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Abstract
Bin packing problem (BPP) is a classical combinatorial optimization problemwidely used in a wide range of fields. Themain aim
of this paper is to propose a new variant of whale optimization algorithm named improved Lévy-based whale optimization
algorithm (ILWOA). The proposed ILWOA adapts it to search the combinatorial search space of BPP problems. The perfor-
mance of ILWOA is evaluated through two experiments on benchmarks with varying difficulty and BPP case studies. The
experimental results confirm the prosperity of the proposed algorithm in proficiency to find the optimal solution and convergence
speed. Further, the obtained results are discussed and analyzed according to the problem size.
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1 Introduction

Combinatorial optimization [1] is a subfield of discrete math-
ematics where the decision variables are combinations or per-
mutations that respect a predefined set of constraints. Such
optimization problems can be defined as given finite objects
℘ and an objective function [2]:

f : ℘→Ο ð1Þ
whereΟ is an ordered set that associates with a cost or a profit
of each object. The objective is to find an object℘ with value

(cost or profit) that best minimize or maximize the objective
function with respect to some constraints.

One of the most important combinatorial optimization
problems is bin packing problem (BPP). The classical bin
packing problem consists of a set of items that need to be
packed into one bin only. Each item has a weight and each
bin has a capacity. The main goal of the problem is to pack
all items in the few possible number of bins where each bin
does not exceed its capacity. Thereby, BPP involved in
each field contains packing problem such as multiproces-
sor scheduling [3], supply chain [4], logistics [5], telecom-
munications [6], and cloud computing [7].

The contribution of this paper is to propose a new variant of
whale optimization algorithm named improved Lévy-based
whale optimization algorithm (ILWOA). According to the no-
free-lunch theorem [8, 9] in optimization, there is no algorithm
to solve all optimization problems. It has observed that WOA
performs well on combinatorial problems, and this motivated
our attempts to improve and adapt this algorithm. Therefore,
the exploration capabilities of whale optimization algorithm
(WOA) [10] is enhanced with deploying Lévy flight for whale
movements. Second, WOA is embedded with a new mutation
phase to improve convergence speed. Finally, a logistic chaotic
map is used for efficient switch between exploration and ex-
ploitation phases. In order to map between the continuous
search space and the combinatorial one, the largest order value
(LOV) [11] technique is applied. By conducting experiments
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and statistical analysis, the effectiveness of amendments to im-
prove the performance of WOA and superiority of the im-
proved algorithm comparators to solve the given problem were
proved.

The remaining structure of this paper is as follows.
An in-depth literature review is given in Sect. 2.
Problem formulation is provided in Sect. 3. The WOA
and proposed algorithm are discussed in Sects. 4 and 5.
The experimental results are shown in Sect. 6.The re-
sults analysis is presented in Sect. 7. Finally, the con-
clusions and future works are provided in Sect. 8.

2 Literature review

BPP belongs to NP-hard problems [12] so that using exact
methods (e.g., branch and bound algorithm [13] and
branch and price algorithm [14]) or basic heuristic algo-
rithms may become deficient for handling large BPPs.
Initially, many heuristics were proposed for solving BPP
as next fit [15], first fit [15], worst fit [16], best fit [17],
graph-based algorithm [18], etc. Indeed, heuristic algo-
rithms can guarantee a good solution for small-scale in-
stances and they can be defined as Ba type of strategy that
dramatically limits the search for solutions^ [19, 20].
Thus, the new trends are directed towards using meta-
heuristic algorithms which are not problem-specific heu-
ristic that can find a high-quality solution through the
tradeoff between the exploitation and exploration of
search space [21, 22]. For example, the authors in [23,
24] solved BPP with genetic algorithm (GA) [25] which
was combined with grouping mechanism for handling the
problem. In [26], Layeb and Boussalia combined cuckoo
search (CS) [27] algorithm with a binary quantum tech-
nique for solving BPP. Also, the authors in [28] applied

CS for solving the problem but they used FF and ranked
order value (ROV) [29] for adapting the algorithm. In
[30], Levine and Ducatelle proposed ant system (AS) al-
gorithm [31] with local search technique for solving the
problem. While in [32], the authors hybridized the previ-
ous technique with firefly algorithm (FA) [33]. Sonuc
et al. [34] solved BPP with simulated annealing (SA)
[35] which combined with a swap function for enhancing
the solution.

