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Abstract
To solve skeleton extraction problems in the tree point cloud model, branch geometric features and local properties of point cloud
are utilized to optimize tree skeleton extraction. First of all, according to the attribute information estimation and normal vector
adjustment of point cloud neighbor domain, branch segmentation is made by estimated values and geometric features. Skeleton
nodes are extracted in the branch subset in segmentations. Then, a graph is constructed based on skeleton node set and tree
skeleton is reconstructed in this weighted directed graph. Finally, according to the tree growth characteristics, cubic Hermite curves
are utilized to optimize the skeleton curve. This method is applied in the point cloud model of three-kind trees and it is compared
with the skeleton extraction method based on voxel switch and point cloud contraction. The experiment results show that this
method displays strong anti-interference and high-precision characteristics at branch bifurcation and crossed ending parts of fine
tree branches. Thus, features of tree branches can be described more perfectly, obtaining the skeleton curve closer to the main axis.
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1 Introduction

With the increasing maturity of 3D laser scanning technology
and widespread use of 3D digital model, skeleton, as an effec-
tive and simplified manifestation of 3Dmodel shape, has been
widely adopted inmany fields, for example, geometric model-
ing, computer animation, virtual navigation, component split,
and shape matching. Digital 3D modeling field has paid more
and more attention to skeleton. The major reasons are not only
that the skeleton of the model can well maintain the topolog-
ical connectivity and its form of the original model, but also
that its 1D curve form is easier to operate and accurately guide

the reconstruction of 3Dmodel to solve the incomplete data in
the modeling process.

Trees are an important component in the natural environ-
ment and constructing its 3D model has always been a long-
term research hotspot in botany, computer graphics, and archi-
tecture. Current traditional skeleton extraction methods can be
classified into two types, body method and geometric method.
Bodymethod uses internal information of the applicationmod-
el for skeleton extraction operation. Common body methods
mainly include refining and distance field transformation. Ge
Yaorong, Palagyi, and Gong et al. provided a rapid refining
method and then the refined skeleton is settled and smoothed
to make results conform to skeletons better [1–4]. Che Wujun
and Yang Linian put forward an improved refinement algo-
rithm [5]. Firstly, traditional refining methods are used to con-
nect skeletons; then, snake model is introduced to adjust the
positions of skeletons so as to solve the inaccuracy. di Baja and
Svensson, Tran and Shih, Sundary, Niblack, and Gibbon et al.
proposed distance field-based skeleton extraction algorithm
[6–9]. Because voxel model-based data volume is huge, the
whole process is time-consuming. With 3D model surface in-
formation, skeleton extraction based on geometric method can
directly extract the model skeleton from polygonmesh or point
cloudmodel can greatly reduce the to-be-handled data volume.
Dey, Ogniewicz, Reddy, and Turkiyyah et al. proposed to
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utilize Voronoi graph to extract skeletons [10–12]. AVoronoi
graph owns a very huge calculation quantity and it is very
sensitive to boundary noise, which may lead to an overly dense
Voronoi graph. It may need extra cutting treatments, so this
method has no widespread use. Cao et al. extracted the curve
skeleton of the point cloud model with hole on the basis of the
Laplace operator point cloud shrinkage method [13]. George
Reeb put forward the concept of the Reeb graph [14]. This kind
of method shows good performance in topological structure
maintenance of the model while it still needs improvements
in maintaining tiny characteristics.

Tree branches own typical axial creep features, namely,
shapes which are mostly generalized cylinder and which show
a symmetric distribution along the axis of branches. At the same
time, tree point cloudmodel obtains the measuring point data on
the branch surface, so the point cloud distribution is directly
related to the branch geometrical morphology. This kind of geo-
metric correlation and axial symmetry of tree branches can be
taken as geometric constraint conditions of skeleton extraction-
based tree model. According to the symmetry of measuring
point normal vector and centrality of skeleton nodes, the skele-
ton of the tree model is extracted through branch segmentation.

2 Tree skeleton extractions based
on geometric features and point cloud
properties

On the basis of branch geometric features and point cloud
properties, for example, neighbor domain, normal vector,

and curvature, the key to model skeleton extraction is seeking
for an optimal model skeleton node. First of all, local least
square plane fitting is utilized to estimate the normal vector
of each measuring point. Then, point cloud is segmented into
different branches on the basis of the Mahalanobis distance.
Later, axial symmetry of branch point cloud is utilized to
estimate the optimal positions of skeleton nodes. Finally,
single-source shortest path is used to construct the linear skel-
eton of the model. The whole flow is shown as Fig. 1.

