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Abstract
Single-instruction-set architecture (Single-ISA) heterogeneous multi-core processors (HMP) are superior to Symmetric
Multi-core processors in performance per watt. They are popular in many aspects of the Internet of Things, including mobile
multimedia cloud computing platforms. One Single-ISA HMP integrates both fast out-of-order cores and slow simpler cores,
while all cores are sharing the same ISA. The quality of service (QoS) is most important for virtual machine (VM) resource
management in multimedia mobile computing, particularly in Single-ISA heterogeneous multi-core cloud computing
platforms. Therefore, in this paper, we propose a dynamic cloud resource management (DCRM) policy to improve the QoS
in multimedia mobile computing. DCRM dynamically and optimally partitions shared resources according to service or
application requirements. Moreover, DCRM combines resource-aware VM allocation to maximize the effectiveness of the
heterogeneous multi-core cloud platform. The basic idea for this performance improvement is to balance the shared resource
allocations with these resources requirements. The experimental results show that DCRM behaves better in both response
time and QoS, thus proving that DCRM is good at shared resource management in mobile media cloud computing.

Keywords Mobile multimedia cloud computing · VM placement · Dynamic cloud resource management · Response time

1 Introduction

Multi-core has been popular due to its advantages in power
[1] and more modest computational small cores have replaced
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the single and powerful processor [2]. All cores of symmetric
multi-core have identical performance; therefore, all threads
can run on arbitrary cores. However, single-instruction-
set architecture (ISA) heterogeneous multi-core processors
(HMPs) can have better power consumption, since these
are better in catering the needs of diverse workloads [3–5].
Therefore, HMP adoption is promising for all aspects of the
Internet of Things (IoT).

Cores in the single-ISA HMP have the same ISA, but dif-
ferent features, size, speed, and power consumption [6, 7].
Therefore, for a normal HMP, there are some fast/big cores
as well as small cores. Sequential threads can be assigned
to fast cores, while parallel running threads are assigned
to small cores, thus improving performance while simulta-
neously decreasing power consumption. These advantages
make HMP a promising platform for cloud computing,
especially for multimedia mobile cloud computing.

In multimedia mobile cloud computing, multiple virtual
machines (VMs), which provide many different services
such as video transcoding, Hi-Definition video, image/video
retrieval, streaming, video rendering, and media analytics,
will run on a single physical server. These VMs are providing
independent services for virtualization technology [8, 9].
All these resources necessary for VMs are managed by the
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hypervisor or virtual machine monitor (VMM). Therefore, it
is central for the hypervisor or VMM to provide an efficient
management policy for VMs [10], providing good QoS of
the VMs for users.

There are some challenges for resource management
policies:

Firstly, more and more VMs are collocated on one physi-
cal server to decrease costs; therefore, both the interference
and contention are severely increased. Currently running
VMs compete with each other for resources to provide ser-
vices. VMs will slow down to compete for resources. This
is a known problem; however, for a HMP based cloud plat-
form, the problem will be more severe. Since fast cores
are more sensitive to contention, fast cores decrease more
in performance. Consequently, fast cores cannot accelerate
sequential threads. The advantages of HMP will disappear,
wasting the HMP. In addition, all VMs memory streams are
interleaved to interfere with each other in the HMP system;
both original spatial locality and bank level parallelism of
individual VM will be destroyed. Thus, performance will
decrease severely [11, 12], and in bandwidth, interference
will also occur.

Secondly, different services have heterogeneous resource
demands, which will result in unbalanced resource uti-
lization, thus decreasing efficiency. There are many dif-
ferent services in media cloud computing, rendering ser-
vices, video transcoding services, and streaming services.
Most these media services have different resource demands.
Some services are CPU-bound, while others are memory-
bound. Therefore, if most the same type VMs are running on
one core, and most CPU-bound VMs running on the same
core, and consequently, the CPU resource is overloading,
while other resources are wasted. Thus, the entire system
performance will severely decrease due to resource wasting.

Thirdly, resource demand is much advanced to the
physical increase; however, this problem cannot be solved.

