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Abstract
Nowadays, location-based services (LBS) are facilitating people in daily life through answering LBS queries. However,
privacy issues including location privacy and query privacy arise at the same time. Existing works for protecting query

privacy either work on trusted servers or fail to provide sufficient privacy guarantee. This paper combines the concepts of
differential privacy and k-anonymity to propose the notion of differentially private k-anonymity (DPkA) for query privacy

in LBS. We recognize the sufficient and necessary condition for the availability of 0-DPkA and present how to achieve
it. For cases where 0-DPkA is not achievable, we propose an algorithm to achieve ε-DPkA with minimized ε. Extensive
simulations are conducted to validate the proposed mechanisms based on real-life datasets and synthetic data distributions.

Keywords k-Anonymity · Differential privacy · Query privacy · Location-based service

1 Introduction

Mobile devices equipped with positioning modules [32]
have leveraged significant feasibility in our daily life
through location-based service (LBS). By submitting a LBS
query attached with one’s location and a specified query
interest, people may obtain points of interests (POI), such
as bars or restaurants, nearby to facilitate daily activities.
While enjoying the convenience brought by an untrusted
LBS provider, users take the risk of privacy concerns from
two aspects denoted location privacy and query privacy
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[26], since the disclosure of a user’s location or query
interests incurs potential damage to personal privacy and
even to individual safety.

Similar to that of other aspects such as social network
[17], to the privacy issue in LBS have lots of efforts been
devoted for both location privacy and query privacy.
For location privacy, both server-based and client-based
solutions have been proposed. At the same time, query

privacy protection is mainly protected by server-based
solution, which includes a third-party trusted server to hide
the querier among k−1 other users with cloaking technique
[11, 12]. These server-based cloaking solutions suffer from
potential single point of failure and computation bottleneck
at the trusted server. Existing client-based solutions [30]
also fail to provide sufficient privacy guarantee, for instance
meaningful k-anonymity against the prior probability of
each query interest held by LBS provider, to protect users’
query interests.

In this paper, we combine the concepts of differential
privacy and k-anonymity. Figure 1 depicts the work flow
of our query privacy protection method. The module
denoted differentially private k-anonymizer lies in users’
mobile devices, and it stores k-sets of query interests in k-
set pool. Given a query Q(loc, I [j ]) with query interest
I [j ], selection control picks a k-set sk ={I [j ], I [j1],
..., I [jk−1]} containing the specified query interest I [j ]
from k-set pool. Here, I [j ] must exists in sk for the
query utility requirement. The picked k-set contains k − 1
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Fig. 1 Work Flow of Differentially Private k-Anonymizer

dummy query interests I [j1], ..., I [jk−1], and differentially
private k-anonymizer submits them together with the actual
query interest I [j ] to the LBS provider. Here, I is the
global set of query interests, and I [j ] denotes the j th
query interest in I . We aim to make the LBS provider
unable to distinguish the actual query interest I [j ] and
the k − 1 dummies I [j1], ..., I [jk−1] through probabilistic
inference, and differential privacy is adopted to achieve
this goal. To this end, we define a notion for query

privacy in LBS denoted Differentially Private k-anonymity
(DPkA), and study protecting query privacy based on
DPkA using a client-based solution. Intuitively, DPkA is
achieved if the posterior probability of any two query
interests among the k submitted is close enough. Here,
the term ”close enough” is controlled by a privacy budget
ε � 0, and it is independent with the prior probability
of each query interest, which follows the principle of
differential privacy [13] and is different from the concept
of geo-indistinguishability [4]. Such definition makes two
submitted query interests difficult to distinguish even they
have quite different prior probabilities. After introducing
our query privacy notion, we recognize the sufficient and
necessary condition for the availability of 0-DPkA, in which
the posterior probability of any query interest from the k

submitted is identical to 1
k

. We present how to achieve this
perfect version of DPkA. Then, we formulate the problem
of achieving the optimal DPkA with the maximized privacy
as a non-linear programming problem with exponential
scale of variables. It is not practical to achieve the optimal
query privacy through this formulation. To overcome this
issue, we present the problem of achieving ε-transformed
0-DPkA, which is achievable iff ε-DPkA is also achievable
given a privacy budget ε and the prior probability of query
interest prob(.). We formulate the problem of achieving
ε-transformed 0-DPkA as a linear programming problem
with linear scale variables, so we can solve the problem
efficiently. By solving the problem of ε-transformed 0-
DPkA, we conduct a solution to the problem of achieving
ε-DPkA with minimized privacy budget ε.

This paper makes the following contributions:

– A meaningful notion, differentially private k-anonymity
(DPkA), is proposed for query privacy in LBS. It

combines differential privacy [13] and k-anonymity to
fit the privacy and utility requirements of query interests
in LBS.

– We recognize a sufficient and necessary condition for
the availability of 0-DPkA, under which the posterior
probability of the k -submitted query interests is
identical. An algorithm for building a mechanism for
achieving 0-DPkA is given.

– For general cases, we formulate the problem of
achieving the optimal DPkA in LBS as a non-linear
programming problem with exponential variables. We
then propose the ε-transformed 0-DPkA problem,
which is equivalent to the problem of achieving
the optimal DPkA but only involves linear scale
of variables in the linear programming formulation.
By solving the corresponding ε-transformed 0-DPkA
problem, we propose a mechanism for achieving ε-
DPkA with minimized privacy budget ε.

– We conduct a simulation based on real-life datasets
from OpenStreetMap project [10], and through
extensive simulation, we validate the effectiveness and
efficiency of our proposed query privacy -protecting
mechanism.

We outline the organization for the rest of this paper
as follows. Section 2 introduces necessary preliminary on
differential privacy and k-anonymity. Section 3 presents the
notion of DPkA. The sufficient and necessary condition
for 0-DPkA is given in Section 4, introduces how to build
a mechanism for achieving the optimal DPkA in general
cases. Our proposed mechanisms are evaluated with real-
life datasets and synthetic data distributions in Section 5.
Section 6 presents related works in the literature. The paper
is concluded in Section 7.

2 Preliminary

This section introduces necessary preliminary on differential
privacy, geo-indistinguishability and k-anonymity which are
employed for preserving privacy in LBS. After that, we
depict the adversary model in this paper, and notions used
in the rest of this paper are also listed in this section.
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2.1 Differential privacy

Differential privacy is a notion defined in the literature of
statistic databases, and it is designed to prevent leakage of
any individual’s information in the process of answering
aggregation queries in statistical databases. To satisfy the
notion of differential privacy, a random algorithm should
return query results with little difference in term of
probabilistic distribution for two databases differing with
just one insertion, deletion, or modification. In other words,
a single change in a database brings minor modification to
query results under the constraints of differential privacy.
The definition of differential privacy is as below.

