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Abstract
Forecasts of temperature in a “smart” building, i.e. one that is outfitted with sensors, are computed from data gathered by
these sensors. Model predictive controllers can use accurate temperature forecasts to save energy by optimally using heating,
ventilation and air conditioners while achieving comfort. We report on experiments from such a house. We select different
sets of sensors, build a temperature model from each set, and compare the accuracy of these models. While a primary goal
of this research area is to reduce energy consumption, in this paper, besides the cost of energy, we consider the cost of
data collection and management. Our approach informs the selection of an optimal set of sensors for any model predictive
controller to reduce overall costs, using any forecasting methodology. We use lasso regression with lagged observations,
which compares favourably to previous methods using the same data.

Keywords Energy efficiency · Sensor networks · Model predictive control · Temperature forecast · Feature selection ·
Internet of things

1 Introduction

According to recent studies, about 40% of energy produced
worldwide is consumed by buildings, and more than half of this
is used by heating, ventilation and air conditioning (HVAC)
systems [3, 8, 10]. Pan et al. [9] point out that, due to thermal
inertia, it is more efficient to maintain temperature in a room
or building than to raise or lower the temperature.

Accurate temperature forecasts can help reduce energy
usage in buildings by using future values of temperature
when deciding whether or not to activate the HVAC [22].
Moreno et al. [7] achieve estimated energy savings of 20%
in a realistic situation based on the presence of persons
in a room. Yuan et al. [20] achieve 20% savings while
exploiting thermal inertia when assigning rooms for meet-
ings by scheduling contiguous meetings in the same room.
Prı́vara et al. [11] report 17–24% savings for a large uni-
versity building, by using a model predictive controller.
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Model predictive controllers (MPC) produce a control
signal for HVAC systems, and minimize a cost function
based on energy consumption. The cost function takes into
account a prediction horizon and a control horizon [1]. The
prediction horizon used in practise depends on how much
data is needed by the HVAC controller to achieve acceptable
comfort while reducing energy consumption.

While the costs savings may be significant, the overhead
and operational costs associated with MPC may discourage
adoption. These costs include the installation and mainte-
nance of the sensing devices, a wireless sensor network,
and the computational cost of modelling temperature as a
function of the data generated by the sensors. To encour-
age wider adoption of MPC, in this paper we seek to reduce
these associated costs. Specifically, we identify sensor data
with little influence on forecast accuracy.

In the remainder of this paper, we review the sensor data
related to temperature forecasting reported from a smart
house. We discuss the nature of the search, provide a best-
first search procedure to select sensors, and compare the
outcomes as we vary the history horizon, forecast horizon
and the error metric. We report on related work on this data,
and conclude with recommendations for using our results in
both new and existing installations.
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This paper is a full exposition of initial work [16]. This
presentation adds to the previous work in two main ways: It
covers longer sensor histories and applies the technique to
forecasts of temperature differences.

2 Background

2.1 Data from a smart home

The SML House [22] competed in the Solar Decathlon 2012
competition [19], using 88 sensors and 49 actuators. In this
paper and in our previous work [14, 15], we use a publicly
available subset of this data [18], reporting some of the
collected data, specifically values collected during March
and April 2012 from 18 sensors every quarter-hour.

The sensors reported are as follows:

1. Wi – wind speed
2. Tw – twilight indicator
3. TP – predicted temperature
4. TL – living room temperature
5. TD – dining room temperature
6. T – external temperature
7. SW – sun on the west wall
8. SS – sun on the south wall
9. SE – sun on the east wall

10. Pcp – precipitation
11. P – sun irradiance measured by a pyranometer
12. LL – lights in the living room
13. LD – lights in the dining room
14. HL – humidity in the living room
15. HD – humidity in the dining room
16. H – external humidity
17. CL – carbon dioxide sensor in the living room
18. CD – carbon dioxide sensor in the dining room

2.2 Linear and lasso regression

Our forecasting methods are based on linear regression
defined as follows. Given a set of independent variables
x1, ..., xn and a dependent variable y of interest that we want
to forecast, we seek parameters β0, ..., βn so that ŷi = β0 +
�n

i=1 βixi is a good approximation of y. When presented
with a set of m instances of each xi , called xi,j and the
corresponding instances yj , we select the βi parameters to
minimize the residual sum of squares (RSS):

�m
j=1(β0 + �n

i=1 βixi,j − yj )
2

Lasso regression [17] minimizes RSS + λ �m
j=1| βj | where

λ is a tuning parameter that balances the emphasis between
reducing error and using small β coefficients, Some β

may reduce to zero, which deselects that variable x, thus

endowing lasso regression with feature selection. For lasso
regression, we use the R library glmnet [4, 5, 13].