Therefore, improving QoS, reducing interference, and
balancing resource utilization will be a good policy.
To reduce interference, resources partition is a feasible
means; to balance resource utilization, VMs placement
policies can be used to avoid overloading and wasting. To
improve the response time, improve QoS, and maximize
the effectiveness of the HMP system in media mobile
cloud computing, we propose the Dynamic Cloud Resource
Management (DCRM), which combines resource-aware
VM allocation with dynamically and optimally partitioned
shared resources. The key idea is to profile the resource
characteristics of both cores and VMs, estimate their
requirements for shared resources, and direct our resource-
aware VM placement and resource partitioning based
on this estimation. Experimental results demonstrate that

DCRM can improve the response time and QoS; moreover,
it also enhances power efficiency and throughput for HMP
based media mobile computing.

In summary, this paper has the following contributions:
We propose dynamic cloud resource management to

improve response time and maximize effectiveness for
HMP-based media mobile cloud computing to satisfy
QoS. DCRM combines resource-aware VM allocation with
dynamically and optimally partitioned shared resources.
Our resource-aware VM allocation places VMs at run-time,
without prior knowledge of VM demand.

We tackled the challenges of VM resource management
in HMP-based media mobile cloud computing. Experimen-
tal results show that our DCRM performs well and satisfies
QoS.

The remainder of this paper is organized as follows.
Section 2 elaborates on essential background and related
work. Section 3 analyzes research motivations. Section 4
explains our DCRM platform. Section 5 describes the
experimental methodology and Section 6 presents the
results of our experiments. Finally, Section 7 concludes the
paper.

2 Background & related works

2.1 DRAM system

Memory subsystem organization is shown in Fig. 1. The
subsystem consists of multiple levels, memory controller
(MC), Dual Inline Memory Module (DIMMs), memory
channels, memory banks, DRAM chip, arrays, and other
items. When the last level cache has a miss, memory will
be accessed. To provide parallel access, multiple channels
exist, which can be independently accessed for disjoint
physical memory regions [13].

One channel may connect to multiple DIMMs, and every
DIMMmay connect to multiple DRAM chips. The memory
access will finally reach the DRAM chips. Rank is the
subset of the DRAM chip, which participates in each access.
The number of bits produced once by each chip determines
the number of chips in a rank. Up to 16 chips can be in one
DIMM, and these chips are organized into 1–4 ranks.

Multiple banks (up to eight) are in every DRAM chip,
and each bank has multiple two-dimensional memory
arrays. The entire multi-KB row will be transferred to the
row buffer after the array has been accessed, which is
called activation or row opening. When the row has been
transferred to the row buffer, all columns in the row can be
read/written. Until another row is activated, the row needs
to be written back to the array.
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Fig. 1 Organization of a modern memory subsystem

2.2 Related work

A number of related studies have been published in dynamic
cloud resource management.

Task Scheduling schedules’ tasks among VMs to balance
resources (CPU, memory, and bandwidth) to improve
system performance [14–18]. The task scheduling problem
is NP-complete and some researches have studied several
sub-optimal solutions.

Live migration transfers the entire VM from the host
machine to a new destination host at runtime, without
preempting its execution [19]. Live migration has two steps:
firstly, pre-copying the VM status to the destination host
while the VM is running on the host machine; secondly, start
the VM in the destination machine, and then stop the VM in
the host machine. Live migration is a basic tool for current
cloud computing that minimizes resource usage when some
servers are in low utilization.

Load balance: If the resources in the cloud are used in
an unbalanced way, some resources will be wasted due to
waiting. To improve resources utilization, load balance will
be adopted at times. VM migration is used to move VMs
among the running hosts to rebalance resource utilization,
migrating some VMs from heavily loaded hosts to lightly
loaded hosts [20, 21].

On-demand allocation chooses the best host for the VM
according to both VM demands and provided host [22, 23].
Some theoretical models exist to guide allocation. These
allocations are theoretical methods, and several problems
exist due to lack of information.

Resources partition: In cloud computing, VMs are
sharing resources of servers. Therefore, VMs are competing
with each other. To reduce competition, resources can be
partitioned into parts, thus avoiding competition between
different parts [24, 25].

In this paper, based on the special applications of mobile
media cloud computing, one of the most popular demands is
the aim to decrease the response time, while improving user
experience. This is a practical problem for a special actual
framework. We combined VM allocation with resource
partition to improve the response time for all VMs in the
cloud. Moreover, we used some specialty of mobile media
cloud computing to address the problem.

