
Pers Ubiquit Comput (2017) 21:949–962
DOI 10.1007/s00779-017-1048-7

ORIGINAL ARTICLE

Secure public data auditing scheme for cloud storage
in smart city

Libing Wu1 · Jing Wang1 ·Neeraj Kumar2 ·Debiao He1,3

Received: 5 September 2016 / Accepted: 2 April 2017 / Published online: 1 July 2017
© Springer-Verlag London Ltd. 2017

Abstract In the smart city construction, massive data col-
lected from various fields need to be outsourced to the cloud
for convenience and resource saving. However, integrity and
confidentiality of the data in cloud remains a challenge issue
due to the loss of data possession. As a solution, some pub-
lic data auditing schemes have been proposed in last several
years. Most recently, Li et al. proposed an efficient public
auditing scheme and claimed that it could reduce the cost
of clients on generating verification metadata. In this paper,
we analyze the security of Li et al.’s scheme and point out
two weaknesses in it. We demonstrate that it cannot achieve
the confidentiality for outsourced data and it is vulnerable
to the proof forgery attack. To address these weaknesses,
we propose an improved public auditing scheme, which can
not only preserve the data privacy but also resist the proof

� Debiao He
hedebiao@163.com

Libing Wu
whuwlb@126.com

Jing Wang
cswjing@whu.edu.cn

Neeraj Kumar
neeraj.kumar@thapar.edu

1 State Key Lab of Software Engineering, Computer School,
Wuhan University, Wuhan, China

2 Department of Computer Science and Engineering, Thapar
University, Patiala, India

3 Guangxi Key Laboratory of Cryptography and Information
Security, Guilin University Of Electronic Technology, Guilin,
China

forgery attack. Security analysis shows that our scheme is
provably secure in a robust security model. Performance
analysis shows that the proposed scheme can overcome the
weaknesses in Li et al.’s scheme at the cost of increasing
computation overhead slightly.

Keywords Smart city · Cloud storage · Outsourced data ·
Public integrity auditing · Privacy preserving

1 Introduction

Smart city, as the most creative city urban morphology, has
become a global strategic choice of urban development. In
essence, the smart city mainly uses information and com-
munication technologies (ICT) to achieve the intelligent
management of various fields for cities, and then create a
better life for urban citizens [1]. As shown in Fig. 1, a smart
city involves all sorts of smart domains, such as smart trans-
portation, smart care, smart education, and smart economy.
And these smart systems form the backbone of a city’s liv-
ability, efficiency and sustainability [2]. Take the smart care
as an example, people living in the smart city can make
a reservation registration on their mobile phone at home
instead of registering in line at hospital, which brings much
convenience for both patients and hospitals. Moreover, elec-
tronic medical records (EMR) enable the authorized doctors
to diagnose patients at anytime and anywhere.

To provide accurate smart city services, all kinds of data
should be collected and analyzed with advanced data pro-
cessing technologies [3], as shown in Fig. 2. In other words,
data can be considered as the core of a smart city. Therefore,
there should be an efficient infrastructure with powerful
ability in storing and sharing data for archival, online, and
offline analytics. Just like EMR, the medical institution

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-017-1048-7&domain=pdf
mailto:hedebiao@163.com
mailto:whuwlb@126.com
mailto:cswjing@whu.edu.cn
mailto:neeraj.kumar@thapar.edu

950 Pers Ubiquit Comput (2017) 21:949–962

Sm
art City

Others

Smart
Power

Smart
Mobility

Smart
Building

Smart
Education

Smart
Economy Smart

Care

Smart
Emergency

Fig. 1 The structure of smart city

must collect and store many medical recorders for a large
number of patients. Taking the reliability, scalability, and
cost minimization of the data into account, it is a good
choice to store these data in open source cloud-based data
storage servers [4].

As described above, cloud storage plays an increasingly
important role in smart city construction while facing with
the explosive growth of the data amount in Big Data Age.
To enjoy the smart city services better, organizations and
individuals have to move their massive data into the cloud
servers since they lack powerful storage and management
abilities. By delegating the data to a cloud server, organi-
zations and individuals not only liberate themselves from
anguishing about the management of complex hardware
system, but also do not worry about their data backup.
What’s more, they can get access to their data in the cloud
at anytime/anywhere.

Fig. 2 The cloud storage in smart city

Along with the unprecedented convenience brought by
cloud storage, some significant security and privacy chal-
lenges come into being. Once people living in smart city
outsource their data to the cloud server, they have to give up
the physical possession of their outsourced data and autho-
rize the cloud service providers(CSPs) to implement some
fundamental operation on data. It means that users cannot
perform data modification, insertion and deletion operations
on data in their local system, but the cloud service provider
can perform these even without informing the data own-
ers. For example, CSPs can delete the outsourced data that
seems to be expired or infrequently accessed for economies.
Additionally, even if the CSPs are honest in terms of storing
users’ data, they still cannot avoid some inevitable soft-
ware/hardware breakdowns [5, 6], which leads to some data
corruptions.

When the above problems occur, CSPs will try to hide
these corruptions out of some benefits, i.e., reputation, econ-
omy, and then driving the data owners to believe that their
outsourced data are stored correctly in the cloud storage
server. As a consequence, checking data integrity is nec-
essary for ensuring the data security [7, 8]. However, it is
not efficient for some traditional cryptographic checking
methods to check data integrity, because the users do not
physically possess their data. Since the data are the core of
a smart city, ensuring the data security is the basic premise
to achieve the sustainable development of smart city. Hence,
an efficient and secure data auditing mechanism without
downloading the whole data is required to guarantee the data
integrity at cloud server.

In recent years, researchers have proposed many different
schemes including private auditing [9] and public audit-
ing [10–12] to audit the integrity of remote data in cloud.
Private auditing is necessary in some cases, such as the con-
ditions where the data owners must be strictly limited to
access the Internet [13]. As for public auditing schemes,
they allow both the data owners and other authorized third
parties as auditors to verify the data integrity in cloud com-
puting environment when compared with private auditing.
Additionally, it is convenient for users to delegate the audit-
ing assignment to a trusted TPA when they cannot audit in
person, and users do not need to afford any fee for their
auditing request. Hence, public auditing mechanism seemed
more practical in terms of verifying the data integrity of
cloud storage [11].

1.1 Related work

Cryptographic schemes are very suitable for implementing
secure communication; a lot of encryption schemes [14–
16], authentication schemes [17–19], and digital signature
schemes [20–22] have been proposed for practical applica-
tions. To ensure the integrity of the outsourced data in smart

Pers Ubiquit Comput (2017) 21:949–962 951

city, a number of schemes [10–13, 23–27] have been pro-
posed. Ateniese et al.[23] was the first to design a provable
data possession (PDP) model for public auditing, and it was
the primitive security model to verify storage correctness
on untrusted cloud. They utilized RSA-based homomorphic
authentication and enabled the cloud users to verify the
integrity of outsourced data without downloading the whole
data file. However, it did not satisfy dynamic storage files.
In 2007, Juels and Kaliski first proposed Proofs of Retriev-
ability(POR) [24] which was another method to audit the
data integrity in semi-trusted cloud servers. But it could only
deal with limited number of queries.

Based on the [23] and [24], there are a series of improved
public auditing schemes proposed by other researchers. For
example, compact proofs of retrievability(CPOR) [25] was a
public auditing scheme based on BLS signatures [28]. Yuan
et al. [10] proposed another public auditing scheme whose
communication cost is constant. Wang et al. [29] designed
a public auditing scheme with group dynamic which is effi-
ciently solved by outsourcing signature updating operations
to the cloud via a secure proxy re-signature scheme. In [30],
Wang et al. came up with a certificateless public auditing
scheme to enhance the security in certificate management.