(We avoid using the ususal vector notation shorthand for
linear regression so we can better relate this background
with Section 3, which requires requires us to adjust the
indexed of summation for a precise description.)

2.3 Feature selection

Having too many independent variables, or features, can
confound a forecast model. Irrelevant details overwhelm
the modelling technique, which prevents it from computing
an accurate forecast. Feature selection, the process of
selecting specific features from which to build a model, is
roughly divided into wrapper techniques, filter methods and
embedded methods. Wrapper techniques enumerate various
combinations of features and measure the accuracy of the
resulting models, selecting that combination that exhibits
the best error. Filter techniques measure the usefulness
of features using computationally fast metrics. Embedded
techniques identify useful features during the modelling
process as a by-product. Lasso regression is an example.

In this paper, we focus on wrapper techniques that are
guided by best-first provided by the R library FSelector
[12] and embedded techniques, using lasso regression.

3Models using lagged sensor readings

When creating a model from which to forecast tempera-
tures, we provide multiple historical readings from each
sensor. Given a history of b time periods, where readings are
taken every quarter-hour, we provide b + 1 lagged readings
from each of s sensors, which includes the current period at
lag 0. Let xk,t be the t th observation for sensor k counting
from the first observation at time t = 1, as it appears in the
training data. Let yt be the internal temperature the house at
time t . We are given observations over the m time periods in
the training data. We create a linear a model for each future
period f . We define the RSS as

RSS(f ) = �m
t=b+1(βf,0+�b

g=0 �s
k=1 βf,k,gxk,t−g −yf +t )

2

In this equation, t starts at b+1 because there are no
observations for the lagged readings for the first b data
points. Using lasso regression, we choose values for the
coefficients βf = {βf,0} ∪ {βf,k,g | g = 0, . . . , b, k =
1, . . . , s} where g identifies the lag and k identifies the
sensor. The coefficients in βf specify a model for each
future interval f . We use two different forecast horizons; h

is either 12 or 48 future time periods, i.e. 3 or 12 h.
The coefficients are computed on the training data which

is the first 2/3 of the data. Once they are computed, we
switch over to using test data, which is the final 1/3 of
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the data. Thus x and y below refer to observations in the
test data and m to the number of observations in the test
data. We report the RMSE for each future interval f . In our
experiments f = 1, . . . , 12 for forecasts 3 h into the future,
and f = 1, . . . , 48 for forecasts to 12 h.

RMSE(f )=
√

1/(m−b) �m
t=b+1(βf,0+�b

g=0 �s
k=1 βf,k,gxk,t−g −yf +t )2

We report error metrics on all forecasts f over
the forecast horizon h, including Mean RMSE =
1/h �h

f =1RMSE(f ) and Maximal RMSE =
maxf RMSE(f ).

4 Useful and confounding sensors

In our experiments we consider various sets of sensors, and
from each, we measure the error from a forecast model
based on the data from those sensors. To measure error,
with the exception of the selected set of sensors, we hold
all other factors fixed, including the training and test data,
the size h of the forecast horizon and the number b of back
observations. Thus, the error from the model is a function
only of the set of sensors.

It will often occur that one sensor in a set of sensors is
useful in that it provides predictive power. Let S be a set of
sensors and let a and b be individual sensors. We say a is
useful in S when the error from S \ {a} is greater than the
error from S. If a is useful in S then a ∈ S. It may also occur
that two sensors each provide that same predictive power,
for instance when they report similar information. In this
case we can use either one. More precisely, we say a and b

are interchangeable in S when a and b are useful in S and
the error from S \ {a} is the same as the error from S \ {b}.