3Motivation

In this section, we discuss existing methods that deal with
the challenges of response time, power efficiency, and
performance for modern HMP-based media mobile cloud
computing.

3.1 Profiling of VM placement

Resources utilization is dependent on the VM placement in
cloud computing, especially in HMP based media mobile
cloud computing. Most of the same type VMs placed in
the same core will waste resources, prolonging the response
time. If this happens, the QoS is hard to satisfy. Many
services are provided in mobile media cloud computing,
such as video transcoding, Hi-Definition video, image/video
retrieval, streaming, video rendering, media analytics, and
sharing and delivery. Most services have different resource
demand. For example, video transcoding service is CPU-
bound, and video-streaming services are bandwidth-bound.
Collocate some VMs, which are of the same type, in one
core will prolong the response time because one or more
resources are overloading. Whenever two or more video
transcoding services are collocated in one core, the CPU
is overloading; therefore, all these services will be low
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QoS. However, place different types of VMs, such as one
for video transcoding and others for video streaming, will
improve the response time for all resources, balancing them
without overloading. The average normalized response time
is shown in Fig. 2, which runs different services and
different numbers of VMs on one core. The x-axis provides
different configurations, vt represents video transcoding, vs
represents video streaming, vr represents video retrieval,
and vd represents video rendering. We used the n-name
notation to denote n VMs of the services running on the
core. In Fig. 2, 2-vt represents 2 video transcoding services
running on the core. The result suggests that the response
time will be improved if we placed heterogeneous services
on one core. The results will be better when more VMs are
running on one core/server.

3.2 Interference profiling

More and more VMs are collocated on one physical
server to decrease costs; therefore, both the interference
and contention are severely increased. All VMs have
good local independence; therefore, exhibit good row
buffer hit rate. However, with parallel running VMs, the
locality is significantly reduced and the row buffer hit rate
is also decreased. Therefore, system performance meets
challenges. The row buffer hit rate is shown in the Fig. 3
and the more VMs exist in a system, the worse the hit ratio
will be. Row buffer hit rate is shown of the y-axis, and the x-
axis illustrates different running configurations. n-T-m-VM
represents that there are m VMs with n threads on the server,
and every VM has n/m threads.

Fig. 2 The average normalized response time with different services
and different numbers running on one core

The interference is mainly due to three aspects:

Hypervisor interfere VMs. The hypervisor presents
the virtual operating platform for the guest operating
systems; furthermore, it manages the execution of the
guest operating system. Therefore, multiple instances
exist where the operating systems share virtualized
hardware resources. The hypervisor is responsible for
resources management. Therefore, VMs need to request
the hypervisor to allocate physical resources, such as the
memory resource, during their lifetime. In the process of
memory allocation, the hypervisor may disturb the origin
memory access stream of VMs, which is one aspect of
memory interference.

The above situation is shown in Fig. 3. 1-T represents
that one thread running on the operating system without
the hypervisor is better than 1-T-1-VM, which represents
one thread running on one VM with hypervisor in row
buffer hit rate. The advantage is mainly generated by the
interference-free hypervisor.

Moreover, to analyze the interference effect from
hypervisor in detail, we counted the percentage of VM
row buffer misses caused by the hypervisor. Figure 4
shows the percentage of VM row buffer misses. The
x-axis represents the different media services running
on VM. This figure demonstrates that the hypervisor
significantly affected row buffer misses.
VM interfere applications running on it. Applications
will frequently invoke system calls to get the service
of the guest OS before finishing. Therefore, the states
will be frequently switched between kernel and user.
Switch to the kernel states will happen when requested,
and a switch back to the user states will happen after
the request finished. For a simple service, the kernel

Fig. 3 Row buffer hit rate under different running configurations
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Fig. 4 The percentage of VM row buffer miss

will finish quickly. Although the process is short, most
contents in the row buffer will be written back. Moreover,
the system call will be frequently invoked [26] and
the cost is not negligible. The percentage row buffer
miss caused by the guest OS is plotted in Fig. 5; the
x-axis shows the different benchmarks. Here, we ran
different benchmarks on VM to count the percentage
misses caused by invoking system calls and other guest
OS interference. The results are clear that the guest OS
contributes most row buffer misses to applications.