Definition 1 (Differential privacy) Given ε � 0, a
randomized algorithm A satisfies ε-differential privacy if
for all neighboring databases D and D′, Prob(A(D) ∈
S) � eε × Prob(A(D′) ∈ S). Here, S ⊆ Range(A).
Any pair of neighboring databases D and D′ satisfies one
of the following conditions: (1) (for unbounded differential
privacy) D can be transformed to D′ with exact one
insertion or deletion and (2) (for bounded differential
privacy) D can be transformed to D′ with exact one
modification.

The bounded differential privacy prevents distinguishing
two datasets with the same size differing with exact one
tuple, while the unbounded differential privacy prevents
distinguishing two datasets which are the same except that
one of them owns exact one additional tuple.

In the area of LBS, geo-indistinguishability is proposed
to protect the location privacy. It shares the same idea
to make a randomized algorithm produce similar outputs
for nearby locations in term of probabilistic distribution.
Intuitively, geo-indistinguishability guarantees that the ratio
of posterior probability for two nearby locations, with
regard to the result of the randomized algorithm, is similar
to the ratio of their prior probability. In the following, we
introduce a formal definition of geo-indistinguishability.

Definition 2 (Geo-indistinguishability) Given ε � 0, a
randomized algorithm A satisfies ε-geo-indistinguishability
iff for any r > 0, any pair of location x and x ′ that
d(x, x′) � r and any S ⊆ Range(A), the following
condition holds.

Prob(x|S)

P rob(x′|S)
� eε×r × Prob(x)

P rob(x′)

The notion of geo-indistinguishability guarantees that a
randomized algorithm does not bring significant leakage,
and for two locations nearby, the ratio of posterior
probability does not grow more than eε×r times compared
to the ratio of prior probability. However, the notion

never bounds the ratio of posterior probability for two
locations, since the ratio of their prior probability which
could be very large is always involved. In Section 3, we
present a mirror variant for query privacy -denoted query-
indistinguishability and propose a mechanism to achieve it.
This provides a lower bound of privacy we can achieve in
this paper.

2.2 k -Anonymity

k-Anonymity, formulated by Latanya Sweeney in 2002 [34],
is proposed to guarantee that the protected target can
not be distinguished from k − 1 objects. This property
is well adopted for preserving location privacy and
query privacy in server-based solutions and client-based
solutions.

The server-based solutions such as [5, 12, 38] include a
third-party but trusted server, and LBS queries are first sent
to the trusted server. After receiving LBS queries, the trusted
server hides the user in k−1 users by generalization of LBS
queries, and the attackers cannot recognize what (or where)
does the user query.

The client-based solutions including [28–30] run at users’
devices and generate k − 1 dummies in a local manner, in
which process certain side information is adopted, for instance,
the prior probability of each queried location or interest.

Though the server-based solutions are effective, the
trusted server may become a single failure if it is hacked by
attackers and it is the computation bottleneck to incur long
latency to LBS queries. At the same time, the existing client-
based solutions provide specious k-anonymity, since the
attackers may violate the principle of k-anonymity through
rerunning of the algorithms or probability inference for each
of the k results.

2.3 Adversary model

In this paper, we take the untrusted LBS server as the
adversary, and we aim to prevent it from inferencing what
does a user query. We adopt the common setting from the
existing works, such as [4, 28, 30] , etc., that the adversary
(1) sees k query interests one of which is true; (2) hold side
information including the prior probability of each query
interest, i.e., Prob(.); and (3) is aware of the mechanism
we adopt to generate the k − 1 dummy query interests. The
prior probability of each query interest is known to us at the
same time, since we can adopt the solution presented in [28]
to obtain such side information held by the adversary.

2.4 Notation and description

Here, we list notations and their description which are used
in the rest of this paper as shown in Table 1.



456 Pers Ubiquit Comput (2018) 22:453–469

Table 1 Summary of notations and description

Notation Description

I the set of query interests

I [j ] the j th query interest in I

k the number of query interests reported

sk
I the k-set of query interests

Fk
I the covering family of k-set of query interests

Fk
I [i] the ith k-set of query interest in Fk

I

prob(I [j ]) the prior probability of query interest I [j ]
prob(I [j ]|sk

I ) the posterior probability of I [j ] given sk
I

P k
I the probability assignment matrix

P k
I [i][j ] the probability of reporting Fk

I [i] given I [j ]
ε the privacy budget in DP or DPkA

3 Differentially private k-anonymity in LBS

In this section, we first present a mirror variant of
the aforementioned denoted query-indistinguishability for
query privacy in LBS. Then, we give a mechanism to
achieve the notion of query-indistinguishability and analyze
the privacy level it guarantees. This privacy level is a
lower bound of query privacy that we achieve in this
paper. In the end of this section, we present the notion
of differentially private k-anonymity, and mechanisms to
achieve this notion will be proposed in Section 4.

3.1 Query-indistinguishable k -anonymity

The notion of query-indistinguishable k-anonymity requires
a randomized mechanism not to provide significant
improvement to the adversary’s inference after the result of
the randomized mechanism is seen. This underlying idea is a
straightforward mapping from query privacy. The formal
definition of query-indistinguishable k-anonymity is given
as follows.

Definition 3 (Query-indistinguishable k-anonymity) Given
ε � 0, a randomized mechanism A satisfies ε-
query-indistinguishable k-anonymity iff for any query
interest I [i], any result sk

I = {I [i], I [i1], ..., I [ik−1]} ∈
range(A(I [i])), the following condition holds for any I [j ],
I [j ′] ∈ sk

I :

Prob(I [j ]|sk
I )

P rob(I [j ′]|sk
I )

� eε × Prob(I [j ])
P rob(I [j ′])

Next, we present a randomized mechanism named k-
duplication which achieve ε-query-indistinguishable

k-anonymity. The basic idea of k-duplication is to generate
a set of k-set Sk with |I | elements. For each query interest
I [i] ∈ I , there are exact k elements from Sk containing

I [i]. At the same time, each k-set in Sk contains k different
elements. When a user u queries with I [i], k-duplication

chooses one element from the k elements containing I [i]
from Sk uniformly. The detailed process of k-duplication

is given in Algorithm 1 as follows.

