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Abstract Over the past few years, the semantics commu-

nity has developed several ontologies to describe concepts

and relationships for internet of things (IoT) applications.

A key problem is that most of the IoT-related semantic

descriptions are not as widely adopted as expected. One of

the main concerns of users and developers is that semantic

techniques increase the complexity and processing time,

and therefore, they are unsuitable for dynamic and

responsive environments such as the IoT. To address this

concern, we propose IoT-Lite, an instantiation of the

semantic sensor network ontology to describe key IoT

concepts allowing interoperability and discovery of sensory

data in heterogeneous IoT platforms by a lightweight

semantics. We propose 10 rules for good and scalable

semantic model design and follow them to create IoT-Lite.

We also demonstrate the scalability of IoT-Lite by pro-

viding some experimental analysis and assess IoT-Lite

against another solution in terms of round trip time per-

formance for query-response times. We have linked IoT-

Lite with stream annotation ontology, to allow queries over

stream data annotations, and we have also added dynamic

semantics in the form of MathML annotations to IoT-Lite.

Dynamic semantics allows the annotation of spatio-tem-

poral values, reducing storage requirements and therefore

the response time for queries. Dynamic semantics stores

mathematical formulas to recover estimated values when

actual values are missing.

Keywords Internet of things � Semantics � Linked sensor

data � Knowledge management � Dynamic semantics

1 Introduction

With the growing development of machine-to-machine

(M2M) communications and IoT deployments, interoper-

ability between different platforms has become a key issue

in creating large-scale IoT frameworks. Semantic tech-

nologies suggest a suitable approach for interoperability by

sharing common vocabularies, and also enabling interop-

erable representation of inferred data. IoT testbed providers

have recently started to add semantics to their frameworks

allowing the creation of the semantic sensor web (SSW),

which is an extension of the current Web in which infor-

mation is given well-defined meaning, enabling M2M

communications and interactions between objects, devices

and people [26].

Semantics often models domain concepts in great detail.

Although they can be applied for querying almost anything

about objects, these complex models are often difficult to

implement and use, especially by non-experts. They

demand considerable processing resources, and therefore,

they are considered unsuitable for constrained environ-

ments. Instead, IoT models should be designed for the
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constraints and dynamicity of IoT environments, especially

recognising the new trend towards integrating semantic

processing on constrained devices such as M2M gateways

or smartphones. At the same time, they need to model the

relationships and concepts that represent and allow inter-

operability between IoT entities. Therefore, expressiveness

versus complexity is a challenge. One of the key issues in

heterogeneous IoT ecosystems is accessing sensor data

from different systems. Enabling a lightweight description

of sensors to efficiently manage annotation and discovery

of sensor data is essential.

It is important to note that semantic models are not end-

products. They are normally only part of a solution and

should be transparent to the end user. Semantic annotation

models should be offered with effective methods, APIs and

tools to process the semantics in order to extract actionable

information from raw data. Query methods, machine

learning, reasoning and data analysis techniques should be

able to effectively use these semantics. Semantic modelling

is only the initial part of the whole design, and it has to take

into account how the models will be used; how the anno-

tated data will be indexed and queried with real-time data;

and how to make the data publication suitable for con-

strained environments and large-scale deployments when

applications often require low latency and processing time.

We propose IoT-Lite, a lightweight semantic model which

is an instantiation of the semantic sensor network (SSN)

ontology [8] (see Fig. 1). IoT-Lite is the outcome of a research

effort that focuses on loosely-coupled discovery of real-time

sensor data and seeks for the minimum concepts and rela-

tionships that can provide answers to most of the end user

queries. We have focused on the typical queries for accessing

the data in the IoT based on our experience in the challenge of

analysing data for obtaining meaningful information for end-

users. We find that we do not need full descriptions and

complex relationships to satisfy user queries. Some of the

most commonly used semantic models on theWeb are simple

models, such as friend of a friend, (FOAF).1 Their simplicity

encourages faster adoption by end-users, as they do not imply

complex annotations and they do not require complex pro-

cessing methods. Simpler models can also support providing

faster responses to queries.

In this paper, we also propose guidelines for developing

scalable and reusable semantic models in the IoT. These

guidelines leverage conventions followed by some semantic

modelling designers, such as the linked data approach.

IoT-Lite does not intend to be a full ontology for the

IoT. Our aim is to create a core lightweight ontology that

allows relatively fast annotation and processing time. IoT-

Lite can be a core part of a semantic model in which,

depending on the applications, different semantic modules

can be added to provide additional domain and application-

specific concepts and relationships. In this sense, we have

linked IoT-Lite to stream annotation ontology (SAO) [16],

in order to allow the annotation of aggregated data streams,

which follows the philosophy of IoT-Lite in the sense of

lightweight ontology and fast response time to queries.