Roughly speaking, the main challenge of bin packing
problem is obtaining a good solution but with less time.
In continuous search space, WOA can obtain a high-
quality solution in negligible time. Thereby, this paper
employs the improved WOA capabilities to solve BPP
with more convergence speed.

3 Problem formulation

In general, BPP can be defined as follows: Given a set of items
with their weights, and a set of fixed-size bins, find the min-
imum number of bins that can hold all items. Mathematically,
the formulation of BPP can be expressed as an integer pro-
gramming problem as follows [36]:

min ∑
n

i¼1
yi

s:t: ∑n
j¼1wjxij≤cyii∈N ¼ 1;…; nf g;

∑
n

i¼1
xij ¼ 1; j∈N ;

yi∈ 0; 1f g; i∈N ;
xij∈ 0; 1f g; i∈N ; j∈N ;

ð2Þ

where yi is a binary variable that indicates whether bin i con-
tains items, xij is a binary variable that indicates whether if
item j is assigned to bin i, wj is the weight of item j, 푐 is bin
capacity, and n is number of available bins. BPP can be

Fig. 1 Whale hunting strategy
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extended with no conceptual difficulty to higher dimen-
sions (two or three dimensions) or other variants like
knapsack problem [37], bin packing with conflicts
[38], colored bin packing [39], etc. Also, BPP can be
divided to online and offline problem according to the
number of items is fixed or variable.

4 Whale optimization algorithm

4.1 Biological inspiration

Humpback whales are known for their unique acrobatic aerial
breaching, the ability to configure a language for mating and

Fig. 2 ILWOA flowchart
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hunting through their complex sounds, and the rare hunting
“bubble net” strategy [40]. For the feeding strategy, the hump-
back whales can intelligently corporate together in order to
trap fish into a ring of air by emitting a stream of bubbles. In
particular, the emitted bubbles take two shapes: a spiral shape
and a shrinking circle shape (as shown in Fig. 1). After that,
the trapped fish are swallowed up by all humpback whales
[41]. For more information, see [42–44].

4.2 Main procedures of WOA

Whale optimization algorithm (WOA) [10] is a novel pop-
ulation and swarm intelligence-based meta-heuristic that
was inspired by the bubble-net feeding strategy previously
discussed, i.e., after the humpback whales determine the
prey position, they begin to emit a stream of bubbles in
two manners (shrinking circle and spiral shape) around
their prey. In WOA, the search for the prey represents
the exploration phase and the bubble net with shrinking
circle and spiral shape represent exploitation phase.
Mathematically, the fish positions are randomly initialized
which represent the initial population and evaluated in
order to find the current best solution. Then, the other
candidate solutions are updated according to the current
best solution as follows:

D
!¼ C

!
:x*
!

tð Þ− x! tð Þ
��� ��� ð3Þ

x! t þ 1ð Þ ¼ x*
!

tð Þ− A!∙D! ð4Þ

where x*
!

tð Þ is the current best solution at time t, and C
!

and A
!

are two coefficient vectors that can be calculated as

A
!¼ 2 a!∙ r!− a! ð5Þ
C
!¼ 2∙ r! ð6Þ
where a! is linearly decreased from 2 to 0 during iterations
which represents the shrinking encircling behavior and r! is a
random number between [0, 1].

For better diversification of the search space, WOA com-
bines two exploration search mechanisms (depending on the
current best or random solution) that switched according to the

value of A
!
. In other words, if A

!
< 1, then the new solution is

generated using Eq. (3). In other cases, the new solution is
calculated as the follows:

D
!¼ C

!
:xr! tð Þ− x! tð Þ

��� ��� ð7Þ

x! t þ 1ð Þ ¼ xr! tð Þ− A!∙D! ð8Þ
where xr! tð Þ is a solution selected randomly from the same
population.

For simulating the humpback whale spiral movement
around their prey (the current best solution), the following
formulation is used:

D
0!
¼ x*

!
tð Þ− x! tð Þ

��� ��� ð9Þ

x! t þ 1ð Þ ¼ D
0!
∙ebl∙cos 2πlð Þ þ x*

!
tð Þ ð10Þ

where b is a predefined constant for defining the shape of the
logarithmic spiral and l is a random number between [−1, 1].