Algorithm 2 generates candidates of k-set to report to
LBS provider for all the query interests. Lines 1–3 initiate
|I | empty query interest sets. Lines 4–9 first create k

duplicates for each query interest, then put all the duplicates
into |I | query interest sets in a round-robin manner. Finally,
the union of all the abovementioned query interest sets is
returned (lines 10–12). Since k < |I | and there are k × |I |
duplicates, Algorithm 2 returns a set S of I query interest
sets, each of which contains k different query interests.
What’s more, each query interest appears in exact k query
interest sets in S. Here, we assume that I has been sorted
using O(|I | log |I |)[22] computation time.

Algorithm 1 first invokes Algorithm 2 to obtain k-sets of
query interests (line 1). Then, it retrieves all the elements
in S which contain i, and put them into candidate set
Pool (line 2). Finally, Algorithm 1 uniformly samples one
element from Pool as the final result (lines 3–4).

Theorem 1 The randomized mechanism of Algorithm 1
achieves 0-query-indistinguishable k-anonymity.
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Proof Recall that Algorithm 2 generates |I | candidate query
interest sets, and each of which consists of k different query
interests. At the same time, each query interest I [i] ∈ I

appears in exact k elements from the candidate returned by
Algorithm 2. Suppose the randomized mechanism proposed
in Algorithm 1 returns S = {I [i1], ..., I [ik]}. For any
1 � j � k, denote Sj as the set of k-sets generated
in Algorithm 2 containing query interest I [j ]. Due to the
random sampling in Algorithm 1, Prob(S|I [j ]) = 1

k
(as

stated in line 3). Similarly, we can get Prob(S|I [j ′]) = 1
k

for any I [j ′] ∈ S. Thus, for any I [j ] and I [j ′] from the
result S,

Prob(I [j ]|S)

P rob(I [j ′]|S)
= Prob(I [j ] ∧ S)

P rob(I [j ′] ∧ S)

= Prob(S|I [j ]) × Prob(I [j ])
P rob(S|I [j ′]) × Prob(I [j ′])

= Prob(I [j ])
P rob(I [j ′]) � e0 × Prob(I [j ])

P rob(I [j ′])
By the inequation above, we conclude that the ran-
domized mechanism of Algorithm 1 achieves 0-query-
indistinguishable k-anonymity.

3.2 The notion of differentially private k -anonymity

The notion of query-indistinguishable k-anonymity ensures
that the LBS provider cannot improve posterior probability
of each query interest after is bounded by the product of a
constant (determined by ε) and the ratio of the two query
interests’ prior probability. It is still easy to distinguish
two query interests (recognize the true one with large
probability) in a LBS query if they have prior probability
with large difference, even query-indistinguishable k-
anonymity is achieved.

To eliminate the side effect of prior probability, we define
the notion of differentially private k-anonymity (DPkA) by
removing the ratio term related to prior probability of query
interests, and we get the following definition of DPkA.

Definition 4 (Differentially private k-anonymity) Given
ε � 0, a randomized mechanism A satisfies ε-DPkA iff
for any query interest I [i], any result sk

I = {I [i], I [i1],
..., I [ik−1]} ∈ Range(A(I [i])), the following condition
holds for any I [j ], I [j ′] ∈ sk

I .

Prob(I [j ]|sk
I )

P rob(I [j ′]|sk
I )

= prob(I [j ]) × prob(sk
I |I [j ])

prob(I [j ′]) × prob(sk
I |I [j ′]) � eε

The notion of DPkA provides more strict privacy
constraint than that of query-indistinguishable k-anonymity,
since it makes two query interests hard to distinguish even
that they have prior probability with large difference. The
randomized mechanism in Algorithm 1 no longer satisfies

0-DPkA. Instead, it provides a lower bound of privacy for
the notion of DPkA as stated in the following theorem.

Theorem 2 The randomized mechanism in Algorithm 1
achieves maxI [j ],I [j ′]∈I {ln Prob(I [j ])

P rob(I [j ′] }-DPkA.

Proof Since the randomized mechanism in Algorithm 1
achieves 0-query-indistinguishable k-anonymity as
stated in Theorem 1, given the reported query interests as
S, for any I [j ], I [j ′] ∈ S , we have

Prob(I [j ]|S)

P rob(I [j ′]|S)
� e0 × Prob(I [j ])

P rob(I [j ′]) � e
ln Prob(I [j ])

P rob(I [j ′] .

By traversing all the possible I [j ] and I [j ′], we get that

Prob(I [j ]|S)

P rob(I [j ′]|S)
� e

maxI [j ],I [j ′]∈I {ln Prob(I [j ])
P rob(I [j ′] }.

Thus, we conclude the randomized mechanism in Algo-
rithm 1 achieves maxI [j ],I [j ′]∈I {ln Prob(I [j ])

P rob(I [j ′] }-DPkA.

Though ineffective, the randomized mechanism in
Algorithm 1 provides a lower bound for the privacy we
can achieve in term of our proposed notion of DPkA. That
means we can achieve ε-DPkA with the privacy budget no
larger than ε = maxI [j ],I [j ′]∈I {ln Prob(I [j ])

P rob(I [j ′] }. In fact, it is
still possible to achieve smaller ε for better privacy, and in
the next section, we study how to approach this goal.

4Mechanisms for differentially private
k-anonymity

This section formulates the problem of achieving DPkA
for query privacy, and a naı̈ve solution using non-
linear programming with exponential scale of variables is
presented. Then, we propose mechanisms for achieving
DPkA in an efficient manner. First, we deal with a special
case in which the privacy budget ε can be reduced to 0.
Then, a mechanism is designed to deal with the condition
when the privacy budget ε cannot be reduced to 0, and
our proposed mechanism is able to achieve the minimum
privacy budget for best privacy.

4.1 Problem definition

Before introducing the formal definition of our problem,
we first present the definition of k-set of query interests,
covering family of k-set and probability assignment matrix
which form the basis of our problem definition.

Definition 5 (k-set of query interests) Given a global set of
query interests denoted I together with an integer k, a k-set
of query interests from I denoted sk

I is a set of k different



458 Pers Ubiquit Comput (2018) 22:453–469

query interests from I . We denote sk
I [i] the ith query interest

in sk
I , and denote I [i] the ith query interest from I .

Definition 6 (Covering family of k-set) Given a global set
of query interests denoted I together with an integer k, a
covering family of k-set denoted Fk

I is a set of k-sets of
query interests, and each query interest from I exists in at
least one element from Fk

I . We denote Fk
I [i] the ith k-set

from Fk
I .

