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Abstract Masses of sensors are being deployed at the

scale of cities to manage parking spaces, transportation

infrastructures to monitor traffic, and campuses of build-

ings to reduce energy consumption. These large-scale

infrastructures become a reality for citizens via applica-

tions that orchestrate sensors to deliver high-value, inno-

vative services. These applications critically rely on the

processing of large amounts of data to analyze situations,

inform users, and control devices. This paper proposes a

design-driven approach to developing orchestrating appli-

cations for masses of sensors that integrates parallel pro-

cessing of large amounts of data. Specifically, an

application design exposes declarations that are used to

generate a programming framework based on the MapRe-

duce programming model. We have developed a prototype

of our approach, using Apache Hadoop. We applied it to a

case study and obtained significant speedups by paral-

lelizing computations over twelve nodes. In doing so, we

demonstrate that our design-driven approach allows to

abstract over implementation details, while exposing

architectural properties used to generate high-performance

code for processing large datasets. Furthermore, we show

that this high-performance support enables new, personal-

ized services in a smart city. Finally, we discuss the

expressiveness of our design language, identify some lim-

itations, and present language extensions.

Keywords Data processing � Programming frameworks �
Sensors � MapReduce � Orchestration

1 Introduction

Modern smart cities and smart territories [1] rely onwide-area

infrastructures, populating a variety of environments with

functionality-rich sensors. These smart environments include

wide-area transportation management [2, 3] and large-scale

smart parking systems [4, 5]. The emergence of smart envi-

ronments validates large-scale sensor infrastructures as robust

platforms for delivering innovative services to citizens.

Nevertheless, the successful adoption of these infras-

tructures critically relies on the ability to develop services.

Currently, software development in this domain lacks

programming models and methodologies to address key

domain-specific challenges. In particular, masses of sensors

produce large amounts of data that require to be analyzed

efficiently to timely deliver high-value services to citizens

and operators of smart environments. When considering

tens of thousands of measurements, possibly accumulated

over a period of time, processing of such data volumes

becomes a critical issue. The pressure on processing only

increases when the added values of the services rely on

real-time or near-real-time analyses. In fact, the data vol-

ume to be processed and the velocity requirements of the

applications to be developed may necessitate parallel pro-

cessing [6]. For example, as cars rush into a city in the

morning, drivers should receive up-to-date information

about space availability in parking lots and estimations

about its future trends, even if this involves processing
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massive amounts of data repeatedly. When efficiency is

paramount, it is a key challenge to develop an orchestrating

application that exploits properties about the sensors,

optimizes the strategies to collect sensor measurements,

and crunches large amounts of data.

Beyond allowing to harness large-scale sensor infras-

tructures, the scalability of data processing is becoming a

key enabling factor for delivering personalized and/or

community-aware services [7, 8]. Indeed, in such appli-

cations, not only do large amounts of sensor data have to be

handled, but they must also be combined with massive

data, contributed by user communities. These computations

must be performed repeatedly for each user and still be

delivered in a timely manner. Support for efficient parallel

processing can thus also pave the way to the next level of

smart city services for citizens, in terms of added value.

Existing approaches dedicated to big data processing pro-

vide limited ways to combine data processing strategies with

the application logic. Apache Pig [9] and Hive [10] require

developers to describe data processing in SQL-like query

languages with limited support for user-defined functions.

Language libraries, such as FlumeJava [11], allow developers

to implement data processing via high-level language

abstractions. These approaches provide data flow expressions

and a set of rich data types to implement data processing.

Developers still need to decide when and where data pro-

cessing occurs, as well as how intermediate computations are

combined. In the case of large-scale orchestration, applica-

tionsmay have to analyze sensor data a number of times using

different algorithms, or combine them. These needs put an

additional burden on developers since they have to introduce

boilerplate code to separate library-specific code from the

main application logic, interconnect and coordinate compu-

tations, store intermediate results, etc.

This paper proposes a design-driven approach to

developing orchestrating applications for masses of sensors

that integrates parallel processing of large amounts of data.

In doing so, we extend our previous work on a design

language dedicated to orchestrating sensors, named Dia-

Swarm [12], which did not address high-performance data

processing. Our new approach provides the developer with

declarations expressing when and where data processing

occurs. The application design then compiles into a pro-

gramming framework, based on the MapReduce program-

ming model. This framework supports and guides the

programming of the orchestration logic, while abstracting

over the parallel processing of sensed data.

This article is an expanded version of a conference

paper [13]. It provides details about the implementation of

our approach, an example of personalized service enabled

by our approach, and a review of the current limitations of

the approach together with some corresponding language

extensions.

1.1 Our contributions

1.1.1 High-level parallel processing model

Our approach allows the developer to program against a

framework based on the MapReduce programming model

[14, 15]. In doing so, the developer uses a well-proven

approach to processing large datasets, based on a parallel

implementation. We illustrate our approach with a case

study of a parking management system.

1.1.2 A generative programming approach

The generated parallel-processing programming frame-

works have a carefully structured data and control flow,

which enables data processing to be implemented effi-

ciently. Our compiler generates programming frameworks

that rely on the MapReduce model, exposing structural

parallelism of the implementation. This strategy allows to

cope with large datasets collected from masses of sensors.

1.1.3 Implementation

Our approach is implemented1 and takes the form of a

plugin for the Eclipse IDE.2 The plugin comprises a code

generator, which currently produces programming support

for the Apache Hadoop platform.3

1.1.4 Validation

Our implementation is validated with an experiment that

runs application computations over a large dataset of syn-

thetic sensor readings. The experiment demonstrates that

programming frameworks generated by our approach

exhibit scalable behavior.

1.1.5 Enabling personalized services

We further illustrate the practical applicability of our

approach through an example of personalized service for

citizens of a smart city.

1.1.6 Exploring the design space

Finally, we assess the expressiveness of DiaSwarm by

reviewing and reconsidering design choices. This results in

language extensions.