Finally, we propose the use of dynamic semantics and

demonstrate a use-case in the form of MathML annotations

that can be used together with IoT-Lite. Dynamic seman-

tics can be used to represent formulas that extrapolate

missing values. By following the IoT-Lite approach,

Fig. 1 An overview of the proposed semantic model, IoT-Lite

1 http://www.foaf-project.org/.
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dynamic semantics reduces the size of the triple store and

offers fast response times to queries. Unlike other solutions

such as the use of RESTful servers to extrapolate missing

values, IoT-Lite stores all the information about the stream

data together in one place, the triple store.

The remainder of the paper is organised as follows.

Section 2 describes the related work. Section 3 introduces

the 10 rules for good and scalable semantic model design

and presents the proposed model, IoT-Lite, for represen-

tation of IoT elements. Section 4 provides a use-case sce-

nario that illustrates the semantic annotation of a sensor in

our model. Section 5 details an evaluation of the proposed

model against a more detailed model. Section 6 shows an

example of the use of IoT-Lite together with SAO. Sec-

tion 7 introduces dynamic semantics and an example with

IoT-Lite. Finally, Sect. 8 concludes the paper and describes

the future work.

2 Related work

There are several semantic descriptions designed for the

IoT domain. The SSN ontology [8] is one of the most

significant and widespread models to describe sensors and

IoT-related concepts.

The SSN ontology provides concepts describing sensors,

such as outputs, observation value, feature observed,

observation time, accuracy, precision, deployment config-

uration, method of sensing, system structure, sensing

platforms and feature of interest. However, it is a detailed

description, containing concepts and properties that enable

flexible descriptions over a very wide range of applications,

but including non-essential components for many use cases

that can make the ontology heavy to query and process if it

is used as it is.

The IoT-A model2 and IoT.est [30] are some of the

many projects that extend the SSN ontology to represent

other IoT-related concepts such as services and objects in

addition to sensor devices. IoT-A provides an architectural

base for further IoT projects (see Fig. 2). The only

implementation of a purely IoT-A semantic model known

by the authors is described in [11]. The IoT-A model is

overly complex for fast user adaptation and responsive

environments. The IoT.est model extends the IoT-A model

with extended service and test concepts.

The open geospatial consortium (OGC), through its

sensor web enablement (SWE) group [7], has developed a

set of standards to describe sensors and their data. For

example, SensorML,3 which is an XML language to

describe the sensing process, and observations and

measurements (O&M), which is a UML model (with an

XML form) and from which the observation concept in

SSN was derived. While SensorML provides important

syntactic descriptions using XML, it lacks the express-

ibility provided by ontology languages such as OWL.

SemSOS [13] has mapped the XML tags of O&M into

OWL concepts. However, it represents only observations

and not other IoT-related concepts. OMLite is a new

ontology that also re-states O&M as an ontology, but

likewise misses IoT concepts [9].

One of the ongoing works is OneM2M. OneM2M has

published a report for home automation and describes

concepts and relationships [23]. Another current initiative

is the spatial data on the Web Working Group,4 a joint

effort between the world wide web consortium (W3C) and

the open geospatial consortium (OGC) that aims to stan-

dardise key ontologies for spatial, temporal and sensor data

on the web [28]. Several projects also work on semantic

descriptions for the IoT, such as FED4FIRE5 that currently

has a semantic model focused on communications,

VITAL6 for smart cities, CityPulse7 with more focus on

data [18] and OpenIoT,8 which is an extension of SSN.

Performance of ontologies for large data sets has been

addressed by different methods, such as by redesigning the

data storage model and leveraging expected query patterns

[27]. Our proposed IoT-Lite ontology extends previous

works and can be used in combination with other tech-

niques for querying performance improvements, such as

the dynamic semantics we propose in Sect. 7.

To summarise, existing published IoT ontologies are either

complex or domain-specific for sub-domains of IoT. The

creation of a lightweight ontology that allows interoperability

and discovery of sensory data in heterogeneous platformswith

low complexity and processing time is still an open issue.

The majority of current semantic annotation techniques

and semantic description frameworks are static and are based

on the assumption that the stored data will not change over

time. Researchers search for solutions for dynamic data

outside the semantic annotations, such as by using RESTful

servers [24] that access real-time data or infer missing values

(e.g. [15, 20]). However, these solutions need to access

several servers and are not suitable for low-connectivity

networks or high-frequency queries. To the best of our

knowledge, none of the solutions includes the dynamicity

inside the semantic descriptions. Other attempts to handle

dynamic data in semantics are based on reasoning. For

example, Baader et al., have introduced the temporised

2 http://www.iot-a.eu/.
3 http://www.opengeospatial.org/standards/sensorml.