Fig. 5 VM row buffer misses proportion caused by hypervisor in
different configurations

Interference among VMs and threads on one VM.
VMs and threads on one VM running concurrently
contend shared memory in both chip multiprocessors
(CMP) systems and virtual CMP (VCMP) systems.
Therefore, memory streams of different VMs and threads
are interleaved and interfere with each other at DRAM
memory and virtual memory address spaces, respectively.
The results of Fig. 3 show the interference among VMs
and threads on one VM. 1-T-1-VM, which represents
one thread running on one VM is better than 4-T-4-VM,
which represents four threads running on four VMs and
each VM has one thread in the row buffer hit rate. Briefly,
one VM is better than four VMs that are simultaneously
running in row buffer miss rate. Moreover, as the threads
number of one VM increases, such as 1-T-1-VM, 4-T-
1-VM, 64-T-8-VM, and 256-T-16-VM, from one thread
to 16 threads on one VM, the row buffer hit rate
deteriorates strongly. Interference among both VMs and
threads need to be alleviated for memory performance
improvement.

3.3 Profiling of power efficiency

Sequential threads can be assigned into fast cores, while
parallel running threads are assigned into small cores, which
improve performance, while simultaneously decreasing
power consumption. These advantages suggest HMP as
a promising platform for cloud computing, especially
for mobile multimedia cloud computing. However, the
resources contention among simultaneously running VMs
will restrict its effectiveness. Figure 6 shows the power
efficiency. PSO represents the system with fast cores run
CPU-bound VMs and small cores run memory-bond VMs;
however, all VMs share resources. OPT represents VM run
solo, without contention. The workloads of mix0 to mix9
choose four media services randomly. The results explain
that the HMP power efficiency can be severely improved if
the resources management had a good policy.

3.4 Analysis of these challenges

All these three challenges arise from two aspects:

Balance. The first aspect is the balance policy in the
current system, which ignores the characteristic of the
load in one core/server, and only considers the number of
VMs or CPU utilization. Therefore, the heterogeneity of
the media services can be utilized to place VMs and to
improve response time.
Share. Sharing resources is most challenging for the
contention and interference. Some resources, such as
cache, memory, and bandwidth, are shared among all
simultaneously running VMs.
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Fig. 6 Normalized power
efficiency improvement

3.5 Insights based on the analysis

Limited memory bank requirement Although memory
bank can improve parallelism, the necessary amount of
memory banks one VM requires is limited. Due to mem-
ory dependency, high cache hit rate, and limited number
of MSHRs, a VM is unable to generate sufficient concur-
rent memory requests [27]. However, most modern sys-
tems always spread all VMs’ memory banks across the
entire memory to access all banks to take advantage of
bank-level parallelism, which is excess and suffers from
memory interference. Therefore, we can prevent sharing
among parallel running VMs in the shared environment by
partitioning memory banks for each VM, thus eliminat-
ing inter-thread bank conflicts. Moreover, as the technique
of OS page-coloring is well-known for cache partitioning
[28], the technique can also be used to partition mem-
ory banks. Therefore, we can simultaneously partition both
cache and memory banks, adopting a page-coloring tech-
nique to prevent sharing among parallel running VMs in a
shared environment.

VM’s requirement for shared resources To estimate the
required resources of each VM, we need to analyze the
characteristics of both VM and core. Firstly, we defined
a VM characteristic using three components: memory
intensity [29], row-buffer locality [30], and bank level
parallelism [30]. Memory intensity describes the frequency
of both memory requests and misses in the last-level cache.
Row-buffer locality describes the locality where a VM hits
the row buffer. Bank-level parallelism describes the number
of different banks where a VM independently accesses in
parallel. Secondly, we defined a core’s characteristic using
three components: CPU frequency, cache size, and out-of-
order window size. Therefore, we used the six components
to estimate the shared resources requirements for every
VM. Based on the estimation, we can allocate resources to
prevent unfairness.

Core/server’s current load To place the newly created VM,
we need to know the cores/servers’ load, and then choose
the most suitable one for the VM. With the count of the
hypervisor at real-time, the load information can be used to
allocate VMs.