1 http://phoenix.inria.fr/software/diaswarm.
2 http://eclipse.org/.
3 http://hadoop.apache.org/.
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2 Background and case study

In this section, we provide a brief introduction of the

DiaSwarm language [12] dedicated to development of

orchestrating applications. DiaSwarm is a declarative

domain-specific design language, which follows the Sense/

Compute/Control (SCC) paradigm promoted by Taylor

et al. [16]. DiaSwarm provides high-level, declarative

constructs to allow developers to deal with sensors and

actuators at design time, prior to programming the appli-

cation. Application design is processed by a compiler,

which generates support for the developer that takes the

form of a programming framework [17]. The generated

programming framework reflects application design and

covers domain-specific functionalities, such as service

discovery, data gathering, component interaction and data

processing. These dimensions are fully administered by the

framework to allow developers to concentrate on the

application logic.

Application design takes the form of a directed acyclic

graph (DAG) comprising devices (i.e., sensors and actua-

tors) and application components, namely, contexts and

controllers. Context components receive data from sensors

via device sources. They refine raw data into application

values and may publish these values to controller compo-

nents. Controllers determine the devices that need to be

actuated, as well as the type of action that needs to be

triggered.

2.1 Case study

We illustrate the salient features of DiaSwarm with a smart

city application, which monitors the occupancy of parking

lots to guide cars to available parking spaces. The appli-

cation collects data from presence sensors, which are

buried under the ground and determine availability of

parking spaces via magnetic field variations. The applica-

tion provides drivers with the number of available parking

spaces for each parking lot in the city. This information is

displayed on screens at the entrance of parking lots. The

application also suggests parking lots to drivers entering

the city to optimize the flow of traffic. Finally, the appli-

cation determines the average occupancy level of each

parking lot in 24 h. The occupancy level is provided to

parking managers via messages.

Figure 1 presents a graphical view of the parking man-

agement application in SCC. The PresenceSensor

device produces values via the presence source to the

subscribed context components, namely ParkingA-

vailability, ParkingUsagePattern, and

AverageOccupancy. The ParkingAvailability

context computes the number of available parking spaces

in parking lots and publishes these values at regular

intervals to the ParkingEntrancePanel controller,

which in turn triggers the update action to refresh the

number of available parking spaces on entrance screens.

Parking suggestions for drivers are computed by the

ParkingSuggestion context, which is invoked every

time the ParkingAvailability context publishes a

value. In this case, the computation carried out by

ParkingSuggestion context requires also data from

the ParkingUsagePattern context. The resulting

suggestions are published to the CityEn-

trancePanelController, which refreshes these

suggestions on entrance panels. The average occupancy

level functionality is designed in a similar fashion with the

exception of providing computations over a 24-h period

(i.e., AverageOccupancy context).

2.2 Preliminaries

Let us now briefly present the salient features of Dia-

Swarm declarations through fragments of the design of

our case study, displayed in Fig. 2. Note that we omit

details on controller components and actuators. The

complete design for the parking management application

and further information on DiaSwarm can be found on

our website.4

Fig. 1 The graphical view of the parking management application

4 http://phoenix.inria.fr/software/diaswarm.

Pers Ubiquit Comput (2017) 21:457–473 459

123

http://phoenix.inria.fr/software/diaswarm


2.2.1 Service discovery

DiaSwarm service discovery is part of the design phase.

The language provides application-specific high-level

constructs for discovering objects in the large. The

grouped by clause allows sensor data to be presented to

applications through subsets of interest. In the case of the,

ParkingAvailability context, parking spaces are

gathered together in parking lots, as shown in line 3.

Similarly, in line 10, the AverageOccupancy context

groups presence values by parking lots and computes

average occupancy over 24 h.

2.2.2 Data gathering

DiaSwarm provides three data delivery models, inspired by

the domain of wireless sensor networks [18], namely

periodic, event-driven and query driven. Data delivery

declarations are called interaction contracts. Examples are

listed in lines 2 and 9, where both ParkingAvail-

ability and AverageOccupancy contexts require

presence measurements to be provided every 10 min. Thus,

according to these interaction contracts both context

components will be activated every 10 min with presence

values. Furthermore, the event-driven model provides data

to context components upon an event of interest (e.g.,

intrusion). The query-driven model allows a context to

request data from devices and other contexts.

2.2.3 Programming frameworks

To enforce domain-specific functionalities (e.g., service

discovery) during programming, Java programming

frameworks are produced by a compiler from DiaSwarm

designs. These frameworks provide an abstract class for

each component, which in turn requires developers to

implement components by subclassing every abstract class.

2.3 Data processing

Although high level, the DiaSwarm declarations suggest

data processing models. Specifically, an application is

reactive and consists of chains of component activations. A

chain is executed when its initial activation condition

holds, which is always related to a sensor, and depends on

its delivery model: a sensor publishes data spontaneously

or is sampled periodically. The execution of a chain ends if

one or more actuators are invoked or a component does not

publish any value. Additionally, when a component dec-

laration groups values (e.g., grouped by parkingLot),

it will process a sequence of values, indexed by the

grouping attribute (i.e., parkingLot). For example, in

the ParkingAvailability component, the process-

ing will receive values from all the presence sensors,

indexed by parking lot identifiers (i.e., Park-

ingLotEnum). Additionally, this construct allows values

to be accumulated over a period of time, as illustrated by

the AverageOccupancy context (line 8). The declara-

tion in line 10 allows presence values, not only to be

grouped by parkingLot, but also to be accumulated

over a 24-h period (keyword every).

3 Exposing parallelism

The large amount of data collected from sensors calls for

efficient processing strategies. We now examine how an

application design influences the way data are processed.

This study allows us to propose extensions to DiaSwarm

and novel treatments of declarations to generate efficient

parallel processing of large-scale datasets.

Our aim is to put in synergy design and programming by

leveraging design declarations to expose parallelism and

allow efficient processing strategies to be implemented. An

ideal case study is the grouped by directive because it

partitions a large set of gathered data and exposes a pro-

cessing strategy that matches the MapReduce program-

ming model. Indeed, this programming model is dedicated

to processing large datasets in a massively parallel manner

[14, 15]. It requires processing to be split into two phases:

Map and Reduce. Following our approach, data processing

needs to be reflected in the design phase. This is done by

Fig. 2 Excerpt of the parking management application design in

DiaSwarm
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extending the grouped by directive with an optional

clause that specifies what types of values are produced by

both the Map and Reduce phases. This is illustrated in

Fig. 2, where the ParkingAvailability declaration

includes a MapReduce clause that declares the Map phase

to produce Boolean values and the Reduce phase to

produce Integer values.

