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Abstract Data segmentation plays a critical role in per-

forming human activity recognition in the ambient assistant

living systems. It is particularly important for complex

activity recognition when the events occur in short bursts

with attributes of multiple sub-tasks. Although substantial

efforts have been made in segmenting the real-time sensor

data stream such as static/dynamic window sizing

approaches, little has been explored to exploit object

semantic for discerning sensor data into multiple threads of

activity of daily living. This paper proposes a semantic-

based approach for segmenting sensor data series using

ontologies to perform terminology box and assertion box

reasoning, along with logical rules to infer whether the

incoming sensor event is related to a given sequences of the

activity. The proposed approach is illustrated using a use-

case scenario which conducts semantic segmentation of a

real-time sensor data stream to recognise an elderly persons

complex activities.

Keywords Smart home � Semantic object modelling �
Ontology-based segmentation and separation � Complex

activity recognition � Activities of daily living (ADL)

1 Introduction

Ambient Assisted Living (AAL) systems are being con-

tinually developed to support the growing ageing popula-

tion. The main goal of building an AAL system is to

provide assistance to the inhabitants in a Smart Home (SH)

environment to carry out their Activities of Daily Living

(ADL). The stages of building an AAL system can be

categorised in three simple Ps: Preparing, Processing and

Presenting, as shown in Fig. 1. The preparing stage

involves developing activity models, data collection and

monitoring. The processing stage comprises of segmenting

the raw data stream, inferencing and recognising mixed

user (also referred to inhabitant) activities, providing

assistance when required and learning new activities. The

resource-intensive processing tasks are generally delegated

from resource-constrained devices to more powerful devi-

ces such as servers with a web service interface. The pre-

senting stage is responsible for tailoring the system to

specific application types and providing intuitive human-

computer interface (HCI). Figure 1 illustrates these phases

as the building blocks of an AAL system.

Each of the components in the three Ps are not only

important but have their own challenges, are also interre-

lated, which can determine the order in which these tasks

are executed. For instance, in the data-driven approach, the

activity modelling task is performed after creating a

training model from pre-collected datasets contrary to the

knowledge-driven approach where the modelling task is

performed by domain experts first. This paper focuses
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particularly in the processing stage of an AAL system

where challenges in segmenting real-time sensor data

stream are defined below. Due to human nature, perform-

ing a simple daily task with other tasks can create a com-

plex activity routine. Figure 2 shows the complex activities

in a hierarchical manner: an inhabitant (Fig. 2a) can per-

form ADLs in a (non) sequential, interwoven, concurrent,

parallel, manner personally and collaboratively with mul-

tiple users (Fig. 2b). Therefore, the complexity of the

inhabitants performing these tasks can create many chal-

lenges to perform AR efficiently, from modelling user

activities, collecting and segmenting the contextual data to

recognising, and learning new user activities. Achieving

accurate human activity recognition (HAR) is one of the

active research topics in the AAL system.

Besides acknowledging various types of complex

activity, other real-world knowledge such as ADLs, user

environmental and contextual information is required to be

modelled and classified. These modelling and classification

approaches are generally categorised as data-driven,

knowledge-driven and hybrid approaches [2, 8, 23, 28].

The data-driven approaches were developed to process

large amounts of pre-existing datasets using generative and

discriminative classifiers to generate user-specific activity

model. The data-driven approach proved to be sensitive to

unseen data, however, suffered from performance (‘‘cold

start’’ problem) and ability to reuse the learned model on

other users. Therefore, the knowledge-driven approach

gained popularity by using the domain experts knowledge

to formally define real-world concepts and axioms into

Fig. 1 AAL building block with preparing, processing, and presenting stages

Fig. 2 Types of complex user

activities

412 Pers Ubiquit Comput (2017) 21:411–425

123



expressive ontologies and logical rules. Although the

knowledge-driven approaches resolved the performance

and reusability problem of a model, both of the techniques

were still far from achieving completeness and high-quality

description. Hence, the hybrid approach has been adopted

which combines both the data-driven and knowledge-dri-

ven approaches to discover and learn new activities.