4 Dynamic Cloud Resource Management
(DCRM)

In this section, we first provide an overview of DCRM.
Then, we introduce the profiling of VM’s and core’s
characteristics, respectively. Subsequently, we introduce
VM allocation policy. Finally, we introduce the process of
the dynamic cloud resource partitioning.

4.1 Overview of DCRM

DCRM contains four parts. First, resource demand for
each VM is defined, mainly characterizing the demands
for the CPU, memory, and bandwidth resources. Second,
performance characteristics for each core are defined,
characterizing the performance of each core in HMP.
Different performance cores have different sensitivities
to resources. Fast cores are more sensitive, small cores
are less sensitive. Core performance is the factor to
partition resources. Third, VM placement policy is based
on the load information and the resource demand of new
created VMs, placing VMs to balance resources utilization.
Fourth, partition resources based on both resource demand
and performance characteristic of each core to reduce
interference and speed up an already fast core. The DCRM
framework is shown in Fig. 7.

4.2 Resource demand for each VM

For resource management, one of the most important points
is to predict the resource demand for each VM. In this paper,
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Fig. 7 The framework of DCRM

we considered three resources: CPU, memory, and bandwidth,
which are the most considered in most current researches.
To characterize the resource demand, we adopted three param-
eters: memory intensity, which reflects CPU and bandwidth
demand; row-buffer locality, which reflects locality; and
bank level parallelism, which reflects parallelism.

Memory intensity distinguishes CPU-bound VMs with
memory-bound VMs. Last-level cache misses can be used
to reflect the memory intensity; therefore, last-level cache
misses per thousand instructions (MPKI) was adopted in
this paper to represent memory intensity. If the VM has
moreMPKI, the VM demands more memory and bandwidth
resources. Otherwise, the VM has low MPKI, and the VM
demands low memory and bandwidth resources; moreover,
for these VMs, more memory and bandwidth allocation
cannot improve their QoS. However, they are sensitive to
responses frommemory, which significantly affects their QoS.
Therefore, for resource management, low memory intensity
VMs require high priority to access memory and bandwidth,
and high memory intensity VMs can tolerate a longer waiting
time to access memory, but need more memory resources.

Row buffer locality distinguishes locality for high
memory intensity VMs. If one VM has high locality, the row
buffer hit ratio will be high. In this paper, we adopted the
row buffer hit rate (RBH) to reflect the row buffer locality.
Although memory banks can be used to hide memory access
latency, for the high row buffer locality VMs, allocating
more memory banks will not improve performance, which is
insensitive to the numbers of memory banks. Sixteen memory
banks are sufficient for high row buffer locality VMs.
However, they are more sensitive to the interference, which
will disturb their locality and reduce the row buffer hit ratio.

Bank level parallelism distinguishes the sensitivity to
bank parallelism. Banks can be accessed in parallel
to overlap memory access and improve performance.
However, the sensitivity for VMs are different.

Moreover, for mobile media cloud computing to provide
media services, the services in the cloud are hardly
changing. Therefore, we can catch the three characteristic
components for each service via simulation. Based on the
simulation results, every service VM can predict its three
characteristic components online.
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4.3 Performance characteristic for each core

In the HMP system, cores have different performance
characteristics, because cores have different hardware
resources, such as different CPU frequency, different
size of cache, different size of out-of-order window, and
different branch prediction technique. Therefore, the core
performance is directly related to the hardware resources. In
this paper, we chose three hardware resources to represent
the performance characteristics of each core:

CPU frequency is the most related to the performance of
the core. The higher the frequency of the core, the better its
performance will be.

Cache size is the storage size in the core. The more
private cache size is allocated for the core, the more hit ratio
will be in the cache, which will reduce the average time to
get the instructions/data. This is important for the system.

Out-of-order window size is the size of the parallel
launch instructions in an out-of-order speculative CPU. The
window size is finite and new instructions can be launched
only after instructions leave the window. If the window size
increases, more instructions can be launched in parallel.
The instructions can be committed faster. Furthermore, the
performance of the core may be improved.

