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Abstract This paper proposes a new scheme in cloud
service applied to smart home systems based on the tech-
nology of the Internet of Things (IoT), and the key tech-
nologies include sensing technology and cloud computing
ability. The IoT refers to the network of objects, devices,
machines, and other physical systems with computing and
communication capabilities. On the smart home para-
digm, the data collected from sensors can be sensitive
information and that security breaches can have devastat-
ing economic and social impact. This paper proposes a
platform to prevent collusion between users and the cloud
service provider (CSP). To protect the privacy of the
checked data, the leakage of personnel information in
the protocol for the proof must be considered. The pro-
posed protocol can verify users who modify shared files,
so that a cloud-storage practice is considered safe. In ad-
dition, the proposed method preserves data privacy and
minimizes computational cost by applying the bilinearity
property of bilinear pairings.

Keywords IoTsecurity . Cryptography . Digital signature .

Smart home

1 Introduction

In recent years, the requirements of safe, comfortable, and con-
venient for modern house are increasing. The research and de-
sign of smart home will satisfy aspire of people’s life style [1,
2]. As the development of the Cloud computing and Internet of
Things, the applications of smart home are continually im-
proved. The IoT-Cloud paradigm enables a new breed of ser-
vices; there are huge changes on the concept of smart environ-
ments including smart homes, smart buildings, and smart grids.

The new services create meaningful information from the
cloud-based analysis of IoT-based data, due to the unlimited
resources of the Clouds. On the IoT and Clouds platform, the
big data collected from many sensors can be calculated to
generate useful and sensitive information for the end users.
In the new business models of smart home, paradigm security
breaches can have devastating economic and social impact,
and cybercrime is increasing in this context [3].

Although users may be under criminal investigation, evi-
dence can be removed from cloud storage by CSPs. Even if
the infrastructure provided by a CSP is more robust and reli-
able than that of personal computing devices, users still face
internal and external threats to their security and privacy, in-
cluding hardware failure, software errors, hackers, and mali-
cious insiders. Moreover, a CSP may discard data that are
rarely accessed and reuse the same storage space for other
customers.

A considerable amount of data is now stored in the
cloud. In addition to providing a secure channel within
which to exchange data and download and upload files,
determining how cloud systems can further improve se-
curity warrants investigation. From this perspective,
CSPs must design a mechanism for civil and criminal
investigations. However, in cloud systems, user data is
generally under the physical control of CSPs. When
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user data in the cloud is deleted, the remaining small
fractions of data are difficult to use in court. Therefore,
identifying users who maliciously modify or delete data
is essential in cloud data auditing.

To achieve security, several cloud-storage auditing
protocols that can verify the integrity of the data stored
over a cloud have been proposed [4–20]. Ateniese et al.
formally defined protocols for Provable Data Possession
(PDP) and presented two PDP schemes based on RSA
algorithm in [4]. The server responses queried blocks
and tags to the client; then, the client checks whether
the server possesses the file. Shacham and Waters [5]
improved the security of the original PDP using the
data fragmentation concept. Erway et al. improved
dynamicity of the original PDP schemes in [6]. Then,
Ateniese et al. implemented a model for building
public-key homomorphic linear authenticators (HLAs)
thus reduce the communication and computation over-
head in [7–9]. Yang and Jia improved security in [10]
and the authors implemented an efficient data auditing
scheme [11].

In [12, 13], Zhu et al. proposed schemes that support
the batch auditing for multiple clouds. Zhu et al. devel-
oped the scheme minimizes computation and communi-
cation costs in [14]. Sookhak et al. design a new data
structure to decrease the computation overhead in re-
mote data auditing scheme [15]. Whereas in [16, 17],
Yu et al. and Liu et al. have proposed key management
systems for cloud storage to reduce the key manage-
ment cost and private key exposure risk. In [18], Yang
et al. proposed an identity tracing protocol that enables
the group manager to trace the identity of members
when dispute occurs. In [19, 20], the authors provide
a privacy-preserving public auditing mechanism for
shared data. The common properties of these protocols
are as follows: (1) integrity (auditing of data in the
cloud computing framework) and (2) efficiency (verifi-
cation of data with minimum computational cost).