2.1 Estimation and adjustment of point cloud normal
vector

Normal vector is a concept in space analytic geometry and it is
a vector vertical to a tangent line of one curve or a tangent
plane of one curved surface. The tree point cloud in this study
is obtained by ground 3D laser scanning system. The data
volume is extremely huge, so this paper adopts local surface
fitting-based method [15]. The estimation from literature is
mainly about the eigenvalue calculation of the scattered point
cloud. Because point cloud is scattered and disordered, rele-
vant eigenvalues are only the optimal fitting solutions under
relevant constraint conditions, instead of refined calculation in
mathematics. Through the normal vector estimation and direc-
tion adjustment, the optimal normal vectors of all points can

scattered point cloud normal vector estimation branch segmentation 

skeleton nodes estimation skeleton construction and optimization the final skeleton 

Fig. 1 Skeleton extraction flowchart

Fig. 2 Normal vector of point cloud Fig. 3 Branch segmentation
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be obtained. Figure 2 shows the normal vector estimation
graph of point cloud data of one tree. Red parts represent the
tree point cloud data and blue lines represent the normal vector
pointing after the point cloud adjustment.

2.2 Branch segmentation

Tree point cloud data from laser scanning describe tree geo-
metrical morphology in details. Specific to the complex tree
morphology, tree point cloud model is divided into different
component units by component segmentation. Based on the
similarity of branch local geometric property, for example,
spatial orientation and branch radius, this paper divides
branches into different small segments.

For any point, pi in the point cloud model, it is constituted
of point position xi and the corresponding surface normal
vector ni, noted as pi = (xi, ni) ∈ R3 × S2. Meanwhile, the
Mahalanobis distance between any other point pj and point
pi in the model is defined as:

Dist pi; p j

� �
¼ x j−xi þ Fsquash x j − xi ⋅ ni

� �
ni

�� �� ð1Þ

where Fsquash represents a regulation constant. Here, based on
spatial positions of points and their corresponding normal
vectors, Euclidean distance and spatial direction information
are utilized to calculate space the Mahalanobis distance of
point cloud with normal vector [16–19]. Dist(⋅) is defined as
ellipsoid formed by the contour surface of surrounding point

pi. Its axle and normal vector ni are in one line, with variation
coefficient of1/(1 + Fsquash). This means that the more deviant
pj to the tangent plane of pi is, the faster the distance increases.

Base on the defined Mahalanobis distance and selected
approximate threshold εD, a graph of point model is construct-
ed. However, connectivity of a graph is determined by the
distance between points, namely, if and only if Dist(pi, pj)
< εD, a side can be constructed between pi and pj, or a side
cannot be constructed. Based on the constructed graph,
breadth-first search is implemented from the root node of the
point cloud model, dividing branch point cloud into different
sub-segments. As shown in Fig. 3, for tree point cloud model,
the above defined segmentation rules are used to divide
branches into different sub-segments and each sub-segment
is rendered with different colors to distinguish the branch
segmentation.

2.3 Skeleton node estimation

Tree branches own typical generalized cylindrical features.
Namely, under the condition of neglecting tiny difference,
branches approximately present cylindrical or circular table
structures. As shown in Fig. 4, the point cloud of one tangent
plane vertical to the axial direction is cut. It can be seen from the
direction of its normal vector that branch point cloud is sym-
metrically distributed corresponding to the axis. Therefore, the
optimal skeleton node of tree branches is the point set consti-
tuted of the axis. These points not only own a good axis but also
it can accurately recover the true form of the model (Fig. 5).