The definitions in this paper are relative to some
tolerance, below which forecast error is insignificant. We
do not define this tolerance here, but note that it will be
determined by the model predictive controller as follows:
If an increase in the forecast error does not affect the
controller’s ability to save energy, then that increase is
below the tolerance. In this paper, we speak informally and
understand an error to be greater than another when the
difference exceeds this tolerance and likewise say that two
errors are the same when their difference falls below this
tolerance. In these experiments, since we are not measuring
the performance of a controller, we take the tolerance to be 0.

Note that useful and interchangeable are defined with
respect to a set of sensors. We may find that while a is useful
in S \ {b}, a is not useful in S ∪ {b}. For instance, this will
happen when a and b are interchangeable in S.

We may also observe that including a sensor in a model
gives rise to a higher error. This can happen when the

sensor leads us “down the garden path,” for instance, when
it appears to be correlated to the observed temperature in the
training data, but oppositely correlated in the test data. We
say that a confounds S when the error from S \ {a} is lower
than the error from S ∪ {a}.

We may also observe sensors that together increase
accuracy but individually do not. This can happen when the
model uses an interaction between the sensors. Suppose the
laundry is always done on Saturday and no other day, and
starts when someone enters the laundry room on Saturday.
Suppose one of the sensors reports the day of the week
and another reports motion in the laundry room. Then the
modeller may recognize a heating event—for the room heats
up when the laundry is done—occurs when both sensors are
activated. In this case, if the modeller associated a heating
event just based on motion in the laundry room, regardless
of the day of the week, it would be misled on the non-
Saturdays, and the model’s error would increase. Likewise,
it would be misled by associating a heating event with
Saturday for those weeks where no laundry was done. Thus,
the laundry room motion sensor and the day of week sensor
each individually confounds the model. However, together
they improve the model. We say that two sensors a and b are
co-dependent in S if individually each of a and b confound
S \ {a, b}, but the error of S ∪{a, b} is smaller than the error
of S \ {a, b}.

We seek a set S∗ of sensors that has minimal error among
the power set of sensors. This implies all sensors in S∗ are
useful, and that all sensors not in S∗ confound S∗. We say
that an ordered set of sensors gracefully degrades if we can
remove one sensor at a time in that ordering, such that the
error always increases. Given an ordered set of sensors that
gracefully degrades, its gracefully degrading sequence of
sets of sensors is that sequence that arises from removing
sensors according to the ordering.

To guide the cost-benefit analysis, given a gracefully
degrading set of sensors, we advocate computing two costs
for each set of sensors in the gracefully degrading sequence.
One cost is the measured energy costs which is higher
when the error is higher. This always occurs with fewer
sensors in the gracefully degrading sequence. The other
cost arises from purchasing, installing, and maintaining
the sensors, so it is lower when the number of sensors is
lower.

5 Ordering sensors by influence

Our goal is to identify sensors that should be included
in the model. Because we use lagged data in our model,
each sensor provides many predictors in the regression,
one for each quarter-hour of historical observations. For
a given sensor, we may consider whether to include all
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of the predictors arising from this sensor, some of them,
or none of them. This leads to a large search space. For
instance, given one hour of lagged observations (plus the
current observation) for each of 18 sensors, gives 5 × 18 =
90 predictors in the model. This gives rise to 290 sets of
predictors, which is clearly infeasible to search entirely. We
also want to consider 2 h of readings per sensor, but to avoid
searching a space of 2162 sets of sensors, which would take
us almost 1042 years to search if we could consider one set
each second.

We rely on lasso regression, which selects features
among the predictors in the regression. Since lasso feature
selection is in place, we need only consider sensor selection
so the search space is reduced from 290 to 218, and is
independent of the number of lagged readings per sensor.
A complete search would take about 3 days if we could
consider one set per second. We simplify it further by
employing best-first search, which is a variant of bottom-
up search that limits non-deterministic choices and is
guided by a heuristic. Our heuristic prefers lower forecast
error. This search procedure and the heuristic are provided
by FSelector. Since best-first search is well-known, we
describe it here at a high level.