As described herein, our proposed method provides a
mechanism to audit the following illegal behavior by
malicious users or CSP insiders. CSPs and users cannot
privately modify the electronically stored information
even through collusion. Our approach provides a more
efficient dynamic auditing than do the schemes in [11,
15] and addresses some of the security holes in [12].
Specifically, we propose a public data auditing method
based on the bilinear arithmetic of elliptic curves. This
method checks data possession in cloud storage at a
computational cost lower than those of homomorphic
cryptosystems. The two key features of our approach
are that it verifies the integrity of the data against col-
lusion and outperforms other state-of-the-art data
auditing methods.

The rest of this paper is organized as follows.
Section II describes the system model and defines the
proposed protocol. Section III describes the properties
of the framework, including dynamic operation. The se-
curity characteristics are described in Section IV, and
Section V presents the results of performance tests of
the proposed protocol. Finally, Section VI concludes the
paper.

2 Preliminaries and definitions

This section describes the system model and defines the pro-
posed protocol. Cloud-storage architecture includes three
roles: that of the CSP, users, and third-party auditor (TPA).
The TPA provides public audit services that enable users to
review the integrity of their outsourced data.

2.1 Preliminaries

Bilinear map Let G1, G2, and GT be multiplicative cyclic
groups of prime order p. Let g1 and g2 be the generators of
G1 and G2, respectively. A bilinear map is a map e :G1 ×
G2→GT such that for all u ∈G1, v ∈G2, and a, b ∈ ZP, e (ua,
vb) = e(u, v)ab.

This bilinearity implies that for any u1, u2 ∈G1 and
v ∈G2, e (u1 ∙ u2, v) = e (u1, v) ∙e (u2, v) [19]. By using
bilinearity, a homomorphic linear file block signature
can be combined into one value. In our scheme, this
kind of homomorphic property is based on mathematic
homomorphism.

2.2 Definition of the system model

After owners create data in smart home systems, the CSP
stores the data and maintains access for users. The TPA then
performs data storage auditing for both the owners and CSP.
The proposed protocol is shown in Fig. 1.

3 Proposed protocol

We consider that users belong to the same group in smart
home systems if they share data between them. Notably, the
number of users in a group must be more than two. The pro-
posed protocol is detailed in the following subsections.

3.1 Construction

The proposed protocol contains six algorithms, namely,
Key.Gen, Setup, Acknowledge, Challenge, Proof, and
Verify. For cloud user A, Key.Gen generates a random
key pair (α, β). The secret key is α, and the public key
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is β. For a file F, setup establishes public parameters
that are declared to the public through the TPA; the file

F is then processed with file block signatures T ¼
σ

0
i

� �
1≤ i≤n and transferred to the CSP. The setup of

the proposed scheme is shown in Table 1.
The CSP runs Acknowledge to recognize the client

data and sends an acknowledgment message to the TPA.
The TPA uses Challenge to select some random data
blocks Q = {(i, vi)i ∈ [1, n]}, where the values of i are
distinct. Finally, the TPA sends challenge set Q to the
prover. Proof receives the blocks of file F, the set of
block signatures T, and the challenge set Q from the
auditor as its input, and returns a proof of possession
P for the challenged blocks in F. The outputs of the
auditing results are then verified (i.e., whether the pos-
session has been proved). Table 2 provides a list of the
notations used in the proposed scheme, and the main
procedure is detailed in Table 3.

3.2 Dynamic protocol support

This section describes the support for dynamic data oper-
ations, including modification, insertion, and deletion.
Dynamic data updates are supported through a data struc-
ture called the list table (LT). The TPA is responsible for
this data structure. The LT prevents the CSP from using a
previous version of the stored data rather than the updated
one following the verification phase. An LT contains two
fields: the original index Oi and the version number Vi.
The index of each block in the LT is the actual position
of the outsourced data block. We introduce this new data
structure to decrease the computational overhead. First,
we group all n data blocks into kx groups. Then, a block
is inserted after i or a specific block i is deleted; the ver-
ifier moves less than n

kx blocks and incurs a computation
overhead of n

kx. For example, if x = 2, the n data blocks are
grouped into k2 groups, as shown in Fig. 2. The proce-
dures for the modification, insertion, and deletion of data
are explained as follows:

3.2.1 Data modification

The user executes the modification algorithm as follows:

1) The user modifies the block of the file from mi to m*
i and

updates V*
i =Vi + 1.

2) The user generates a new block signature σ
0
i

� �
* for the

modified data block m*
i as follows:

σ
0
i

� �*
¼ H W*

i

� �
∙ ∏

s

j¼1
uj

m*
i; j

 !α lð Þ

; ð5Þ

whereW*
i ¼ FID ik kOið kV*

i ‖ t
*
i Þ.