Definition 7 (Probability assignment matrix) Given a
global set of query interests denoted I together with an
integer k and one of its covering family of k-set Fk

I , a
probability assignment matrix P k

I based on Fk
I is a |Fk

I |×|I |
matrix where each row corresponds to a k-set sk

I ∈ Fk
I

and each column corresponds to a query interest from I .
P k

I [i][j ] = prob(F k
I [i]|I [j ]) is the probability of reporting

Fk
I [i] given I [j ] satisfying that:

(1) for any 1 � i � |Fk
I | and 1 � j � |I |, if I [j ] ∈ Fk

I [i]
then P [i][j ] � 0, otherwise P [i][j ] = 0;

(2) for any 1 � j � |I |, ∑
1�i�|Fk

I | P [i][j ] = 1.

A covering family of k-sets Fk
I and its corresponding

probability assignment matrix P k
I determines a randomized

mechanism for preserving query privacy in LBS. Given
the actual query interest as I [j ], the mechanism picks one
k-set from Fk

I [i], and the probability of picking Fk
I [i] is

P k
I [i][j ]. Here, if P k

I [i][j ] = 0, Fk
I [i] is never picked for

I [j ]. The picked k-set of query privacy is to be reported
to LBS provider for response, and the actual query interest
is hidden in the reported k-set Fk

I [i].
Next, we formulate the problem of achieving the optimal

DPkA. To solve our proposed problem, one should compute
a covering family of k-sets and a probability assignment
matrix based on it. After the computation, the minimized
privacy budget ε should be achieved for best privacy.

Definition 8 (Problem of achieving the optimal differen-
tially private k-anonymity) Given a global set of query
interest as I , the prior probability of any query interests
I [i] ∈ I as prob(I [i]) and an integer k. Computing a ran-
domized mechanism M(F k

I , P k
I ) for each sk

I = Fk
I [i] and

any query interest I [j ], I [j ′] ∈ sk
I , the following condition

holds

prob(I [j ]|sk
I )

prob(I [j ′]|sk
I )

= prob(I [j ]) × P k
I [i][j ]

prob(I [j ′]) × P k
I [i][j ′] � eε .

At the meanwhile, ε is minimized with the constraint that
ε � 0.

4.2 A naı̈ve solution

Here, we present a naı̈ve solution to the problem proposed
in Definition 8 using a non-linear programming technique.
Given the global query interest set I , an integer k, the naı̈ve
solution puts all the k-sets based on I into Fk

I , so there are
(|I |

k

)
k-sets in total. For any sk

I ∈ Fk
I , the following condition

holds if I [j ], I [j ′] ∈ sk
I .

prob(I [j ]) × P k
I [i][j ]

prob(I [j ′]) × P k
I [i][j ′] � eε .

The above condition can be transformed to the following
constraint:

ln prob(I [j ])+ln P k
I [i][j ] � ε+ln prob(I [j ′])+ln P k

I [i][j ′]
In the above constraint, we denote xi,j = ln P k

I [i][j ] and
dj,j ′ = ln prob(I [j ]) − ln prob(I [j ′]) then the constraint
could be written as follows:

xi,j − xi,j ′ − ε + dj,j ′ � 0.

There are
(|I |

k

)× (
k
2

)× 2 constants of the above form, and

since we can pick
(|I |

k

)
values for i and for each i , there are

(
k
2

)
values of j and j ′ the relation of which are symmetric

at the same time. What’s more, each value of xi,j � 0,
and such condition brings

(|I |
k

) × k constraints. For the
property of probability, we have

∑
1�i�|Fk

I | P k
I [i][j ] = 1

for 1 � j � |I |. Thus, we have the following constraints
for 1 � j � |I |.

∑

1�i�|Fk
I |

exi,j = 1

The number of such constraints is |I |. Finally, we have
ε � 0 as the last constraint.

We can formulate the non-linear programming formulas
for our naı̈ve solution as follows:

min ε

s.t . xi,j − xi,j ′ − ε + dj,j ′ � 0 for i, j, I [j ] ∈ Fk
I [i]

xi,j � 0 for all entries in P k
I

∑

1�i�|Fk
I |

exi,j = 1 for 1 � j � |I |

ε � 0

The naı̈ve solution includes
(|I |

k

) × k + 1 variables, each
of which corresponds to ε or an entry in P k

I , together with
(|I |

k

) × (
k
2

) × 2 + (|I |
k

) × k + |I | + 1 constrains in total. The
non-linear programming problem is not easy to compute,
due to the non-linear property together with the exponential
scale of variables and constraints. In the rest of this section,
we propose an efficient method to solve the problem of
achieving the optimal DPkA for query priacy in LBS
applications.
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4.3 Dealing with a special case: ε = 0

Here, we first present a necessary condition for the
availability of 0-DPkA. Then, a mechanism is given for
achieving the notion of 0-DPkA under the assumption of
the necessary condition we present. Finally, we claim that
the necessary condition we present is in fact a sufficient and
necessary condition for the availability of 0-DPkA.

4.3.1 A necessary condition

The following theorem illustrates a necessary condition
for the availability of 0-DPkA. Intuitively, this necessary
condition requires that the prior probability of the reported
query interests are not too far away.

Lemma 1 Given the global query interest set I , and for
each I [j ] ∈ I the prior probability of I [j ] is prob(I [j ]), if
0-DPkA can be achieved then the following condition holds

max
I [j ]∈I

prob(I [j ]) � 1

k
.

Proof Suppose we achieve 0-DPkA with covering family
of k-sets denoted Fk

I and probability assignment matrix
P k

I . Notice that the property of 0-DPkA guarantees the
following equation for each i, j that I [j ] ∈ Fk

I [i].

prob(I [j ]) × P k
I [i][j ] = 1

k
× prob(F k

I [i]).

Furthermore, for each I [j ] ∈ I , the following condition
holds.

prob(I [j ]) =
∑

I [j ]∈Fk
I [i]

{prob(I [j ]) × P k
I [i][j ]}

=
∑

I [j ]∈Fk
I [i]

{1

k
× prob(F k

I [i])}

�
∑

Fk
I [i]∈Fk

I

{1

k
× prob(F k

I [i])} = 1

k
.

By traversing all the I [j ] ∈ I , we can make the conclusion
that maxI [j ]∈I prob(I [j ]) � 1

k
holds.

4.3.2 Achieving 0-differentially private k -anonymity

Here, we present an algorithm to achieve 0-DPkA under
the assumption that maxI [j ]∈I prob(I [j ]) � 1

k
. Before

introducing our proposed algorithm, we first provide an
example to demonstrate the underlying idea.