Available is the set of sets of sensors that may be
considered during the running of the Algorithm 1.

Visited is the set of sets of sensors that is accumulated
during the running of the algorithm. It contains all of the
sets of sensors that were explored.

Algorithm 1 best-first search Initially Visited is an empty
set, and Available contains the empty set of sensors.
The model for this empty set simply predicts the mean
temperature. The search proceeds with a selection of S

as the set from Available with lowest error. S is removed
from Available. Nondeterministically, FSelector selects a
new sensor a among the sensors in the SML house that do
not occur in S. FSelector usually tries up to five different
choices. For each of these choices for a, if a is useful
in S ∪ {a}, then S ∪ {a} is added Available for future
consideration. S ∪ {a} is also added to Visited.

When there are no more sets in Available, the algorithm
concludes. Among the sets in Visited, the set with minimal
error, S ′, is taken as the estimate of S∗.

Because the heuristic guides the search toward the most
promising parts of the search space, good estimates of S∗
are expected. S′ is confounded by all sensors not in S′, so it
is a local minimum. However, the non-deterministic choices
made by FSelector do not consider all possible choices. The
search space is not entirely explored and S′ is not guaranteed
to be a global minimum.

Given the sets that were visited by best-first search, we
use a second algorithm to generate a sequence of these sets
with gradually increasing error.

Algorithm 2 construct the sensor sequence Let S1 = S′,
which is the set in Visited with lowest error. Let i = 1 and
define Si+1 as the set with lowest error that is both a subset
of Si and a visited set. Proceed to increment i and compute
the next set S until Si is empty. Report the sequence of S’s
and the sequence of set differences between them. In most
cases the set differences will be individual sensors.

Because Algorithm 2 considers only visited sets, there is no
error calculation required and Algorithm 2 is very efficient.

In the next section, we consider the effectiveness of this
best-first search using the data of the SML house. There
is no guarantee that Algorithm 1 will deliver the overall
best set S∗. There is no guarantee that Algorithm 2 will
generate the best sequence. However, Algorithm 1 and
Algorithm 2 together a sequences that can be used to guide
the cost-benefit analysis.

6 Experimental results

We investigate the sensor selection when forecasting tempera-
ture for different forecast horizons, different amounts of his-
torical data and different error metrics. We also investigate
sensor selection when forecasting temperature differences.

6.1 Forecasting temperature from one hour
of sensor data

We ran experiments using four readings per sensor, shown
in Tables 1, 2, 3 and 4. We varied the forecasting horizon to
3 and 12 h into the future.

Since we compute RMSE for each period, we have a
series of RMSE values. We compute the mean and the
maximal values of this series. Both maximal RMSE and
mean RMSE are interesting here since the effectiveness of
the model predictive controller can be affected in different
ways. A large mean RMSE indicates errors in many of
the quarter-hourly forecasts. As a result the MPC will
consistently incur higher energy costs than necessary. A
large maximal RMSE indicates at least one big forecast
error. The inefficiency could be very great for that one
period. Since each error metric indicates a separate kind of
error, we report both.

Consider the example from Table 1, where we used four
historical observations per sensor, generated 3-h forecasts,
and measured maximal RMSE. Starting from the empty set,
the search in Algorithm 1 considers sets up to about 10
sensors. Overall it visited 135 sets of sensors, which is a
sharp reduction from the possible 218 = 262, 144 sets. The
minimal error occurs with nine sensors: Wi, Tw, TL, TD, T,
SW, SE, CL and CD, so this is our estimate of S∗. The other
nine sensors, namely TP, SS, Pcp, P, LL, LD, HL, HD and
H, confounded it.
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Table 1 Maximal RMSE for selected sensors, generating 3-h forecasts
of temperature, from 4 historical readings

Maximal RMSE Sensors Remove Next

0.4589 Wi+Tw+TL+TD+T+SW+SE+CL+CD CL

0.461 Wi+Tw+TL+TD+T+SW+SE+CD CD

0.4638 Wi+Tw+TL+TD+T+SW+SE Wi

0.4662 Tw+TL+TD+T+SW+SE TD

0.4951 Tw+TL+T+SW+SE Tw

0.5219 TL+T+SW+SE SW

0.5403 TL+T+SE T

0.5886 TL+SE SE

0.68 TL

Using Algorithm 2, we progressively remove sensors
from S∗ to increase the error gradually. The error increases
only by 0.0021 ◦C if we remove CL, the carbon dioxide
sensor in the living room. Another small increase, 0.0028
◦C, occurs if we ignore the carbon dioxide sensor in the
dining room.