Another challenge is to process the raw sensor data in

real-time from a given smart environment or from pre-

collected publically available datasets. The smart envi-

ronment is created by spatially distributing a variety of

sensors to monitor physical and environmental conditions

that are interconnected using different communication

protocols to form wireless sensor networks (WSNs). The

sensing approaches are generally categorised as ambient

sensing (environmental monitoring i.e. vision or sensor

based), dense sensing (un-obstructively embedded into

everyday objects) and wearable sensing (in/direct or

implanted). The multimodal sensing approach is now

common amongst researchers to extract and correlate the

data to reach a finer granularity to understand inhabitants

context. Further problem arises when semantically inter-

preting unstructured raw data to obtain meaningful infor-

mation in order to perform AR. Fortunately with the

knowledge-driven approach, one can use the semantic

sensor network (SSN) ontology [20, 32], as a vocabulary to

describe and add metadata to the sensors events. This

information can then be used in conjunction with domain

ontology in order to perform application-specific semantic

reasoning. The vocabulary and semantical data represented

in the resource description framework (RDF) format and

bespoke querying languages such as SPARQLstream and

STARQL which can then be used to process the raw sensor

stream.

Discovering new patterns and activities poses further

challenges once static training models or knowledge graphs

are developed. The data-driven approach is considered to

be well suited due to its strength of processing unseen data

and extract general or parametric features. The learning

algorithm is generally executed on the incoming data

dynamically (online) for real-time application (i.e. health-

care monitoring and surveillance) or outside the system

(offline) such as commercial and educational uses. The

offline approach can potentially reduce the run-time load

on the system and increase quality of learned features from

the stored data. However, the offline approach can also

suffer time delays in activity learning and migrating new

activity models efficiently. This paper recognises that the

static activity model needs to be enriched, and the new

learnt knowledge is incorporated into the segmentation

stage. It should be noted here that proposing a new activity

learning algorithm is out of the scope for this paper.

The remainder of the paper is organised as follows.

Section 2 presents related work in stream data segmenta-

tion. Section 3 describes complex activity characteristics

and the proposed semantical segmentation approach and

Sect. 4 elaborates the methods and algorithms for semantic

segmentation. Section 5 conducts the evaluation of the

approach using the case study and discusses the benefits

and limitations of the proposed approach. The paper con-

cludes by highlighting the key contributions and future

research directions in Sect. 6.

2 Related work

This section presents state-of-the-art studies of real-time

sensor data segmentation (i.e. in knowledge-driven [7, 24],

data-driven [1, 17] or hybrid [9, 37] approaches) and

highlights key work in activity learning so that the inferred

knowledge can also be considered during the segmentation

stage. The common criteria that have been used to separate

a data stream is time, location, sensor type (i.e. tempera-

ture, humidity, touch) and value (binary, float, decimal,

string) [5]. Other features used includes temporal, spatial

and thematic (related subjects/theme) [36]. One of the

popular approaches is to detect the start and end time of the

activity is a sliding window protocol, where the window

size is either fixed or dynamic [7, 11, 13, 14, 21, 24, 27]. In

particular, work in [24] presents a novel segmentation

approach to segment the continuous data stream by varying

the window size using the temporal information of the

sensor data and activity models described using ontology.

It further describes the working mechanism and relevant

algorithms of the model in the context of ontology-based

AR. The experiments on the real-time prototype system

show the average recognition accuracy to be above 83% for

AR.

Work in [35] presents a sensor and time correlation-

based approach to dynamically segment the sensor obser-

vations in real time. The data-driven approach was

employed to illustrate that classifiers (Naive Bayes,

Bayesian network, C4.5 decision tree, Naive Bayes tree,

and HMM) achieve higher prediction of the activity. The

use of Person product correlation (PMC) coefficient

between sensor events and estimating activity label is

central to their approach. One of the limitations of this

approach is the assumption that there is a correlation

between multiple sensor events and activities. For instance,

sensors activating in the bedroom, hallway and bathroom

are assumed to be performing personal hygiene activity.

Alternatively, the approach could utilise the descriptions of

the sensor and ADL in an ontology model to identify the

relationship between the sensor event and ADLs.
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Attempts have been made using knowledge-driven

approach for concurrent AR (KCAR) [38]. KCAR uses the

conceptual descriptions of the everyday entities within the

smart environment in the domain ontology to perform

similarity comparison using distance measure [least com-

mon subsumer (LCS)] between two nodes. For instance,

the distance similarity would be closer between Stove and

Computer class in the hierarchy than Stove and Computer.

Furthermore, the pyramid matching kernel (PMK)

approach was adapted to deal with infrequent sensor noise.