Given I = {I [1], I [2], I [3], I [4], I [5]} and the prior
probability of each query interest as follow, prob(I [1]) =
0.3, prob(I [2]) = 0.25, prob(I [3]) = 0.2, prob(I [4])
= 0.15, prob(I [1]) = 0.1. We set k = 2 in this example.
We are to compute Fk

I and P k
I for this instance. Instead

of starting from fixing Fk
I , we seek a feasible solution of

P k
I and Fk

I is determined in the process of fixing P k
I . As

show in Fig. 2, we first create five segments segi (i =
1, 2, 3, 4, 5). Denoting the length of segi as L(segi), we set
L(segi) = prob(I [i]) for each i. In the next step, we align
these segments along k = 2 layers with length of 1

k
= 0.5

from the bottom to the top. The first layer takes up seg1

and part of seg2 denoted seg21. The length of Layer 1 is
0.5 and it takes 0.2 from seg2. The rest of seg2 denoted
seg22 with length 0.05 is aligned with Layer 2, then seg3,
seg4 , and seg5 are aligned to Layer 2. The length of
Layer 2 is also 0.5. In the third step, we extend the vertical
dash line through each ending point of segments, and these
dash lines cut Layer 1 and Layer 2 into five collections,
each of which is a k-set of query interests in Fk

I . Thus, Fk
I

contains {I [1], I [2]}, {I [1], I [3]}, {I [1], I [4]}, {I [2], I [4]},
and {I [2], I [5]}. In this process, we align the segments one
by another onto the k Layer , and the length of each segment
is more than 1

k
, so we conclude that each vertical line will

not intersect with two segments for the same query interest
(ending points are not included in a segment). Finally, we
show the calculation of P k

I . For a k-set Fk
I [i] in the above

process, suppose a segment segi is included in Fk
I [i]. If

segj is include entirely, P k
I [i][j ] = 1. Otherwise, if segj is

partially included as segjm, then P k
I [i][j ] = L(segjm)

L(segj )
. In the

instance shown in Fig. 2, P k
I [1][1] = 1

6 and P k
I [1][2] = 1

5
for I [1], I [2] and Fk

I [1] = {I [1], I [2]}. By now, we get Fk
I

and P k
I and they consist of a mechanism achieving 0-DPkA.

Fig. 2 An example of achieving 0-DPkA for an instance with k = 2, I = {I [1], I [2], I [3], I [4], I [5]}, and prior probability as prob(I [1]) = 0.3,
prob(I [2]) = 0.25, prob(I [3]) = 0.2, prob(I [4]) = 0.15 and prob(I [5]) = 0.1
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The implementation of the above-described process is
formally introduce in Algorithm 3. Algorithm 3 aligns I

segments with length prob(I [i]) to k layers (lines 3–21),
and then it computes Fk

I and P k
I (lines 22–39). It traverses

all the layers (lines 24–39) and during the traversing,
Algorithm 3 seeks the next vertical dash line to generate k-
set sk

I ∈ Fk
I (lines 25–27) and calculate each entry of P k

I

(lines 31–36).
The correctness of Algorithm 3 can be seen from two

aspects. First, the process generates a number of k-sets,
each of which consists of k different query interests. This
is guaranteed by the assumption that the maximal prior
probability of a query interest is no more then 1

k
. Second,

we can get the posterior probability of two query interests
from any sk

I ∈ Fk
I is identical due to the calculation of

corresponding entries in P k
I . Thus, Algorithm 3 returns

a randomized mechanism M(F k
I , P k

I ) achieving 0-DPkA
under the assumption that maxI [j ]∈I prob(I [j ]) � 1

k
.

Since each query interest incurs at most one dash line
except the right end of each layer, the number of k-set in Fk

I

is of O(|I |). There are O(k×|I |) entries in P k
I . So, the time

complexity of Algorithm 3 is O(k × |I |).

4.3.3 A sufficient and necessary condition

As a straightforward consequence of Lemma 1 and the fact
that Algorithm 3 achieves 0-DPkA under the assumption
maxI [j ]∈I prob(I [j ]) � 1

k
, we conclude the following

theorem.

Theorem 3 Given the query interest set I , and for each
I [j ] ∈ I , the prior probability of I [j ] is prob(I [j ]),
0-DPkA can be achieved if the following condition holds:

max
I [j ]∈I

prob(I [j ]) � 1

k
.

By here, we have studied the sufficient and necessary
condition for the availability of 0-DPkA and Algorithm 3 is
proposed for designing a randomized mechanism to achieve
0-DPkA. Next, we are to deal with general cases when
0-DPkA is not achievable.

4.4 Achieving the optimal differentially private
k -anonymity

We first consider the decision version of the problem of
achieving the optimal differentially private k-anonymity.
The formal definition of the decision problem is given as
follow.

Definition 9 (Decision problem of achieving the optimal
differentially private k-anonymity) Given a global set of
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query interest as I , the prior probability of any query interest
I [i] ∈ I as prob(I [i]), an integer k , and a privacy budget
ε � 0. Decide whether there is a randomized mechanism
M(F k

I , P k
I ) for each sk

I = Fk
I [i] and any query interest

I [j ], I [j ′] ∈ sk
I , the following condition holds:

prob(I [j ]|sk
I )

prob(I [j ′]|sk
I )

= prob(I [j ]) × P k
I [i][j ]

prob(I [j ′]) × P k
I [i][j ′] � eε .

Next, we introduce a decision problem of ε-transformed
0-differentially private k-anonymity, which can be proved
equivalent to the decision problem of achieving the optimal
differentially private k-anonymity. To this end, we can solve
the optimization problem of ε-transformed 0-differentially
private k-anonymity, and then obtain a solution of the
problem of achieving the optimal differentially private k-
anonymity. The definition for the problem of ε-transformed
0-DPkA and its corresponding decision version as
follows.

Definition 10 (Optimization problem of ε-transformed 0-
DP k-anonymity) Given a global set of query interest as
I , the prior probability of any query interest I [i] ∈ I

as prob(I [i]) and an integer k, compute ε1, ..., ε|I | � 0
satisfying that 0-DPkA is achievable for I if the prior
probability of I [j ] is transformed to prob(I [j ])

e
εj . (Notice that

the definition does not restraint the sum of transformed
prior probability is 1.) At the same time, max1�j�|I |{εj } is
minimized.