3) The user sends a modification request message to the

CSP, which includes σ
0
i

� ��
*;m*

i Þ.
4) Upon receiving the modification request message, the

CSP replaces block mi with m*
i and updates the block

signature to σ
0
i

� �
*:

5) The CSP generates the acknowledgment message S*i
using the secret key SKCSP as follows:

S*i ¼ Wið ÞSKCSP : ð6Þ

Then, the CSP transfers S*i to the TPA. Upon receiving S*i ,
the TPA saves it in the signature table.

6) The user sends the modification request message W*
i ¼

FID ik kOið kV*
i ‖ t

*
i Þ;H W*

i

� �
to the TPA, and the TPA

updates the LT. Then, the CSP sends the modification

request message W*
i ¼ FID ik kO*

i

� ��V*
i t*i
�� �

;H W*
i

� �
to the TPA, and the TPA further updates the LT.

3.2.2 Data insertion

The user runs the data insertion algorithm through the
following steps:

no. user
1 A1

2 A2

3 A3

… …
n An

Block id CSP signature timestamp

Block 1 signature 1 time 1

Block 2 signature 2 time 2

Block 3 signature 3 time 3

… … …
Block n signature n time n

user TPA

CSP

Fig. 1 Architecture of the
proposed protocol
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1) The user inserts a new data block m*
i and sets the initial

value for the version V*
i and the original indexO

*
i = n + 1

of the data block m*
i .

Table 2 Notations
Symbol Definition

a Secret key

β Public key

n The number of blocks in a file

s The number of sectors in a
block

F The processed file with n × s
sectors, F ¼ mij

� �
1≤ i≤n
1≤ j≤s

T The set of file block signatures

Q The set of index-coefficient
pairs

P The response for the challenge

Table 3 Proposed protocol for the main procedures

Acknowledge
For the CSP, the secret key is SKCSP and the public key isPKCSP. The CSP

receives theprocessed fileFwith file block signaturesTand thedatablock
identifier{Wi}1 ≤ i ≤ n; itgeneratesSi usingthesecretkeySKCSPas follows:

Si ¼ Wið ÞSKCSP (2)

The CSP then transfers δ = {Si}1 ≤ i ≤ n to the TPA as the CSP
acknowledgment message for the processed file F with file block
signatures T and the data block identifier {Wi}1 ≤ i ≤ n. Upon receiving
the acknowledgment message, the TPA saves it in the signature table as
shown in Table 4.

Challenge
The TPA selects some random data blocks (i.e., subsets [1, i] of [1, n]) to

construct the challenge set Q. For each i, a random element vi∈Z*
p is

generated. Let Q be the set {(i, vi)i ∈ [1, n]} for distinct values of i.
Finally, the TPA sends challenge Q to the prover.

Proof
TheCSP parses the processed fileF as mij

� �
1≤ i≤n
1≤ j≤s

, alongwithT ¼

σ
0
i

� �
1≤ i≤n ;which comes from the user. TheCSP also parses the

message sent by the TPA asQ. Then it computes μ
0 ¼ μ

0
j

n o
1≤ j≤s as

follows:

μ
0
j ¼ ∑

i;við Þ∈Q
vi∙mi; j:

To ensure security, the CSP chooses s random values rj ∈ Zp. In addition,
ρ ∈Zp is a random value and R = (r1, r2,⋯, rs). Notably, R and ρ are
blind factors designed to prevent data leakage attacks. Then, the CSP

computes μ ¼ μ j

n o
1≤ j≤s , γ, and τ.

μ j ¼ r j þ μ
0
j. (3)

γ ¼ ∏
s

j¼1
e u j

−r j ;β lð Þ
� �

:

τ ¼ ∏
s

j¼1
e u j

μ j ;β lð Þ
� �

:

Next, σ and ψ are computed as follows:

σi ¼ ρ∙σ0
i:

σ ¼ ∏
i;við Þ∈Q

σi
vi ¼ ∏

i;við Þ∈Q
ρ∙σ

0
i

n ovi
:

ψ ¼ e ∏
i;við Þ∈Q

ρvi ; g2

 !
:

Finally, the CSP sends the response P = (τ, γ, σ,ψ) to the verifier.
Verify
The TPA also parses the CSP’s response P to obtain τ, γ, σ, and ψ and

checks whether the following equation holds:

e ∏
i;við Þ∈Q

σ; g2

 !
¼ ψ∙e ∏

i;við Þ∈Q
H Wið Þvi ; g2

 !
∙γ∙τ : (4)

If (4) holds, the algorithm outputs 1; otherwise, it outputs 0. The TPA
checks the acknowledgment message δ = {Si}1 ≤ i ≤ n in the signature
table to determine whether the processed file Fwas created by the user
A. If so, the algorithm accepts it; otherwise, it rejects it.