Fig. 3 Mapping between continuous and discrete solution using LOV

Fig. 4 Isotropic Lévy Distribution

Fig. 5 Logistic chaotic map simulation
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Pseudocode 1. WOA.

Fig. 6 Logistic map vs. other
maps
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DuringWOA iterations, a probability of 50% is assumed to
alter between the searching of food and hunting mechanisms
to update the candidate solutions as follows:

x! t þ 1ð Þ ¼ x! tð Þ−A!∙D! ; r < p

D
0!
∙ebl∙cos 2πlð Þ þ x*

!
tð Þ ; r≥p

(
ð11Þ

where x*
!

tð Þ is the current best solution at time t, p is equal to 0.5,
and r is a random number between [0, 1] (see Pseudocode 1).

5 Improved ILWOA

Despite the efficiency of WOA, its convergence rate and per-
formance still need to be improved. For this reason, several
enhancements are proposed in this paper in order to improve
the performance and the convergence rate of WOA. The
pseudocode of the proposed algorithm is shown in
Pseudocode 2. Also, the flowchart of ILWOA is presented in
Fig. 2.

Pseudocode 2. ILWOA
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5.1 The application of ILWOA to BPP

5.1.1 Discretization of search space

The basic version of WOAwas proposed for solving optimi-
zation problems in continuous search space. For applying the
proposed algorithm in combinatorial search space, LOV [11]
is used. LOV can be used to convert the continuous solution to
a discrete one through descending order of values as shown in
Fig. 3. For BPP, the discrete solution means the order of item
allocation to bins which are filled using BF algorithm. In BF,
each item is placed in a bin which will leave the least leftover
space. If the item does not fit in any bin, a new bin is opened.

5.1.2 Objective function

Roughly speaking, the use of the bin number as a fitness
function may lead to the algorithm stagnation because there
can be many permutations that have the same number of bins.
So, it is more efficient to use bin occupancy as a mean of the
solution evaluation. The following formulation was intro-
duced by Hyde et al. [45]:

minF ¼ 1−
∑
n

i¼1
ocupi=cð Þk

n

0
BB@

1
CCA ð12Þ

where n is the number of used bins, ocupi is the occupancy of
each bin i, c is the bin capacity, and k is a constant (usually k= 2) .

Fig. 7 Mutation operators

Table 1 Experimental results of
easy class Instance Number C Best known QICS ACS FCO FA AS ILWOA

N1C1W1_A 50 100 25 25 25 25 26 25 25

N1C1W1_D 50 100 28 28 28 28 28 28 28

N1C1W1_G 50 100 25 25 25 25 26 25 25

N1C1W1_B 50 100 31 31 31 31 31 31 31

N1C1W1_E 50 100 26 26 26 26 27 26 26

N1C1W1_F 50 100 27 27 27 27 27 27 27

N1C1W1_I 50 100 25 25 25 25 25 25 25

N2C1W2_P 100 100 68 68 68 68 68 68 68

N2C1W2_N 100 100 64 64 64 64 65 64 64

N2C1W2_O 100 100 64 64 64 64 66 64 64

N2C1W2_R 100 100 67 67 67 67 68 67 67

N4C1W2_T 500 100 323 323 323 323 328 323 323

N4C1W4_C 500 100 365 365 365 365 368 365 365

N4C1W4_A 500 100 368 368 368 368 373 368 368

N4C1W4_D 500 100 359 359 359 359 364 359 359

N4C1W4_B 500 100 349 349 349 349 356 349 349
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5.2 Lévy flight distribution

Lévy distribution is a mathematical model used to de-
scribe anomalous diffusion which has infinite mean and
variance that cause much longer movement from its
current position (see Fig. 4); thus, it is more efficient
in the search space exploration [46]. In the proposed

algorithm, the parameter C
!

is replaced with a random
step drawn from isotropic Lévy distribution as follows:

