1 Pn

Thread 1 Thread 2 Thread n-1 Thread n
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…

…

GPUFig. 1 Heterogeneous model
based on GPU architecture
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parallel tasks are divided into three steps: transferring data
from the host to the device, performing parallel processing
on the core function in the device, and displaying the data
from the device to the host. The data is sent back from the
device to the host, and there is no overlap. In parallel execu-
tion, the system can perform parallel processing on the device
while performing data transmission. When one stream is
transmitting data, the other stream can be processed in paral-
lel, which fully utilizes the performance of the GPU.

Optimizingmemory access also can speed up performance.
Each memory has its own characteristics. It combines the
memory with the data format and selects the appropriate mem-
ory to store the data. Shared memory has a very fast access
speed, and some intermediate data can be stored in it, which
can reduce access to global memory with relatively slow ac-
cess speed. However, if the storage space of the shared mem-
ory is limited, it is unrealistic to store all the data of the image
in the shared memory. The shared memory can be used to
store some data stored in the global memory, and then proc-
essed them. The specific use is shown in Fig. 2. The constant
memory is a read-only memory that can be accelerated by the
cache to store constant data that is constant and to be used
frequently. The mapping is similar to shared memory.

4 Parallel analysis for feature point detection

4.1 Construction of scale space

The construction of scale space is the basis of the whole SIFT
algorithm, where there are a lot of data calculations. In order to
build scale space, the steps of the SIFTalgorithm are described
as follows:

(1). The Gauss pyramid is grouped into t groups, and s is
defined as the number of layers betweenσ and 2σ. In

order to achieve continuous scale changes, each group
should be divided into s + 3 layers. This is because when
comparing the extreme values, the first and last two
layers of each group of images cannot be compared, so
it is necessary to continue Gaussian blurring on the top
layer of each group to generate three images.

(2). Calculate the Gaussian kernel of each layer of the
Gaussian pyramid.

(3). The second layer of images can be obtained by convo-
lution in the first layer, and the entire set of Gaussian
pyramids can be obtained by analogy.

(4). The image obtained by down-sampling the middle layer
image in each group of images is used as the first layer
image in the next group of images, and then the previous
steps are repeated to obtain the entire image of the next
group. This is done in turn, and finally a complete
Gaussian pyramid can be constructed.

(5). The adjacent layers are subtracted in each group to gen-
erate a DoG space.

Step 1 and step 2 belong to the data preparation required for
the construction of the scale space; the parallel degree is not
high, and the amount of data is not large, so they can be placed
on the host for calculation. Steps 3 and 4 are a large amount of
parallel data for processing; this part is placed on the co-pro-
cessor, namely GPU so as to obtain efficient run-time perfor-
mance. The whole Gauss pyramid can be generated after t ×
(s + 3) cycles in the kernel function, and a layer of Gauss
pyramid image can be generated when the kernel function is
executed once. The generation of the differential Gauss pyra-
mid and the generation of the Gauss pyramid are simulta-
neous. For each layer of the image generated by the kernel
function, it is subtracted from the adjacent layer of the image
so that a layer of differential pyramid image can be generated.

In the process of image convolution, we adopt the convo-
lution method based on row-column separation. Thread

Fig. 2 Data multiplex for GPU
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patches are set to two-dimensional and threads are one-dimen-
sional. We use blocks to manage the row data and subdivide
the pixels into threads to calculate.We use sharedmemory and
texture memory to optimize the parallel degree. The task of
the differential pyramid is relatively simple. Each patch cal-
culates the data of a rectangular area in the image, and each
thread calculates the difference between the corresponding
pixels of the two adjacent layers of the image. The calculated
results are stored in the DoG memory area.

4.2 Parallel analysis for extreme point detection

In order to determine if a pixel is an extreme point in SIFT, the
steps are shown as follows:

(1) If the value of each pixel in differential Gaussian space is
greater than or less than the eight pixels around it, the
next step will be taken.

(2) Comparing the remaining points with the nine adjacent
pixels in the upper and lower layers, if the value is greater
or less than the pixels, the next step will be taken.

(3) After five times of interpolation, the position of the ex-
tremum is accurately located to sub-pixel level, and the
contrast after interpolation is judged. If the value is
smaller than the threshold, this point will be removed.

(4) The edge points are judged by the Hessian matrix.