Table 1 Proposed protocol for the setup phase

Let G1,G2, andGT be multiplicative cyclic groups of prime order p, and
let e: G1 ×G2→GT be a bilinear map. Let g1 and g2 be generators of
G1 andG2, respectively. LetH: {0, 1}

∗→G1 be a secure map-to-point
hash function that uniformly maps strings to G1.

Key.Gen
For a cloud client user A1, choose a random α(1) ∈ ZP to generate a

random key pair (α(1), β(1)) and compute β 1ð Þ←g∝2ϵ G2. The secret key
is α(1) and the public key is β(1). For another cloud client user A2 in the
same group, the secret key is α(2) and the public key is β(2). For user Al,
the secret key is α(l) and the public key is β(l).

Setup
A file F is divided by applying the data fragmentation technique. This

technique reduces number of data block signatures, and splits F into n
blocks, each of which are s sectors long: mij

� �
1≤ i≤n
1≤ j≤s

. Choose s

random values x1, x2,⋯, xs from some sufficiently large domain ZP and
compute uj ¼ gx j

1 ∈G1; for all j ∈ [1, s], such that u = (u1, u2,⋯, us). The
file block signature σ

0
i, for 1 ≤ i ≤ n, is computed as follows:

σ
0
i ¼ H Wið Þ∙ ∏

s

j¼1
uj

mi; j

 !α lð Þ

(1)

After processing, the file F becomes mij
� �

1≤ i≤n
1≤ j≤s

. Together with the

signatures σ
0
i

� �
1≤ i≤n , the data block identifier

Wi = (FID ‖i‖Oi ‖Vi ‖ ti), where FID is the file identifier, Oi is the
original index of data block i, Vi is the current version of data block i,
and ti is the timestamp of the data block i and the secret key α(l). The
cloud client user is provided with the secret key α(l) and a message
H(Wi).

The public parameters are given by pub = (β(l), {H(Wi),Wi}1 ≤ i ≤ n, u, g2),
and the secret parameters are (α(l), x1, x2,⋯, xs); notably, the user saves
the secret parameters.

Finally, public parameters are transferred to the TPA and the processed
file F with file block signatures T ¼ σ

0
i

� �
1≤ i≤n and data block

identifier {Wi}1 ≤ i ≤ n is transferred to the CSP.
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2) The user generates a block signature σ
0
i

� �
* for the new

data block m*
i ; then by (5),

σ
0
i

� �*
¼ H W*

i

� �
∙ ∏

s

j¼1
uj

m*
i; j

 !α lð Þ

;

whereW*
i ¼ FID ik kO*

i

� ��V*
i ‖ t

*
i Þ.

3) The user sends an insert request message to the CSP,
which includes (σ*

i ;m
*
i ;W

*
i ). Upon receiving the insert

request message, the CSP inserts m*
i and the block signa-

ture σ*
i .

4) The CSP generates the acknowledgment message S*i
using its secret key SKCSP as follows:

S*i ¼ Wið ÞSKCSP :

The CSP then transfers Si to the TPA. Upon receiving the

acknowledgment message S*i , the TPA saves it in the signature
table.

5) The user sends the insert request message

W*
i ¼ FID ik kO*

i

� ��V*
i ‖ t

*
i Þ, H W*

i

� �
to the TPA; the

TPA inserts a new row in the LT after the ith block and
shifts the subsequent blocks down one position.

6) The TPA receives the insert request message W*
i ¼

FID ik kO*
i

� ��V*
i t*i
�� �

and constructs a new row in the

LT.

3.2.3 Data deletion

The user runs the data deletion algorithm by performing the
following steps:

1) The user deletes a data block mi and updates V*
i ¼ Vi as

well as the original index of data block O*
i = Oi.

2) The user generates a data block identifier W*
i ¼

FID ik kO*
i

� ��V*
i ‖ t

*
i Þ for the data block mi.