L 0evy∼
λΓ λð Þsin πλ

2

� �
π

1

s1þλ
; s≫s0 > 0ð Þ ð13Þ

s ¼ U

Vj jλ−1 ; U∼ 0;σ2
u

� �
; V∼ 0;σ2

v

� � ð14Þ

σ2
u ¼

Γ 1þ λð Þ
λΓ 1þ λð Þ=2ð Þ :

sin πλ
2

� �
2 λ−1ð Þ=2

� �1=λ
;σ2

v ¼ 1 ð15Þ

where L 0evy is a step size drawn fromLévy distribution, Γ(λ) is
the standard gamma function with large steps s > 0 which is
drawn according to Mantegna algorithm [47], U and V are
samples drawn from Gaussian normal distribution where
mean is equal zero, and σ2

u and σ2
v are variances [48].

5.3 Chaotic maps

Mathematically, the chaotic maps can be defined as the fol-
lowing: given a set Λ (where f :Λ→Λ), f is considered a
chaotic map on Λ if [49]:

1. f is unpredictable as it sensitively depends on initial
conditions.

2. fcannot be decomposed to subsystem as it is transitive
based on a topology.

3. f has an element of regularity because points are periodi-
cally dense in Λ.

Fig. 8 Friedman test of easy class

Table 2 Descriptive statistics of
easy class

Algorithm Number
Mean Std.

deviation Minimum Maximum
Percentiles

25th 50th
(Median)

75th

FCO 16 138.38 150.472 25 368 26.25 64.00 342.50

QICS 16 138.38 150.472 25 368 26.25 64.00 342.50

ACS 16 138.38 150.472 25 368 26.25 64.00 342.50

FA 16 140.38 152.555 25 373 27.00 65.50 349.00

AS 16 138.38 150.472 25 368 26.25 64.00 342.50

ILWOA 16 138.38 150.472 25 368 26.25 64.00 342.50
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In other words, Chaotic maps are evolutionary func-
tions that produce a deterministic bounded sequence of
random numbers depending on initial condition. There
are different types of maps like logistic map, Chebyshev
map, tent map, etc. After several trials of different cha-
otic maps, logistic (or quadratic) is selected in the pro-
posed algorithm because it obtained the best results (see
Fig. 5). Chaotic map is selected for determining the
value of the switching probability p because of being
random-like, non-period, and non-converging for param-
eter adaptation. The logistic map can be formulated as

xnþ1 ¼ axn 1−xnð Þ ; x∈ 0; 1ð Þ; 0 < a≤4 ð16Þ
where a is a positive constant (sometimes also denoted
“biotic potential”) that gives the logistic map. Figure 6
shows a comparative example between objective func-
tion values (Eq. (12)) of logistic map and other seven
maps including Chebyshev map, Gaussian map, tent
map, circle map, piecewise map, iterative map, and sine

map. It is clear that logistic reaches the minimum values
of objective function during 5 iterations with 10 search
agents.

5.4 Mutation phase

In ILWOA, mutation phase is done before the end of each
iteration, i.e., the current best number of bins is checked
whether it reached the optimal or not. The optimal solution
can be computed as

optimal number ofbins ¼ ∑itemsizes

bin capacity
ð17Þ

If the current best number of bins is optimal, the search
stops. Otherwise, it is randomly modified through mutation
phase, which is divided to three operators: swap, displace-
ment, and reversion. The swap operator selects and swaps
two items’ indexes randomly [50]. Displacement operator cuts

Table 4 Descriptive statistics of
medium class

Algorithm Number Mean
Std.
deviation Minimum Maximum

Percentiles

25th 50th
(Median)

75th

QICS 16 41.81 31.747 12 109 17.25 36.50 58.00

ACS 16 40.44 30.816 12 105 17.00 34.00 57.00

FCO 16 40.94 31.030 12 106 17.00 35.00 57.75

FA 16 41.00 30.984 12 106 17.00 35.00 57.75

AS 16 41.38 31.224 12 107 17.25 35.50 58.00

ILWOA 16 40.44 30.816 12 105 17.00 34.00 57.00

Table 3 Experimental results of
medium class Instance Number Cap Best known QICS ACS FCO FA AS ILWOA