Recently, Wang et al. proposed the scheme Panda [31],
which is an auditing method with efficient user revocation
and secure public verification for outsourced data in cloud.
But Yang et al. [32] pointed out that Panda is vulnerable to
data recovery attack and it is not secure enough in resisting
proof forgery attack. In fact,the variants of Panda, i.e. [33,
34] proposed by Wang et al. suffer from the two vulnerabil-
ities as well. Then in [32], Yang et al. proposed an improved
public auditing scheme based on Panda by utilizing random
masking technology. However, their method incurred some
extra communication and computation overhead, especially
there were some complicated inverse operations during the
verification process of TPA.

Most recently, Li et al. proposed another provable data
integrity scheme [35], which mainly reduced the cost in the
process of generating verification metadata at the client to
achieve high efficiency. Unfortunately, we find that their
scheme also encounters with the security threats about
resisting data recovery attack and proof forgery attack.
Thus, we propose a new scheme to enhance the security
of [35] with the random masking technology, and we elim-
inate the complicated inverse operations compared with
[32]. Besides, the improvements can also be applied to
some other public auditing schemes, i.e. [36], which is an
identity-based public auditing mechanism from RSA.

1.2 Our contribution

In this paper, we mainly analyze the scheme proposed by Li
et al. [35] and propose an improved data auditing scheme

for checking the storage correctness of outsourced data,
which inherits all advantages of [35] and further refines it
by improving its security. To be specific, the three major
contributions are presented as follows:

• Firstly, we give a security analysis to the scheme in
[35], and prove that there are two typical security draw-
backs. One is it cannot resist data recovery attack, i.e.,
an external attacker can impersonate a public auditor to
extract the entire outsourced data. The other one is it
is not secure enough to resist proof forgery attack, i.e.,
a malicious cloud server can generate a valid auditing
proof without correctly storing the outsourced data.

• Secondly, we propose an improved public data auditing
scheme, and the security analysis demonstrates that it
strongly satisfies the security and privacy requirements
of public data auditing. In particular, our schemes avoid
the vulnerabilities in resisting the data recovery attack
and proof forgery attack. What is more, the improve-
ments and analysis can also be applied to other public
auditing schemes.

• Finally, we present a detailed analysis in terms of the
communication cost and computation cost to show that
the proposed scheme can greatly improve the secu-
rity at the expense of increasing communication and
computation cost slightly.

1.3 Organization of this paper

The rest of this paper is organized as follows. Section 2
introduces the mathematical background and systemmodels
related to this paper. Section 3 makes a brief review to Li et
al.’s scheme [35]. Section 4 presents the details about how
to implement the two attacks including data privacy recov-
ery attack and proof forgery attack. Section 5 describes the
improved public auditing scheme on the basis of [35]. Then,
Section 6 analyzes the security of the proposed scheme, and
Section 7 evaluates the communication cost and computa-
tion cost of the proposed auditing scheme. Section 8 makes
some concluding remarks at last.

2 Preliminaries

The necessary cryptographic primitives, system model, and
the security requirements are described in this section as
follows.

2.1 Mathematical background

1) Bilinear Maps. In order to enhance the readability
of this article, some mathematical properties of the
bilinear maps are given below.

952 Pers Ubiquit Comput (2017) 21:949–962

Let G, GT be two cyclic groups with the same large
prime order p. And let e : G × G −→ GT denote a
bilinear map with the following properties:

• Bilinearity For all P,Q ∈ G and a, b ∈ Zp, the
equation e(P a, Qb) = e(P, Q)ab holds.

• Nondegeneracy For at least one element P ∈ G,
the inequality e(P, P) �= 1GT

holds.
• Computability For any two elements P,Q ∈ G, we

can always find an efficient algorithm to compute
the map e(P, Q).

2) Security Assumptions. The security of our auditing
scheme is supported by the two mathematical assump-
tions as below.

• Computation Diffie-Hellman (CDH) Assumption
Given g, ga, gb ∈ G, where a, b are two unknown
elements in Zp, there is no polynomial algorithm
can calculate gab with a non-negligible probability.

• Discrete Logarithm (DL) Assumption Given an
element ga ∈ G, it is computationally infeasible to
get the value of a.

2.2 System model

As shown in Fig. 3, the system model in this paper consists
of three entities: the user, the cloud server, and the public
auditor. Each entity is specifically defined as follows.

The user The user is someone who owns a mass of data
and outsources his/her data to the cloud after generating a
signature for each data block. Then with the help of various

TPA

Users Cloud
Servers

Shared data

A
ud

iti
ng

 r
ep

or
t

Fig. 3 System model

interfaces provided by the cloud server, he/she can access
the outsourced data at anytime.

The cloud server The cloud server is a distributed stor-
age system which has advantages in providing data storing,
complex calculating, and data sharing for users.

The public auditor The public auditor is the data owners
or other third-party verifiers, who execute the data integrity
verification process to check the storage correctness of the
outsourced data.

In this system model, the user can upload his/her data to
the cloud server and delete the original data from the local
memory, which greatly reduces the storage burden for users.
Then the user can delegate the auditing task to a trusted
TPA or act as a verifier himself/herself to verify the valid-
ity of outsourced data. Each data block gets stored with a
signature signed by the private key of data owners.

2.3 Threat models

• Integrity threat Under the security model proposed by
Shacham and Waters for integrity checking in [25], the
user or another third-party verifier can challenge the
cloud server to examine whether the outsourced data
are stored correctly in cloud. Generally, the integrity of
outsourced data in cloud may encounter two types of
threats. The first one is that an attacker can generate
a set of forged signatures for all data blocks, and then
make use of the signature set to return a forged proof;
The other one is that the malicious attacker can forge
the aggregated information of proof about the sampled
data blocks to pass the verification of public auditors.

• Privacy threat For each auditing mechanism, it is
important to ensure there is no one who can get access
to the outsourced data in cloud without the data owner’s
authorization, which means the public auditor is only
allowed to verify the integrity with no data leakage. If
someone can extract the details of outsourced data from
the auditing information, the security model suffers
from data privacy attack.

2.4 Design goals

To achieve an efficient and secure data integrity checking
for public cloud storage referring to the aforementioned
schemes, the method of Li et al.’s and our improved scheme
should satisfy the following security and performance goals.

• Public auditabilityThe public auditor is allowed to verify
the integrity of outsourced data stored in public cloud.

• Storage correctness No malicious cloud server is able
to pass the public verifier’s auditing but for storing the
outsourced data correctly.

Pers Ubiquit Comput (2017) 21:949–962 953

• Dynamic operation In the auditing scheme, users are
allowed to execute block-level operations on the out-
sourced data, and provide correctness guarantee of the
changed file.

• Privacy preserving It is crucial for all auditing schemes
that the public verifier cannot reveal the whole out-
sourced data even some data blocks via the auditing
information collected during the integrity checking pro-
cess. What we can know from later security analysis is
that the auditing method in Li et al.’s scheme suffers
from this weakness, and this goal can be realized in our
advanced scheme.