The detection of the extreme points between the groups is
performed separately, because the pixels of the images between
the different groups are different and independent of each other.
The loop for t times a kernel function is executed to complete
the detection of extreme points in a set of image data. In this
paper, we do not directly compare the pixel points with the 26
pixels around but compare them with the 8 pixels of the same
layer. After removing most of the unqualified points, it is com-
pared with the adjacent points in the upper and lower layers,
which greatly speeds up the efficiency of the algorithm. Two-
dimensional block and one-dimensional thread are adopted to
process the detection of extreme points. Given each block to be
responsible for 16 × 16 pixels, so for an image with the size of
width × height, we need (width + 1) × (height + 1) blocks if its
width and height cannot be divisible by 16. So block in the
calculation to remove the remaining data that can be divisible
by 16, not only needs cross-border judgment, warp also make
branch judgments. In order to improve the result, if the width
and height of the image cannot be divisible by 16, the zero
element is added to the outer edge of the image, so that the
width and height of the image can be divisible by 16, which can
reduce the branch judgment of the warp.

In the implementation of the kernel function, the definition
of two-dimensional block contains 256 threads, and each thread
processes one pixel. Therefore, the shared memory will be used
to speed up the storage of data. The data in each patch can be

communicated through shared memory, and the image data of
the DOG space calculated in the patch is stored in the shared
memory, which can be used when calculating the main curva-
ture and contrast. As you can see, these operations can improve
the efficiency of the program. In addition, the use of stream can
improve the use of the GPUwhen the edge points are removed.

4.3 Calculation of feature point gradient

When calculating the gradient of the feature points, the re-
quired data has the data of the detected feature points and
the pixel points around the feature points. Since the scale
and position of the feature points are not fixed, the actual input
is the data of the differential pyramid space; the detailed cal-
culation steps are as follows:

(1) The range of histogram is divided into 10 directions, and
the modulus and direction of the pixels in the range of R
are calculated around the radius of the feature points.

(2) Calculate the Gauss weights of points in the range with R
radius, transform 10 directions into array indexes from 1
to 10, and then add the product of Gauss weights and
modulus to the corresponding values of the index.

(3) The direction of maximum modulus in the histogram is
taken as the main direction, and the direction of 80%
peak value is added as the secondary direction to the
feature point array.

As can be seen from the above analysis, the task of calcu-
lating the feature point modulus and direction can be placed
on the GPU, and the task of searching the main and secondary
directions is placed on the host. If the task of finding the
direction is also placed on the GPU, the branch of the warp
will be added again and using the _syncthreads() for synchro-
nization, which will affect the speed of the kernel function.
There are only 10 directions in S, and the calculation is not
complicated. It is allowed to run on the CPU.

Considering that each patch supports up to 1024 threads for
parallel processing, we take r as 15. In fact, the farther away
from the feature points, the smaller the influence of the pixels
on the feature points, so the calculation of the main direction
with r = 15 has little influence.

4.4 Feature descriptor calculation

The calculation of the feature descriptor is similar to the cal-
culation of the feature point gradient. The necessary input data
in the program has an array of feature points and differential
pyramid data.

For a 16 × 16 area, it is divided into 16 small areas, and
each small area generates an 8-dimensional vector, so that the
feature point descriptor of the 128-dimensional vector can be
used to obtain the invariance of the brightness change through
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normalization.When processing on the GPU, a thread patch is
used to process a 128-dimensional vector of a feature point,
and each thread corresponds to a sample point; in other words,
a contribution of a seed point formed in a small area to a
feature point can be processed. The obtained results are added
to each direction, and finally the entire grid can obtain a 128-
dimensional vector of all feature points. Normalization is
placed on the CPU that handles logical transaction processing.

4.5 Parallel analysis of feature matching

The more time-consuming in SIFT feature matching is the
search work on the KD-tree. In our proposed architecture,
KD-tree is built on the CPU, and the work on the GPU is to
find the two nearest neighbors. Given a thread patch to contain
128 threads and if we use a thread to search for a feature point,
then a patch can search 128 feature points.

When the number of feature points is less than 128, the
zero-padding operation can be performed according to the
described method above, which satisfies the minimum calcu-
lation requirement of one thread patch, and reduces the over-
head for making judgments. When the number of feature
points is much larger than 128, parallel calculation is per-
formed directly with multiple thread patches. After the KD-
tree is built on the CPU, the texture memory cache is used here
to bind the KD-tree to the texture memory, which can greatly
improve the data access speed.When searching for the nearest
neighbor on the GPU, the data information found is stored in
the shared memory of each thread patch, which makes reading
the data more rapidly.

When searching for the nearest neighbor, the Euclidean dis-
tance is used to calculate the similarity between them. When
calculating the Euclidean distance between two points on the
GPU, it is assumed that the two key points stored in the global
memory are represented by eight-dimensional vectors, which are
a vector (a0, a1,⋯, a7) and b vector(b0, b1,⋯, b7) respectively.
The square value of the difference calculated for each dimension
is stored in the shared memory, and then the square root of the
result is obtained by three times accumulation operation. Thus,
the Euclidean distance between a and b vectors is obtained.