Definition 11 (Decision problem of ε-transformed 0-DP

k-anonymity) Given a global set of query interest as I ,
the prior probability of any query interest I [i] ∈ I as
prob(I [i]) , an integer k and a privacy budget ε � 0,
decide whether there exists 0 � ε1, ..., ε|I | � ε satisfying
that 0-DPkA is achievable for I if the prior probability of
I [j ] is transformed to prob(I [j ])

e
εj . (Notice that the definition

does not restraint the sum of transformed prior probability is
1.)

The following theorem demonstrates the equality of the
two decision problem introduced in Definitions 9 and 11.

Theorem 4 Given an instance (I, prob, k, ε) for both the
decision problem of achieving the optimal DPkA and ε-
transformed 0-DP k-anonymity, the answers of the two
problem are the same.

Proof The proof includes two aspects. First, given an
instance (I, prob, k, ε), we are to prove that if ε-dp
k-anonymity is achievable, then ε-transformed 0-dp k-
anonymity is also achievable.

Suppose ε-dp k-anonymity is achieved by the design of
M(F k

I , P k
I ). For each Fk

I [i] ∈ Fk
I , we denote basei =

argI [m]∈Fk
I [i] min{prob(I [m]) × prob(F k

I [i]|I [m])}. Thus,
basei is the query interest with minimum value of prob(.)×
prob(F k

I |.). For each query interest I [m′] ∈ Fk
i , denote

εm′,i = ln{ prob(I [m′])×prob(F k
I [i]|I [m′])

prob(basei )×prob(F k
I [i]|basei )

}, or in other words,

we have eεm′,i = prob(I [m′])×prob(F k
I [i]|I [m′])

prob(basei )×prob(F k
I [i]|basei )

. Now, we can

build a solution to achieve ε-transformed 0-dp k-anonymity,
and the built solution keeps Fk

I unchanged. For a query
interest I [x] ∈ I and each I [x] ∈ Fk

I [i], we shrink the value

of prob(I [x]) × prob(F k
I [i]|) to

prob(I [x])×prob(F k
I [i]|)

ex,i .
After shrinking the target value of all the query interests
in the k-set they appear, we get that prob(I [x]) ×
prob(F k

I [i]|) = prob(basei) × prob(F k
I |basei) for all

the query interests in the k-sets they appear. The P k
I of

the built solution changes with the shrinked value of each
query interest, and we omit the details here since it does
not related to the rest proof. By now, we can conclude
that the transformed solution achieves 0-DPkA due to the
Definition 4. To prove this solution satisfies ε-transformed
0-DPkA, we need to prove that there exists an εx satisfying

that prob(I [x])
eεx = ∑

I [x]∈Fk
I [i]{prob(I [x])×prob(I [x]|Fk

I )

e
εx,i } and

εx � ε. Since each εx,i � ε, we can get that

prob(I [x])
eεx

=
∑

I [x]∈Fk
I [i]

{prob(I [x]) ×prob(I [x]|Fk
I )

eεx,i
}

�
∑

I [x]∈Fk
I [i]

{prob(I [x]) ×prob(I [x]|Fk
I )

eε
}= prob(I [x])

eε
.

thus, εx � ε holds for each I [x]. So, we prove that ε-
transformed 0-DPkA can be achieved if ε-DPkA can be
achieved.

Second, we are to prove that if ε-transformed 0-
dp k-anonymity is achievable, then ε-dp k-anonymity is
achievable.

Suppose ε-transformed 0-DPkA can be achieved by 0 �
ε1, ..., ε|I | � ε, Fk

I and P k
I . We are to prove that a ran-

domized mechanism M(F k
I , P k

I ) directly satisfies ε-DPkA.
For each Fk

I [i] ∈ Fk
I and any I [j ], I [j ′] ∈ Fk

I [i], we

have
prob(I [j ])×prob(F k

I [i]|I [j ])
e
εj = prob(I [j ′])×prob(F k

I [i]|I [j ′])
e
ε
j ′

according to the definition of ε-transformed 0-dp k-

anonymity. Then, we can get
prob(I [j ])×prob(F k

I [i]|I [j ])
prob(I [j ′])×prob(F k

I [i]|I [j ′]) =
e
εj

e
ε
j ′ = e

εj −εj ′ � eε , since 0 � εj , εj ′ � ε. So, we see a ran-

domized mechanism M(F k
I , P k

I ) achieves ε-DPkA. Thus,
we finish the second aspect of the proof.

Theorem 4 demonstrates that we can solve a problem
of achieving ε-transformed 0-DPkA with minimum ε to
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obtain a solution for the problem of achieving the optimal
DPkA. Next, we present a linear programming solution to
compute 0 � ε1, ..., ε|I | � ε for achieving ε-transformed 0-
DPkA with minimum ε, given an instance (I, prob, k, ε).
The sufficient and necessary condition for the availability
of 0-DPkA is adopted in the formulation of linear
constraints.

In the formulation of linear programming, we denote
xi = 1

e
εj for each query interest I [j ] ∈ I . Then, we have

the following constraints for each I [j ] ∈ I .

prob(I [j ]) × xj − 1

k
×

∑

I [j ′]∈I

{prob(I [j ′]) × xj ′ } � 0.

At the same time, denoting x0 = 1
eε , then we have the

following constraints for each I [j ] ∈ I , since 0 � εj � ε.

x0 − xj � 0

xj − 1 � 0

Finally, due to the notation of x0, we have the constraint that
x0 − 1 � 0. The subject is to get the minimum value of ε,
and we calculate the minimized value of −x0 to achieve this
subject.

The formulation of our linear programming approach for
computing ε1, ..., ε|I | is as follow.

min − x0

s.t . prob(I [j ]) × xj − 1

k
×

∑

I [j ′]∈I

{prob(I [j ′]) × xj ′ } � 0 1 � j � |I |

x0 − xj � 0 1 � j � |I |
xj − 1 � 0 0 � j � |I |
− xj � 0 0 � j � |I |

There are O(|I |) variables and O(|I |) constraints in the
linear programming we formulated above. After solving
it, we get the value of x0, x1, ..., x|I | and we recover the
value of ε as − ln x0. To compute Fk

I and P k
I , we first

transform the prob(I [j ]) to prob(I [j ]) × xj , and then
invoke Algorithm 3 for solving 0-DPkA. According to the
second part of proof for Theorem 4, we conclude that Fk

I

and P k
I returned by Algorithm 3 make up of a randomized

mechanism which achieves ε-DPkA. Finally, we detail the
process of achieving optimal DPkA in Algorithm 4.