The DiaSwarm compiler generates a programming

framework that requires the developer to provide an

implementation for both the Map and Reduce phases of the

data processing. As shown in Fig. 3, this is done by

implementing map and reduce methods declared in the

generated MapReduce interface. In conformance with the

MapReduce model, the Map function is passed a key and a

value, which correspond to the parking lot identifier (i.e.,

the attribute of the grouped by directive) and an avail-

ability status, provided by the corresponding sensor. The

emitMap method is invoked to produce each key/value

pair result of the Map phase. The framework-generated

code groups the results of the Map phase into a list that is

then passed to the Reduce phase. This phase sums up the

set of values associated with a given intermediate key and,

subsequently, emits the availability of a parking lot

(emitReduce). The data resulting from the MapReduce

computation are presented to the developer in the form of a

map (line 21). The onPeriodicPresence method (line

21 to 30) wraps data resulting from the MapReduce process

into the availabilityList sequence (line 26), which

is returned to subscribed components (i.e., ParkingEn-

trancePanelController,

ParkingSuggestion).

Although our example involves simple processing, in

practice, our design-driven generative approach reduces

programming efforts by automatically generating applica-

tion-specific MapReduce programming frameworks. Fur-

thermore, the generated code keeps the development

process straightforward since it prevents specificities of the

MapReduce implementation (job scheduling/configuration/

execution, distributed file system, APIs, etc.) to percolate

into the application logic.

4 Generating a programming framework

Our design-driven development approach facilitates the

processing of large datasets collected from sensor infras-

tructures by providing the developer with a customized

framework, following the MapReduce programming

Fig. 3 An implementation of the ParkingAvailability context with MapReduce
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model. In this section, we show how generative program-

ming is used to produce support for combining an

orchestrating application with an actual implementation of

MapReduce, namely Hadoop.

Apache Hadoop is an open source implementation of the

MapReduce paradigm, which has gained increasing attention

over the last years and is currently being used by a number of

companies, including IBM, LinkedIn, Facebook and Google

[19]. In our approach, our compiler generates a MapReduce

program that relies on the Hadoop framework. Furthermore,

this MapReduce program defines default configuration

parameters that enable a job to be executed in Hadoop.

In the next three subsections, we explain how Hadoop

jobs are automatically generated, and how they are inte-

grated in the control and data flow of the generated

framework. The subsequent section discusses the possible

integration of big data processing backends other than

Hadoop, for supporting continuous stream processing in

addition to batch processing.

4.1 Setting up Hadoop jobs

Let us describe first how Hadoop jobs are automatically

generated, by examining the code generated for the Park-

ingAvailability context, shown in Fig. 4. The

ParkingAvailabilityJob class defines a Hadoop

MapReduce program,which comprises the definition of both

themap andreducemethods alongwith code related to the

job configuration and execution. Both the Map function and

the Reduce function are implemented by overriding the map

and reduce methods of the respective Mapper and Re-

ducer interfaces. Typically, when using the Hadoop

MapReduce library, the definition of the map and reduce

methods resides in the MapReduce program. In this case,

however, the implementation of these operations has already

been provided by the developer in the ParkingAvail-

ability class. TheMapReduce program invokes the user-

defined map and reduce methods via the ParkingA-

vailabilityParser class, which keeps an instance of

the ParkingAvailability context. ParkingA-

vailabilityParser interprets input data of the

MapReduce program as corresponding DiaSwarm types and

invokes the required map/reduce method. Consequently,

results from the user-defined map/reduce method are

translated to the MapReduce program and submitted via its

output collector.

Figure 5 shows the ParkingAvailabilityJob

class, which defines the MapReduce program for the

ParkingAvailability context. The compiler generates

a minimal MapReduce program for every context declared as

MapReduce at design time. The type of input data for a gen-

erated MapReduce program is defined by the input format,

which defaults to TextInputFormat (line 22). In our

approach, sensor data are stored in the JSON format. In our

case study, each presence status delivered to the application is

converted to JSON and occupies precisely one line in the

resulting dataset. Furthermore, each presence entry is defined

by the timestamp of the event, device attributes (i.e., id,

parking lot) and the presence source. TextInputFormat

fits such usage since it splits the input dataset to provide the

Map function with one line of text (i.e., one JSON entry) at a

time. In a MapReduce program, any key or value type

implements the Writable interface, which allows Hadoop

to serialize objects for transmission over the network [20]. To

facilitate the development of MapReduce programs, Hadoop

already providesWritablewrapper classes for themajority

of Java primitives (e.g., boolean ! BooleanWrita-

ble). In addition, developers may provide custom data types

by defining classes implementing the Writable interface.

At this stage, design declarations are of great importance since

they allow the compiler to interpret key and value types of the

resulting MapReduce program. For instance, as shown in

Fig. 2, the ParkingAvailability context declares the

output value type of the Map function as Boolean (line 4).

As a result, the compilermatches theBoolean data typewith

the corresponding BooleanWritable wrapper class

(Fig. 5, line 6). Moreover, an enumeration is interpreted as a

string and matched with the Textwrapper class (Fig. 5, line

6). Finally, design declarations using complex data types

result in the generation of a custom wrapper class, which

implements the Writable interface and reflects the entire

structure of the data type.

4.2 Managing control flow

The control flow of the generated framework depends upon

the declared interaction contracts between sensors (de-

vices) and the application logic (contexts and controllers).

In particular, the contexts include those declared as

MapReduce jobs, which are automatically generated as

shown above. Depending on the interaction contracts

specified, the following scheduling strategies are chosen:

• If an ‘‘every’’ clause is specified with a period T, the

corresponding context is invoked with this periodicity.

ParkingAvailabilityJob
+run(args)
+main(args)

M
ap

R
ed

uc
e

M
ap

pe
r

R
ed

uc
er

ParkingAvailabilityParser
-parkingAvailability: MapReduce
+map(key, value, output)
+reduce(key, value, output)

ParkingAvailability
+map(key, value, context)
+reduce(key, value, context)
#onPresence(parkingLotIterator)

ParkingAvailabilityMap
+map(key, value, output)

ParkingAvailabilityReduce
+reduce(key, value, output)

Generated code Implementation Hadoop lib DiaSwarm lib

Fig. 4 The generated support for integrating Apache Hadoop
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• Otherwise, if ‘‘when periodic’’ is specified with a

period T, the context is invoked with this periodicity.