The PMK technique is centred on image-based object

detection where the images are compared by segmenting

the image into grids at different levels to detect key fea-

tures and perform statistical, which also has the capability

to perform matching on hierarchical concepts. In addition,

the study claims to recognise multi-user activities.

Work in [3] presents a cloud-based mobile AR system,

namely MyActivity. It exploits the hybrid model using both

machine learning techniques (data-driven) and stream rea-

soning with an ontological representation of activities

(knowledge-driven). The system uses continuous SPARQL

(C- SPARQL) query language in order to infer human activi-

ties with accelerometer and GPS data from mobile devices.

Likewise, work in [9] presents an ontology-based hybrid

approach by modelling initial domain knowledge as a ‘‘seed’’

ontology model and using data-driven approach to incremen-

tally discover new activities and update the ‘‘seed’’ model.

In [20], the quality of the sensor observation is inves-

tigated using different quality dimensions in a probabilistic

data stream management system (PDSMS). The work

leverage with SSN as a vocabulary to describe relationship

between sensors and their observations values to estimate

prevailing conditions and propagate current quality infor-

mation. The work in [15] presents a two-level probabilistic

framework for concurrent and interleaving goal and

activity recognition (CIGAR). It leverages on the skip-

chain conditional random fields (SCCRF) approach for

modelling interleaving goals and concurrent goals by

adjusting inferred probabilities through a correlation graph.

The reason about goal interactions is done explicitly

through the correlation graph. Work in [10] provides a

survey on transfer-based learning approaches. It cate-

gorises transfer-based learning approach in four ways,

sensors modality, by the differences in source and target

environments, data availability, and the type of information

being transferred. It further highlights researches carried by

the types of knowledge being transferred in relation to

sensor modality and the data labelling process. From the

grouping of the different studies in a table, it is clear that

limited studies have been carried out in informed unsu-

pervised (IU) and uninformed unsupervised (UU) data

labelling/learning process and the relational knowledge

transfer types.

In recent studies, a wide range of common ontologies

(vocabularies), querying languages, software libraries and

technologies have been used. SSN has been used as a

vocabulary in many studies [3, 6, 20] to describe rela-

tionships between multiple sensing devices and their

observation values. The SSN was first released during 2010

by the W3C Semantic Sensor Network Incubator Group.

The SSN was developed with the goal to allow syntactical

interoperability to provide an additional layer for the

semantic compatibility, just like the Sensor Model Lan-

guage (SensorML) and the Observations and Measure-

ments (O&M) [6, 20].

C-SPARQL [3, 30, 34], SPARQLStream and STARQL

[41] are query languages developed to support the continu-

ous RDF-based sensor data stream. These languages origi-

nate from SPARQL Protocol and RDF Query Language

(SPARQL). For instance, work in [19] proposes an ontology,

STARQL to SQL mapping, and query language for Ontol-

ogy Based Data Access (OBDA) to aggregate and perform

analytical tasks over static and streaming. Likewise, work in

[4] proposes a streaming linked data framework (SLD) to

support for the event organisers to visualise crowd move-

ments in real time from the social networking sites i.e. geo-

tags from Twitter posts. Central to their approach is the

C-SPARQL querying for analysing two city-scale-wide

social events (London Olympic Games 2012, and Milano

Design Week 2013). Work in [26] proposes a knowledge

acquisition method that processes real-world sensor data to

automatically generate and evolve topical ontologies based

on rules which are also automatically extracted from exter-

nal sources. To do this, the k-means clustering method and

statistic model are used to extract and link relevant concepts

from the raw sensor data and represent them in the form of a

topical ontology. In the later stage, rule-based approach is

adapted to label the concepts.

Apache Jena is one of the popular application program-

ming interfaces (API) used for manipulating RDF data,

inferencing and reasoning. It has been applied to studies

such as the Tsunami early warning system [25], Taiyuan

hospital information retrieval system [40] and Yunnan

tourism [39]. Similarly, the work in [16] proposes a

semantic web architecture for sensor networks (SWASN)

using Jena API for inferencing and reasoning. The prototype

is developed based on SWASN and has been applied on

building fire emergency scenarios, and claims to understand

the sensor information and process sensor information on the

semantic level. SWASN defines their own sensor ontology

and uses Jena API to query the sensor data and extract

meaningful information through inferencing. The study in

[12] presents the performance between Drools and Jena API-

based systems that were used for event processing. The

result on their study concluded that while Drools is about

40% faster, Jena consumes about 15% less memory.