We observe some trends in the results. Maximal RMSE
is larger than mean RMSE, but within a factor of about
two. Forecasting 3 h into the future has lower error than
forecasting 12 h, usually within a factor of 5. This difference
is always less than 2◦, when comparing best models short
forecasts to best models for long forecasts. From these two
observations we conclude having longer forecast horizons
and more sensitive error calculations increase the measured
error, which is consistent with intuition.

All of our tabular results degrade gracefully. This
suggests that the model does not need to consider
interactions between sensors, as we described in Section 4.
It also means that sensors that do not appear in the model
have been found to be not useful, according to our definition
of useful.

There is some consensus, across the different forecast
horizons, about which sensors are useful. No best model

Table 2 Mean RMSE for selected sensors, generating 3-h forecasts of
temperature, from 4 historical readings

Mean RMSE Sensors Remove Next

0.2404 Tw+TP+TL+TD+T+SW+SE+CL+CD CL

0.2429 Tw+TP+TL+TD+T+SW+SE+CD CD

0.2434 Tw+TP+TL+TD+T+SW+SE Tw

0.2488 TP+TL+TD+T+SW+SE T

0.2672 TP+TL+TD+SW+SE SW

0.2827 TP+TL+TD+SE TD

0.284 TP+TL+SE TP

0.299 TL+SE SE

0.3407 TL

Table 3 Maximal RMSE for selected sensors, generating 12-h
forecasts of temperature, from 4 historical readings

Maximal RMSE Sensors Remove Next

1.8598 Tw+TP+T+SW+LD TP

1.9032 Tw+T+SW+LD SW

1.975 Tw+T+LD Tw

2.1399 T+LD LD

2.3384 T

made use of H, HD, HL or LL, which are, respectively, the
humidity externally, in the dining room and in the living
room, and the lighting in the living room. Based on this
analysis, we would not recommend installing these sensors
in this house for the purpose of forecasting temperature.

We cannot identify sensors that are always the most
useful, but there is some consistency. We find that T,
TD, TP, LD, SW, SE and Tw appear frequently in the
smaller sets of sensors. These are, respectively, the external
temperature, temperature in the dining room, and the
predicted temperature, the light in the dining room, the
sun on the west and east wall, and the pyranometer which
measures sunlight intensity. There is also some influence
from the CO2 sensors. Thus we can conclude that the future
temperature results from a combination of human activities,
ambient internal conditions, external weather conditions
and time of day.

6.2 Forecasting temperature from longer histories

Starting from the models computing from four historical
sensor observations, we ran the same models using eight
historical observations per sensor, as shown in Tables 5
and 6. The picture that emerges is similar to when we used
four historical observations. The errors are not significantly
different; they are sometimes smaller and sometimes
larger. This indicates the extra hour of observations is not
particularly helpful to the lasso regression model. Again, the
maximal RMSE is about twice as large as the mean RMSE

Table 4 Mean RMSE for selected sensors, generating 12-h forecasts
of temperature, from 4 historical readings

Mean RMSE Sensors Remove Next

1.1539 Tw+TP+TL+T+SW+LD+CL TP

1.1566 Tw+TL+T+SW+LD+CL CL

1.1598 Tw+TL+T+SW+LD SW

1.1876 Tw+TL+T+LD LD

1.2552 Tw+TL+T T

1.3545 Tw+TL Tw

1.4215 TL
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Table 5 Mean RMSE for selected sensors, generating 3-h forecasts of
temperature, from 8 historical readings