• Otherwise, if ‘‘when provided’’ is specified, the context

is invoked any time the sensor produces a value.

• Otherwise, ‘‘when required’’ remains the only possible

option. In this case, the context is invoked only when

explicitly requested by a higher-level context declaring

a ‘‘get’’ on the current context.

In our case study, the ParkingAvailability context

declares that data must be gathered from presence sensors

in a 10-min time window, according to a periodic delivery

model (Fig. 2, line 2). Data processing takes place when

the time window elapses; that is, every 10 min, for our case

study. At runtime, this job is executed with respect to the

gathered sensed data and produces a result. The orches-

trating application recovers the result, which is passed to

the context via its callback method (e.g., onPeriod-

icPresence for ParkingAvailability).

4.3 Managing the data flow

Managing the data flow in the generated framework involves

(1) supplying data from sensors in suitable data structures,

according to context declarations (e.g., ‘‘group by’’ clauses),

and (2) buffering data if needed, to interface between sensor

delivery models and the scheduling strategies defined above.

The various clauses in context interaction contracts are

processed as follows by the compiler:

• If ‘‘when required’’ is specified in a contract, there are

no sensor values involved. Rather, such a contract

declares that the value produced by the context is kept

available for subsequent requests from higher-level

contexts, or by controllers. There is no buffering of

older values produced by the context: only the last

value produced is available to client components. In

such a contract, it is not possible to specify a ‘‘grouped

by’’ clause, nor ‘‘every’’ or ‘‘map ...reduce’’.

• If ‘‘when provided’’ is specified, the context will

receive all the values produced by the sensor or

lower-level context; no value is lost.

• If ‘‘when periodic ...hTi’’ is specified, the context will

receive values sampled with a periodicity of T from the

sensor or lower-level context.

• If ‘‘grouped by a’’ is specified, data must come from a

sensor device, and a must be one of the device

attributes. In this case, the sensor values are indexed

by the value of attribute a. If a ‘‘map ...reduce’’ clause

is also specified, key-value pairs hk; vi are supplied to

the map phase, where k is the value of attribute a for the

sensor that produced value v. If no ‘‘map ... reduce’’

clause is specified, the context receives pairs hk,
list(vÞi, where the v values were produced by all the

sensors whose attribute a is equal to k.

• If ‘‘every hTi’’ is specified, data must come from a

sensor device. In this case, values from the sensors

(gathered as specified by its event-driven or periodic

Fig. 5 An example of the generated Hadoop MapReduce program for the ParkingAvailability context
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delivery model) are accumulated during a period T and

then passed together in a single context invocation.

In our case study, the AverageOccupancy context

receives values sampled from all presence sensors every

10 min, indexed by parking lot, and accumulated over

periods of 24 h. Data processing takes place every 24 h,

and invokes a MapReduce job to efficiently cope with the

size of the batched data.

4.4 Other data processing methods

Nowadays, the field of big data is attracting much attention

from research and industry. The tool development efforts

devoted to dealing with rapidly emerging sources of big data

result in an abundance of open-source projects [21]. Apache

Hadoop is a widely used tool to deal with large-scale datasets

because it provides a reliable and scalable solution, main-

tained by a large community of developers. Hadoop is a batch

processing tool, typically used to analyze log files of large-

scale systems, collected over a long period of time. The order

of magnitude of these systems may range from hundreds of

gigabytes to terabytes and, possibly petabytes. Apache Spark

[22] is analternative large-scale, data processing tool,which is

gainingpopularity due to its promise tooutperformHadoopby

10x [23]. Spark is an in-memory, data processing framework,

which builds upon fault tolerant abstractions, manipulated

using a rich set of operators, called resilient distributed data-

sets (RDDs) [24]. In contrast with batch processing tools,

Apache Storm [25] primarily targets the processing of

unbounded streams of data. Storm is an example of aCEP [26]

system, where the data flow through a network of transfor-

mation entities. An application topology forms a directed

acyclic graph,where streamsources (spouts)flowdata to sinks

(bolts); it implements a single transformation on the provided

stream. In the context of large-scale orchestration, the power

of batch processing tools can be leveraged to analyze long-

termdatasets for trends in the usage of the city’s infrastructure

(e.g., parking lots) and to identify structural degradation (e.g.,

buildings, bridges). Stream processing tools, on the other

hand, are best-suited to deal with high-frequency sensor

readings, which typically involve tracking applications (e.g.,

vehicle position, parking place availability). In the future, we

intend to extend the parallel data processing compiler to

integrate both Spark and Storm, allowing developers to

choose the right tool for their project.

5 Experimental evaluation

To assess our approach, we have conducted a series of tests

to examine the overall behavior of the MapReduce pro-

gramming model for processing large amounts of sensor

data. To do so, we developed a prototype of the parking

management system, with Hadoop as the target platform,

and analyzed the scalability of our approach using various

datasets. In addition, we evaluated the design of the

application and observed how specific design choices may

impact the overall performance of an orchestrating

application.

5.1 Experimental setup

The experimentation focuses on the average parking occu-

pancy feature of our case study. TheAverageOccupancy

context processes sensor data synthesized for a 24-h period,

calculates the average occupancy of a parking lot, and

notifies the parking manager via a Messenger device.

5.1.1 Machines

The experiment was carried out on a cluster of 12 nodes

running within a private Eucalyptus [27] cloud. Each node

in the cloud corresponds to a m2.xlarge type virtual

machine instance with 2 CPUs, 2GB of RAM and 10GB of

disk space. Every instance ran the DataStax Enterprise

4.6.1 [28] image, which is a big data platform leveraging

tools such as Apache Hadoop and Apache Spark.