Though the minimized ε is related to the prior probability
of query interests in I , we should notice that the minimized
ε returned in Algorithm 4 will not be larger than
maxj,j ′∈I {ln Prob(j) − ln Prob(j ′)} due to the result of
Theorem 2. This provides a lower bound of privacy we can
achieve in the worst case.

5 Simulation

We present the simulation settings and simulation results
for our solution which achieves the optimal DPkA for given
prior probability of each query interest in this section.

5.1 Simulation setup

We implement our approach to achieve the optimal DPkA
in Java language, and we employ the function of solving
linear programming from Apache Commons Mathematics
Library [1]. We use four real-life datasets denoted T X,
CA, POIs , and T weets. T X and CA from [2] include
street information in the state of Texas and California. Each
entry in T X and CA contains latitude, longitude, and a
set of keywords. POIs and T weets from [10] contain
worldwide coordinates and geo-tags. We take keywords and
geo-tags as query interests in these datasets. To obtain the
prior probability of each query interest, we first divide each
dataset into regions with fixed sizes. We choose the size as
8km × 8km and 30km × 30km for both of T X and CA.
Since POIs and T weets cover worldwide area, we divide
them with length 100km and 200km. Given the size of I

and a region R, I contains query interests with |I |-largest
frequency in R. And the prior probability is calculated with
in each region independently. In T X and CA , we remove
entries only with keywords for city names and state names,
since they dominate top frequency with few cardinality but
provide no meaningful information. Details of datasets in
our evaluation are listed in Table 2. To better understand
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Table 2 Details of datasets in evaluation

Name Description Original/preprocessed size Number of words

T X Street objects in Texas 14182368/557918 64934

CA Street objects in California 13820481/559349 70584

POIs Pois worldwide 1157570/1157570 585626

T weets Tweets posted worldwide 20000000/20000000 2226543

the relation of the optimal ε and query interest distribution,
we generate synthetic prior probability distribution of query
interests following Zipf’s law with exponent parameter sf

as 0.01, 0.5, 1, 1.5, and 2.0. The synthetic distribution covers
from uniform distribution to highly skewed distributions.

We evaluate the privacy budget ε achieved by our
approach, which is minimized for a given prior probability
of query interests. The mechanism presented in Algorithm 1
is compared to as the baseline, since it provides a lower
bound of available privacy. We test effects of parameters on
the minimized ε, including |I | and k for the real-life datasets
mentioned above. For Zipf -distributed synthetic datasets,
we include another parameter as the exponent value of Zipf
distribution, which depicts the skewness of query interests.
For a given |I | and k, we traverse all the regions from
the target datasets after division, and choose regions with
more than |I | distinct query interests for evaluation. Other
regions with fewer than |I | query interests are discarded
for further tests. In each chosen region, we take the most
frequent |I | keywords or geo-tags as query interests and
compute their probability among these |I | query interests. In
this way, we get the prior probability of each query interest
in consideration. Then, the prior probability is feed to our
proposed approach to obtain the mechanism for achieving
the minimized ε.

5.2 Simulation result

In this section, we present the simulation results based on
four real-life datasets and synthetic distributions. First, we
study the effect of k on the available optimal privacy. To
this end, we fix the parameter |I | = 40 and let k grow
from 5 to 20, in other words, our setting includes 40 query
interests and each query reports k of them. Figure 3 shows
the effect of k on the optimal privacy in T X, CA, POIs,

and T weets. As illustrated, the minimized ε grows as k

increases. The reason is that as more query interests are
involved, the prior probability distribution becomes more
skew, since newly included query interests appear much
fewer times than top frequent ones. The growing skewness
surely brings down the privacy, and the minimized ε grows.
In all the tests shown in Fig. 3, our approach achieves better

privacy than the baseline, especially when k is small. Our
approach achieves ε close to 0 when k is small, meaning
that very good privacy is obtained. As k grows to 20 which
is half of total number of query interests, we still produce
smaller ε by 2–3. Overall, the values of ε in POIs and
T weets are smaller than 1, even if k grows to 20. T X and
CA provide small ε when k is 5, but they give ε larger than
1 for k = 10, 15, 20 in almost all the cases. For different
region sizes, T X, POIs , and T weets produce close ε

values for the same k, but CA provides larger ε for larger
regions. This is due to the more skew nature of CA. For
both small and large region tests, T X, POIs , and T weets

provide similar number of regions for test, but CA shows
large difference. Sixty regions are qualified when divided
8km × 8km , and 200 regions are qualified when divided
30km×30km for CA dataset. This means that the 140 newly
included datasets for 30km × 30km setting are more skew
than the 60 regions for 8km×8km setting, thus they degrade
ε.

Next, we test the effects of |I | on ε. In this part, we test
|I | with different values including 30, 35, 40, and 45, and
present the relation between |I | and the minimized ε. At the
same time, we study the effects of |I | under three settings of
k including k = 5, k = 10 , and k = 15. In Fig. 4, we present
the simulation results in T X, CA, POIs , and T weets.
From the results for each dataset with divided regions of
different sizes, we conclude the trend that the minimized ε

decreases as we increase the value of |I |. The reason is that
increasing |I | makes top-sized probability of query interests
smaller. Due to the nature of our approach, such condition
brings better privacy. At meanwhile, ε also degrades with
k for a given value of |I |, and this is consistent with the
former part of simulation as shown in Fig. 3. Again, T X,
POIs , and T weets provide similar ε while CA provides
larger ε for larger divided regions. The reason is the same
as that of the trend presented in Fig. 3c, d. That is more
skew probability of query interests are included when CA

is divided into 30km × 30km regions. The overall condition
of ε in POIs and T weets is better than that of T X and
CA. Under different setting of |I | and k, the values of ε for
POIs and T weets are no more than 0.6, which means good
privacy is obtained. At the same time, when k is set to 10
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Fig. 3 Effect of parameter k,
|I | = 40
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Fig. 4 Effect of parameter |I |
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and 15, the values of ε are larger than 1 in T X (divided into
8km × 8km and 30km × 30km regions) and CA (divided
into 30km× 30km). This is because POIs and T weets are
more uniform with regard to query interest probability. T X

and CA are still more skew even we remove dominating
entries contain only the city names and state names.