3 Review of Li et al.’s scheme

In this section, we will review Li et al.’s scheme [35]
on achieving provable data integrity in the public cloud storage,
which consists of four algorithms:KeyGen(1λ)−→ (pk, sk),
SignGen(pk, sk, F)−→ Φ, GenP roof (F, Φ, chal) −→
P , CheckP roof (pk, chal, P) −→ {′0′,′ 1′}. The main
process of verification is showed in Fig. 4, and the scheme
details are described as below.

Let p be a large prime, which is the order of two mul-
tiplicative groups G and GT , and let g be a generator of
group G. G × G −→ GT is defined as a bilinear map, and
H : {0, 1}∗ −→ G denotes a hash function, which maps
strings uniformly to group G.

Firstly, the user executes KeyGen to generate a key pair
(sk, pk), where sk is a random element x ∈ Zp chosen by
the user, and pk = gx . Then, based on the scheme of BLS
signatures proposed in [25, 26], let data file F be divided
into n blocks, and each block is further split into s sectors.
Thus, F can be denoted as below:

F =
⎛
⎜⎝

−→
m1
...−→

mn

⎞
⎟⎠ =

⎛
⎜⎝

m11 . . . m1s
...

. . .
...

mn1 . . . mns

⎞
⎟⎠ ∈ Zn×s

p

Now, the user execute SignGen to generate a signature
for each data block. First, the user randomly chooses s ele-
ments α1, . . . , αs ∈ Zp to compute wj = gαj , then for each
data block −→

mi , the user can get the corresponding signature:

σi = (H(idi) · g
∑s

j=1 αj mij)sk, 1 ≤ i ≤ s (1)

where idi = f ilename || i denotes the identifier of data
block mi , f ilename is the name of outsourced data F .
Φ = {σi}1≤i≤n denotes the signature set of outsourced data
blocks.Then, the user delivers his file F and corresponding
signature Φ set to the public cloud and removes the data
copy from his local memory. Meanwhile, the user should
send the message {f ilename, n, {wj }1≤j≤s} to the TPA.

While the TPA intends to check the data integrity in
the cloud, it first randomly chooses c-element subset I =
{l1, . . . , lc} from the set [1, n] as the samples to be checked.
Then, the TPA continues to choose c random elements

Fig. 4 The auditing process of Li et al.’s scheme

954 Pers Ubiquit Comput (2017) 21:949–962

from Zp, which is υl1, . . . , υlc . Finally, the TPA sends the
challenge request chal = {(i, υi)li≤i≤lc} to the cloud server.

Once the cloud server obtains the auditing request
chal = {(i, υi)li≤i≤lc}, it executes the algorithm
Proof Gen to generate a corresponding auditing proof. The
proof consists of two parts, which are

μj =
lc∑

i=l1

υimij , 1 ≤ j ≤ s (2)

σ =
lc∏

i=l1

σ
υi

i (3)

Let the set {μ, σ }, where μ = {μ1, . . . , μs}, be the
response proof and be sent to the TPA. Then, the TPA can
verify the storage correctness of outsourced data by running
CheckP roof via the following equation:

e(σ, g)
?= e(

∏
(i,υi)∈chal

H(idi)
υi ·

s∏
j=1

w
μj

j , pk) (4)

4 Weaknesses of Li et al.’s scheme

As described in [35], any client can check the correctness
of the data in cloud by acting as a public auditor. Since the
public auditor is not fully trusted, it is possible for him/her
to achieve his/her own purpose such as recovering the out-
sourced data by collecting enough auditing information.
What is more, the cloud server is semi-trusted, so it may
cheat the verifier by giving a forged proof for its benefits
and reputation when it deletes some data blocks or hides
some data corruptions.

The scheme [35] claimed that the scheme could meet
these design requirements as follows: public auditing, stor-
age correctness, dynamic operation, batch auditing, and
lightweight. However, we find that the scheme suffers from
data privacy attack and proof forgery attack, which are
mainly caused by an external attacker (curious TPA) and
the malicious cloud server, respectively. The detailed attack
process is shown as follows.

4.1 Data privacy attack

We assume that the curious public verifier is an attacker,
who intends to obtain the outsourced data without the
owner’s authorization. Then, we prove that it can achieve
this target by collecting enough public auditing information
pairs from the cloud server.

Let the c-element subset I = {l1, . . . , lc} of set [1, n]
chosen by the attacker denote as follows:

F
′ =

⎛
⎜⎝

−→
ml1
...−→

mlc

⎞
⎟⎠ =

⎛
⎜⎝

ml11 . . . ml1s

...
. . .

...

mlc1 . . . mlcs

⎞
⎟⎠ = (F1 . . . Fs)

For the sake of simplicity, let us take the data fragmen-
tation F1 as a target that the attacker intends to reveal for
example, where

F1
T = {ml11, ml21, . . . , mlc1}

After the user accomplishes the process of KeyGen,
SignGen and outsources their data into cloud, the attacker
can disguise as an auditor to perform challenge-response
phase with the cloud server for at least c times. And the
c-challenges it sends to the cloud server can be presented as

⎧⎪⎪⎨
⎪⎪⎩

chal1 = {(l1, υ1l1), (l2, υ1l2), · · · , (lc, υ1lc)}
chal2 = {(l1, υ2l1), (l2, υ2l2), · · · , (lc, υ2lc)}

· · · · · ·
chalc = {(l1, υcl1), (l2, υcl2), · · · , (lc, υclc)}
In return, it can receive c times corresponding proofs:

pf1 = (μ1, σ1), pf2 = (μ2, σ2), . . . , pfc = (μc, σc).
Because the attacker only targets at the data fragment F1

firstly, there is merely one element in μi as μi = {μ1i},
where μ1i = ∑c

j=1 υilj mlj 1, 1 � i � c. Assume that υ1 =
(υ1l1 , υ1l2, . . . , υ1lc), υ2 = (υ2l1 , υ2l2, . . . , υ2lc), . . . , υc =
(υcl1, υcl2, . . . , υclc) and the construction of matrix υ is

V =

⎛
⎜⎜⎜⎝

υ1l1 υ1l2 . . . υ1lc
υ2l1 υ2l2 . . . υ2lc
...

...
. . .

...

υcl1 υcl2 . . . υclc

⎞
⎟⎟⎟⎠

Let vectors υ1, υ2, . . . , υc be linearly independent, so there
exists a matrix R that meets the requirement of RV = E,
where E is a unit matrix.

Assume that μ = {μ11, μ12, . . . , μ1c}, since μ = VF1,
the external attacker can reveal F1 by computing F1 = Rμ.
In the same way, the attacker can derive other data frag-
ments such as F2, . . . , Fs. What’s more, it can furtherly
derive the data blocks mi for i /∈ I by implementing other
corresponding challenge-response operations.

As a matter of fact, even though the attacker cannot play
the role of an auditor in some limited conditions, it is still
able to recover the matrix of mi, provided that it can eaves-
drop or intercept the message of challenge-response. So,
Li et al.’s scheme fails to resist the attack in data privacy
preserving.

Pers Ubiquit Comput (2017) 21:949–962 955

4.2 Proof forgery attack

We assume that the malicious cloud is an internal attacker
who deletes the outsourced data owned by users or incor-
rectly stores the original data out of some interests. Then,
we demonstrate that a malicious cloud can generate a forged
auditing proof corresponding to the public auditor’s chal-
lenges and pass the verification successfully even without
correct data storage.

Similar to the data recovery attack, let the c-element I =
{l1, l2, . . . , lc} from set [1, n] chosen by attacker present as

F ′ =
⎛
⎜⎝

−→
ml1
...−→

mlc

⎞
⎟⎠ =

⎛
⎜⎝

ml11 . . . ml1s

...
. . .