414 Pers Ubiquit Comput (2017) 21:411–425

123



This paper proposes a semantical approach for seg-

menting sensor data stream into multiple activity threads

with the property description of a given sensor that it is

attached with. Central to the approach is the expressive

ontological model to perform terminology box (T-Box) and

assertion box (A-Box) reasoning [28, 29], generic and user-

specific logical rules, dynamic window size analyses [23]

and continuous RDF querying language. In addition, dif-

ferent from other approaches, the proposed segmentation

approach is sensitive to changes made to the ontological

modal by a given activity learning algorithm, rules (non/

specific to user) and user-defined preferences.

3 A semantic-based approach to multi-activity
data segmentation

The semantic-enabled sensor data processing is proposed to

automatically separate and segment the data stream into

multiple dynamic threads. The proposed approach encodes

the domain knowledge into an ontology model (ADL

Activity adapted from [22]), allows user to define prefer-

ences (A-Box) and rules, and uses time series analysis

defined in [23] to segment the activity sequences and

perform inferencing. In addition, the approach allows new

learnt activities to be incorporated into the initial activity

model and will be automatically taken into consideration

during the segmentation phase.

3.1 Characterisation of complex activity

The characteristic of the single-user activity is when the sub-

activities are performed after one another in a (non) sequential

order. In the complex interleaving activity, two sub-activities

can be performed in between them, whereas, in concurrent

activity, these two sub-activities can overlap each other. The

parallel activities, on the other hand, have two activities being

executed independently of each other. Table 1 illustrates how

a single-user can perform three activities (a, b and c).

3.2 Ontological activity modelling

A generic ADL ontology model can be created with

interrelated class, properties and instances to express the

sensors, environmental objects, activities, complex activity

characteristics and user preferences. For a more compre-

hensive guide on working with ontologies see [18, 22]. An

example of how the MakeTea activity class and its prop-

erties are described in the Fig. 3 below. These class

descriptions can then be used to infer the type of the

individual instance, see Sect. 3.3. The MakeTea activity

class can be defined as a sub-class of MakeHotDrink and

use owl:Restrictions and onProperty to describe the

activity. For example, hasAdding Milk; Sugar, hasCon-

tainer Cup, and hasHotDrinkType Tea. Each of these

object properties have domain and range associating to

MakeHotDrink and HotDrinkType.

3.3 Separation and segmentation approach

The incoming sensor data from the WSNs are received by

the web service via gateway from the smart environment,

and the web service appended the events into the broad-

casting queue. The web service has active session thread

which mainly infers whether an incoming sensor event is a

start of a new activity or associated to the active sub-ac-

tivity threads that are already running. The logistics of

threads management is further described in Sect. 4.2. This

section focuses on answering the question ‘‘is this sensor

object event, Xi, linked with activity thread Zj?’’ Fig. 4

presents a generic overview of the proposed segmentation

approach and the green diamond indicating where the

above question is being asked in the whole process.

To find the relationship between the sensor event Xi and

an activity thread Zj in the session, few input data are

required by the reasoner to perform generic or user-specific

activity segmentation. The generic T-Box and logical rules

reasoning is done automatically by using Jena API with

internal reasoners or connecting one of the wide varieties

of external reasoners available such as Hermit, Pellet and

FaCT??. On the other hand, user-specific inferencing is

performed by using A-Box approach to infer from loaded

Table 1 An example of a complex user activity

Fig. 3 MakeTea activity class description in turtle format
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knowledge model with user-specific rules [i.e. Semantic

Web Rule Language (SWRL)] [31] or using SPARQL

Inferencing Notation (SPIN))[33]) or directly querying the

triplestore containing pre-defined user preferences. There-

fore, the reasoner would have access to the domain

ontology, semantical data store accessed via SPARQL-

based query languages and the sensor data streamed map-

ped in RDF format. Hence, the reasoner has the ability to

support T-box and A-box reasoning to extract the features

such as activity type, context, total duration and the com-

plexity in which the activities are performed within the

session. Figure 5 describes the overall inferencing and

reasoning approach for a given activity thread.

When setting up the sensor objects initially, they are

generally encoded with limited information such as location

and what object it is attached and not how it can be used.