a  branch point cloud b  section with normal vector

Fig. 4 The branch form. aBranch
point cloud. b Section with
normal vector

a  normal vector estimation b  node estimation

Fig. 5 Skeleton node estimation.
a Normal vector estimation. b
Node estimation
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On the basis of the above branch segmentation sets,
skeleton nodes of each branch section are solved one by
one. For trees with complete point cloud data, the center of
mass of point sets can be taken as the nodes of skeleton
according to generalized cylinder feature of branches.
However, in the actual data, due to the influences of vari-
ous factors, for example, branch shade and instrument pre-
cision, the collected tree point cloud have certain incom-
plete data. However, only depending on the center of mass
will lead to the deviation of the axis. Thus, the spatial
position of point cloud and direction of normal vector are
utilized to estimate the optimal node position [20]. For one
segmentation subset Qi, suppose it is constituted of N mea-
suring points pj = (mj, nj), (j = 1,…, N), where mj = (xj, yj, zj)
represents space 3D coordinate pj and nj represents the
normal vector of pj. Plane S is made by passing one point
pj in point cloud subset Qi, with normal vector of vi. At the
same time, to better utilize the symmetry characteristics of
point cloud, the normal vector of cylinder surface shall be
symmetrically distributed along the skeleton node, and the
direction of normal vector, vi, shall be consistent with the
axis. Therefore, the included angle between the normal
vector vi of plane S and the normal vector nj of a point is
utilized. Iteration is used to optimize vi and the initial

direction is selected to be the same as the main direction
vertical to pj.

v tþ1
i ¼ argmin

vi∈ℝ3; vi

���
���¼1

var vi; n j

D E
: pj∈N

tð Þ
i

n o
; t≥0 ð2Þ

where N tð Þ
i represents the neighbor domain of the tangent

plane at iteration t, and nj represents the normal vector of pj.
Formula (2) can be converted to solve the minimum of qua-

dratic form, v jTMvj, where v j
�� �� ¼ 1.

M ¼
x2−x 2 2xy−2xy 2xz−2xz
2xy−2xy y2−y 2 2yz−2yz
2xz−2xz 2yz−2yz z2−z 2

2
64

3
75 ð3Þ

x, y, and z in M respectively represent a random variable of
components, x, y, and z in point’s normal vectors of the neigh-

bor domainN tð Þ
i , and x, y, and z respectively represent themean

components of the neighbor setN tð Þ
i . Meanwhile, this quadratic

problem can be solved by singular value decomposition.
After the optimal normal vector, vi, is estimated, plane S is

made by passing point pj. Point cloud and normal vector of

a  scattered point cloud b  formed graph c  path search d branch segmentation

Fig. 6 The initial skeleton construction. a Scattered point cloud. b Formed graph. c Path search. d Branch segmentation

a  the initial skeleton b  Optimization skeleton

Fig. 7 Skeleton optimization. a
The initial skeleton. b
Optimization skeleton
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segmentation set Qi are projected on plane S to calculate the
point with the shortest distance to the negative direction of the
normal vector of point cloud, namely,

Oi ¼ argmin
Oe03

∑
N

j−1
O−p j

� �
xnj

���
���
2

ð4Þ

Formula (4) is a typical quadratic minimization problem and
the closed solution can be obtained by direct differentiation.

2.4 Construction of the initial skeleton

In the extracted node set of discrete skeleton, the connectivity
between nodes is uncertain, especially at branch bifurcation.
Based on the graph theory, single-source shortest path is used
to solve, namely, constructing a graph on the basis of skeleton
node set. In this weighed directed graph, tree skeleton is re-
constructed. First of all, all the extracted skeleton nodes are
selected as the vertex of the graph and vertex set, V = {1, 2,
…, n}, of a graph is established. Then, starting from root
nodes of the tree model, each vertex in set V is connected to
the vertex in its neighboring threshold range by overall tra-
versal. Meanwhile, the distance between two points is
assigned to the corresponding side as weight. This is con-
structing a weighted directed graphG = (V, E), where
Erepresents the side set constituted of vertexes in set V.
Later, vertex set V in graph G is divided into two groups.
The first group is vertex set S with the shortest path; the

second group is vertex set U with uncertain short path. Root
node O of the tree is selected as the source point of the graph.
Through loop traversal, the shortest path of the graph is deter-
mined. The solving process is as follows.

1) At first, S only includes source point O, namely S = {1}.U
contains other vertexes except pointO. InU, the distance of
each vertex u in U is the weight of the corresponding side.

2) In U, vertex k with the shortest path to point O is selected
and then it is added in S (the selected distance is the
shortest path from k to source point O).

3) Taking k as the new intermediate point, the distance of
each vertex in U is modified. If the distance (passing
through vertex k) from source point O to vertex u (u ∈
U) is shorter than the original distance (not passing
through vertex k), the distance of vertex u is modified.
The modified distance is the distance of vertex k plus
the weight of side.