Mean RMSE Sensors Remove Next

0.2499 Tw+TP+TL+TD+T+SW+SE+Pcp
+CL+CD

CD

0.2509 Tw+TP+TL+TD+T+SW+SE+Pcp+CL CL

0.2517 Tw+TP+TL+TD+T+SW+SE+Pcp Pcp

0.254 Tw+TP+TL+TD+T+SW+SE SE

0.2738 Tw+TP+TL+TD+T+SW T

0.2867 Tw+TP+TL+TD+SW Tw

0.3027 TP+TL+TD+SW SW

0.3142 TP+TL+TD TD

0.322 TP+TL TP

0.3486 TL

and so we report only the mean error. The same observations
apply with regard to longer forecast horizons increasing the
measured error. The most useful sensors are approximately
the same for both 4- and 8-history models, although there is
some variation in the apparent importance of each.

The best set of sensors is smaller when considering
forecasts for longer period into the future. This suggests
some factors have influence over the temperature for a
brief period, but are less useful at later times. Others
are useful over the entire period. For instance, TW and
SW appear quite often in the smaller sets of sensors,
especially when there are eight historical values available.
This suggests that knowing these longer histories for
these two sensors, in particular, is especially useful for
making longer predictions. Factors that usually do not
appear in the best twelve-hour forecast models include
the predicted temperature, the lights and the CO2 sensors.
The observation that these sensors have short term value
for predictions agrees with intuition. The temperature
predictions are probably not as accurate for 12 h into the
future as they are for shorter periods. The lighting and CO2

sensors also provide information about activities that are
not likely to have a long term effect on temperature. These
sensors report on activities and movements of building
occupants that most likely do not occur according to any

Table 6 Mean RMSE for selected sensors, generating 12-h forecasts
of temperature, from 8 historical readings

Mean RMSE Sensors Remove Next

1.1303 Tw+TL+TD+SW+CL+CD CD

1.1367 Tw+TL+TD+SW+CL CL

1.1477 Tw+TL+TD+SW TD

1.169 Tw+TL+SW SW

1.2395 Tw+TL Tw

1.3838 TL

Table 7 Mean RMSE for selected sensors, generating 3-h forecasts of
temperature, from 4 historical readings

Mean RMSE Sensors Remove Next

0.0512 Tw+TL+T+SW+SE+Pcp+CL+CD CL

0.0515 Tw+TL+T+SW+SE+Pcp+CD CD

0.0516 Tw+TL+T+SW+SE+Pcp Pcp

0.0519 Tw+TL+T+SW+SE Tw

0.0535 TL+T+SW+SE SW

0.0553 TL+T+SE T

0.0599 TL+SE SE

0.0631 TL

schedule and have only a short term effect on the ambient
temperature.

6.3 Forecasting temperature differences

Temperature controllers respond to changes in temperature,
so some researchers investigate methods that forecast
changes in temperature, such as the SML team [22].

Given a time sequence of temperatures y at each quarter-
hour, we define zi = yi − yi−1 as the sequence of
temperature differences over the previous quarter-hour. We
set our goal to forecast ẑi , and otherwise follow the same
method that we used when generating the forecasts ŷi . The
results of selecting sensors for this forecasting problem are
shown in this section.

Table 7 shows the errors when forecasting changes in
temperature over the next 3 h, using one hour of historical
observations, according to various sensors. Table 8 shows
the same results but forecasting 12 h of temperature
differences.

Our first observation is that forecasting temperature
differences gives much smaller errors. When forecasting
temperatures, we usually forecast numbers in the range
of about 20◦, whereas when forecasting temperature
differences, we are forecasting numbers that are usually
much less than 1◦. Thus we should expect the errors to

Table 8 Mean RMSE for selected sensors, generating 12-h forecasts
of temperature, from 4 historical readings

Mean RMSE Sensors Remove next

0.0727 Tw+TP+TL+TD+SW+SE+Pcp+LD+CD LD+CD

0.0728 Tw+TP+TL+TD+SW+SE+Pcp TD

0.0731 Tw+TP+TL+SW+SE+Pcp Pcp

0.0739 Tw+TP+TL+SW+SE TP

0.0746 Tw+TL+SW+SE SE

0.0752 Tw+TL+SW SW

0.0775 Tw+TL Tw

0.0863 TL
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Table 9 Mean RMSE for selected sensors, generating 3-h forecasts of
temperature changes, from 8 historical readings