5.1.2 Datasets

We generated synthetic datasets to simulate a city’s sensor

infrastructure for the parking management system. Each

dataset contains sensor data, indicating parking space

occupancy, which is emitted every 10 min over 24 h (i.e.,

144 measurements per sensor). We generated datasets for

different sensor infrastructures, ranging from 10,000 to

200,000 sensors per dataset, thus testing the MapReduce

program with datasets including up to 28,800,000 input

records. The values for presence sensors are generated

randomly, not according to any particular distribution. We

did not attempt to simulate a realistic occupation of parking

spaces, since the computation time in our prototype

application is independent from the distributions of occu-

pation times, and we focus here on evaluating just the

scalability of the generated framework.

5.2 Experimental results

5.2.1 Scalability

Figure 6 shows the performance of our parking manage-

ment program. We compare its execution time with respect

to 3 cluster setups—one, six, and twelve nodes—and an

increasing input dataset size. As can be expected, the
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execution time of the one-node setup increases the fastest,

compared to the six- and twelve-node setups. The six- and

twelve-node setups perform at par for the smallest dataset

sizes (from 10,000 to 50,000 sensors) because their com-

puting power is under-used. As the size of the datasets

increases, the performance of these two setups gradually

separate, showing better performance for the twelve-node

setup. These preliminary results show that our compiler

generates MapReduce implementations that attain expected

scalability. Furthermore, these results demonstrate that

declarations at the design level can benefit performance by

driving compilation strategies, such as parallelization in

our case study. This is achieved by introducing high-level

insights (MapReduce constructs) in DiaSwarm.

5.2.2 Optimization through design

Beyond significantly improving the execution time of an

orchestrating application, Hadoop opens up further opti-

mization opportunities at the design level. For instance, in

our case study, the AverageOccupancy context pro-

cesses a dataset of presence values to produce the average

occupancy of each parking lot for the last 24 h. A closer

look at the application design reveals that the computation

provided by the AverageOccupancy context could be

achieved by leveraging the computation of the Park-

ingAvailability context. The computed availability

of parking spaces could thus be provided to the Aver-

ageOccupancy context at regular intervals, defined by

the data delivery contract (i.e., h10mini) of the Park-

ingAvailability context. As a result, the Aver-

ageOccupancy context would use the provided data to

calculate an average over the period of 24 h.

The suggested design adjustments are depicted in Fig. 7.

As can be noticed, the design of the application remains

straightforward. More importantly, this design prevents

sensor readings from being processed multiple times: the

AverageOccupancy context factorizes the computations

performed by the ParkingAvailability context. This

caching strategy reduces the total time and resources the

application requires for data processing. In fact, as shown in

Fig. 7, the computation performed by the AverageOc-

cupancy context no longer involves processing of a large

dataset on a cluster (hence theMapReduce clause is omitted).

This major optimization also has a direct impact on

application upkeep costs, since nowadays companies del-

egate processing of large datasets to cloud computing

platforms (e.g., Amazon Web Services) with a time-of-use

pricing model.

6 Enabling new services

The experimental results reported in the previous sections

show that the integration of the MapReduce programming

model in DiaSwarm and its Hadoop backend fulfill the

promise of handling large amounts of data coming from

massive sensor infrastructures. This section demonstrates

on a concrete application scenario how the scalable data

processing of our approach enables the development of

new services involving personalization and community

awareness. The example application is a community-aware

extension of our parking management application.

TheParkingManager application described in Sect. 2

includes a context called ParkingSuggestion for dis-

playing parking suggestions on city entrance panels. These

suggestions are generic in that they are visible to all the

Fig. 6 Performance comparison

between different cluster setups

Fig. 7 The ParkingAvailability context factorizing the computation

performed by AverageOccupancy
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drivers entering the city and contain a selection of parking

lots having the best availability at a givenmoment. However,

the added value of parking suggestions can be considerably

enhanced by providing personalized suggestions to each

driver entering the city based on their intended destination

and estimated time of arrival. This important improvement

can be done by integrating the ParkingManager appli-

cation with a community-based navigation system such as

Waze5 or Google Maps.6

These community services can be integrated in Dia-

Swarm applications in the form of a software sensor device

called ParkingCommunityRadar, defined in Fig. 9.

This device produces data of type Expectation when a

trip is (re)computed in a community-based GPS navigation

application used by a driver, or when the estimated time of

arrival for an ongoing trip changes significantly. An

instance of this software sensor is associated to each

parking lot, as indicated by its parkingLot attribute. For

privacy reasons, the destination reported to the Park-

ingCommunityRadar is not the ultimate destination of

the driver (e.g., precise GPS coordinates), but rather the

intended parking lot for leaving the car. The device also

features a SuggestParking action which allows the

application to send a personal parking suggestion to a

specific car driver. Drivers are identified based on the user

identifier in the navigation application, or based on the

license plate number, for instance.

Using this software sensor, personalized suggestions can

be sent to drivers by adding the PersonalPark-

ingSuggestion context to the ParkingManager

application, as shown in Fig. 8. The new context is

declared in Fig. 9.

The PersonalParkingSuggestion context

receives data from all the ongoing trips and sends personal

parking suggestions only when the intended parking lot is

predicted to be full at the estimated time of arrival. In this

case, an alternative nearby parking is suggested for which

better availability is predicted. The availability predictions

reuse the ParkingUsagePattern context described in Sect. 2,

which contains a predictive model based on the parking

usage history. We assume that this model provides pre-

dictions at a granularity of 10 min, but coarser-grained

models could be accommodated using interpolation.

The interaction contract of this context specifies that

destinations are collected in an event-driven model, but

processed only every 10 min. This allows to check the

future availability of the parking lots (according to the

predictive model) by cumulating parking requests for the

near future, from ongoing trips. Thus, the destinations

accumulated over the last 10 min are first partitioned,

according to the estimated time of arrival in future intervals

of 10 min. For each such interval, the predicted availability

of each parking lot is compared to the number of estimated

arrivals; if the result shows a shortage of available parking

spaces, cars in excess are sent an alternative parking sug-

gestion. The cars to be redirected are the ones with the

latest estimated time of arrival. Indeed, assuming that the

estimated times and the predicted availabilities are accu-

rate, the redirected cars are precisely those that will find a

saturated parking lot. The other cars are not notified in any

way, saving the attentional resources of the drivers.