N1W1B2R1 50 1000 17 17 17 17 17 18 17

N1W1B1R9 50 1000 17 18 17 17 17 17 17

N1W1B1R2 50 1000 19 20 19 19 20 20 19

N1W1B2R0 50 1000 17 18 17 18 18 18 17

N1W1B2R3 50 1000 16 17 17 17 17 17 17

N2W1B1R0 100 1000 34 36 34 35 35 37 34

N2W1B1R3 100 1000 34 37 35 36 36 36 35

N2W1B1R1 100 1000 34 37 35 36 36 36 35

N2W1B1R4 100 1000 34 37 34 35 35 35 34

N2W3B3R7 100 1000 13 13 13 13 13 13 13

N2W4B1R0 100 1000 12 12 12 12 12 12 12

N4W2B1R0 500 1000 101 109 105 106 106 107 105

N4W2B1R3 500 1000 100 108 104 105 105 106 104

N4W3B3R7 500 1000 74 74 74 74 74 74 74

N4W4B1R0 500 1000 56 58 57 57 57 58 57

N4W4B1R1 500 1000 56 58 57 58 58 58 57
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a random subset of item indexes and inserts it in another ran-
dom place [51]. Reversion operator cuts a random subset of
items’ indexes and reverses it [52] (see Fig. 7).

6 Experimental results

In order to test the validity of the proposed algorithm,
two experiments are conducted on different benchmarks
(all datasets can be downloaded from [53]). All experi-
ments are carried out on a 64-bit operating system with
a 2.60 GHz CPU and 6 GB RAM. In addition, the
experimental results are analyzed with non-parametric
Friedman test [54] to show the differences in perfor-
mance between ILWOA and the compared algorithms.
Friedman test is a non-parametric, rank-based version
of one-way ANOVA with repeated measures which can

be performed on more than two dependent samples. In
other words, Friedman test compares the means of three
or more variables measured on the same respondents.

The first experiment is conducted on selected bench-
marks from Scholl uniformly distributed instances [55]
which were divided into three classes according to its
difficulty: easy, medium, and hard class. ILWOA is
compared with all other population and swarm
intelligence-based algorithms that have solved BPP, in-
cluding adaptive cuckoo search (ACS) algorithm [28],
firefly colony optimization (FCO) algorithm [32], quan-
tum inspired cuckoo search algorithm (QICS) [26], fire-
fly algorithm (FA) [33], and ant system algorithm (AS)
[35]. The results of ACS, QICS, and AS are obtained
from [28] while the results of FA are obtained from
[32]. For parameter settings, the number of search
agents is set to 10 agents and the maximum number

Fig. 9 Friedman test of medium
class

Table 5 Experimental results of
hard class Instance Number Cap Best known QICS ACS FCO FA AS ILWOA

HARD0 200 100,000 56 59 58 59 60 59 58

HARD1 200 100,000 57 60 59 59 60 60 59

HARD2 200 100,000 56 60 59 59 61 60 59

HARD3 200 100,000 55 59 58 59 60 59 58

HARD4 200 100,000 57 60 59 60 61 60 59

HARD5 200 100,000 56 59 58 59 60 59 58

HARD6 200 100,000 57 59 59 59 61 60 59

HARD7 200 100,000 55 59 58 58 59 59 57

HARD8 200 100,000 57 59 59 59 61 60 59

HARD9 200 100,000 56 59 59 59 60 59 59
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of iterations are set to only 5 iterations, whereas for
ACS, it needed 20 search agent and 100 iterations in
the literature which indicate the ability of ILWOA to
find a good solution with a few number of search
agents and iterations. Table 1 shows the experimental
results of easy instances. Besides, Table 2 and Fig. 8
present the descriptive statistics of the easy class exper-
iment and the results of Friedman test, respectively. As
shown, the proposed algorithm finds the best-known
solution like other algorithms (except FA) and their per-
formances are similar. While for the medium and hard
classes, the results of the proposed algorithm are supe-
rior for many instances (bolded values) as shown in
Tables 3 and 5. The descriptive statistics and Friedman
test results of the medium class are presented in Table 4
and Fig. 9, respectively (Table 5). The descriptive sta-
tistics of the hard class are presented in Table 6 and
Friedman test results in Fig. 10. It is clear that the

proposed algorithm has the same descriptive statistics
and ranked mean as ACS for the medium class. For
the hard class, the result of ILWOA for ^HARD7^ in-
stance outperforms other algorithms even ACS. In addi-
tion, the proposed algorithm scores the minimum mean
as shown in Table 6 and the minimum ranked mean as
shown in Fig. 10. Although results of ACS and ILWOA
are almost similar, the proposed algorithm is significant-
ly faster than ACS as ILWOA can find a good solution
with a few number of search agents and iterations.