Mean RMSE Sensors Remove Next

0.0512 Tw+TP+TL+T+SW+LD+HL TP

0.0517 Tw+TL+T+SW+LD+HL HL

0.052 Tw+TL+T+SW+LD SW

0.0524 Tw+TL+T+LD LD

0.0561 Tw+TL+T T

0.0592 Tw+TL Tw

0.0622 TL

be much lower. For instance, it would not be informative
in this house if we were to claim we could forecast that
the temperature will not change by more than 1◦ over any
quarter-hour, since it rarely does.

Now we consider slightly increasing the sensor history
when forecasting differences in temperature. Table 9 shows
the errors when forecasting changes in temperature over the
next 3 h, using 2 h of historical observations, according to
various sensors. Table 10 uses the same history length, but
forecasts 12 h of temperature differences.

We notice that when forecasting temperature differences
further into the future, our mean forecast error does not
decrease as much as it does when forecasting temperature.
Instead, the forecast errors are only about 40% greater when
forecasting 12 h than they are when forecasting 3 h.

When forecasting temperature differences with more
historical readings, that is, using 2 h instead of one hour,
we see an effect similar to what we saw when forecasting
temperatures. We see there is little improvement in mean
RMSE gained by the extra available data.

6.4 Forecasting frommuch longer histories

Finally, we conducted two tests to further explore the effect
of additional historical data readings from the sensors. In
Section 6.2, we have shown that increasing from 1 to 2 h of
sensor data did not improve forecast accuracy very much. In
this section, we consider 12 h of sensor data.

Table 10 Mean RMSE for selected sensors, generating 12-h forecasts
of temperature changes, from 8 historical readings

0.0704 Tw+TP+TL+SW+Pcp+LD Pcp

0.0711 Tw+TP+TL+SW+LD LD

0.0716 Tw+TP+TL+SW TP

0.0722 Tw+TL+SW SW

0.0735 Tw+TL Tw

0.0854 TL

Table 11 Mean RMSE for selected sensors, generating 3-h forecasts
of temperature, from 48 historical readings

Mean RMSE Sensors Remove Next

0.0469 Tw+TP+TL+TD+T+SW+SS T

0.0493 Tw+TP+TL+TD+SW+SS SS

0.0515 Tw+TP+TL+TD+SW Tw

0.0528 TP+TL+TD+SW TP

0.0529 TL+TD+SW TL

0.0549 TD+SW SW

0.0568 TD

Table 11 shows the results of computing 3 h of
temperature forecast from 12 h of sensor data. The largest
set of sensors has a mean RMSE of 0.05 ◦C. The selected
sensors included are a combination of external conditions
and ambient temperatures, while no importance is placed on
activities of the occupants. This error is significantly less
than the error reported on Tables 2 and 5, both of which are
about 0.25 ◦C.

Table 12 reports on the accuracy of computing changes
in temperature over each 15-min interval in the next 48 h,
using 12 h of historical readings. This forecast combines
mostly environmental factors with some activities of the
building occupants. Specifically it found that the twilight
indicator, the sun on the walls, the atmospheric pressure and
the lights in the dining room were most informative. For 12-
h forecasts, the ambient room conditions were not found to
be useful.

Table 12 shows an error that is surprisingly low for a 48
hour forecast. It approximately the same error as seen in the
3-h forecasts in Table 7. It is smaller than error for the 12-
h forecast in Table 8, even though the forecast horizon in
increased by a factor of four.