3) The user sends the delete request message to the CSP,
which includes (σi,mi). Upon receiving the delete request
message, the CSP deletes mi and the block signature σi.

4) The CSP generates the acknowledgment message S*i by
using its secret key SKCSP as follows:

S*i ¼ Wið ÞSKCSP :

Then, the CSP transfers Si to the TPA. Upon receiving the

acknowledgment message S*i ; the TPA saves it in the signa-
ture table.

5) The user sends the delete request message W*
i ¼

FID ik kO*
i

� ��V*
i t*i
�� �

;H W*
i

� �
to the TPA, and the

TPA saves all of the message requests in the LT.

4 Security analysis

In this section, we first validate the correctness of the proposed
protocol. To assess the security of our proposed scheme, we
identify where the data may have been tampered with or lost;
then, we describe how to prevent such collusion.

4.1 Correctness

The correctness of our protocol is illustrated in the following
theorem:

Theorem 1 In our proposed protocol, the TPA can determine
whether chosen data blocks are correctly stored.

Proof. The verification of (4) in Section III can be rewritten
in detail as follows:

e ∏
i;við Þ∈Q

σ; g2

 !
¼ ψ∙e ∏

i;við Þ∈Q
H Wið Þvi ; g2

 !
∙γ∙τ :

Fig. 2 Division of n data blocks into k2 groups

Table 4 Signature table
Block id CSP signature Timestamp

Block 1 Signature 1 Time 1

Block 2 Signature 2 Time 2

Block 3 Signature 3 Time 3

… … …

Block n Signature n Time n
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Because σ can be expressed as

σ ¼ ∏
i;við Þ∈Q

ρvi

 !
∙ ∏
i;við Þ∈Q

H Wið Þ∙ ∏
s

j¼1
uj

mi; j

 !α lð Þ8<
:

9=
;

vi

¼ ∏
i;við Þ∈Q

ρvi ∙H Wið Þvi ∙ ∏
s

j¼1
uj

μ
0
j

 !α lð Þ8<
:

9=
;:

So, the equation of LEFT as below,

LEFT ¼ e ∏
i;við Þ∈Q

σi
vi ; g2

 !

¼ e ∏
i;við Þ∈Q

ρvi ∙H Wið Þvi ∙ ∏
s

j¼1
uj

μ
0
j

 !α lð Þ8<
:

9=
;; g2

0
@

1
A:

Theright-handsideof(4) is theprover’s responseτ,γ,ψandthe
challenge set (i, vi); by using (3), this can be expressed as follows:

RIGHT ¼ e ∏
i;við Þ∈Q

ρvi ; g2

 !
∙e ∏

i;við Þ∈Q
H Wið Þvi ; g2

 !
∙ ∏

s

j¼1
e uj

−r j ;β lð Þ
� �

∙ ∏
s

j¼1
e u j

μ j ;β lð Þ
� �

¼ e ∏
i;við Þ∈Q

ρvi ∙H Wið Þvi ; g2
 !

∙ ∏
s

j¼1
e uj

μ j−r j ;β lð Þ
� �

¼ e ∏
i;við Þ∈Q

ρvi ∙H Wið Þvi ; g2
 !

∙ ∏
s

j¼1
e u j

μ
0
j ;β lð Þ

� �
:

Then, we can show that the right- and left-hand sides are
equal:

RIGHT ¼ e ∏
i∈Q

ρvi ∙H Wið Þvi ; g2
 !

∙ ∏
s

j¼1
e u j

μ
0
j ; gα

lð Þ
2

� �

¼ e ∏
i;við Þ∈Q

ρvi ∙H Wið Þvi ∙ ∏
s

j¼1
uj

μ
0
j

( )α lð Þ

; g2

0
@

1
A:

4.2 Security model

In this section, we discuss how the proposed protocol provides
the security properties introduced in section III. The
proof of deletion may be bypassed through collusion
between the user and CSP. Therefore, no traces of de-
leted files will remain. For example, Alice sends Bob
some files to satisfy a contract, but the files might be
deleted by the CSP. In this scenario, Bob is honest, but
Alice is malicious and colludes with the CSP to deceive
Bob for financial gain. Later, Alice can present the
proof of the deletion of the file to accuse Bob of evi-
dence tampering.

Therefore, addressing collusion between the user and CSP
in cloud-storage auditing is a crucial problem. In proposed
protocol, TPA saves a relative proof that is signed by CSP
and thus can prove whether the message was modified or
deleted. This is similar to monitoring a car in a public parking

lot: if the car is damaged, the owner can identify the
perpetrator.