According to the declarations in the context, a MapRe-

duce job is scheduled every 10 min to cope with a large

potential number of ongoing trips, while ensuring timely

notifications for possible redirections. Themap phase rounds

estimated arrival times to the closest 10-min interval. The

Fig. 8 The graphical view of the community-aware parking

management application

Fig. 9 The PersonalParkingSuggestion context

5 https://www.waze.com.
6 https://www.google.com/maps/about/.
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reduce phase computes the cumulated demand on a parking

lot for each time slice. Based on the MapReduce result, the

context compares the demand with the predicted availability

for each parking lot to produce a (possibly empty) list of

parking redirection suggestions. The output of the context is

published to the CommunityRadarController com-

ponent, which sends the corresponding notifications to the

concerned drivers via the ParkingCommunityRadar

devices of the overloaded parking lots.

This enhanced version of the parking management

application provides a personalized service to drivers, pre-

venting parking lots to be overloaded. Detection of potential

parking overload is based on community data of ongoing

trips, provided by drivers accepting to communicate their

destinations in exchange for more reliable guidance to find

available parking spaces. However, this feature requires

efficient computation support for large data, ensured in our

approach by MapReduce design annotations.

7 Extensions

The presentation of our approach and its evaluation show that

we offer a convenient and efficient way to express large-scale

computations over massive sensor infrastructures, at the scale

of the Internet of Things. Furthermore, this processing power

enables more personalized services to be delivered to users,

without compromising service responsiveness. This section

takes a step back to address the current limitations of Dia-

Swarm in terms of expressiveness. We review the underlying

language design rationale and introduce language extensions

to lift these limitations. Some of these extensions are imple-

mented and released in our available prototype.7

7.1 Specifying intermediate keys

As shown in Sect. 3, the MapReduce programming model

is exposed at a high level of abstraction to developers.

Indeed, they only have to declare that a context such as

ParkingAvailability is to be implemented in the

MapReduce model and provide the types of values pro-

duced by the map and reduce phases (as in Fig. 2). Then,

the developers specify the map and reduce computations

(as in Fig. 3), but are abstracted away from implementation

issues, specific to a MapReduce backend engine, such as

implementing and configuring Hadoop jobs.

However, this high level of abstraction currently hides not

only implementation details of the backend, but also some of

the power of the MapReduce model itself. Specifically, the

MapReduce model allows to use two different sets of keys

for indexing data in the map and reduce phases, as shown in

Fig. 10. Currently, theDiaSwarm language allows to specify

only a single key set—an attribute of sensor devices—, to

group the incoming data and its processing, along the map

and reduce phases. This allows to use natural partitionings of

sensors, according to attributes such as their location. We

have chosen this strategy as it fits the major common case of

large-scale sensing, while imposing minimal effort on

developers. Nevertheless, more complex MapReduce com-

putations could be specified if DiaSwarm allowed to specify

a different key for the intermediate values, so as to exploit

parallelism along another partitioning dimension.

For instance, an application for computing a real-time

histogram of the target temperatures in all the homes in a

city equipped with a heating, ventilation and air-condi-

tioning (HVAC) system could group the readings geo-

graphically by street blocks for the map phase, but would

use the discrete temperature value (an integral number of

Celsius or Fahrenheit degrees) as a key in the reduce phase

to compute the frequency of each value.

To cope with this limitation of DiaSwarm, we extended

the language syntax to allow specifying the intermediate

key of the reduce phase. These keys could be used in the

generated programming framework with very small chan-

ges of the Hadoop backend.

7.2 Parallelizing higher-level contexts

DiaSwarm allows designing MapReduce contexts taking

the input from many instances of a sensor device, such as

the ParkingAvailability context in Fig. 2 taking its

input from a large set of PresenceSensor device

instances. Currently, it is not possible to specify a map/

reduce clause in DiaSwarm for a higher-level context, that

is, one which takes input from another context, rather than

from a sensor device. Indeed, declaring a MapReduce

context requires grouping incoming data by a sensor device

attribute, which does not exist when data originates from a

lower-level context. This choice has been taken during the

design of the DiaSwarm language for two reasons:

– contexts directly connected to a device produce refined

information that is usually much more concise than the

large raw dataset captured by sensors (this semantics is

also implied by the ‘‘reduce’’ phase of a MapReduce

Fig. 10 The general MapReduce programming model

7 http://phoenix.inria.fr/software/diaswarm.
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context)—as a consequence, higher-level context tend

to operate on smaller datasets;

– the number of actuators in an application is typically

much smaller than the number of sensors, eliminating

another potential need for computing large datasets in

higher-level contexts (such a large dataset would be

necessary if a massive amount of actuator instances

would have to be actuated differently by the application).

However, in some complex applications, the first assump-

tion may be violated, as some lower-level contexts may

also produce large datasets—perhaps not computed by a

MapReduce, but rather accumulating some form of big data

that cannot be summarized without loosing its predictive

value. Furthermore, the second assumption may not be

fulfilled in applications involving a large number of actu-

ators—this is indeed a natural trend in personalized

applications. When either situation arises, it could make it

worth to also parallelize some of the higher-level contexts

in an application.

For instance, if the parking suggestions of the Park-

ingManager application in Fig. 1 would have to be shown,

not only at city entrances, but also on many public displays

all over the city, these suggestionswould have to be localized

with respect to nearby parking lots and to their predicted

usage patterns. In this situation, it would be a stringent

requirement to parallelize the ParkingSuggestion

context along parking lots or public displays, for example.

This current limitation could be removed by allowing to

group the output of array-valued contexts using for instance a

field of the indexed data structure (in our case, the parking lot

field in the array entries produced by the ParkingA-

vailability context). Also, allowing to specify a map/

reduce clause on a controller component could also open up

many possibilities. This latter feature would require to allow

grouping actuator devices along one of their attributes,

similar to how sensors are currently handled in DiaSwarm.

7.3 Grouping by a computed attribute

The fact that sensor readings can only be grouped by a sensor

device attribute also implies other limitations in the practical

applicability of current DiaSwarm language.More precisely,

grouping values by a device attribute works well when this

attribute is of a large enumerated type, which is the case in

many smart city applications, such as the list of parking lots

in a city, or offices in a building, etc. However, other cases

may not fit with this model. For instance, a particular com-

ponent of a device attribute (such as the city code in the

license plate number of a car) could be more suited to cluster

computations on sensor readings. Also, when mobile sensor

are used, with their current location expressed as GPS

coordinates, it makes more sense to cluster the readings with

respect to regions delimited as GPS intervals, instead of

precise GPS positions.