Therefore, making it difficult to add relationship/property

type between sensor observations and the instance of an

activity, i.e. Thread_makeTea hasUtensil kettle. The

individual Thread_makeTea with a list of sensors with

appropriate object property type can be used to allow auto-

matic T-Box inferencing for the individual type of the ADL

class. For instance, does the Thread_makeTea individual with

the given sensor observations satisfy activity class description

to be a KitchenADL, MakeDrink or MakeTea? One of the

approaches is to use the description of the sensor object and

the type of object it is attached to for determining the relevant

object property of a sensor object to aid in performing the

T-box reasoning on the sensor stream. For example, the

BritishTeaObj sensor object can be defined with the indi-

vidual type and location of the sensor and the BritishTea

object defined as type of an Tea and individual, and links the

BritishTeaObj sensor object with hasSensor; see the rela-

tionship between with individuals and class definitions in

Table 2. A simple query can be performed to find which

individual object the sensor is attached to, its type and what

this is used for using domain and range of the properties.

Figure 6 shows the SPARQL query and the result

Fig. 5 Overview of the reasoning approach

Fig. 4 Generic overview of the proposed approach to manage sensor data stream
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table identifying the property to be used as hasHotDrinkType

for the BritishTeaObj in the Thread_makeTea individual.

Let us now assume another sensor object, KettleObj

activated. The KettleObj would have been defined as an

individual with a location and another everyday object

defined as kettle, individual which hasSensor or isSen-

sorOf KettleObj and the instance class type of Kettle.

Therefore, Thread_makeTea individual will record the

incoming sensor events, KettleObj, with the associate

everyday object, kettle, with appropriate property in order

to automatically inferring the class type of the individual.

The same method can be applied as above by finding the

parent class of the Kettle class and find the object property

with a rdfs:range of CookingUtensil, which is hasUtensil.

Similarly, as other sensors objects activate and the ADL

unfolds, the relevant predicate and object property can be

generated and populated as shown on the right-hand side

of Fig. 7. When the reasoner is activated, it can actively

infer the type of the Thread_makeTea individual is

MakeTea from the given activity sequence presented in

see Fig. 7 .

However, a simple T-box reasoning on a generic domain

model is still not enough as user may have specific items or

ways to make a tea, i.e. by adding ginger and using a pot

instead of a kettle to make the tea. Therefore, to support the

user-specific ADL, A-box (a) and rule-based (b) approach

is employed (for example see Fig. 8). The A-box reasoning

approach defined here [28, 29] and rule-based generated in

SWRL [31] or SPIN [33] is employed. Furthermore,

dynamic time series analysis [24] is required to calculate

the window size of the overall session and sub-activity

threads. This method requires user to create a static pre-

defined ADLs initially; however, in future, with the help of

different activity learning approaches, the initial generic

Table 2 Illustrating the relationship between BritishTeaObj sensor individual, property and classes

Fig. 6 Finding relevant object property for the sensor ‘‘BritishTeaObj’’ that the object is attached to
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model for T-Box reasoning and user-specific preferences/

rules can be enriched overtime.

4 Real-time semantic segmentation algorithm

There are two main components involved in processing the

stream data from the WSNs: web service and triplestore.

The triplestore such as Jena Fuseki server can be deployed

externally as an endpoint or embed it within the web ser-

vice to store and manipulate the RDF-based data. The web

service is responsible to manage the incoming sensor data

stream queue, separate the data into multiple sub-threads in

a given active session, perform activity inferencing and

reasoning with a given reasoning engine and communicate

with the triplestore to store/manipulate session data to

allow online/ offline activity modelling learning. There are

three main types of threads: session, activity and reasoning

engine thread.

A session thread has an activity manager which per-

forms three main tasks: detecting new activity unfolding

from the message queue and list of sub-activities already

running, managing list of sub-activity threads, and check-

ing if the session is complete or timed out. Furthermore,

upon completion of the session, the assistance results (if

any) are sent to the client(s), and relevant data of the ses-

sion are stored into the triplestore to enable future activity

model learning algorithm to extract more axioms. The task

of detecting new activity unfolding and creating the new

activity thread is achieved by assessing the relations of

each sensor events in the message queue against all the

existing active activity threads. The relation of a sensor

event in a given activity thread is true when the represen-

tative element/type of the class returned by the reasoner is

equivalent or is within a sub-class of the present repre-

sentative element/type. For instance, if the present repre-

sentative element/type of a given activity thread is

KitchenADL and the new reasoned result is MakeDrink,

then the association of the sensor event with the given

activity is true. However, when the scenario is inverse, then

the sensor event is most likely to be part of other active

activity threads in the list or a start of new activity. The

Fig. 7 T-Box reasoning for MakeTea activity from the given object properties in Thread_MakeTea