To further understand the effects of query interests’
prior probability on ε, we generate zipf distributed
probability for query interests in I for different parameter
|I |. During the generation, we set the exponent value of
zipf distribution (denoted sf ) as 0.01 (almost uniform),
0.5, 1.0, 1.5, and 2.0 (highly skewed). When sf grows to 1.5
and 2.0, the generated distributions become very skew. For
each distribution, we compute the ε achieved for different
parameter k, so for each combination of |I |, sf , and k ,
we test the value of ε. Figure 5 shows the results of this
part. In Fig. 5a, we fix |I | = 40 and sf = 1.0 and test
different values of k. Consistent with former results shown
in Fig. 3, ε grows with k and our approach again defeats
the baseline. When k is small, ε is nearly 0. The value of
ε for our approach is still smaller than that of the baseline
by 3 when k grows to 20. Figure 5b shows the effect of |I |
on ε when we fix sf = 1.0 and k = 10. Again, we see
ε decreases as |I | increases. This is because increasing |I |

reduces top probabilities of query interests, which in turn
brings opportunity for achieving smaller ε. Figure 5c shows
more details on the effects of |I | and k for our approach. ε

grows with k, and it decreases as we increase |I |. Figure 5d
studies the relation of ε and sf . As shown in Fig. 5d, ε stays
on nearly 0 when the probability is almost uniform with
sf = 0.01. When sf is set to 0.5, for different k values ε

keeps smaller than 1. For other larger value of sf , ε goes
beyond 1. In practice, the number of query interest could be
of larger scale and k is of similar scale in our tests, so as
demonstrated in our simulation proper ε will be achieved in
reality.

6 Related work

Privacy has attracted significant attention from research
community and a diversity of efforts has been devoted in
this literature, including social network [9, 19, 42] and work
on preserving privacy through smartphones, and they are
horizontal to our work. Huang et al. [21] design protocols
for preserving privacy for wireless sensor networks.
Privacy in social network data is also widely studied
[18].

Fig. 5 Results on Zipf
distributions
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k-anonymity is first introduce in database community
[34] and it is also well adopted for protecting privacy in
LBS applications. A majority of works utilizes a trusted
server for achieving k-anonymity through the technique of
cloaking. Cloaking hides a user among other users inside a
generated area, and LBS provider cannot recognize which
user is submitting a query. This technique works for both
location privacy and query privacy. Works such as [5,
12, 36, 38] fall in this category. Niu et al. [28] work on
the problem of generating proper dummies for locations
in reported queries to LBS for hiding the user’s actual
locations. In [28], 2k locations with similar probability with
the user’s location are chosen as dummy candidates, and
k − 1 of them are randomly selected as final dummies.
This approach obtains good entropy for the k locations in
the reported query. Although this solution includes random
nature, the posterior probability of the k reported location
is still different due to the process of dummy selection, and
the privacy guaranteed is not clear. Niu et al. [29] employ
cache to avoid submitting queries to LBS server as much
as possible, and thus prevent the leakage of user’s location.
Pingley et al. [30] propose a mechanism for protecting
query privacy in a continuous manner. A set of k query
interests are generated for a traveling path, and the user
submits the same queries along the path to avoid privacy
breach. This fits to continuous querying; however, there is
no privacy guarantee since it simply chooses query interests
with probability larger than a given threshold as candidates.
In summary, server-based k-anonymity suffers single point
of failure and existing client-based solutions do not provide
provable privacy guarantee based on the k-location/ query
interests reported to LBS server. To our best knowledge,
our work is the first to combine differential privacy and k-
anonymity in the literature of LBS queries, and work on
providing the optimal privacy guarantee that we can achieve.
Zheng et al. [43] study the problem of protecting location
privacy in local business service system. This work deals
with privacy concerns in the process of recommendation
such as [45].

Differential privacy is first introduced in statistic
databases [13]. The intuitive idea of differential privacy
is that a single change of the input should not modify
the output significantly. By this guarantee, the adversary
cannot recognize the input among all possible inputs similar
to the real one. Due to the simple and clean nature of
differential privacy, it has been adopted widely, such as
machine learning [7, 33], statistic database [14, 16, 25], data
mining [15, 41], graph [24], and crowdsourcing [35, 40].
Recent research starts combining correlation [27, 37, 39]
and personality [23] nature to original differential privacy.
Our work is parallel to the large body of differential privacy
research. We combine differential privacy and k-anonymity
to provide guaranteed privacy in LBS. Differential privacy

has been adopted in the literature of privacy protection
in LBS and [4] ensures that an adversary will not get
significant information about a user’s location after a query
is reported. This is achieved by making the ratio of two
nearby locations’ posterior probability similar to that of
their prior probability. Mechanisms following or adopting
similar privacy guarantee are presented to optimize privacy
or utility [6, 31]. Our approach differs from that of these
works in several aspects. First, we work on protecting query

privacy in which similarity of different query interests
does not make sense. Second, we combine differential
privacy and k-anonymity to fit the scenario of protecting
query privacy in LBS, and optimize the privacy we can
achieve. Last but not least, we provide privacy guarantee
irrelevant with prior probability of query interests, as
presented in Section 3. Thus, our notion leads to better
privacy than that provided by a mirror variant of for
query privacy. Other works employ customized measures
for privacy in various aspects, such as [8, 20, 44] in
social network datasets. Linear programming is adopted to
compute the optimal privacy in our paper, and a recent study
[3] works on evaluating the efficiency of a network structure
using fractional programming. This work is horizontal to
our paper.

7 Conclusion

In this paper, we propose a novel notion of differentially
private k-anonymity, which is the first attempt to combine
differential privacy and k-anonymity in LBS literature, for
preserving query privacy of LBS users. We recognize the
lower bound of privacy available for DPkA by building
a mirror variant of for query privacy. A sufficient and
necessary condition under which 0-DPkA can be achieved is
obtained in this paper. For more general cases that 0-DPkA
is not achievable, we prove that the problem of achieving
ε-DPkA is equivalent to the problem of achieving ε-
transformed 0-DPkA defined in this paper. Then, we present
an algorithm based on a linear programming technique to
compute the optimal solution of the problem of achieving
ε-transformed 0-DPkA, and in turn, we give the algorithm
for achieving the optimal DPkA by minimizing ε. We
conduct extensive simulation based on four real-life datasets
and synthetic zipf distributions, and the simulation results
demonstrate the effectiveness of our approach for achieving
well-defined notion of guaranteed query privacy.

To our best knowledge, this paper is the first work to
combine differential privacy and k-anonymity to define
and protect query privacy in LBS scenarios. We provide
guaranteed indistinguishability, which overcomes the major
breach of traditional k-anonymity, among k query interests
reported to LBS provider. Our work is a promising step
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towards exploring practical privacy notion and preserving
methods for query privacy in LBS applications.
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