7 Related work

The SML team reports [21] accuracy when forecasting
temperature differences over future quarter-hour intervals,

Table 12 Mean RMSE for selected sensors, generating 48-h forecasts
of temperature changes from 48 historical readings

Mean RMSE Sensors Remove Next

0.0562 Tw+SW+SS+SE+P+LD SS

0.0563 Tw+SW+SE+P+LD SW

0.0565 Tw+SE+P+LD LD

0.057 Tw+SE+P SE

0.058 Tw+P Tw

0.0639 P
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using data from among the 88 sensors they installed. They
selected from among this set: internal temperature (TD and
TL), irradiance (P), internal humidity (HD and HL) and
precipitation (PCP). Based on their results for forecasting
over 3 h, a selection of three sensors gave the lowest
errors: internal temperature, solar irradiance, and a time-
categorical variable. Using these sensors, forecasts for each
quarter-hour over 3 h were generated using a combination
of forecast models based on ANNs. They achieve error of
about 0.11 ◦C Mean Absolute Error. We report forecast with
about half of the error for the same problem. See Table 11.

The SML team, in later work [22] explored the selection
of sensors for forecasting temperature differences over each
quarter-hour with a forecast horizon of 48 h. They report
a maximal MAE of about 1 ◦C, although the accuracy was
often much smaller.

In our investigations of this same data and the same 48 hour
forecasting problem, we experimented with a naive forecast,
computed by always forecasting the mean temperature
difference and looking at no sensors at all. This gives a mean
RMSE of 0.12 ◦C. This result also can be compared to our
Table 6 which is based on the same data. These forecasts
have mean MAE of about 0.06 ◦C, which is an order of
magnitude smaller than the previously published error.

Feature extraction shares some similarities with feature
selection. Feature extraction is the process of defining new
features from existing ones, by selecting those features with
good predictive accuracy, and repackaging them into linear
combinations that are considered new features. Partial least
squares and principal component analysis are two feature
extraction techniques [2, 6].

We used the same SML data for partial least squares
and principle components [15]. Using four historical
readings per sensor, we found the RMSE forecast error
for both methods to be about 0.7 3-h forecasts whereas
the comparable mean RMSE values in this paper range
from 0.24 to 0.34. Likewise for twelve-hour forecasts, the
RMSE for the feature extraction methods was about 1.7
for twelve-hour forecasts, and ranged from 1.15 to 1.42
in this paper. The results were similar for eight historical
readings per sensor. Thus, lasso regression and best-first
search exhibit better forecast accuracy than these feature
extraction methods for temperature forecasting.

8 Conclusion

A model predictive controller can achieve significant
savings by using an accurate temperature forecast when
determining whether or not to engage HVAC systems.
Temperature forecasts are informed by sensor data. We
propose a cost-benefit analysis that balances the cost arising
from installation, operating and computation against the

benefit of saving energy. A sensor’s cost exceeds its benefit
if it does not improve forecast accuracy by an amount
sufficient to be useful to the controller.

The method we describe generates accurate temper-
ature forecasts using lasso regression. It uses a best-
first search technique to incrementally consider larger
sets of sensors until no additional sensor improves the
forecast accuracy. It then reduces this set by remov-
ing sensors incrementally and reporting the resulting
sequence of forecast errors. If we assume that energy
savings increase with forecast accuracy, this sequence of
sets of sensors should help finding the optimal set of
sensors.

Our system computes a gracefully degrading set of
sensors for different situations, depending on the length of
the forecast horizon, the number of historical observations,
and whether the controller performs better with a lower
mean error or a lower maximal error. Our findings indicate
that the selection of sensors will be affected by these factors.
In a new installation, we propose to temporarily install
a large set of sensors and to collect readings from these
sensors over several weeks. Then, it should be possible to
determine which sensors to permanently install. Alternately,
in an existing installation, the maintenance and computation
costs may be reduced by removing sensors that are not
providing benefit. The same gracefully degrading sequence
can guide this selection.

Our experiments show accuracy increases as more data
is available for forecasting. Shorter-term forecasts are more
accurate than longer-term forecasts, and derive benefit from
more sensors than longer-term forecasts.

We have used lasso regression over lagged data as
the underlying modelling technology. While the search
technique we employ for selecting sensors can be applied to
any underlying modelling technology, lasso regression has
shown good performance. In a comparison with previously
published forecasts based an artificial neural nets, the lasso
forecasts show considerable improvement.

In the future, we plan to apply this proof of concept to
a set of small university buildings with 12 sensors, and a
model predictive controller.
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