The second experiment is conducted on selected bench-
marks from “Sch_Wae2” instances [56] which are very diffi-
cult for first fit decreasing heuristic (FFD) [57], best fit de-
creasing heuristic (BFD) [58], and Martello-Toth packing
(MTP) algorithm [36]. So, ILWOA is compared with theses
algorithms in finding the optimal number of bins. For the
parameter settings, a few number of search agents and itera-
tions are set to ILWOA. The number of search agents is set to

Fig. 10 Friedman test of hard
class

Table 6 Descriptive statistics of
hard class

Algorithm Number Mean
Std.
deviation Minimum Maximum

Percentiles

25th 50th
(Median)

75th

QICS 10 59.30 .483 59 60 59.00 59.00 60.00

ACS 10 58.60 .516 58 59 58.00 59.00 59.00

FCO 10 59.00 .471 58 60 59.00 59.00 59.00

FA 10 60.30 .675 59 61 60.00 60.00 61.00

AS 10 59.50 .527 59 60 59.00 59.50 60.00

ILWOA 10 58.50 .707 57 59 58.00 59.00 59.00
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Table 7 Experimental results of
Sch_Wae2 instances Name Number C Optimal Solution FFD BFD MTP ILWOA

BPP 1 120 1000 22 23 23 23 22
BPP 2 120 1000 22 23 23 23 22
BPP 3 120 1000 21 23 23 23 22
BPP 4 120 1000 21 23 23 23 22
BPP 5 120 1000 22 23 23 23 22
BPP 6 120 1000 22 23 23 23 22
BPP 8 120 1000 21 23 23 23 22
BPP 9 120 1000 22 23 23 23 22
BPP 11 120 1000 22 23 23 23 22
BPP 13 120 1000 22 23 23 23 22
BPP 14 120 1000 21 23 23 23 22
BPP 15 120 1000 21 23 23 23 22
BPP 16 120 1000 22 23 23 23 22
BPP 17 120 1000 21 23 23 23 22
BPP 18 120 1000 22 23 23 23 22
BPP 19 120 1000 22 23 23 23 22
BPP 21 120 1000 21 23 23 23 22
BPP 22 120 1000 22 23 23 23 22
BPP 23 120 1000 22 23 23 23 22
BPP 24 120 1000 22 23 23 23 22
BPP 25 120 1000 22 23 23 23 22
BPP 26 120 1000 21 23 23 23 22
BPP 27 120 1000 21 23 23 23 22
BPP 28 120 1000 21 23 23 23 22
BPP 29 120 1000 21 23 23 23 22
BPP 30 120 1000 21 23 23 23 22
BPP 31 120 1000 22 23 23 23 22
BPP 32 120 1000 22 23 23 23 22
BPP 33 120 1000 22 23 23 23 22
BPP 34 120 1000 21 23 23 23 22
BPP 35 120 1000 22 23 23 23 22
BPP 36 120 1000 22 23 23 23 22
BPP 37 120 1000 22 23 23 23 22
BPP 38 120 1000 22 23 23 23 22
BPP 39 120 1000 22 23 23 23 22
BPP 40 120 1000 22 23 23 23 22
BPP 41 120 1000 21 23 23 23 22
BPP 42 120 1000 21 23 23 23 22
BPP 43 120 1000 22 23 23 23 22
BPP 44 120 1000 22 23 23 23 22
BPP 45 120 1000 22 23 23 23 22
BPP 55 120 1000 22 23 23 23 22
BPP 65 120 1000 22 23 23 23 22
BPP 72 120 1000 22 23 23 23 22
BPP 75 120 1000 21 23 23 23 22
BPP 83 120 1000 21 23 23 23 22
BPP 89 120 1000 22 23 23 23 22
BPP 92 120 1000 21 23 23 23 22
BPP 96 120 1000 21 23 23 23 22
BPP 100 120 1000 21 23 23 23 22