4.4 Resource-aware VM placement

In this paper, the key job of our resource-aware VM place-
ment was to choose one core for the newly created VM.
Based on both the VM’s characteristics and the core load,
our resource-aware VM placement can balance resources
utilization. If the load of one core is mainly bandwidth, the
newly created VM of CPU-bound can place on this core;
otherwise, if the load of one core is mainly CPU computing,
the newly created VM of memory-bound or bandwidth can
be placed on this core. Algorithm 1 provides our resource-
aware VM placement. In the algorithm, we partitioned
resource utilization of each core into four levels, level 0 to
level 3. If one core the resource utilization of one core falls
below 25%, we assigned a resource utilization of level 0;
otherwise, if the resource utilization of one core increases
above 25%, but remains below 50%, we assigned a resource
utilization of level 1; otherwise, if one core’s resources uti-
lization is above 50%, but remains below 75%, we assigned
a resource utilization of level 2; otherwise, we assigned a
resource utilization of level 3. Moreover, in this paper, we
mainly considered three resources: CPU, memory banks and
bandwidth. Therefore, for each resource, we have four lev-
els: level 0 CPU, level 1 CPU, level 2 CPU, level 3 CPU,
level 0 Mem, level 1 Mem, level 2 Mem, level 3 Mem,
level 0 Bd, level 1 Bd, level 2 Bd, and level 3 Bd. We
also partitioned resources demand into four levels,

level 0 mpki, level 1 mpki, level 2 mpki, level 3 mpki,
level 0 rbh, level 1 rbh, level 2 rbh, and level 3 rbh. 0 <=
level 0 mpki < 10, 10 <= level 1 mpki < 30, 30 <=
level 2 mpki < 60, 60 <= level 3 mpki; 0 <= level 0 rbh
< 25%, 25% <= level 1 rbh < 50%, 50% <= level 2 rbh
< 75%, and 75% <= level 3 rbh <= 100%. Therefore,
the algorithm is required to find one core for the new cre-
ated VM, for which the core can satisfy the VM’s resources
demand with balance. Firstly, the resources demand (t,
k) was determined, which MPKI ∈ level t mpki, RBH
∈ level k rbh. Next, determine resources utilization for
each core, (m, n, r), which Ci ∈ level m CPU, Mi ∈
level n Mem, Bi ∈ level r Bd. Finally, that core was chosen
that yields a minimal value of t + k + m + n + r. A mini-
mal value of t + k + m + n + r means that the core is one
of the most suitable for the new created VM.

4.5 Process of the dynamic cloud resource
partitioning

4.5.1 Memory bank partition

VMs are partitioned into three types according to the
resource demands of the VM and its running core
performance:
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First type, CPU-bound VM. This type of VMs is
sensitive to the CPU resources, but insensitive to memory
and bandwidth resources. Moreover, this type of VMs is
sensitive to the memory access time.

Second type, memory-bound with low row buffer locality
VM. This type of VMs is sensitive to memory banks for
parallelism access.

Third type, memory-bound with high row buffer locality
VM. This type of VMs is less sensitive to memory banks,
but sensitive to interference.

Different to a SMP system, the type partition is related
to core performance. For example, if one VM demand
is represented by (MPKIi , RBHi), it runs on the core.
Furthermore, the core performance is represented by (Fi , Ci ,
Wi), Fi represents CPU frequency, Ci represents cache size,
and Wi represents out-of-order window size. We defined
a factor to reflect the effect from the core performance,
T1 * Fi + T2 * Ci , where 0 < T1, T2 < 1, and
T1 + T2 = 1. Therefore, VM demand is changed to
(MPKIi* (T1 * Fi + T2 * Ci)/� (T1 * Fk + T2 * Ck),
RBHi *Wi/�Wk) after adding the core performance effect.

In this paper, we partitioned VMs into three types based
on the (MPKI, RBH) of the VM, which is added to the core
performance. If MPKI < MPKIt , it belongs to CPU-bound
VM; else if RBH < RBHt , it belongs to memory-bound
with low row buffer locality VM; otherwise, it belongs to
memory-bound with high row buffer locality VM.

We partitioned memory banks according to the VM type
to reduce interference. For memory-bound VMs with high
row buffer locality, we allocated16unique memory banks;
for memory-bound VMs with low row buffer locality, we
allocated one of 16 bank groups for sharing among same
type VMs; for CPU-bound VMs, they can use all memory
banks. Our memory bank partition policy is shown in
Algorithm 2.