5 Experiment results and analysis

The CUDA and CPU experiments in this paper are running
under the Ubuntu 16.04 LTS environment using the Terrans
Force X411 computer which is configured for Intel Core i7-
6700HQ, RAM 16GB, NVIDIA GeForce GTX 1050Ti; the
embedded experiments used the NVIDIA TX2 development
board. Software development kits such as NVIDIA CUDA
Toolkit 8.0 and OpenCV 3.2.0 are used in the experiment in
this paper. We use SIFT+ GPU to capture real-time collection
and record the matching time of each stage. Experiments show

that the SIFT + GPU algorithm proposed in this paper has a
distinguish performance improvement in the feature extrac-
tion and feature matching, whose speed is 639 times of classic
SIFT algorithm.

5.1 Evaluation index

In order to verify the efficiency of the GPU-based SIFT algo-
rithm proposed in this paper, we will test the standard images
provided by the benchmark database. These standard images
are all corrected. By comparing the feature points obtained by
our proposed algorithmwith those of traditional SIFTmethods,
we can evaluate the effectiveness of the algorithm more accu-
rately. The commonly used evaluation indicates the percentage
of mismatched pixels. The expression is written as follows:

e ¼ 1

N
∑ jdc x; yð Þ−dT x; yð Þj≥δdð Þ ð2Þ

where dc(x, y) is the disparity of the calculated disparity map at
the point (x, y), dT(x, y) is the disparity of the real disparity map
of the image at the point,N is the sum of pixels in images, andδd
is the threshold of error detection, which is generally equal to 1.

5.2 Qualitative and quantitative performance analysis

In order to better analyze the experimental results, six groups
of images with different size are selected for experiments. The
size of six groups of image pairs to be matched are 256 × 320,
512 × 640, 720 × 540, 1024 × 768, 1080 × 810, and 1080 ×
1920, respectively. Since the matched images are the same
and the process is similar, the image matched effect on GPU
and CPU is almost the same, but the efficiency of image
matching is different. Therefore, instead of repeating the effect
image in the process of matching based on CPU and CPU+
GPU platform, we focus more on comparing the speed of
image matching. Due to space limitation, only a set of exper-
imental results are given here.

The resolution of the two images is 1080 × 1920 in Fig. 3
where the image of (a) and (b) is from the benchmark data-
base. Figure 3c is the registered points for rough matching in
the basis of SIFT feature points. From the figure, it can be seen
that there are still some mismatching pairs among many fea-
ture points, which will have a great impact on the accuracy of
the calculation results of the transformation matrix of the two
images. Therefore, precise matching of feature points should
be carried out. Figure 3 d is an image obtained by precise
registration of the calculated matching points by iteration
using GPU matching algorithm. It can be seen that the
matching of feature points in the overlapping area of the two
images is basically correct, and there is no obvious mismatch.
Since the results of CPU and GPU are similar, the validity of
GPU is fully illustrated.
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The data in Table 1 is the time and the number of feature
points taken by the SIFToperator to execute on the CPU serial
and the GPU parallel, respectively. In addition, the accelera-
tion ratio is adopted to verify the effectiveness of our archi-
tecture. In order to avoid the random error caused by computer
cache and other factors, this paper executes the SIFTmatching
in each group of images on the CPU and CPU + GPU hetero-
geneous platform for 10 times and then obtains the average
value as evaluation index, using the average value as the table.
The data value of each item.

From the number of feature points of the six groups of
images in Table 2, the SIFT algorithm performs the same num-
ber of feature points on the CPU andGPU respectively. In other

words, the results of the SIFTalgorithm executing the extracted
feature points on CPU and GPU are consistent. From the per-
spective of algorithm performance, the time taken by the SIFT
operator in Table 2 to execute on the CPU serial and GPU
parallel is related to the amount of computation. From the im-
age itself, the time spent by the SIFTalgorithm ismainly related
to the resolution of the image and the number of extreme
points. The greater the resolution of the image is, the longer
the data transmission time between the CPU and the GPU is. In
the process of DOG pyramid construction, it is directly operat-
ed with each pixel of the image, and the more pixels in the
image, the more time it will take in this respect; in addition,
the more extreme points in the image, the more time it will take
to eliminate extreme points and construct feature descriptors.

The experimental data of group E and group F in Table 2
have the same image resolution, but they contain a different
number of feature points. The more feature points extracted
from two images in group F, the more time it takes and the
greater the acceleration ratio. Such results also verify that the
more data the GPU calculates, the more obvious the parallel
acceleration effect is.