...

mlc1 . . . mlcs

⎞
⎟⎠ = (F1 . . . Fs)

For the sake of simplicity, we still take the fragmentation
F1 as a target that needs to be audited by a auditor, where
F1

T = {ml11, ml21, . . . , mlc1}. Suppose that the auditor has
performed c times challenge-response phase with the cloud
server and the corresponding c-challenges are
⎧⎪⎪⎨
⎪⎪⎩

chal1 = {(l1, υ1l1), (l2, υ1l2), · · · , (lc, υ1lc)}
chal2 = {(l1, υ2l1), (l2, υ2l2), · · · , (lc, υ2lc)}

· · · · · ·
chalc = {(l1, υcl1), (l2, υcl2), · · · , (lc, υclc)}
Then, the malicious cloud outputs corresponding audit-

ing proofs as pf1 = (μ1, σ
′
1), pf2 = (μ2, σ

′
2), . . . , pfc =

(μc, σ
′
c).

In the same way, because the malicious cloud server
firstly targets at the data fragment F1, there is merely one
element in μi as μi = {μ1i}. And the value of μ1i and σ ′

j

are respectively denoted as

μ1i =
c∑

k=1
υilkmlk1, 1 � i � c

σ ′
j =

c∏
i=1

σ
υjli

li
, 1 � j � c (5)

Assume that υ1 = (υ1l1 , υ1l2, . . . , υ1lc), υ2 =
(υ2l1 , υ2l2 , . . . , υ2lc), . . . ,υc = (υcl1 , υcl2, . . . , υclc) and the
construction of matrix υ is

V =

⎛
⎜⎜⎜⎝

υ1l1 υ1l2 . . . υ1lc
υ2l1 υ2l2 . . . υ2lc
...

...
. . .

...

υcl1 υcl2 . . . υclc

⎞
⎟⎟⎟⎠

If det (V) �= 0, vectors υ1, υ2, . . . , υc are linearly inde-
pendent, we can prove that the malicious cloud can generate
valid auditing proofs by utilizing these kinds of c pairs of
auditing requests and responses after it deletes or destroys
the user’s data.

Given that the malicious cloud server has stored c

pairs of auditing messages (chali, pfi) for 1 � i � c.
Now it receives a new auditing challenge set chal∗ =
{(l1, υ∗

l1
), (l2, υ

∗
l2
), . . . , (lc, υ

∗
lc
)} to the data block set F

′
,

then it forges a valid auditing proof as following steps:

(1) Since det (V) �= 0 and υ∗ = (υ∗
l1
, υ∗

l2
, . . . , υ∗

lc
), the

malicious cloud can find a data set {a1, a2, . . . , ac} that
satisfies υ∗ = a1υl1 + a2υl2 + · · · + acυlc , that is,
υ∗

li
= ∑c

j=1 ajυjli .
(2) The malicious cloud computes μ∗

1 = ∑c
i=1 aiμ1i ,

σ ∗ = ∏c
i=1 σ

υ∗
li

li
. In the same way, it can compute μ∗

2,
. . . , μ∗

s , where μ∗
j = ∑c

i=1 aiμji . At last, it outputs
{μ∗, σ ∗} as the proof.

The public verifier checks the correctness of audit-
ing proofs by verifying the equation e(σ, g) =
e(

∏
(li ,υi)∈chal H(idi)

υi · ∏s
j=1 w

μj

j , pk). Therefore, the
proof {μ∗, σ ∗} can pass the checking due to the computing
process below:

e(σ ∗, g) = e(

c∏
i=1

σ
υ∗

li

li
, g) = e(

c∏
i=1

σ

∑c
j=1 aj υjli

li
, g)

= e(

lc∏
i=l1

(H(idi) · g
∑s

j=1 αj mij)
sk·∑c

j=1 aiυji , g)

= e(

lc∏
i=l1

H(idi)
υ∗

i ·
lc∏

i=l1

g
∑s

j=1 αj mij

∑c
k=1 akυilk , gsk)

= e(

lc∏
i=l1

H(idi)
υ∗

i ·
lc∏

i=l1

(

s∏
j=1

w
mij

j)
∑c

k=1 akυilk , pk)

= e(

lc∏
i=l1

H(idi)
υ∗

i ·
s∏

j=1

w

∑lc
i=l1

mij

∑c
k=1 akυilk

j , pk)

= e(
∏

(i,υi)∈chal

H(idi)
υ∗

i ·
s∏

j=1

w
μ∗
j , pk) (6)

Since the auditing challenges from public verifiers are
simply arranged for data blocks, it is very simple to segre-
gate the auditing challenges according to the identifier of
each data block and match them with corresponding audit-
ing proofs in the similar manner. Thus, if the malicious
cloud server firstly collects enough pairs of auditing mes-
sages, then deletes some data blocks for its own benefits, it
can generate a valid auditing proof (μ∗, σ ∗) by inducing the
partial auditing proofs and challenges from its collections.

What is worse, an external attacker, who does not pos-
sess the outsourced data initially, can also generate an
auditing proof of forgery corresponding to any challenges

956 Pers Ubiquit Comput (2017) 21:949–962

once he/she eavesdrops on enough valid pairs of challenge-
proofs. In other words, any external attacker can pretend
to be the cloud server when he/she obtains enough audit-
ing messages by some way. Obviously, both users and cloud
servers may suffer from unexpected risks caused by this
serious security flaw.

5 Our proposed scheme

As described above, the flaw of Li et al.’s scheme is that the
public auditing method cannot guarantee the data confiden-
tiality when an exploitative verifier manages the auditing
process; even that it cannot guarantee the correctness of
the auditing proof when the malicious cloud attempts to
give a counterfeited proof due to some considerations over
the economy and reputation problems. Therefore, data pri-
vacy preserving as another important requirement should be
added into our improved scheme to make sure the public
auditor is incapable to extract the original data blocks or
files no matter how many operations he/she does during the
integrity auditing phase, and we further enhance the security
over the auditing proof forgery attack in the new proposed
scheme.

According to the two attacks specifically analyzed in
Section 4, the main cause of the security vulnerabilities is
the linear operation for those specified blocks at the pro-
cess of proof generating. Hence, the original data file can
be easily derived by any external attacker and malicious
cloud server if he/she collects enough linear combinations
of the selected blocks. To remedy the flaws left by Li et
al.’s scheme, we make use of random masking technique to
eliminate the linear relationship between the data blocks and
integrity proofs in this paper, and the details are illustrated
in Fig. 5.

Our new proposed scheme also consists of four parts: (1)
The KeyGen(1λ) algorithm is executed by the client to get
a public key and a private key with the security parameter
λ. (2) In the SignGen(pk, sk, F) algorithm, the user gener-
ates a signature set � for corresponding data file F . (3) The
cloud server implements the Proof Gen(F, �, chal) algo-
rithm after receiving the auditor’s request chal, and then
takes the result as integrity proof sending to the auditor. (4)
Algorithm Proof Check(pk, chal, pf) is executed by the
auditor to verify the correctness of that proof derived from
the public cloud, and it returns accept or reject. The first two
algorithms are the same with Li et al.’s scheme, and we only
give an appropriate revision on the last two algorithms to

Public TPA

ciiil 1)},{(

challenge request

Cloud server

1. Randomly selects a subset
},...,{ 1 cllI from set],1[n ,

which is regarded as the sample

3. Randomly select s elements,
which is s,...,1 , then computes:

2. Picks c random elements

`1 ,..., pc Z

Checks5. the storage correctness via

sjm jij
l

li ij
c

1,
1

ic
i

l
li 1

and
4. Generates the proof ,

dnaerehw

),)((),(
11),(

pkidHege
s

j
j

s

j
j

chali
i

ji

i

jgj

},,{

},,{

},...,{ s1

},...,{ s1

Fig. 5 The auditing process of the new scheme

Pers Ubiquit Comput (2017) 21:949–962 957

achieve the data privacy preserving and get better security
performance in the new proposed scheme.