4 http://www.w3.org/2015/spatial/.
5 http://www.fed4fire.eu/.
6 http://vital-iot.eu/.
7 http://www.ict-citypulse.eu/.
8 http://www.openiot.eu/.
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description logic, which provides semantic reasoning with a

temporal component [1]. Lopez et al. [19] have implemented

static mathematical formulas, as rules, inside the semantic

descriptions, but these are not dynamic as our solution. These

formulas are static, they do not have spatio-temporal com-

ponents and their execution is done with a low frequency.

They are also more restricted than ours, as they do not have

the flexibility of MathML in handling any mathematical

description. Furthermore, most of the current reasoning

engines are not efficient in dealing with high volumes of

queries with real-time requirements (see for example [3, 5]).

Our dynamic semantics solution differs from the previous

works in dynamic semantic annotation, because thedynamicity

is annotated inside the semantic descriptions as a MathML

formula. This formula can be executed outside the semantic

description, avoiding the processing time of semantic reason-

ers, but at the same time avoiding the need to access the data or

the abstraction of the data in different servers.

3 IoT-Lite: IoT modelling and semantic
annotation

While most of the semantic models tend to describe the

concepts in great detail and represent various links in IoT

systems, we represent only the most used concepts for data

analytics in IoT applications, such as sensory data, location

and type. See Fig. 1 for the model and Fig. 3 for an

example of an annotated sensor. This paves the way for

creating scalable responsive systems and reduces memory

and computational cost of query processing in large-scale

IoT applications.

In 2003, W3C published a list of sample ‘‘Good

Ontologies’’ following specific good practices.9 The

goodness of the ontologies was scored based on five

aspects: fully documented; dereferenceable; used by inde-

pendent data providers; possibly supported by existing

tools; and in use by two independent datasets.

IoT-Lite addresses these aspects to create a reusable

model. We have published the ontology with a web page

that fully documents the ontology (aspect 1) with a per-

manent link,10 and all the concepts in the ontology are

described by a dereferenceable URI (aspect 2) [4]. The

annotations are applied to IoT testbeds, University of

Surrey SmartCampus [21] and SmartSantander [25]. They

are planned to be used by other independent platforms in

the open calls of the H2020 project FIESTA-IoT11 (aspects

3 and 5). We plan to develop annotation and validation

Fig. 2 An overview of the IoT-A ontology

9 http://www.w3.org/wiki/Good_Ontologies.
10 http://www.purl.oclc.org/NET/UNIS/fiware/iot-lite.
11 http://fiesta-iot.eu.
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tools for IoT-Lite, by extending our SAOPY annotation

tool12 [16] and the SSN validator tool13 (aspect 4).

Although the above aspects are essential to create

interoperable and reusable ontologies, they are not enough

to cover scalability, dynamicity and user adoption issues.

We propose a set of guidelines for developing scalable

ontologies.

1. Design for large scale.

2. Think of who will use the semantics and design for

their needs.

3. Provide means to update and change the semantic

annotations.

4. Create tools for validation and interoperability

testing.

5. Create taxonomies and vocabularies.

6. Reuse existing models.

7. Link data and descriptions to other existing

resources.

8. Define rules and/or best practices for providing the

values for each property.

9. Keep it simple.

10. Create effective methods, tools and APIs to handle

and process the semantics.

In the design of IoT-Lite, we have followed these rules.

We have designed a lightweight ontology considering the

scalability (following rule 1) and will provide tools for

annotation and validation (rule 3 and 4), as well as APIs

and using existing tools for querying and information

processing (rule 10) as we mentioned previously. Seman-

tics are only one part of the solution and often not the end-

product. Query methods, machine learning, reasoning and

data analysis techniques and methods should be able to

effectively use these semantics.

We have designed IoT-Lite (see Fig. 1) with a clear

purpose of defining only the most used terms when

searching for IoT concepts in the context of data analytics.

We studied the most common uses of IoT ontologies

(following rule 2) based on our experience with other IoT

ontologies used by applications for data analytics. For

example, an application that provides the temperature on

the move will query the ontology for the temperature

sensor service endpoint at each particular location. The

ontology needs the concept of sensor, the quality it mea-

sures (temperature) coverage and endpoint. Other concepts

are irrelevant in that query. The ontology needs also to

Fig. 3 An example of a sensor annotated with the proposed IoT-Lite ontology

12 https://github.com/CityPulse/SAOPY.
13 http://iot.ee.surrey.ac.uk/SSNValidation/.
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have these concepts easily accessible, avoiding deep and

distantly-connected terms of the ontology that need com-

plex queries to retrieve the desired results. Therefore, the

simplicity of the ontology is essential (rule 9). The most

widely used semantic descriptions on the Web are simple

ones such as FOAF.