Fig. 8 An example of with pre-defined user preferences for A-Box reasoning (a) and SWRL rules (b)
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second and third tasks of the activity manager in the ses-

sion thread involves removing/closing the completed

activity threads from the list of active activity threads and

managing timed out activity by assessing previous other

active activities or the incomplete activities from the pre-

vious sessions.

On the other hand, the activity thread captures the

associated sensor events from the message queue until the

activity is complete or timeout. Furthermore, the activity

threads can be subdivided to perform two types of infer-

encing, T-Box and A-Box. The T-box activity thread use

reasoning engine thread mainly to perform inferencing

using domain knowledge model and using generic rules.

The A-Box activity thread can either use reasoning engine

to run queries with user-specific rules on the inferred model

or directly executing queries on the triplestore to find the

user-specific preference(s) on a given set of sensor obser-

vations. The A-Box activity thread can then potentially

retrieve rest of the sensor observations from the user

preferences identified from the previous step and tem-

porarily store in the memory instead of making a query

request for each sensor events. Although this approach

would reduce the processing tasks but also taking up more

random access memory (RAM) which is already limited on

a standard server/computer.

The reasoning engine thread supports T-Box, A-Box and

rule-based (generic/user-specific) inferencing as described

above and in Sect. 3.3, to identify the activity class type on

a given activity instance with a set of sensor observations

of an activity thread. As mentioned previously, there are

various reasoning implementation; however, Jena API is

considered to be more suitable due to its performance in the

previous studies, supports for external reasoners and the

Java programming based implementation. This reasoning

thread could also be a singleton class with synchronised

access to all the activity threads to perform inferencing on

the loaded knowledge model and rules. However, the

synchronised approach could cause delays for multiple

clients running many sub-activity threads. Therefore,

asynchronised mechanism will need to be implemented to

enhance the performance of the reasoning engine and the

scalability.

Figure 9 provides an overview of the steps proposed to

separate and segment the data stream into as a flowchart.

4.1 Stream processing algorithm

The web service will ensure to have an active session

thread to listen to the incoming sensor data stream. In

addition to the three tasks performed by the session, it

dynamically updates the maximum timeout depended on

the maximum duration required by the sub-activity threads

to complete. The sub-activity threads are responsible for

listening to the sensor events queue and infer whether the

sensor observation belongs to the activity thread. If the

match is found, sensor event data will be appended to the

activity thread, the result is broadcasted back to the clients

and the timeout window size is revaluated. There are two

types of threads being created, T-Box and A-Box. A T-

Box thread is initially created to identify the unfolding

events and no other T-Box or A-Box threads created unless

the representative inferred class has no sub-classes in the

model and no user preferences using A-Box could be found

with current set of sensors.

The pseudo algorithm defined in Table 3 describes the

core part of the segmentation process where the beginning

Fig. 9 Overview of segmentation steps on the sensor data stream

Pers Ubiquit Comput (2017) 21:411–425 419

123



of a new activity is detected and the new threads are cre-

ated and recycled and the maximum duration window size

are re-/evaluated. This process is performed by the activity

manager in the session thread, and they are broken down

into four stages.

The first stage is to iterate over all the active

T-Box threads and use the current list of sensors observa-

tions in each thread along with the sensor event being

investigated to execute a new T-Box inferencing result.

This new result will return a representative class of an

ADL, and it is then compared against the current activity

class to decide if the sensor event is part of the ongoing

activity. To do this, checks are made with the result class

and current class if they are equal or if the new result is

within the sub-classes/hierarchy of the current ADL class.

If the result is true, no thread is created and waits for the

next sensor event. In the second stage, where the result is

false, similar checking is made within all the active

A-Box threads. A binary flag is used to indicate if

A-Box thread has already processed the sensor or not. The

third stage is where the decision is made whether to create

a new A-Box thread or T-Box. The A-Box thread is only

created if the new sensor event is a part of an ongoing

activity and has some user personal preference(s) stored in

the triplestore, for which, multiple A-Box threads are

executed. Otherwise, it is determined that the new sensor

event is a start of a new activity, hence, starting a new

T-Box thread. The final stage is where all the housekeeping

for the sub-threads and the process of revaluating the

maximum session timeout window takes place. The

housekeeping of the threads is further discussed in the

Sect. 4.2.