5.1 KeyGen(1λ) −→ (sk, pk)

This is a setup phase, where the user randomly selects a key
x ∈ Zp as private key, and regards gx as public key.

5.2 SignGen(pk, sk, F) −→ �

It is first for the user to divide the data file F into n blocks,
namely F = {mi}1≤i≤n. In order to reduce the computa-
tion and storage cost while generating a signature set [26],
the user furtherly divide each block into s ≥ 1 sectors,
where mi = {mij ∈ Z∗

p}1≤j≤s . Then, the user randomly
chooses s ≥ 1 numbers, α1, ..., αs ∈ Zp, to compute ωj =
gαj . To cut down the computation cost, the user translates∏s

j=1 ω
mij

j into g
∑s

j=1 αj ·mij , and generates the signature for
each file block mi, 1 ≤ i ≤ n, which is shown as follows:

σi = (H(idi) · g
∑s

j=1 αj ·mij)sk, 1 ≤ i ≤ n (7)

Finally, the file F and the set of signature � = {σi}1≤i≤n

are sent to the cloud without storage in local memory by
the data owner. Besides, it is necessary to deliver the mes-
sage {f ilename, n, {ωi}1≤i≤n} to the TPA for later auditing
process.

5.3 Proof Gen(F, �, chal) −→ pf

Before issuing the verification, an auditing challenge should
be generated by TPA as following steps:

· Randomly chooses a c-elements subset L of set [1, n],
where L = {l1, . . . , lc}.

· Randomly picks a c-element vector υ =
{υ1, . . . , υc}υi∈Zp corresponding to {li}1≤i≤c.

· Sends the challenge request chal = {(li , υi)}li∈L to the
public cloud server.

After receiving the challenge request chal from TPA, the
cloud generates a relevant proof to prove the integrity of
outsourced file. To avoid the two attacks shown in Section 4,
choose s random elements ξ1, ..., ξs ∈ Zp to compute the
proof as follows:

βj =
c∑

i=1

υimlij + ξ
j
, 1 ≤ j ≤ s

ϕj = g−ξj , 1 ≤ j ≤ s

σ =
c∏

i=1

σ
υi

li
(8)

So, the cloud server returns {σ, β, ϕ} as its auditing
proof to TPA, where β = {β1, β2, . . . , βs} and ϕ =
{ϕ1, ϕ2, . . . , ϕs}.

5.4 Proof Check(pk, chal, pf) −→ (true, f alse)

Once the public auditor receives the proof {σ, β, ϕ}, he/she
checks its correctness on the basis of specified request mes-
sage chal and the public key pk by validating the following
equation:

e(σ, g)
?= e(

∏
(li ,υi)∈chal

H(idi)
υi ·

s∏
j=1

ω
βj

j ·
s∏

j=1

ϕj , pk) (9)

If this equation is tenable, the result of
Proof Check(pk, chal, pf) will be 1, that is, the public
auditor believes that the data file F maintains its integrity in
public cloud storage. Otherwise, the auditor can assert that
one or more data blocks in outsourced file get destroyed in
cloud when the output is 0.

Assume that the cloud is honest and it executes the pro-
cedures proposed in our scheme with the client in a right
manner, it must be able to pass the verifier’s auditing. Then,
the validity of this proof is verified as below:

e(σ, g) = e(

lc∏
i=l1

σ
υi

i , g)

= e(

lc∏
i=l1

(H(idi) · g
∑s

j=1 αj mij)sk·υi , g)

= e(

lc∏
i=l1

H(idi)
υi ·

lc∏
i=l1

g
υi ·∑s

j=1 αj mij , gsk)

= e(

lc∏
i=l1

H(idi)
υi ·

s∏
j=1

(gαj βj · g−ξj), pk)

= e(
∏

(li ,υi)∈chal

H(idi)
υi ·

s∏
j=1

ω
βj

j ·
s∏

j=1

ϕj , pk) (10)

6 Security analysis and comparisons

In this section, we make an analysis to the security of pro-
posed provable data possession scheme for cloud storage.
We first prove that the scheme can resist the data pri-
vacy attack and proof forgery attack. Then, we compare the
security of our scheme and other most recent schemes.

6.1 Security analysis

On the basis of the system model and the abilities of adver-
saries, we demonstrate that the signatures of outsourced

958 Pers Ubiquit Comput (2017) 21:949–962

data blocks cannot be forged. Under the premise, we fur-
ther prove that the proposed scheme is secure against proof
forgery attack. Then, we demonstrate that the proposed
scheme can resist the data privacy attack; any external
attacker cannot reveal the content of outsourced data from
auditing message.

Theorem 1 It is impossible for a dishonest cloud or an
external attacker to forge a signature of the data block as
long as the CDH problem is computationally infeasible to
solve.

Proof If the cloud server or other external attacker can cre-
ate a correct signature for the data block with no possession
of the owner’s private key and entire file, it is highly possible
to tamper the original data and pass the auditor’s verifica-
tion. Here, we prove that our scheme is secure in signature
forgery attack.

We first give an assumption that an adversary A which
can choose message and identity adaptively is competent to
break this scheme with the probability of ε in time t after
executing at most qH hash queries and qs sign queries and
requesting qk key queries. Then, there exists a simulator B
that can solve the CDH problem in G with

t ′ � t + qH (TG + Tp) + qsTG

ε′ � ε

qH qk

(11)

where TG denotes the time each exponentiation takes on G,
and Tp is the time one incorporation takes on Zp.

Given (g, ga, gb) as a CDH problem example, the simu-
lator B implement a signature forgery attack for adversary
as follows:

Setup. As A asks for the creation of system users, B sets
the security parameter (G, g, p) and guess which one
A will plan to forge. Without loss of generality, we set
pkt = ga as the target public key. For all other public
keys, we randomly choose a element τi ∈ Zp to set the
public key pki as gτi for each i �= t .

Queries. There only exist two kinds of oracle queries
Qhash, Qsign that A can execute and B is supposed to
give the corresponding valid answers.

• Qhash : B maintains a list LH to look up the Qhash

records. For each input (idi, mi), B checks whether
the entry is in LH , if so, returns the correspond-
ing value to A. Otherwise, guesses if the queries
(idi, mi) is the target id∗ or the target block m∗ that
A used in its forgery. If idi = id∗, mi = m∗, let

H(idi)g

s∑
j=1

αj mij

= gb. If not, randomly chooses a

γi ∈ Zp, and returns gγi to A, then inserts this record
into list LH .

• Qsign : B maintains a four-tuple (pkj , idi, mi, σi)

consisting of the list Lsign. For each input
(pkj , idi, mi), if j �= t, idi = id∗, mi = m∗,
B aborts. Otherwise, if j �= t , B returns σi =

(H(idi)g

s∑
j=1

αj mij

)τj via hash queries (assuming that
A has executed the hash query for simplicity); else
if j = t but idi �= id∗ or mi �= m∗, B returns
σi = (gγi)a = (ga)γi .