Another important aspect of semantic models is the

interoperability. In the design of IoT-Lite, we followed the

linked data guidelines14. Our ontology is linked with other

ontologies (rule 6 and 7). We chose well known and widely

used ontologies, expecting their publications to be

stable (e.g. SWEET and SSN). We avoid links to uncom-

monly used ontologies in order to prevent inconsistencies

in case of unexpected deletion of the linked ontologies. In

the context of interoperability, it is also important to use

the same vocabulary to be able to share and combine data

from different sources. For that reason, we have created a

taxonomy of quantity kinds and units which is published on

the ontology webpage and is a compilation of terms used in

well known ontologies such as qu15 and qudt16 (rule 5 and

7). IoT-Lite is published with a webpage which fully

explains the terms used and provides examples (rule 8).

This allows reuse and linking with other ontologies.

With the above prerequisites, we have created an

extension of SSN, which is considered the de facto stan-

dard of sensor networks ontologies. Furthermore, it is

currently on-track for formal standardisation through the

OGC and the W3C [28]. SSN is not designed to be nec-

essarily used as it is in full form; it is a template to be

extended and instantiated. We have customised SSN to

make a lightweight ontology with the main concepts being

the three well-accepted items in the classification of IoT

entities [29]: Entities or objects; resources or devices; and

services, namely iot-lite:Object, ssn:Device

and iot-lite:Service. Figure 1 shows an overview

of the proposed information model. These three concepts

are the core concepts of the ontology and are necessary in

any ontology describing IoT.

The relationships between these three concepts are also

well known [10, 12], that is, an object (or entity) iot-

lite:Object has an attribute iot-lite:At-

tribute which is associated with a device (or resource)

iot-lite:Device, which is exposed by a service

iot-lite:Service. We built the rest of the ontology

around these three main concepts adding the necessary

concepts and relationships to provide responses to the

standard queries. The objects can be moving objects and

therefore the relationship, or association, between the

objects and the devices are dynamic. For example, a

bicycle can be associated with a pollution sensor in one

street, but when the bicycle moves to another street, it will

be associated with a different pollution sensor.

To allow the queries to be lighter, we have linked most

of the concepts of the ontology under one main class

(Device) and leave the other two classes lighter. We have

spotted at least three main classes of Devices

(ssn:Sensor, iot-lite:Actuator, iot-

lite:Tag) that we need to separate due to the differences

that applications can query for. For example, an application

that needs to know the temperature will query for sensors,

while if the application needs to switch on the lights, it will

query for actuators. ssn:SensingDevice is directly

linked via properties or via inheritance of the relevant

properties to the concepts qu:QuantityKind,

qu:Units and iot-lite:Coverage. Therefore, we

need only three triples to link each sensing device with

these concepts (e.g. Sensor1 has QuantityKind

temperature).

In order to allow a common vocabulary to interoperate

between different systems, we need a taxonomy to describe

the measurements of the devices in terms of the quantity

kinds and units, such as temperature and degrees celsius.

We have created this taxonomy using individuals from

well-know ontologies, such as qu-rec2017 and qudt.18

The spatial dimension of the ontology is addressed with

the geo ontology19 based on WGS84 location coordi-

nates.20 This simple ontology is widely used, and there are

some available tools for discovery whether a point belongs

to an area, (circle, rectangle or polygon), and extensions to

SPARQL to deal with geolocations, such as the OGC

standard GeoSPARQL. We have added relative locations

to these geolocations to annotate locations such as a

building or a floor in indoor scenarios, where the geolo-

cation is less intuitive. The relative location also supports

linking to resources such as GeoNames21 that are publicly

available as part of the Linked Open Data cloud.22

4 Use-case

In this section, we exemplify the use of the proposed

information model, IoT-Lite, using sensor information

from the Surrey testbed [22] developed within the EU FP7

project Smart Santander.23 The testbed consists of 200 IoT

14 http://linkeddata.org/.
15 http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-rec20.html.
16 http://www.qudt.org/qudt/owl/1.0.0/quantity/.

17 http://purl.org/NET/ssnx/qu/qu-rec20.
18 http://www.qudt.org/qudt/owl/1.0.0/quantity.
19 http://www.w3.org/2003/01/geo/wgs84_pos.
20 http://confluence.qps.nl/pages/viewpage.action?pageId=29855173.
21 http://www.geonames.org/.
22 http://lod-cloud.net/.
23 http://www.smartsantander.eu/.

480 Pers Ubiquit Comput (2017) 21:475–487

123

http://linkeddata.org/
http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu-rec20.html
http://www.qudt.org/qudt/owl/1.0.0/quantity/
http://purl.org/NET/ssnx/qu/qu-rec20
http://www.qudt.org/qudt/owl/1.0.0/quantity
http://www.w3.org/2003/01/geo/wgs84_pos
http://confluence.qps.nl/pages/viewpage.action?pageId=29855173
http://www.geonames.org/
http://lod-cloud.net/
http://www.smartsantander.eu/


nodes/devices provided with 6 sensors each that measure

temperature, sound, vibration, light, presence and energy

consumption.