Theorem 2 If one is the original owner of a file F in proposed
smart home systems, and then the block signature cannot be
forged by other users.

Proof. In the proposed protocol, the request message and
data block identifiers are created by the user by using the
secret key α(l) and the public key β(l). The shared file is divid-
ed into a number of blocks, each of which is signed by the
user. When a user modifies the shared file, they sign the new
block using their secret key. From (1) and Theorem 1 we
prove that the block signature cannot be forged by other users.

σ
0
i ¼ H Wið Þ∙ ∏

s

j¼1
uj

mi; j

 !α lð Þ

:

Meanwhile, for the CSP, the secret key is SKCSP and the
public key is PKCSP; the acknowledgment message of the

CSP, Si ¼ Wið ÞSKCSP , is proved as follows:

e Si; g2ð Þ ¼ e Wið ÞSKCSP

� �
; g2
�

¼ e Wið Þ; gSKCSP
2

� �
¼ e Wi ;PKCSPð Þ:

By utilizing the Boneh–Lynn–Shacham (BLS) signature
technique [21, 22], other users cannot compute a valid

50 Pers Ubiquit Comput (2018) 22:45–53



signature without the secret key of the CSP. Thus, users cannot
deny possession files that they created.

Theorem 3 If a user performs modifications, deletions, or
insertions to a file in proposed smart home systems, then the
block signatures of these modifications, deletions, or inser-
tions cannot be forged.

Proof. In the proposed protocol, the request message and
data block identifiers are created by the user by using the
secret key α(l) and the public key β(l). From (5) and
Theorem 1, we prove that the block signature cannot be
forged.

σ
0
i

� �*
¼ H W*

i

� �
∙ ∏

s

j¼1
uj

m*
i; j

 !α lð Þ

;

For the CSP, the secret key is SKCSP and the public key is
PKCSP; the acknowledgment message of the CSP,

S*i ¼ W*
i

� �SKCSP , is proved as follows:

e S*i ; g2
� � ¼ e W*

i

� �SKCSP
� �

; g2
�

¼ e W*
i

� �
; gSKCSP

2

� �
¼ e W*

i

� �
;PKCSPÞ:

Similar to the proof of Theorem 2, by utilizing the BLS
signature technique [21, 22], other users cannot compute a
valid signature without the secret key of the CSP. Thus, the
CSP and these users cannot deny modifications, deletions, or
insertions that they make to files.

However, in the scheme in [11], the CSP and these users
can deny modifications to files. We take a group with two
users as an example (Table 5). In this scenario, Bob is honest
but Alice is malicious and colludes with the CSP to modify a
shared file in order to deceive Bob for financial gain. Without
proof of data modification held by a TPA, the CSP can collude
withAlice and delete file blocks that were originally created or
modified by Bob. Then, Alice can accuse Bob of tampering
with evidence. On the other hand, with proof of data modifi-
cation held by a TPA, the CSP cannot deny the proof that is
signed by CSP. Thus, the proposed method provides a mech-
anism to audit the illegal behavior by malicious users or CSP
insiders.

Theorem 4 Our protocol cannot reveal content to the TPA
when an attack happens in [12].

Proof. The parameters are the same as those presented in

Section III. Let μ
0
j ¼ ∑ i;við Þ∈Q vi∙mi; j and σ

0 ¼ ∏ i∈Q σið Þvi .
The CSP chooses random rj and ρ; then,

μ j ¼ r j þ μ
0
j ¼ r j þ ∑

i;νið Þ∈Q
vi⋅mi; j

σi ¼ ρ⋅σ
0
i:

To prevent from data leakage attack, the CSP needs to blind

both μj and σi. Then, the CSP computes μ ¼ μ j

n o
1≤ j≤s

,

γ, and τ using R and ρ. As a result, μ, γ, and τ are unknown for
TPA, as the response proof of storage correctness to the TPA.
Therefore, the verifier cannot obtain mij

� �
1≤ i≤n
1≤ j≤s

from

μ ¼ μ j

n o
1≤ j≤s

; similarly, the verifier cannot obtain

the block signature σ
0
i. Because of the random masking

of rj and ρ, the verifier cannot obtain information about

μ
0
j and σ

0
i.