• Forgery : Finally the adversary A generates a
forgery (pkj , id

∗, m∗, σ ∗) after adaptive queries.
If j �= t , B fails to guess the target user, the
game aborts. If Proof Check(pkj , m

∗, σ ∗) �= 1,
or Proof Check(pkj , m

∗, σ ∗) = 1 but a result of
Qsign, it aborts, because B cannot forge a valid sig-
nature by itself. Otherwise, A succeeds to create a
signature of forgery with no information from above
oracle queries, which also means that B is able to

find a σ = (H(id∗)g
∑s

j=1 αj m∗
j)a = (gb)a = gab as

a solution to the proposed CDH problem.

Since the public key queries time is qk , B can guess the
target user with a probability of 1/qk , and the probability
thatB accurately guess the id∗ and target blockm∗ is 1/qH .
Thus, B will solve the CDH problem with the probability
of ε/qkqH if A can forge a valid signature with probabil-
ity ε. Throughout the process, each hash query requests an
exponentiation on G and an extra incorporations on Zp, and
each sign query requires an exponentiation on G, thus the
entire performing time is t + qH (TG + Tp) + qsTG.

According to the analysis above, the simulator B can
solve the CDH problem with a non-negligible probabil-
ity in polynomial time which is contradictory to the CDH
assumption. Therefore, hardly can the signature of forgery
be generated in this scheme.

Theorem 2 For the cloud server, the auditing proof is
unforgeable under our improved scheme as long as the DL
problem is computationally infeasible to solve.

Proof By reference to the security game defined in [31] and
[35], we can demonstrate that if the cloud server succeeds to
win the game, named Game1, via generating a fake auditing
proof without correct outsourced data, then it means that we
can solve the DL problem on group G with non-negligible
probability in a polynomial time.

Game1: The data owner or the other public verifier sends
an auditing request chal = {(li , υi)}li∈L to the cloud server

Pers Ubiquit Comput (2017) 21:949–962 959

and asks for the auditing proof {σ, β, ϕ} of the correct out-
sourced data, which is sure to make the verification equation
(9) hold. But the cloud server may return a proof of forgery
{σ, β ′, ϕ} when it loses or modifies the original data. where
β ′ = {β ′

1, ..., β
′
s} and β ′

i = ∑c
i=1 υimlij +ξj , i ∈ [1, s]. Let

Δβi = βi −β ′
i , it is obvious that at least one element in Δβi

for i ∈ [1, s] is nonzero; otherwise, the outsourced data is
stored correctly. Only does the fake proof pass the verifica-
tion executed by the public auditor that the cloud server can
win Game1, or it fails.

Because the auditing proof {σ, β, ϕ} is correct, we get

e(σ, g) = e(
∏

(li ,υi)∈chal

H(idi)
υi ·

s∏
j=1

ω
βj

j ·
s∏

j=1

ϕj , pk) (12)

Now, we assume that the incorrect proof generated by
cloud succeeds to pass the verification; then, in the same
way, we get

e(σ, g) = e(
∏

(li ,υi)∈chal

H(idi)
υi ·

s∏
j=1

ω
β ′

j

j ·
s∏

j=1

ϕj , pk) (13)

According to the properties of bilinear maps, we can
learn from (12) and equation (13) that

s∏
j=1

ω
βj

j =
s∏

j=1

ω
β ′

j

j ⇒
s∏

j=1

ω
Δβj

j = 1 (14)

Since ωj = gαj , where g is a generator of the cyclical
group G and αj ∈ Zp, there exists b ∈ Zp that satisfies
y = xb, where x and y are the other two generators of the
cyclical group G. Then, we can select two random elements
rj , kj ∈ Zp to meet the equation ωj = xrj ykj . So we have

1 =
s∏

j=1

(xrj ykj)Δβj = x
∑s

j=1 rj Δβj · y
∑s

j=1 kj Δβj (15)

Given x, y = xb ∈ G, it is clear that we obtain the
value of b which is a solution of the DL problem as long as∑s

j=1 kjΔβj is not equal to zero, showed as below:

y = x
−

∑s
j=1 rj Δβj∑s
j=1 kj Δβj ⇒ b = −

∑s
j=1 rjΔβj∑s
j=1 kjΔβj

(16)

As we have described in Game 1, at least one element
in {Δβj }1�j�s is not equal to zero and the random element
kj ∈ Zp. Therefore, the probability that

∑s
j=1 kjΔβj = 0

is at most 1/p, then it denotes that we can solve the DL
problem with a probability of not less than 1−1/p. Because
the element p is a large prime, the value of 1/p is negligi-
ble, as a result, the probability of 1− 1/p is non-negligible,
which is contradictory to the DL assumption. Therefore, this
scheme is secure in terms of proof forgery attack.

Theorem 3 Our improved scheme is secure in data privacy
preserving if the DL assumption is correct. Simply speak-
ing, it is very difficult for the external attacker to recovery
the data file via any auditing proof from the cloud server
under the complexity of DL problem.

Proof As for data privacy preserving, we show that none
of the elements in auditing proof {β, ϕ, σ } can be used
to recover the outsourced data by any internal or external
attacker.

First, we prove that the element β can avoid the data
recovery attack showed in Section 4.2 and preserves the
privacy of

∑j

i=1 υimlij . The reason is that we break the
linear features in proof generating phase by embedding an
element ξj as βj = ∑j

i=1 υimlij +ξj , where ξj is randomly
chosen by cloud and is blinded to the public auditor.

Second, even though the element ϕ is transparent to all
people, it is still very hard to get the value of ξj due to the com-
putational complexity of the DL problem and CDH problem.

At last, we prove that the element σ can guarantee the
data privacy. Following the definition that

σ =
lc∏

i=l1

(H(idi)g
∑s

j=1 αj mij)skυi

=
lc∏

i=l1

H(idi)
υisk ·

lc∏
i=l1

(g
υi

∑s
j=1 αj mij)sk

=
lc∏

i=l1

H(idi)
υisk · g

sk
∑s

j=1(αj

∑lc
i=l1

υimij)

=
lc∏

i=l1

H(idi)
υisk · pk

∑s
j=1(αj

∑lc
i=l1

υimij)
(17)

From the equation above, we can learn that

pk

∑s
j=1(αj

∑lc
i=l1

υimij)
is masked by

∏lc
i=l1

H(idi)
υisk ,

where the value is composed of H(idi), υi and sk.
Although the value H(idi), υi and gsk are public to the
auditing verifier, it is still impossible to calculate their prod-
uct due to the hardness of CDH problem. What is more,
hardly can we get the information about

∑j

i=1 υimlij from

pk

∑s
j=1(αj

∑lc
i=l1

υimij)
owing to the intractability of DL

problem. Thus, our scheme is secure in terms of keeping
data privacy.

6.2 Security comparisons

We compare the security of the improved integrity audit-
ing scheme with Li et al.’s scheme and another two recent
schemes [31] and [36] for public cloud storage. Let SR1,

960 Pers Ubiquit Comput (2017) 21:949–962

Table 1 Security comparisons of our proposed scheme and related
schemes

Wang’s
scheme [31]

Li’s scheme
[35]

Yu’s scheme
[36]

Our proposed
scheme

SR1 � � � �
SR2 × × � �
SR3 × × × �

�: The requirement is satisfied.

×: The requirement is not satisfied.

SR2, SR3 denote public verification, unforgeability of
auditing proof and preservation of data privacy. The com-
parison details of these schemes are shown in Table 1.