Figure 3 illustrates a sample describing the output of

one of the temperature sensors in the testbed using the IoT-

Lite ontology. This sensor is associated with the tempera-

ture of a room. In this example, it can be seen that a

table located in Room CII01 has an attribute, temperature,

which is associated with the temperature sensor located in

the same room. The temperature sensor has a coverage that

covers the area of the room (rectangle), defined by two

points in the diagonal corners; measures the temperature

with degrees celsius and a resolution of 0.01; and is

exposed by a service with endpoint http://surrey.ac.uk/sen

sor/roomCII01. We have used the geolocation to annotate

the latitude and the longitude coordinates. However, we

have also annotated the relative altitude as floor 1 for better

human understanding. Listing 1 is an excerpt of the same

temperature sensor annotation in a turtle format.

@prefix qu: <http://purl.org/NET/ssnx/qu/qu#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .

@prefix iot-lite:<http://purl.oclc.org/NET/UNIS/iot-lite/iot-lite#>

:temperatureSensorRoom13CII01 rdf:type owl:NamedIndividual ,

ssn:Sensor ;

iot-lite:type "SensorTelosB"^^xsd:string ;

iot-lite:id "telosB-001"^^xsd:string ;

geo:hasLocation :locationRoom13CII01 ;

iot-lite:exposedBy :ngsi10SensorRoom13CII01 ;

iot-lite:hasMetadata :resolution1024 ;

iot-lite:hasUnit qu:degree_Celsius ;

iot-lite:hasQuantityKind qu:temperature .

iot-lite:hasCoverage :areaRoom13CII01 ;

iot-lite:tableRoom13CII01 rdf:type iot-lite:Object ,

owl:NamedIndividual ;

iot-lite:description "http://Room13CII01/Tabl"^^xsd:anyURI ;

iot-lite:hasAttribute iot-lite:temperaturTableRoom13CII01 ;

geo:hasLocation :locationRoom13CII01 .

iot-lite:temperatureTableRoom12CII01 rdf:type iot-lite:Attribute ,

owl:NamedIndividual ;

iot-lite:isAssociatedWith :temperatureSensorRoom13CII01 .

:areaRoom13CII01 rdf:type iot-lite:Rectangle ,

owl:NamedIndividual ;

iot-lite:hasPoint :NEcornrRoom13CII01 , :SWcornrRoom13CII01 .

:NEcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59316"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2434"^^xsd:float .

:SWcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59315"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2433"^^xsd:float .

:locationRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.593154"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.243362"^^xsd:float .

:ngsi10SensorRoom13CII01 rdf:type iot-lite:Service ,

owl:NamedIndividual ;

iot-lite:endpoint "http://meassur/rom13CII01"^^xsd:anyURI ;

iot-lite:description "http://meassur/room13CII01"^^xsd:anyURI ;

iot-lite:serviceType "ngsi-10"^^xsd:string ;

:resolution1024 rdf:type iot-lite:Metadata ,

owl:NamedIndividual ;

iot-lite:value "0.01"^^xsd:float ;

iot-lite:metadataType "resolution"^^xsd:string .

Listing 1: An excerpt from a sensor annotation based
on IoT-Lite Ontology.
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5 Evaluation

In order to validate the scalability and applicability of IoT-

Lite, we performed some experiments using sensory data

from the University of Surrey’s SmartCampus testbed. A

web application developed in Java was used to annotate the

ontology individuals that represent the sensing devices and

to store them in a set of Jena TDB triple stores,24 one for

each dataset. We used a personal computer (PC) running

Windows 7 (x64) operating system with a processor

Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz 8GB RAM to

act as a server that hosts the web application. We sent

remote queries from a different PC located in another

subnet. The aim of this experiment was to measure the

response time of a common query. With IoT-Lite, a com-

mon query is defined as in Listing 2 as a query asking for

the endpoint of the services that provide the temperature in

a particular area. As can be seen, the query is simple. It

contains just six triples due to the shallow depth of the IoT-

Lite ontology. Likewise the same query in IoT-A contains

ten triples (Listing 3).

We performed this query over different datasets. For

that purpose, we created four datasets containing 200,

1000, 10,000 and 100,000 sensors each. The IoT-Lite

ontology contains 116 triples by itself. When annotating

sensors, each new sensor needs just six triples, and in total

the number of triples in each data set is shown in Table 1.

To compare the ontology against other solutions, we

performed the same experiments with IoT-A, another

instantiation of SSN aiming to define the architecture of

IoT. We chose IoT-A because we have used the IoT-A

ontology in one of our components, a discovery element for

IoT entities. With this ontology, we experienced some of

the problems mentioned in the introduction, and this

motivated us to develop IoT-Lite to replace IoT-A in the

discovery component. Figure 2 shows IoT-A. We queried

IoT-A with a similar query to that for IoT-Lite, but in this

case we needed ten triples to obtain the same results, i.e.

the endpoints of services that provide the temperature in a

particular area. The IoT-A ontology contains 346 triples by

itself. The total number of triples of each data set is also

shown in Table 1.