To protect the privacy of the checked data, the leakage of
personnel information in the protocol for the proof of data
possession must be considered. Without background informa-
tion, the proposed scheme provides security superior to the
data auditing scheme proposed by Yang and Jia [11].

Theorem 5 The proposed protocol can resist the replay attack.
Proof. In proposed protocol, the TPA picks some random

data blocks, i.e., subset [1, i] of the set [1, n], to construct the
challenge set Q. And the TPA generates a random element vi
∈Z*

p for each i. Thus, there are different challenge sets Q in

different challenge-response phase. The CSP cannot use the
previous proof to pass the verification without retrieving the
challenged data blocks and data tags.

Besides, the hash value H Wið Þvi is unknown for CSP, the
adversary can not forge the hash value. As result, the mali-
cious CSP cannot launch the replay attack based on the same
values.

5 Performance analysis

We compare the computational cost of the proposed scheme
with those of [11, 15]. The experiments were performed on a
Linux system with an Intel Core i5-2435M CPU at 2.40 GHz
and with 2 GB RAM. We used the pairing-based cryptography
library version 0.5.12 [23] to simulate our auditing scheme and
the computational costs of dynamic data updates were simulat-
ed with MySQLVersion 14.14 Distrib. 5.5.52. We also used a
MNT d159 elliptic curve [23], with a base field size of 159 b
and embedding degree of 6. The MNT d159 curve has a 160-b
group order, which means that p is a 160-b long prime.

Table 5 Group with two
users Number User

1 Alice

2 Bob
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The file used in the simulations of the proposed and
existing auditing schemes had 125,000 data blocks; the total
size was less than 1 GB and the size of each block was 8 kB
(Fig. 3). The computational cost incurred by finding the posi-
tion of each block is negligible, because the computation is
shorter than those of the data update. Moreover, the positions
can easily be precomputed before data update operations;
thus, the computation overhead due to finding the positions
of data block is negligible.

The mathematical model of the proposed scheme is sup-
ported by empirical results for file sizes from 1 to 5 GB, where
the number of update requests for insertion or deletion is 50,
and the number of groups k is equal to 10 (Fig. 3). To insert a
block after i or delete a specific block i in the method proposed
by Yang et al., the computational overhead is n. The compu-
tational overhead of the method proposed by Sookhak et al. is
n
k. In our method, the maximum computational overhead of the
verifier (when x = 2) is only n

k2
.

We compare the computational complexity of our
method with that proposed by Sookhak et al. for dy-
namic data update operations (Table 6). The complexity
of our method is O( nkx ); when x = 2 and the CSP

inserts a block after i or deletes block i, the verifier
moves fewer than n

k2
computational overhead of n

k2
.

In the method proposed by Yang et al., to insert a
block after i or delete block i, the verifier must move
n − i blocks in the data structure. Therefore, the com-
putational overhead of their method for inserting and
deleting operations is O (n). Similarly, for these opera-
tions in the method proposed by Sookhak et al., the
verifier must move n

k −i blocks, which incurs a compu-
tational overhead of n

k. The complexity of their method
is O (nk ); thus, our method is faster than that of
Sookhak et al.

6 Conclusions

In this study, we developed an efficient and secure collusion-
resistant protocol in smart home systems. The contributions of
this paper are summarized as follows:

1) First, we designed a suitable framework for collusion re-
sistance and formalized the definition of the public
auditing scheme for the TPA, which supports the public
audit ability of remote data.

2) Additionally, our scheme is more efficient than other
state-of-the-art data auditing methods. In particular, we
introduced a new data structure that decreases the com-
putational overhead in dynamic data update operations.

Overall, we proposed an efficient protocol for proving data
possession in cloud service applied to smart home systems.
The proposed method minimizes the computational cost in-
curred through the application of bilinear pairings.

Funding information This research was partially supported by the
Ministry of Science and Technology of the Republic of China under the
Grant MOST 106-2221-E-015-001-.

Table 6 Comparison of the dynamic data update operations of remote data auditing protocols

Computation cost Scheme

Yang et al. (2012) [11] Sookhak et al. (2015) [15] Our scheme

Modification O (t) O (t) O (t)

Insertion O (n) O (nk ) O ( nkx )

Deletion O (n) O (nk ) O ( nkx )

n is the total number of data blocks in the file; t is the number of challenged data blocks in the auditing query; k is the number of groups; x is an integer
(x ≥ 2)
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Fig. 3 Comparison of the computational costs of update operations for
file sizes from 1 to 5 GB
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