4.5.2 Shared cache partitioning

The address mapping policy for the 32 bits CPU is shown
in Fig. 8. The total 32 bits are partitioned into various
functions, bank numbers, rank numbers, column numbers,
and row numbers. In this paper, we mainly considered bank
numbers. As shown in Fig. 8, 5 bank bits were used (bit 13,
14, 15, 21, and 22), which means that 32 different banks
were present in the system. Moreover, each page in the
memory belonged to a unique bank.

A shared 8MB last level cache is a 16-associate set.
Every physical address is referred to a unique cache set,
which is determined by the bits 6–18 of the physical
address. Moreover, the bits 12–18 of the physical address
are cache coloring. Furthermore, the bits 13–15 are used
for both cache coloring and bank coloring. Therefore, the

shared last level cache can be partitioned into 8 groups,
which are independent. Based on the address mapping
mechanism, partition shared last level, and memory banks
can be simultaneously implemented.

4.5.3 Memory bandwidth partitioning

In addition to memory banks and shared last level cache,
bandwidth is another shared important resource. Bandwidth
affects the QoS, especially for bandwidth-bound VMs. In
this paper, we managed bandwidth based on fairness.

If N VMs are running in parallel in a system, which
uses VM1, VM2, ......, VMN to represent, and each VM
needs Bi bandwidth, we will allocate bandwidth according
to each demand. If the total bandwidth resource is B, the
key for the memory bandwidth partition is to characterize
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Fig. 8 Address mapping policy

the demand for the bandwidth. However, we can receive
committed instructions, CI, and last level cache misses, CM,
for each VM online. The performance management unit
(PMU) records these events at runtime; therefore, we can
read these online.

Equation (1) shows the partition policy, CIi represents
the committed instructions of VMi , CMi represents the last
level cache misses of VMi , 1<=i, j<=N. The partition
policy partitions bandwidth in proportion to each VM
demand. Equation (2) illustrates the restriction, where Bi

represents the allocated bandwidth for VM i.

(CIi +Bi)/(CIi +CMi) = (CIj +Bj )/(INj +CMj) (1)

(B1 + B2 + ... + BN) = B (2)

Based on (1) and (2), the total bandwidth can be partitioned
for VMs, while sharing fairly.

4.5.4 Memory scheduling

Resource partition will reduce interference to improve QoS;
however, it cannot avoid some interference among VMs.
For example, the memory access from fast core will be
prolonged for many more memory accesses from small
cores. To maximize the QoS, the CPU-bound VMs can be
sped up. Memory scheduling is integrated into our DCRM.

CPU-bound VMs has higher priority in accessing
memory due to an increased sensitivity to the memory
access time. Row buffer hit memory accesses have higher
priority if memory accesses stem from the same type VMs.

5 Experimental setup

Our experiments were conducted on two 2.0 GHz Intel
Xeon E5504 processors with EPT enabled. There were four
physical cores in each E5504 processor, and the Hyper-
Thread was disabled. Each processor has 3-level caches,
both L1 instruction and data cache are 32 KB, L2 cache
is 256 KB. Both L1 and L2 are private for each core.
However, L3 cache is 16-way 4 MB, shared by all four

cores in each processor. All cache block sizes are 64-Byte
in the experiment. There is 8 GB physical memory capac-
ity with one dual-ranked of DDR3-800 MHz. The operating
system is Ubuntu-12.04 with Linux kernel 3.6.10. DCRM
was implemented within the operating system. QEMU [31]
with KVM [32] (qemu-kvm-1.2.0) was adopted to support
guest VMs. One virtual CPU is configured for each guest VM.
Four VMs are boosted in parallel as our default configura-
tion. Moreover, 8 VMs are boosted in parallel for further
evaluation. 64-bit Linux-10.10 with Linux kernel 2.6.32 was
used for the guest operating system. The following work-
loads, video transcoding, Hi-Definition video, image/video
retrieval, streaming, video rendering, media analytics, shar-
ing and delivery, inside guest VMs are chose to run.

6 Experimental results

In this section, we first evaluated the response time improve-
ment. Then, we analyzed the performance improvement. In
this paper, all the results show the average of ten repetitions.