4.2 Session and activity threads management

logistics

The notion of multithreading is adapted whereby each

active session creates sub-activity threads and inspects

individual sensor events from the message queue.

Figure 10 illustrates how activity manager in the session

thread performs housekeeping tasks described in previous

section as a flowchart. The sub-activity threads, A-Box or

T-Box threads, have two internal flags for the activity

completion and timeout. The activity manager in its fourth

phase of the algorithm checks these two flags statuses and

performs specific set of tasks. In the case where all sub-

activity threads are complete, the session encodes all the

relevant data, store it in the triple and set its status to

deactivate/complete to indicate to the web service to start a

new session for the client. This will enable the virtual

machine to recycle the threads and reduce the memory

consumptions over period of time.

The timeout case for a given thread is handled by

investigating existing shared events in the session and

Table 3 Pseudo algorithm to semantically segment incoming data stream into multiple threads
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previous session stored in the triplestore. A given activity

thread may share some sensor events, for instance, opening

kitchen cupboard (KitchenCupboard1Obj) to get a Tea-

CupObj and PastaSauceJarObj. However, due to the way

the threads being created at different interval, they miss

some shared activities in the message queue. In this case, a

copy of these shared activities are mark as shared and kept

within the session with the references to the threads for

further analysis. Similarly, the current session threads are

also interlinked with previous session threads details and

stored in the triplestore. The current and previous session

details are further compared to find any relevance between

with unfinished, unknown, or has timed out activity

threads. This will allow session thread to evaluate whether

previous sessions prematurely completed activities and

current sessions incomplete activities are related. The

session and sub-activity threads manage their own timeout

window size, listen to the sensor message queue and per-

form incremental reasoning to add the related sensor events

to the activity sequence.

5 Evaluation and discussion

5.1 Use-case application scenario

The following user case study example is presented to

convey how the aforementioned semantic segmentation

approach will operate in a given scenario. Robert is retired,

70-year-old man who lives by himself and has a mild form

of Dementia. Roberts case has affected his quality of living

in several ways. He now has trouble remembering how to

carry out ADLs, and finds it difficult to navigate to familiar

places. All of the information related to Roberts health

condition in addition to personal information are modelled

and stored within the modelling and management layer of

the system within his unique user profile. The scenario is

that Robert frequently makes pasta (MakingPasta) and tea

(MakingTea) for his dinner. He starts preparing his meal

around 18:20 and takes his medicine (TakeMedicine)

before having dinner. During this process, Robert regularly

gets a phone call (TakePhoneCall) from his son and/or

daughter-in-law after they get home from work. Due to the

dependent, interwoven and concurrent complexity of these

activities being performed by Robert, he frequently forgets

to keep track of the tasks he has already performed for the

activity. Thus, Robert has not always been able to enjoy his

dinner due to various reasons, such as missing ingredients,

and over cooking. Figure 11 provides a snapshot of how

Robert may go about performing his complex activity

described above and how they will be segmented using the

proposed semantical approach. In the given scenario above,

Robert is performing four different activities with some

activities be depended on another, interwoven and con-

currently. The activity readings are initiated from when

Robert enters kitchen (KitchenDoorObj) and then starts

taking items from the kitchen cupboard (KitchenCup-

boardObj). The items that he takes out consist of Medici-

neObj, PastaSauceJarObj, TeaObj and SugarObj. At this

stage, T-Box reasoning is performed incrementally and

detects that three different types of ADL are being per-

formed and creates new A-Box threads: MakingTea

(TeaObj and SugarObj), MakeMeal/MakingPasta (Pas-

taSauceJarObj) and TakeMedicine (MedicineObj). These

sequences of activities illustrate how opening kitchen

cupboard is seen as a shared/depended across multiple sub-

Fig. 10 Overview of the session and activity threads creation with interlinking mechanism
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activity. Moreover, as the activity unfolds, it appears that

the kitchen cupboard is left open and more objects are

retrieved from it or they are already outside: PanObj,

GlassCup1Obj, KnifeObj and ChoppingBoardObj. These

four sensor events would be filtered and stored in A-Box,

respectively. During this phase, Robert may also receive/-

make a phone call and makes his way through the opened

kitchen door to the LivingRoomDoorObj and picks up the

TelephoneObj. This two sensor events will make the

activity manager in the session create a new T-Box rea-

soning thread and infer that the user might be mak-

ing/taking a phone call; for illustration purposes,

TakePhoneCall class is returned. The TelephoneObj sensor

continues to send the message for interactions while per-

forming the next tasks. Next, the KitchenWaterTapObj is

activated which multiple T-Box activity threads share i.e.