In order to avoid false perceptions of the round time trip

(RTT) due to jitter, we sent the query ten times to each

dataset. Figure 4 shows the boxplot results of these 10

queries for each dataset. We can see that the RTT of the

query/response is acceptable for every dataset in IoT-Lite.

Even when the dataset contains 100,000 individuals the

mean of the RRT is below 200 ms. We can also see that the

time of the RTT is less in IoT-Lite than in IoT-A in all the

cases, and particularly in large datasets, such as 100,000

sensors, the time of IoT-A is more than twice the time of
24 https://jena.apache.org/documentation/tdb/.

SELECT ?sens ?endp

WHERE {

?sensDev iot-lite:hasQuantityKind qu-rec20:temperature;

iot-lite:isExposedBy ?serv;

iot-lite:hasCoverage ?cover.

?cover iot-lite:hasPoint ?point.

?point iot-lite:RelativeLocation "Desk2".

?serv iot-lite:endpoint ?endp.

}

Listing 2: Query performed in the experiments in IoT-
Lite ontology.

SELECT ?iotService ?endpHost ?endpPort ?endpPath ?endpProt

WHERE {

?iotService serv:hasOutput qu-rec20:temperature.

?iotService serv:hasServiceEndpoint ?endp.

?endp serv:endpointHost ?endpHost.

?endp serv:endpointPort ?endpPort.

?endp serv:endpointPath ?endpPath.

?endp serv:endpointProtocol ?endpProt.

?iotService serv:exposes ?res.

?res res:hasResourceType ssn:Sensor.

?res res:hasLocation ?loc.

?loc res:hasGlobalLocation ""GU1""

}

Listing 3: Query performed in the experiments in IoT-A
ontology.
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IoT-Lite. IoT-Lite performs better than Iot-A for large-

scale annotations of sensors.

6 Extending IoT-Lite with data aggregation

When dealing with IoT applications, one of the important

issues to take into account is the immense amount of data

generated. Most applications could work properly with less

data, efficiently aggregated. With the same aim as IoT-Lite,

the SAO ontology (stream annotation ontology) was cre-

ated in order to deal with huge amount of IoT data in a

efficient manner [18]. The SAO ontology provides anno-

tation means to represent aggregated data in a lightweight

ontology [16].

To demonstrate both the extensibility of IoT-Lite and

the use of our ontology for IoT data analytics, we have

linked it with the SAO ontology as shown in Fig. 5. In

order to show the connections between both ontologies

clearly, we have represented only the main classes of both

ontologies in Fig. 5. We took advantage of the common

base in SSN of both, SAO and IoT-Lite. SAO is linked with

SSN through the class ssn:Sensor which is a superclass

of ssn:SensingDevice. Therefore, the link is

straightforward via the property ssn:observedBy.

With this connexion, IoT-Lite allows to access the raw data

via an endpoint, data can be in any format, semantic or not,

as shown previously in Listing 1; IoT-Lite also allows

access to aggregated semantic data. Listing 4 shows an

example in turtle of the same sensor shown in Listing 1,

but this time annotated with SAO ontology and with a

sampling frequency of 1 h. In this example, we have

sampled the data taking one sample every hour, although

SAO permits various other aggregation algorithms.

@prefix qu: <http://purl.org/NET/ssnx/qu/qu#> .

@prefix geo: <http://www.w3.org/2003/01/geo/wgs84_pos#> .

@prefix ssn: <http://www.w3.org/2005/Incubator/ssn/ssnx/ssn#> .

@prefix iot-lite:<http://purl.oclc.org/NET/UNIS/iot-lite/iot-lite#>

@prefix sao: <http://example.com#> .

@prefix tl: <http://purl.org/NET/c4dm/timeline.owl#> .

:temperatureSensorRoom13CII01 rdf:type owl:NamedIndividual ,

ssn:Sensor ;

iot-lite:type "SensorTelosB"^^xsd:string ;

iot-lite:id "telosB-001"^^xsd:string ;

geo:hasLocation :locationRoom13CII01 ;

iot-lite:hasUnit qu:degree_Celsius ;

iot-lite:hasQuantityKind qu:temperature .

iot-lite:hasCoverage :areaRoom13CII01 ;

iot-lite:tableRoom13CII01 rdf:type iot-lite:Object ,

owl:NamedIndividual ;

iot-lite:description "http://Room13CII01/Tabl"^^xsd:anyURI ;

iot-lite:hasAttribute iot-lite:temperaturTableRoom13CII01 ;

geo:hasLocation :locationRoom13CII01 .

iot-lite:temperatureTableRoom12CII01 rdf:type iot-lite:Attribute ,

owl:NamedIndividual ;

iot-lite:isAssociatedWith :temperatureSensorRoom13CII01 .