4) Repeat step 2 and step 3 until setU is null, namely, all the
vertexes are included in set S.

Through the above loop iteration operation, the minimum
spanning tree of the shortest path sets from all nodes to root
node of graphG = (V, E) is formed. It not only extracts the tree
logic model but also eliminates the ambiguity of node connec-
tion, for example, loop caused by fault connection between
skeleton points, as shown in Fig. 6b. Finally, other nodes,
except root node, all have their father nodes. Along the shortest

a Point cloud b VS skeleton c PCC skeleton d GC skeleton

Fig. 9 Skeleton extraction of sample 2. a Point cloud. b VS skeleton. c PCC skeleton. d GC skeleton

a  Point cloud b  VS skeleton c  PCC skeleton d  GC skeleton

Fig. 8 Skeleton extraction of sample 1. a Point cloud. b VS skeleton. c PCC skeleton. d GC skeleton
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path of root node, it is easy to determine skeletons of different
tree branches by loop traversal. The overall construction pro-
cess of initial skeletons is shown in Fig. 6. It is a 2D skeleton
construction, and at the same time, proper hypothesis is made
on the distance between nodes. If nodes are adjacent, the dis-
tance is 3; if nodes are opposite, the distance is 4.

2.5 Curve skeleton optimization

The tree initial skeletons are constituted of skeleton nodes that
are connected by line but they are a little stiff. Especially, the
abrupt bending variation at branch bifurcation differs from true
tree morphology, as shown in Fig. 7a. Thus, it is necessary to
make moderate optimization on the constructed initial skeleton
to ensure its geometrical morphology can better conform to true
tree morphology on the basis of guaranteeing unchanged topo-
logical structure. According to the angle of branch bifurcation,
the cubic Hermite curves are utilized for moderate smooth
fitting. First of all, the fitted cubic Hermite curve is supposed
as P(t), t ∈ [t0, t1] (where t0, t1 ∈ R and t0 < t1). Besides, point A
and point C are taken as end points and AO

*
and OC

*
are the

corresponding directions of tangential vector. Then,

P t0ð Þ ¼ A;P t1ð Þ ¼ C;P
0
t0ð Þ ¼ AO;P

0
t1ð Þ ¼ OB ð5Þ

From the above formula, the expression formula of the
cubic Hermite curve can be

P tð Þ ¼ F0Aþ F1C þ G0 t1−t0ð ÞAO

þ G1 t1−t0ð ÞOC t∈ t0; t1½ � ð6Þ

where F0, F1, G0, and G1 are the cubic linear functions of t.
End point and tangent vector of end point are utilized to gen-
erate the coordinates of other points in the range of t ∈ [t0,
t1]and the values of coordinates are only related to parameter
t. Among them, F0 and F1 are in specialized control of the
influences of end point’s function value on curves, irrelevant
to the tangent vector value of end point. G0 and G1 are in
specialized control of the influences of end point’s tangent

vector value on curve shape, irrelevant to the tangent vector
value of end point. After the smoothing fit of the cubic
Hermite curve on AOC, as shown in Fig. 7b, six nodes are
inserted to realize excessive smoothing. Similarly, smoothing
repair also is made on AOB. Starting from tree root node, loop
traversal is used to search for nodes with greater branching
angle. The cubic Hermite curve is adopted to make moderate
smooth optimization on the corresponding skeleton line to
make it conform to the true tree morphology better.

3 Experimental test and analysis

To test the skeleton extraction method (GC) of the above tree
model, samples of three common trees are selected for exper-
imental analysis and this method is compared with the voxel
switch (VS)- and point cloud contraction (PCC)-based skele-
ton extraction method in literature. The algorithm test is based
onMATLAB 7.13 platform and the computer configuration is
Windows 7 system, with CPU of Intel Core 3.10 GHz and
internal storage of 4.0 G.