6.1 Response time analysis

Response time is directly related to the QoS of the system,
particularly for mobile media cloud computing. Therefore,
in this paper, we use response time as the QoS parameter.
Shorter response time will improve the QoS. The average
normalized response time has been shown in Fig. 9. The x-
axis provides the simultaneously running VMs. It is obvious
that DCRM needs less response time, which means that
DCRM behaves better in QoS.

If 8 VMs are created in the server, which represents
one VM that runs on one core for the server had 8 cores.
From the VM placement side, DCRM is identical to the
default policy; however, DCRM is better in response time.
Therefore, the improved response time is from the reduced
interference.

To evaluate the resource-aware VM placement part of
DCRM, we check the services running on every core
when 32 VMs are created. Tables 1 and 2 show the
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Fig. 9 The average normalized response time that we create from 8 to
64 VMs running media services

services of each core using DCRM and default, respectively.
Each core almost runs different services using our DCRM
policy, which is good for resource utilization to improve
response time. However, with the default policy, each
core always runs the same services, which will lead to
resource overuse, consequently forming a bottleneck, thus
prolonging response time.

Figure 10 shows the hardware utilization on core 0 when
the server boots different number VMs. When there are
8 VMs in the server, core 0 has only one VM, the VM
is the service of video transcoding both using default and
our DCRM. Therefore, the hardware utilization is almost
identical for both default and our DCRM. However, after
more VMs are booted, core 0 is running more VMs, from
2 to 8. Furthermore, the services running on core 0 are
different when using different policies. When using the
default policy, the VMs of almost all video-transcoding
services were running on core 0. However, using our
DCRM, the VMs are running different services on core
0. Therefore, the resource-aware VM placement of DCRM
can balance hardware utilization to avoid over usage, which
improves the system response time.

Table 1 Services of each core using DCRM

Core Transcoding Streaming Retrieval Rendering

Core0
√ √ √ √

Core1
√ √ √ √

Core2
√ √ √ √

Core3
√ √√ √ √

Core4
√ √ √ √

Core5
√ √√ √

Core6
√√ √ √

Core7
√ √ √√

Table 2 Services of each core using default

Core Transcoding Streaming Retrieval Rendering

Core0
√√√ √

Core1
√√√ √

Core2
√ √√ √

Core3
√ √√ √

Core4
√ √√ √

Core5
√ √√ √

Core6
√√ √√

Core7
√√√√

6.2 Performance analysis

In this paper, we used Instructions Per Cycle (IPC) to
measure each VM speedup. To measure the whole parallel
running system, we used the parameter-weighted speedup,
which is given by (3). The IPCi represents the IPC of VMi;
weighted speedup equalizes the contribution of each VM
to the whole system by dividing the instructions executing
on each VM by its natural offer rate if run alone; weighted
speedup is a fair measure of real work done in multi-core
systems.

weighted speedup =
∑

i

IPCshared
i

IPCalone
i

(3)

Figure 11 demonstrates the normalized performance
improvement in different configurations with our DCRM,
from booting 8 virtual machines to 64 virtual machines. The

Fig. 10 The situation of some hardware utilization on core 0 when the
server boots different number VMs
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Fig. 11 The normalized
performance improvement in
different configurations with our
DCRM

x-axis presents different configurations, mainly containing
the parallel running VMs number.

Figure 11 shows that the more concurrently running VMs
on the server the better system performance our DCRMwill
have. This is due to the more VMs concurrently running on
the server causing more interference and more unbalance of
the hardware utilization, which results in better chances to
bring our DCRM into play.

7 Conclusion

To improve response time, while maximizing the effec-
tiveness of the HMP system to satisfy QoS in the media
mobile cloud computing, in this paper, we have proposed
the Dynamic Cloud Resource management (DCRM), which
combines resource-aware VM allocation with dynamically
and optimally partitioned shared resources. The key idea
is to profile the resource characteristics of both cores and
VMs, estimate their needs for shared resources, mainly
CPU, shared caches, memory banks, and memory band-
width, and then direct both our resource-aware VM place-
ment and resources partitioning based on the estimation.
Experimental results have demonstrated that this combina-
tion is able to satisfy QoS, and simultaneously enhances
power efficiency and throughput for HMP based media
mobile computing.
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