:areaRoom13CII01 rdf:type iot-lite:Rectangle ,

owl:NamedIndividual ;

iot-lite:hasPoint :NEcornrRoom13CII01 , :SWcornrRoom13CII01 .

:NEcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59316"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2434"^^xsd:float .

:SWcornerRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.59315"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.2433"^^xsd:float .

:locationRoom13CII01 rdf:type owl:NamedIndividual ,

geo:Point ;

geo:long "-0.593154"^^xsd:float ;

iot-lite:altRelative "1stFloor"^^xsd:string ;

geo:lat "51.243362"^^xsd:float .

:temperatureSensorRoom13CII01Observation-001 rdf:type owl:NamedIndividual ,

sao:Point ;

sao:value "24.0"^^xsd:double ;

sao:time [ a tl:Instant ;

tl:at "2016-09-02T10:00:00"^^xsd:dateTime ;

tl:duration "PT1H"^^xsd:duration

] ;

ssn:observedBy :temperatureSensorRoom13CII01 .

Listing 4: An excerpt from a sensor annotation based on
IoT-Lite Ontology linked to the aggregated data coming
out of the sensor with an aggregation algorithm

7 Extrapolating data via dynamic semantics

Data stored in a triple store can have a coarser granularity

than needed by one application. The coarse granularity of

the data may be due to constraints in the sensors, such as on

their capacity to store data or the frequency to read or send

Table 1 Number of triples in each dataset

Datasets: number of sensors 200 1000 10,000 100,000

Number of triples in IoT-Lite 1486 6926 68,126 680,126

Number of triples in IoT-A 1866 7946 76,346 760,346
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data, or constraints in the network such as communication

bandwidth or storage [2]. Some times the raw data has finer

granularity and a posteriori, either sampling or aggregation

algorithms are applied in order to reduce the amount of

data stored. In other cases, the sensors only provide coarse

granularity. In all these cases, we can interpolate the data

by applying any interpolation or recovery algorithm that

infers the missing values. Thus, the application can have

coarser granularity than the triples.

In semantics, annotations are typically static, i.e. they

store static values. Dynamic streams can be annotated with

semantics, but in a static manner, i.e. annotating the stream

values as they are produced, but once the values are

annotated they become static values. In order to have

dynamic annotated values, we have developed the dynamic

semantics. Dynamic semantics aims at having more flexi-

bility in the ontologies. Our first approach in this sense is to

store formulas linked to the data values that allow users to

Fig. 4 Boxplot of the round time trip (RTT) of the queries required to retrieve the endpoint of a temperature sensor in a certain location

depending on the size of the triple store with both ontologies IoT-Lite and IoT-A

Fig. 5 IoT-Lite linked with SAO ontology for data aggregation and Formulas ontology for recovery or interpolation of data
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derive dynamic values out of static values given the right

parameters and formula. For example, if we have the

measurements of the traffic in a city coming from sensors

set up in different points of the city and stored only every

3 h, and we have a good simulation model for traffic which

we can store inside the triple store, we can interpolate the

stored values to obtain a traffic value at any place and any

sparse time in the city on demand only by reading data

from the triple store.

The dynamic semantics use-case discussed here uses

MathML25 to store the formulas as data property literals.

MathML is a W3C recommendation for a mark-up lan-

guage to describe mathematical expressions, and it is

widely used. This solution keeps all the information in the

same description thus avoiding access to different servers

to access calculations. Furthermore, there exist several

readers and converters that express MathML expressions in

different languages, such as Java, Python or C?? and

vice-versa. The method could be used not only for inter-

polation, but also for forecasting into future extrapolation.

To demonstrate the usability of dynamic semantics, we

present a case study in a smart city. We have performed an

experiment with the public traffic data26 obtained from the

city of Aarhus in Denmark. The dataset consists of traffic

data measured every 5 min using 135 sensors located in

different parts of the city. The data are organised in pairs of

sensors providing information regarding the geographical

location of sensors, time-stamp and traffic intensity such as

average speed and vehicle count. Figure 6 shows the

location of some of the sensors in Aarhus on a Google

Map.

In particular, we will study the patterns of vehicular

traffic and focus on traffic data in the early hours of busi-

ness days. We will store this model as a formula in our

ontology. The first step in our experiment is to create the

prediction model for traffic patterns. This includes two

linear interpolation models, one for the spatial dimension

and the other for the temporal dimension of the prediction

model.

To infer the model, we captured the traffic data from

Aarhus for a period of 2 months (August–September

2014). The dataset is available online on the EU FP7

CityPulse Project datasets Web page.27 We measure the

traffic (number of vehicles) entering the city of Aarhus

through a main road. We took the data from two sensors

separated by 3600 m (sensor1 and sensor 3 in Fig. 6), on

working days within a 3 h time period where the traffic

gradually increases in the early hours of the morning before

working hours. These data (pattern) are represented with

the formula:

Vx ¼ LastVehicleCount

þ 0:126603432701 � ðcurrentTimeInMinutes� 180Þ
þ 0:000765329644997 � ðCurrentLocationÞ

This formula is described based on spatial and temporal

dependencies. We include this mathematical expression in

the formula module of the semantic model (see Fig. 5).