From the test results of samples by methods in Figs. 8, 9,
and 10, it can be seen that these three methods can realize 1D
linear skeleton extraction of the tree model. However, they
differ in detail treatment. VS method generates refined skele-
ton iteratively by voxel on the basis of space 3D topological
operation. Because it is sensitive to edge noise, it is easy to
generate redundancy branch. Thus, the extracted tree skeleton
by VSmethod is just an approximation of the true skeleton. In
the topological structure, there is no accurate fidelity in central

a Point cloud b VS skeleton c PCC skeleton d GC skeleton

Fig. 10 Skeleton extraction of sample 3. a Point cloud. b VS skeleton. c PCC skeleton. d GC skeleton

Table 1 The processing capacity of skeleton extraction methods

Model Points/sample Operation time (s) Center deviation (mm)

VS PCC GC VS PCC GC

Sample 1 658,423 146.8 31.4 55.7 11.1 3.8 3.4

Sample 2 821,416 180.3 42.8 63.2 13.3 5.3 4.6

Sample 3 583,217 161.4 33.3 48.1 12.4 4.3 3.1
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symmetry and other aspects. PCC method generates refined
skeletons iteratively by point cloud contraction switch. It
shows good performance in maintaining the topological struc-
ture of the model. However, it also has a problem, namely, the
top skeleton of each branch may contract inwards, and after
times of switch, the overly subtle branches may be switched
into a point. Therefore, in the practical application, the selec-
tion of reasonable contraction weight and attractive contrac-
tion weight and the setting of end conditions directly influence
the skeleton quality of the model. By aid of local attribute of
point cloud and tree growth characteristic, GC method owns
an optimal estimation foundation in branch segmentation and
skeleton node extraction. Thus, the skeleton extracted by this
method is relatively complete and accurate. This method dis-
plays strong anti-interference and high-precision characteris-
tics at branch bifurcation and crossed ending part of fine tree
branches. All these can be seen from the amplification parts of
details in each figure. At the same time, the extracted curve
skeleton is inserted into the internal tree model and the pro-
posed curve skeleton satisfies the requirements of centrality,
refinement, component separability, and other correlation
properties. It can satisfy the practical application demands.

The above test analyzes the processing capacity of skeleton
extraction methods. To make more comprehensive perfor-
mance tests on each method, this paper makes statistics on
the skeleton extraction time and center deviation of different
objects by each method. The operation time is the total time of
each method to extract skeletons, with unit of second (s).

Center deviation makes vertical tangent plane of different ax-
ial directions on branch point cloud and the deviation between
the fitting center and skeleton points on each plane is com-
pared. Then, the mean deviations of all tangent planes are
solved, with unit of millimeter (mm). The statistical results
of each index are shown in Table 1.

It can be seen from the statistical results in Table 1 that
different methods differ a lot in computational efficiency and
skeleton extraction quality. VS method is seriously lagged
behind the other two methods in computational efficiency.
The reason for this is that in detail process, the judgment of
each simple point needs testing the surrounding adjacent rela-
tionship. Thus, loop judgment test greatly limits the execution
efficiency of the algorithm. The operation efficiencies of PCC
method and GC method are improved by over four times
compared with VS method. At the same time, PCC method
has faster execution efficiency than that of GC method. This
may be that after five times of iterations, PCC method can be
basically contracted into the discrete form of skeletons, while
GC method needs to make more calculation on the geometric
attribute of point cloud, which may influence its execution
speed. Specific to the statistics of center deviation, VSmethod
also has certain defects. For example, it has over three times of
deviation compared with the other two methods. GC method
owns the minimum center deviation, because it fully utilizes
the branch geometrical features and internal characteristics of
point cloud, which improves the accuracy of the skeleton con-
struction. From the comparison in operation efficiency and the
central deviation in Figs. 11 and 12, it can be obviously seen
that each algorithm owns different performances in different
indexes.

4 Conclusion

Based on branch axial creep geometric features and local
properties of point cloud, the Mahalanobis distance is utilized
to segment point cloud into different branch parts and the axial
symmetry of branch point cloud is utilized to estimate the
optimal position of skeleton nodes. According to the graph
theory, single-source shortest path is used to accurately recon-
struct the curve skeleton of the model. By aid of local attri-
butes of point cloud and tree growth characteristic, GC meth-
od owns optimal estimation foundation in branch segmenta-
tion and skeleton node extraction. The extracted skeleton
based on this method is relatively complete and accurate and
the constructed skeleton can better conform to true tree mor-
phology. The method proposed in this paper directly applies
point cloud to extract skeletons and it can achieve effective
curve skeletons. Voxel switch may decrease the skeleton ex-
traction quality. Therefore, these experimental tests not only
analyze the effectiveness of various algorithms but also pro-
vide much guidance for the design of future algorithms.Fig. 12 Center deviation

Fig. 11 Operation time
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