This limitation could be removed by allowing in a

grouped-by construct, not only a device attribute name, but

also a general expression involving a device attribute, such

as grouped by department(plateNo) or

grouped by region(gpsLocation).

7.4 Grouping heterogeneous sensor readings

In DiaSwarm, the MapReduce computation declared by a

context can only process uniform sensor data, that is, origi-

nating from all the different instances of a sensor device. The

context may of course get values from other ‘‘secondary’’

sensor devices, but these values are only taken into account

after the map and reduce phases, for computing the final

value produced by the context. For instance, Fig. 11 shows a

context computing the average pollution produced by a car in

a parking lot, dividing the pollution sensed with a CO sensor

at the end of the day by the average number of cars present

during that day (see line 9). The pollution value in this case is

not available to the MapReduce computation, but will only

be passed as an extra argument to the onPeriod-

icPresence method in Fig. 3.

Some applications could benefit from performing par-

allel computations on heterogeneous sensor data. For

instance, a more accurate way to compute the average

pollution in a parking lot would be to average all the instant

pollution values. This would require sensing the CO level

at the same time as when occupancy is computed (i.e.,

every 10 min), accumulating these simultaneous values

over the computation period (24 h), compute all the instant

pollution values in the map phase, and compute their

average in the reduce phase.

Removing this limitation would involve extending the

syntax of DiaSwarm to allow specifying the ‘‘get’’ clause

before the ‘‘grouped by’’ clause, thus expressing that these

sensor values should be grouped together. It would also

require that the generated programming framework

Fig. 11 Current syntax of DiaSwarm for grouping multi-sensor

measurements
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samples the value of each secondary sensor each time a

primary sensor is sampled, so as to accumulate complete

snapshots of heterogeneous sensor readings.

7.5 Optional map and reduce clauses

When a context is declared as being computed with a

MapReduce operator, the developer always has to

specify a map and a reduce user-defined methods.

However, in many common cases, either the map or the

reduce are the identity function. This is not really a

limitation of the current DiaSwarm language, because it

does not forbid to implement such applications. Rather,

some unneeded effort can be avoided by making both

the map and reduce clauses optional, with the effect of

automatically generating identity transformation. To do

so, we extended DiaSwarm to allow either phase to be

omitted in the declaration.

8 Discussion

This section discusses the applicability of our approach to

other scenarios, and some of its current limitations.

8.1 Applicability

The ParkingManager application used as our case study

allowed us to illustrate the approach and its use on a concrete

scenario. We deliberately chose an example involving

straightforward computations for clarity reasons, enabling to

show (1) concise and easy to understand snippets of the

generated framework (Fig. 5) and (2) placeholders to be

filled by developers (Fig. 3). Of course, computing parking

availability by summing up unused spaces is not a com-

pelling application for parallel processing. The extension to a

personalized service discussed in Sect. 6 gave a more

accurate view of realistic data-intensive applications. Real

personalized services related to parkings which have been

proposed include dynamic pricing schemes, where prices are

continuously computed and updated with respect to sensing

data streamed from the infrastructure, in order to optimize

parking usage [29]. The same kind of dynamic pricing has

been used for other scarce resources in smart cities such as

shared mobility systems (pools of shared electric vehicles or

bikes) in order to optimize their geographical redistribution

[30]. These are concrete examples of real-time computations

based onmassive sensor deployments that could benefit from

our domain-specific parallelization approach.

More data-intensive smart city services needing parallel

computing will gradually appear following massive

deployments of sensors and actuators, for such domains as

traffic, weather, or energy consumption monitoring.

8.2 Limitations

One limitation of our approach is that it does not address

the physical placement of computations on network nodes.

In our current implementation, all computations are per-

formed in the cloud, after data are gathered from all the

sensors necessary to a given context (as specified in a

‘‘when provided/periodic’’ clause). The possibilities avail-

able in many sensor networks for in-network processing or

distributed computing are not currently exploited. In prin-

ciple, the graph of application components might be used

to automatically push in the network some contexts that are

‘‘close’’ to sensors. Another approach would consist of

extending DiaSwarm to allow explicit hints to be formu-

lated in a declarative way. Optimizations of the underlying

sensor network, such as optimized routing, could be trig-

gered at different phases, e.g., at deployment time or during

runtime. We have proposed a vision including such ideas

elsewhere [31], but they are not currently implemented in

our prototype.

9 Related work

In this section, we examine existing approaches that

address the development of applications orchestrating

sensors. We consider approaches from domains where

orchestration of sensors is a common concern. Further-

more, we highlight the differences between our approach

and large-scale data processing support.

9.1 Internet of things (IoT)

Patel et al. [32] propose a multistage, model-driven

approach, dedicated to the development of IoT applications.

This approach provides support at different stages of the

development process. At design time, the approach offers a

set of customizable modeling languages for the specification

of an application. The approach is complemented by code

generation and task-mapping techniques for the deployment

of node-level code onto devices. Even though this approach

is aimed to facilitate the development process through

guidance, Patel et al. do not provide details regarding the size

of sensed data that are gathered and processed. They do not

discuss what support is generated to facilitate the program-

ming process. This approach does not address howmasses of

sensors are handled nor does it present performance mea-

surements to assess how it scales up for large datasets.

9.2 Pervasive computing

The domain of pervasive computing offers a number of

approaches targeting the development of orchestrating
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applications. PervML [33] is a model-driven development

approach that provides a conceptual framework for con-

text-aware applications. The various aspects of a pervasive

computing application are modeled by different types of

UML diagrams. Dey et al. [34] propose the Context Toolkit

that provides the programmer with building blocks to

mediate between the contextual aspects of the environment

and the application. Olympus goes beyond middleware in

providing a programming framework dedicated to the

development of pervasive computing systems [35].

Because it is based on a domain-specific framework,

Olympus raises the level of abstraction and facilitates the

development of applications. DiaSuite takes these approa-

ches further by introducing a design language dedicated to

the Sense/Compute/Control paradigm [36, 37]. A design is

used to generate a dedicated programming framework that

guides, restricts, and supports the implementation phase.