According to Table 1, we can see that none of the three
schemes (i.e.,Wang’s scheme [31], Li’s scheme [35], Yu’s
scheme [36]) can meet all the three basic security require-
ments (SR1 to SR3). Especially for Wang’s scheme [31]
and Li’s scheme [35], neither can they ensure the preser-
vation of data privacy nor satisfy the unforgeability of
auditing proofs. Yu’s scheme is secure against proof forgery
attack, but it suffers from data privacy attack. It is only
our proposed scheme can meet these three basic security
requirements for public data auditing.

7 Performance analysis

In this section, we analyze the performance of our proposed
scheme via evaluating the computation cost and communi-
cation cost. The result shows that the improved scheme can
preserve the data privacy and provide a more secure public
auditing mechanism by increasing a little computation and
communication costs compared with Li et al.’s scheme.

Communication cost analysis For the improved scheme,
it does not add extra communication overhead to the data
owner, because the method of giving a signature to each data
block is the same as in [35]. Therefore, we only analyze

the communication overhead increased by the auditing chal-
lenges and corresponding auditing proofs, shown in Table 2.
To make the matter simple, assume that c blocks are cho-
sen to be verified during the challenge-response process.
Then, the size of an auditing challenge {(li , υi)}1≤i≤c is
c(|p|+|n|) bits, where |p| denotes the length of element υi

in Zp, |n| denotes the length of each data block index. For
the corresponding auditing proof {μ, ϕ, σ }, there are s ele-
ments in μ and ϕ, respectively, so the size of auditing proof
is about (2s + 1)|p|. Compared with Li et al.’s scheme,
the extra communication overhead mainly comes from the
transmission of vector ϕ, whose size is only s|p|. Inherit-
ing the advantage of Li et al.’s scheme, the new proposed
scheme also adopts the BLS short signatures, so the com-
munication complexity is constant and asymptotically with
O(1).

Computation cost analysis we compare the computation
cost between our proposed scheme and Li et al.’s scheme
[35] in Table 3. For convenience, the notations used to
present the execution time are defined below:

• MG: The time cost of a multiplication operation on
group G.

• Exp: The time cost of an exponent operation in groupG.
• MZ: The time cost of a multiplication operation in the

filed Zp.
• Add: The time cost of an addition operation in the filed

Zp.
• H: The time cost of one hash operation on group G.
• BP: The time cost of a pairing operation on group G.

As we can see, the initialization phase and algorithms
KeyGen, SignGen are completely same between [35] and
our proposed scheme. Therefore, the entire computation
overhead of these three phases is also the same as that in
[35], which is nMG + nH + 2nExp + nsMZ + nsAdd .
Since the difference between Li et al.’s scheme and our new
proposed scheme is the Proof Gen and Proof Check algo-
rithms, we mainly discuss the computation cost during the
two processes.

According to the equation presented in Fig. 5, the com-
putation cost for generating an auditing proof is around

Table 2 Comparisons of
communication cost between
our proposed scheme and Li’s
schemes [35]

Scheme Auditing challenges Auditing proofs Complexity

Li’s scheme [35] c(|p| + |n|) bits (s + 1)|p| bits O(1)

Our proposed scheme c(|p| + |n|) bits (2s + 1)|p| bits O(1)

Deviation none s|p| bits none

Pers Ubiquit Comput (2017) 21:949–962 961

Table 3 Comparisons of
computation cost between our
proposed scheme and Li’s
scheme [35]

Scheme Li’s scheme [35] Our proposed scheme

Data user nsMZ + nMG + nsAdd +
2nExp + nH

nsMZ + nMG + nsAdd +
2nExp + nH

Cloud server csMZ + cMG+ csAdd + cExp csMZ + cMG + s(c + 1)Add +
(c + s)Exp

Public auditor 2BP + (c + s)Exp + (c + s +
1)MG

2BP + (c + s)Exp + (c + 2s +
2)MG

csMZ + s(c + 1)Add + (c + s)Exp + cMG for the
cloud server; In the same way, the computation cost for
the TPA to verify the validity of auditing proofs is about
2P + (c + s)Exp + (c + 2s + 2)MG. Referring to Table 3,
the extra computation cost of the new proposal is only sAdd

for cloud server and (s + 1)MG for the public auditor, but
we enforce the security in a large extent when it is compared
with [35].

Auditing performance analysis Next, we analyze the
auditing performance of our proposed scheme. We carried
out the experiments on a personal computer Dell (with an
I5-4460S 2.90GHz processor, 4GB memory, and the Win-
dow 8 operating system) using the MIRACL library. If
the probability of data corruption is 1%, the TPA should
randomly choose only 460 sampled blocks to detect this
misbehavior with probability greater that 99%. As the same
with Li et al.’s scheme [35], we implemented the audit-
ing operations with 300 blocks (detection probability of
about 95%) and 460 blocks, respectively. Specifically, we
assume that there are 100 sections in each block. Then, we
repeated the experiments for 100 trials and compared with
[35], which is shown in Fig. 6. Obviously, the auditing time
increases with the increase of value c.

c=300 c=460

A
ud

iti
ng

 ti
m

e
pe

r
ta

sk
(m

s)

0

500

1000

1500

2000

Li
Our

Fig. 6 The comparison of the proposed scheme and Li et al.’s scheme

8 Conclusion

To achieve the blueprint of smart city in big data age, it is
crucial to ensure the security of outsourced data in the public
cloud server. In the last several years, many public integrity
auditing protocols have been proposed, but the openness
of these audit models might bring some security and pri-
vacy risks. In this paper, we analyze two weaknesses of Li
et al.’s scheme. we demonstrate that Li et al.’s scheme is vul-
nerable to the data privacy attack and proof forgery attack.
Aimed at the two weaknesses, we propose a new provable
data possession scheme. The improved scheme inherits the
properties and advantages of Li et al.’ scheme [35], such
as batch auditing. And the detailed security analysis and
performance evaluation demonstrate that it can achieve a
desire public auditing and a novel data privacy preserving
especially while incurring a little extra communication and
computation cost. Note that the cryptanalysis and proposed
method can solve the security weaknesses in [29, 33, 34, 36,
37] or other variants as well.For the future work, we will
be devoted to design a more secure and practical auditing
scheme with high efficiency.

Acknowledgments We thank the anonymous reviewers for the con-
structive comments which help improve the quality and presentation
of this paper. The work of L. Wu was supported by the National Nat-
ural Science Foundation of China (Nos.61272112, 61472287). The
work of D. He was supported in part by the National Natural Science
Foundation of China (Nos. 61572379, 61501333, U1536204), in part
by the National High-Tech Research and Development Program of
China (863 Program) (No. 2015AA016004), in part by the open fund
of Guangxi Key Laboratory of Cryptography and Information Secu-
rity, and in part by the Natural Science Foundation of Hubei Province
of China (No. 2015CFB257).