Table 8 Descriptive statistics of
Sch_Wae2 instances

Algorithm Number Mean
Std.
Deviation Minimum Maximum

Percentiles

25th 50th
(Median)

75th

FFD 50 23.00 0.000 23 23 23.00 23.00 23.00

BFD 50 23.00 0.000 23 23 23.00 23.00 23.00

MTP 50 23.00 0.000 23 23 23.00 23.00 23.00

ILWOA 50 22.00 0.000 22 22 22.00 22.00 22.00
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10 agents and the maximum number of iterations are set to 30
iterations. The results of FFD and MTP are obtained from
[53]. The experimental results of the second test are presented
in Table 7. The descriptive statistics of the second experiment
and Friedman test results are presented in Table 8 and Fig. 11,

respectively. It is clear that the proposed algorithm is efficient-
ly able to get the optimal solution (bolded values) in most
instances compared to the other algorithms. In addition, it
scores the lower ranked mean with a significant difference
comparing to the other algorithms as shown in Fig. 11.

a

b

Fig. 11 Friedman test of Sch_Wae2 instances

Pers Ubiquit Comput (2018) 22:1117–1132 1129

RETRACTED A
RTIC

LE



7 Results of analysis

The values of the bin capacity, items weights, and the number
of items mainly affect computational time and solution quality
of algorithms [55]. Consequently, the previous issues are tak-
en into consideration when benchmarks are selected in this
paper. In the first experiment, different difficulty benchmarks
are selected to evaluate the searching capabilities of ILWOA
in various cases. For the easy class, the number of items was
between 50 and 500 with weights between 1 and 100. The
capacity of a bin is between 100 and 150.Also, the number of
items is between 50 and 500 in medium class. The capacity of
a bin is equal to 1000.The items weights were calculated ac-
cording to bin capacity that range between bin capacity/9 and
bin capacity/3 with a deviation between 20 and 90%.While in
the hard class, the number of items is equal to 200. The ca-
pacity of a bin is equal to 100,000 and item weights are be-
tween 20,000 and 35,000.The second experiment is conduct-
ed in Sch_Wae2 instances where the number of items is 120
items with weights ranging between 150 and 200, and the bin
capacity is equal to 1000.

The main improvement in ILWOA is mutation phase
which significantly increases the convergence speed of
WOA. It is clear from the defined number of search agents
and iterations. For other improvements, they help in control-
ling the search in continuous search space which also affects
the solution quality.

Obviously, ILWOA obtains rapidly better results in the first
experiment instances although the high variation between
item weights especially for the hard class characterized by
larger values of bin capacity, items weights, and the number
of items. This indicates the high stochastic behavior of
ILWOA. Also for Sch_Wae2 instances, ILWOA finds the op-
timal solution in most cases which indicates the good
searching performance of ILWOA (see Fig. 12).

8 Conclusion and future works

In this paper, a new variant of WOA is developed and applied
for one-dimension BPP. First, the proposed algorithm is ad-
justed to be applied to solve BPP in combinatorial search

Fig. 12 Examples of ILWOA performance on different problem cases
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space. Second, the randomization of the WOA exploration
phase is enhanced by utilizing the capabilities of isotropic
Lévy flight and chaotic maps. Finally, a mutation strategy is
employed for increasing the convergence rate.

Two experiments are conducted and the results are ana-
lyzed with non-parametric Friedman test. In the first experi-
ment, ILWOA is compared to QICS, ACS, FCO, FA, and AS.
The results of the first experiment prove the superiority of
ILWOA in efficiency and rapidity. For the second experiment,
the proposed algorithm is compared to FFD, BFD, and MTP.
The results show the high efficiency and the ability of the
proposed algorithm to find the optimal solution. Besides, the
obtained results are discussed and analyzed according to the
problem size.

For future work, we suggest applying the proposed algo-
rithm to other variants of BPP. Also, ILWOA can be applied to
other combinatorial optimization problems, such as the trav-
eling salesman problem and vehicle scheduling problem. In
order to conduct a comprehensive test of ILWOA perfor-
mance, Internet of Things and cloud computing to manage
big data in health services applications [59–63] should be
applied in the future.
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