Later on, when a user accesses the traffic data, the formula

from the semantic descriptions can provide the user with an

estimation of the current value of the traffic data at an

specific location and also provide an estimate value for

other adjunct locations (assuming a model has been con-

structed to generate those values).

In order to write and read the semantic annotations, we

have used the libSBML library [6] that performs the

translations between Python code and MathML. LibSBML

is a specific library for writing and manipulating the Sys-

tems Biology Mark-up Language (SBML) [14] that

describes models of biological processes. Although the

library is intended for biological processes, it has a com-

plete translation tool for MathML that can be used in any

domain.

In the semantic description, we have represented the

interpolation prediction of the number of vehicles formula

Fig. 6 One of the main roads that connect the city centre of Aarhus

with the surrounding towns. The dots represent the location of the

traffic sensors. We use sensor 1 and sensor 3 to infer the prediction

model and sensor 2 for testing purposes

25 https://www.w3.org/TR/MathML3/.
26 http://www.odaa.dk/dataset/realtids-trafikdata. 27 http://iot.ee.surrey.ac.uk:8080.
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as a MathML formula. Listing 5 shows an excerpt of the

formula in turtle.28

form:formulaTrafficGrenavejarhusMorning rdf:type form:Formula ,

owl:NamedIndividual ;

form:hasFormulaValue """<?xml version=\"1.0\" encoding=\"UTF-8\"?>

<math xmlns=\"http://www.w3.org/1998/Math/MathML\">

<apply>

<plus/>

<apply>

<times/>

<cn> 0.126603432701 </cn>

<apply>

<minus/>

<ci> currentTimeInMinutes </ci>

<cn type=\"integer\"> 180 </cn>

</apply>

</apply>

<apply>

<times/>

<cn> 0.000765329644997 </cn>

<ci> CurrentLocation </ci>

</apply>

</apply>

</math>""" .

Listing 5: Formula in the semantic description written
in turtle.

Once we have the observations and formulas annotated

in the semantic descriptions, when a user makes a query on

the number of vehicles on the road between sensor 1 and

sensor 3, both the value taken at sensor 1 and the formula is

returned and then he can use the MathML expression to

calculate estimated values for nearby locations or for future

value predictions. In our example, we send a query from

our application written in python to the triple store; read

the last value taken at sensor 1 at 3:00 am GMT (which is

around 5:00 am local time) together with the formula;

convert the MathML into a python formula (using the

library SBML in our python application); calculate the

current value at our location (simulated to be at the place of

sensor 2) and the current time (5:00 GMT); and get the

expected number of cars at that position at that time, which

is around 16 cars.

Dynamic semantics, therefore, can store spatio-temporal

values in a triple store. Dynamic semantics has the

advantage over other solutions (such as the use of a

RESTful servers that calculate the current value from the

formula) that all the information is stored in one place, in

the triple store, giving a faster query-response time and a

simpler service as the client only accesses one server. Our

solution can also work in networks with low connectivity,

as we can download the triple store when we have enough

bandwidth and read it locally when needed.

8 Conclusions

In this study, we proposed a lightweight semantic IoT

model, IoT-Lite. The model is an extension of SSN with

shallow depth, appropriate for real-time sensor discovery.

We have proposed and followed a set of ontology design

guidelines for dynamic and responsive environments. We

have demonstrated that the annotation of new sensors in

IoT-Lite requires only 6 triples, and that the RTT of a

query-response is in the range of milliseconds, even for

large datasets. We have also assessed our proposal against

another instantiation of SSN, IoT-A, and we have

demonstrated that IoT-Lite performs better than IoT-A, in

terms of memory requirements, computational time and

RTT for a query-response, reducing the time by half for

large datasets, such as for 100,000 sensors. We have also

linked IoT-Lite with SAO ontology, which performs

stream annotations allowing the aggregation of values, and

therefore reducing the data values coming out from sen-

sors. This solution can reduce the stream data triple store

and reduce the query-response time for stream data. Fur-

thermore, we have proposed dynamic semantic annotations

to store formulas written in MathML into a triple store. We

discussed an example of using dynamic semantics in a

smart city and store spatio-temporal values in the triple

store. This solution reduces the space used in the triple

store and keeps all the information together in one place

and therefore gives a faster query-response time.

Further work will provide IoT-Lite tools for annotation

and validation, similar to SAOPY29 and SSN validator

[17]. We will also use the IoT-Lite based descriptions to

provide interoperability in developing IoT and smart city

applications and services. We will continue incorporating

more functionalities to our dynamic semantics solution.
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