All the above-mentioned approaches have been

designed for the orchestration of objects in the small (i.e.,

offices, buildings, etc.). They do not address challenges

arising with large-scale infrastructures and do not provide

strategies to tackle data-intensive processing.

9.3 Wireless sensor networks (WSN)

Gupta et al. [38] propose sMapReduce, a programming

pattern inspired by the MapReduce programming model

for mapping application behavior onto a sensor network

and enabling complex data aggregation. sMapReduce

divides the network-level user program into sMap and

Reduce functions; this strategy, respectively, associates a

behavior to sensor nodes and executes data aggregation

over the network. Compared to our approach, sMapReduce

remains lower-level since it provides network-level pro-

gramming abstractions and introduces the network topol-

ogy in computations.

Often, programming applications for WSNs is done at a

low level, requiring the developer to have extensive knowl-

edge about the underlying layers (network, hardware, OS).

Mottola and Picco [39] surveyed a number of programming

approaches for WSNs aimed to facilitate the programming of

layers underlying applications; these approaches target sensor

nodes, communication operations, routing strategies, etc.

These works are complementary to ours in that they provide

high-level abstractions that can be used by our compiler to

target frameworks for WSNs. However, they do not provide

support dedicated to dealing with large datasets produced

from massive-scale sensor infrastructures.

9.4 Large-scale data processing

Apache Pig [9] and Apache Hive [10] are widely used as

high-level platforms for analyzing large-scale datasets.

These platforms provide SQL-like declarative query lan-

guages (i.e., PigLatin & HiveQL) to express data analysis

programs. These tools are well-suited for offline data

analysis, but require some effort for running scripts from

application code (e.g., setting up a connection with a JDBC

server). Sawzall [40] used by Google is a high-level

scripting language for automating analyses on large data-

sets on top of the MapReduce execution model. Sawzall is

not publicly available but is reported to improve the pro-

gramming significantly, compared to C?? programming

of MapReduce. High-level language libraries, such as

FlumeJava [11], provide high-level abstractions dedicated

to parallel processing; they provide support for user-de-

fined functions, compared to SQL-like approaches.

Compared to the above-mentioned supports, our approach

integrates, at the design level, two domain-specific funda-

mental dimensions: large-scale orchestration of sensors and

large-scale data processing. The integrated nature of our

approach allows developers to easily combine results from

various computations. The design-driven nature of our

approach is supported by high-level declarations, exposing

such domain-specific information as service discovery and

data delivery. Declarations are analyzed to determine data

and control flow information, which in turn, is used to gen-

erate efficient, parallel-data processing frameworks.

10 Conclusion

We have proposed a design-driven approach to developing

orchestrating applications for masses of sensors that inte-

grates parallel processing of large amounts of sensed data.

Our new approach provides the developer with design dec-

larations expressing when andwhere data processing occurs.

A compiler takes an application design as input and produces

a programming framework based on the MapReduce pro-

gramming model. The generated framework supports and

guides the programming of the orchestration logic, while

abstracting over the parallel processing of sensed data.

We have demonstrated that our approach creates synergy

between design and programming, allowing seamless

introduction of high-performance computing strategies, as

illustrated by the MapReduce programming model. We

illustrated our approach with a case study of a parking

management system. This case study was used to conduct an

experiment on Apache Hadoop, demonstrating how our

design-driven approach can be leveraged to parallelize the

processing of large datasets and obtain significant speedups.

In the future, we intend to support the processing of

unbounded streams of data, typical of sensors.Our declarative

approach will allow us to design orchestrating applications

that mix the processing of both large datasets and unbounded

data streams, allowing us to abstract away these aspects.

470 Pers Ubiquit Comput (2017) 21:457–473

123



Appendix: DiaSwarm grammar

Pers Ubiquit Comput (2017) 21:457–473 471

123



References

1. Garcia-Ayllon S, Miralles JL (2015) New strategies to improve

governance in territorial management: evolving from smart cities

to smart territories. Procedia Eng 118:3–11

2. Mizuno Y, Odake N (2015) Current status of smart systems and

case studies of privacy protection platform for smart city in

Japan. In: 2015 Portland international conference on management

of engineering and technology (PICMET), pp 612–624

3. Naphade M, Banavar G, Harrison C, Paraszczak J, Morris R

(2011) Smarter cities and their innovation challenges. Computer

44(6):32–39

4. Libelium (2016) Smart City project in Santander to monitor

Parking Free Slots [Online]. http://www.libelium.com/smart_san

tander_parking_smart_city

5. Worldsensing SL (2016) Worldsensing and SIGFOX announce

the world’s largest Intelligent Parking deployment with Micronet,

the SIGFOX Network Operator for Russia [Online]. http://www.

worldsensing.com/news-press/press-release-worldsensing-and-

sigfox-announce-the-worlds-largest-intelligent-parking-deploy

ment-with-micronet-the-sigfox-network-operator-for-russia.html

6. Lee K-H, Lee Y-J, Choi H, Chung YD, Moon B (2012) Parallel

data processing with MapReduce: a survey. SIGMOD Rec

40(4):11–20

7. Patsakis C, Venanzi R, Bellavista P, Solanas A, Bouroche M

(2014) Personalized medical services using smart cities’ infras-

tructures. In: Proceeding of the 2014 IEEE international sympo-

sium on medical measurements and applications (MeMeA).

IEEE, pp 665–669

8. Seeliger R, Krauss C, Wilson A, Zwicklbauer M, Arbanowski S

(2015) Towards personalized smart city guide services in future

internet environments. In: Proceedings of the 24th international

conference on World Wide Web, ser. WWW ’15 companion.

ACM, New York, pp 563–568 [Online]. doi:10.1145/2740908.

2743905

9. The Apache Software Foundation (2016) Apache Pig [Online].

https://pig.apache.org

10. The Apache Software Foundation (2016) Apache Hive [Online].

https://hive.apache.org

11. Chambers C, Raniwala A, Perry F, Adams S, Henry RR, Brad-

shaw R, Weizenbaum N (2010) FlumeJava: easy, efficient data-

parallel pipelines. In: Proceedings of the 31st ACM SIGPLAN

conference on programming language design and implementation

(PLDI ’10). ACM, pp 363–375
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