References

1. Neirotti P, De Marco A, Cagliano AC, Mangano G, Scorrano F
(2014) Current trends in smart city initiatives Somestylised facts.
Cities 38:25–36

962 Pers Ubiquit Comput (2017) 21:949–962

2. Li Y, Dai W, Ming Z, Qiu M (2016) Privacy protection for pre-
venting data over-collection in smart city. IEEE Trans Comput
65(5):1339–1350

3. Yamamoto S, Matsumoto S, Nakamura M (2012) Using cloud
technologies for large-scale house data in smart city. In: 2012
IEEE 4th international conference on cloud computing technology
and science (CloudCom). IEEE, pp 141–148

4. Dey S, Chakraborty A, Naskar S, Misra P (2012) Smart city
surveillance: Leveraging benefits of cloud data stores. In: 2012
IEEE 37th conference on local computer networks workshops
(LCN Workshops). IEEE, pp 868–876

5. Ren K, Wang C, Wang Q (2012) Security challenges for the public
cloud. IEEE Internet Comput

6. Song D, Shi E, Fischer I, Shankar U (2012) Cloud data protection
for the masses. Computer

7. Behl A, Behl K (2012) An analysis of cloud computing security
issues. In: 2012 world congress on information and communica-
tion technologies (WICT). IEEE, pp 109–114

8. Chen D, Zhao H (2012) Data security and privacy protection
issues in cloud computing. In: 2012 data international confer-
ence on computer science and electronics engineering (ICCSEE),
volume 1. IEEE, pp 647–651

9. Tate SR, Vishwanathan R, Everhart L (2013) Multi-user dynamic
proofs of data possession using trusted hardware. In: Proceedings
of the 3rd ACM conference on data and application security and
privacy. ACM, pp 353–364

10. Yuan J, Yu S (2013) Proofs of retrievability with public verifiabil-
ity and constant communication cost in cloud. In: Proceedings of
the 2013 international workshop on security in cloud computing.
ACM, pp 19–26

11. Wang Q, Wang C, Ren K, Lou W, Li J (2011) Enabling pub-
lic auditability and data dynamics for storage security in cloud
computing. IEEE Trans Parallel Distrib Syst 22(5):847–859

12. Shuang T, Lin T, Li X, Yan J (2014) An efficient method for
checking the integrity of data in the cloud. Commun China
11(9):68–81

13. Ren Y, Shen J, Wang J, Han J, Lee S (2015) Mutual verifiable
provable data auditing in public cloud storage. J Internet Technol
16(2):317–323

14. Fu Z, Sun X, Qi L, Zhou L, Shu J (2015) Achieving effi-
cient cloud search services: multi-keyword ranked search over
encrypted cloud data supporting parallel computing. IEICE Trans
Commun 98(1):190–200

15. Xia Z, Wang X, Sun X, Wang Q (2016) A secure and dynamic
multi-keyword ranked search scheme over encrypted cloud data.
IEEE IEEE Trans Parallel Distrib Syst 27(2):340–352

16. Fu Z, Ren K, Shu J, Sun X, Huang F (2016) Enabling per-
sonalized search over encrypted outsourced data with efficiency
improvement. IEEE Trans Parallel Distrib Syst 27(9):2546–2559

17. Guo P, Wang J, Geng X, Chang SK, Kim J-U (2014) A vari-
able threshold-value authentication architecture for wireless mesh
networks. J Internet Technol 15(6):929–935

18. Shen J, Tan H, Wang J, Wang J, Lee S (2015) A novel routing pro-
tocol providing good transmission reliability in underwater sensor
networks. J Internet Technol 16(1):171–178

19. He D, Zeadally S, Kumar N, Lee JH (2016) Anonymous authen-
tication for wireless body area networks with provable security.
IEEE Syst J. doi:10.1109/JSYST.2016.2544805

20. He D, Huang B, Chen J (2013) New certificateless short signature
scheme. IET Inf Secur 7(7):113–117

21. Hwang JY, Chen L, Cho HS, Nyang DH (2015) Short dynamic
group signature scheme supporting controllable linkability. IEEE
Trans Inf Forensics Secur 10(6):1109–1124

22. He D, Kumar N, Choo K-KR, Wu W (2016) Efficient hierarchi-
cal identity-based signature with batch verification for automatic
dependent surveillance-broadcast system. IEEE Trans Inf Foren-
sics Secur. doi:10.1109/TIFS.2016.2622682

23. Ateniese G, Burns R, Curtmola R, Herring J, Kissner L, Peterson
Z, Song D (2007) Provable data possession at untrusted stores.
In: Proceedings of the 14th ACM conference on computer and
communications security. ACM, pp 598–609

24. Juels A, Kaliski Jr B S (2007) Pors: Proofs of retrievability
for large files. In: Proceedings of the 14th ACM conference on
computer and communications security. ACM, pp 584–597

25. Shacham H (2008) Compact proofs of retrievability. Trans ASI-
ACRYPT (2008)

26. Shacham H, Waters B (2013) Compact proofs of retrievability. J
Cryptol 26(3):442–483

27. He D, Zeadally S, Wu L (2015) Certificateless public auditing
scheme for cloud-assisted wireless body area networks. IEEE Syst
J. doi:10.1109/JSYST.2015.2428620

28. Boneh D, Lynn B, Shacham H (2001) Short signatures from the
weil pairing. In: Advances in cryptology—ASIACRYPT 2001.
Springer, pp 514–532

29. Wang B, Li H, Li M (2013) Privacy-preserving public audit-
ing for shared cloud data supporting group dynamics. In: 2013
IEEE international conference on communications (ICC). IEEE,
pp 1946–1950

30. Wang B, Li B, Li H, Li F (2013) Certificateless public audit-
ing for data integrity in the cloud. In: 2013 IEEE conference on
communications and network security (CNS). IEEE, pp 136–144

31. Wang B, Li B, Li H (2015) Panda: public auditing for shared
data with efficient user revocation in the cloud. IEEE Trans Serv
Comput 8(1):92–106

32. Yang T, Yu B, Wang H, Li J, Lv Z (2015) Cryptanalysis and
improvement of panda-public auditing for shared data in cloud and
internet of things. Multimedia Tools and Applications

33. Wang B, Chow SSM, Li M, Li H (2013) Storing shared data
on the cloud via security-mediator. In: 2013 IEEE 33rd inter-
national conference on distributed computing systems (ICDCS).
IEEE, pp 124–133

34. Wang B, Li B, Li H (2013) Public auditing for shared data with
efficient user revocation in the cloud. In: IEEE INFOCOM. IEEE,
pp 2904–2912

35. Li A, Tan S, Jia Y (2016) A method for achieving provable data
integrity in cloud computing. J Supercomput

36. Yu Y, Xue L, Au MH, Susilo W, Ni J, Zhang Y, Vasilakos AV,
Shen J (2016) Cloud data integrity checking with an identity-based
auditing mechanism from rsa. Futur Gener Comput Syst 62:85–91

37. Tang C-M, Zhang X-J (2015) A new publicly verifiable data
possession on remote storage. J Supercomput:1–15

http://dx.doi.org/10.1109/JSYST.2016.2544805
http://dx.doi.org/10.1109/TIFS.2016.2622682
http://dx.doi.org/10.1109/JSYST.2015.2428620

	Secure public data auditing scheme for cloud storage in smart city
	Abstract
	Introduction
	Related work
	Our contribution
	Organization of this paper

	Preliminaries
	Mathematical background
	System model
	The user
	The cloud server
	The public auditor

	Threat models
	Design goals

	Review of Li et al.'s scheme
	Weaknesses of Li et al.'s scheme
	Data privacy attack
	Proof forgery attack

	Our proposed scheme
	KeyGen(1)-3mu(sk,pk)
	SignGen(pk,sk,F)-3mu
	ProofGen(F,,chal)-3mupf
	ProofCheck(pk,chal,pf)-3mu(true,false)

	Security analysis and comparisons
	Security analysis
	Game1:

	Security comparisons

	Performance analysis
	Communication cost analysis
	Computation cost analysis
	Auditing performance analysis

	Conclusion
	Acknowledgments
	References