In the six groups of experiments, the two images in group
A have the lowest resolution and the least feature points. In the
SIFT parallel computing, the acceleration effect is the worst,
but the acceleration ratio is still 1.836. Therefore, the parallel

(a) Frame 1 (b) Frame 2

(c) CPU-based Image matching

(d) GPU-based Image matching

Fig. 3 Comparison results of
image matching on CPU and
GPU. a Frame 1. b Frame 2. c
CPU-based image matching. d
GPU-based image matching

Table 1 Performance comparison for image matching on CPU and
GPU

Images CPU-based
image matching

GPU-based
image matching

A (256 × 320) 3 2
B (512 × 640) 9 9
C (720 × 512) 8 7
D (1024 × 768) 9 8
E (1080 × 810) 7 7
F (1080 × 1920) 8 8
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design of the SIFT algorithm is feasible in this paper. The two
images in group F have the best acceleration effect, reaching
7.12. As can be seen from Table 2, the resolution of these two
images is the highest, and the feature points in the image are
the most. Since GPU is good at dense data computing, the
acceleration effect of GPU-based SIFT feature point extrac-
tion is also the most obvious. For the D and E experiments, the
image resolutions are different. Although the image size of the
D group is slightly smaller than that of the F group, the images
in the D group contain more feature points than the E group,
so the acceleration effect of the group D is better than that of
the group E.

Table 3 shows the time spent on matching images in CPU
and GPU in six groups of experiments. In combination with
the number and time consumed by the SIFT algorithm in
Table 3 for feature points extraction on CPU and GPU respec-
tively, the acceleration effect of group A is poor. Firstly, the
image is relatively small, and the feature points are also the
least, so the calculation amount is also small, so the accelera-
tion effect on the GPU is not obvious. The best time to accel-
erate the image matching is the group E. It can be seen from
Table 3 that the acceleration effect of SIFT feature points
extraction from two images on GPU is not the best, but it
contains fewer feature points than group D and group F, so
the time of feature points matching in the latter is less than
group D and group F.

Fig. 4 and Fig. 5 are time comparison curves of SIFT
algorithm and image matching on CPU and GPU, respec-
tively. It can be seen that when the image pixels are small,
the GPU acceleration effect is not obvious. This is be-
cause when extracting feature points from the image with
small pixels, the data of the image is relatively small, and
the time of acceleration on GPU is relatively small. Then
the time of data uploading from CPU to GPU and the time
of data returning from GPU to CPU offset a large part of
the time of acceleration in GPU parallel computing. When
the pixels of the image increase, the acceleration effect of
GPU becomes more and more obvious. Although the time
of data information uploading to GPU and information
returning from GPU also increases, the parallel computing
acceleration effect is better, so it can better hide the part
of the time that the image increases when transmitting
data. However, when the pixel value of the image is large,
it will be limited by the bandwidth, which makes the data
transmission time between CPU main memory and GPU
display memory greatly weaken the acceleration effect of
GPU parallel computing.

Table 2 Comparison of SIFT feature points extraction on CPU and GPU

Images SIFT-CPU SIFT-GPU

Number of
feature point

Times Number of
feature point

Times Acceleration
ratio

A (256 × 320) 466 367 1.579 440 375 0.860 1.863

B (512 × 640) 1478 1761 6.367 1546 1765 1.798 3.540

C (720 × 512) 2413 2367 9.554 2406 2354 1.930 4.925

D (1024 × 768) 4119 4279 17.503 4180 4270 2.245 6.558

E (1080 × 810) 3691 3412 16.791 3691 3480 2.110 6.452

F (1080 × 1920) 3412 5218 18.764 3398 5218 2.606 7.2

Table 3 Comparison for image matching on CPU and GPU

Images CPU-based
image
matching

GPU-based
image
matching

Acceleration
ratio

A (256 × 320) 3.325 2.701 1.25

B (512 × 640) 14.524 9.524 1.462

C (720 × 512) 15.161 7.253 2.018

D (1024 × 768) 21.995 8.155 2.685

E (1080 × 810) 24.275 7.652 3.295

F (1080 × 1920) 23.162 8.132 2.819
Fig. 4 Time comparison curves of the SIFT algorithm on CPU and GPU
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6 Conclusions

Scale-invariant feature transform (SIFT) is one of the widely
used interest point features. It has been successfully applied in
various computer vision algorithms like object detection, ob-
ject tracking, robotic mapping, and large-scale image retrieval.
Although SIFT descriptor is highly robust towards scale and
rotation variations, the high computational complexity of the
SIFTalgorithm inhibits its use in applications demanding real-
time response and in algorithms dealing with very large-scale
databases. In order to be effective for image matching process
in near real-time, the Compute Unified Device Architecture
(CUDA) application programming interface of a graphics pro-
cessing unit (GPU) is cooperated to speed up or improved
SIFT method. Experimental results show that the proposed
GPU-based SIFT framework is suitable for image application
with real-time. It can improve the image matching process
both in time and accuracy compared with conventional SIFT
method. In the future, we will apply our proposed GPU frame-
work to UAV system so as to achieve high-precision wide-
area observation.
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