MakingTea, MakingPasta and TakeMedicine. Next, the

KettleObj event is received which is seen as a utensil item

for MakingTea thread. The same process is repeated for the

next sensor observations which are mainly added to Mak-

ingTea and MakingPasta T-Box threads: FridgeObj,

MilkObj, CheeseObj, MixVegObj, CupObj, ChilliesObj,

SpoonObj, BakingTrayObj and KitchenCupboard1Obj.

Furthermore, to illustrate how a given activity thread

perform the reasoning and what type of result it output, let

us extend the MakingPasta activity thread (which performs

T-Box reasoning) with a new incoming sensor event named

PastaObj. Table 4 defines these two input parameters and

outputs a Result object containing three levels of infor-

mation from ADL class type, any matched rules and any

specific user preference. The reasoning engine thread per-

forms T-Box reasoning using domain ontology would

return the ADL class description to be MakePasta. How-

ever, with the help of activity manager, another thread

running A-Box reasoning due to chiliObj not defined as a

standard adding to make pasta may return the user-specific

rule SpicyMixedVegPasta and the preference named spi-

cyVegPasta_ preference. The results are then mapped

within a class and sent back to the activity thread to update

the activity sequence and window size. However, currently,

these two threads running A-Box and T-Box reasoning

output disjointed results and it can come together by

mapping a user-specific preference with an ADL class in

the triplestore and the activity manager in the session

thread map their outputs results together to output useful

information as described in Table 4.

In general, as the activity unfolds, new sensor events are

continuously monitored by the activity threads and the

activity manager in the session. The activity threads

incrementally run the reasoning engine and recalculate the

activity window size. The result of the semantical seg-

mentation approach creates a set of sensor event sequences

within a given activity thread. These sequences are then

further analysed by AR algorithm to be developed on top of

the segmentation phase to decipher other inexplicit attri-

butes such as contextual location, composite or simple

activity, and generic or user-specific activity.

5.2 Discussion

The approach currently supports the semantical segmen-

tation of a single-user complex activity. Furthermore, work

in automatically detecting and segmenting the multi-user

complex activity is actively being investigated. The

detection parameters would be the key enabler to recognise

multi-user activity. In addition, the activity learning algo-

rithm is required to automatically enrich the domain

ontology, user preferences and logical rules after inferring

Fig. 11 An example of a session thread consisting of multiple activity threads with 1 dependent, 2 interwoven/dependent activity and 3

concurrent activities

422 Pers Ubiquit Comput (2017) 21:411–425

123



new activity patterns from the unknown session data stored

in the triplestore. Although this approach enables the

updating generic models and user-specific preferences and

rules to be easily enriched, managing conflicts and con-

sistency issues between general and user-specific knowl-

edge representation could create further challenges.

One of the limitations of the proposed thread manage-

ment system is that every activity thread within a session

listening to the broadcast will perform inferencing upon a

single-sensor event, which means N � 1 number of activity

threads may request to perform inferencing unnecessarily

and creating excess computation overheads, delays to

process next events and energy. One way to reduce

inferencing request is by allowing active session thread to

incrementally check against the list of missing/expected

activity sensor sequences. These sensor sequences can be

preconfigured by retrieving either from user preferences

(for A-Box threads) or individuals with the type class

described for a given ADL (for T-Box threads). Never-

theless, the activity manager in session thread would still

iterate over the individual activity threads but do not need

to use reasoning engine as the list of missing/potential

sensor would be available within each activity thread.

Another approach could be defined with an analogy of a

lost child (sensor event) and a policeman (thread with pre-

defined procedures) trying to figure out where the child

Table 4 Reasoning engine to finding associate links with a given thread sensor sequences and sensor event
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lives. The policeman can take the child safely to the parents

house (linked activity sequences) or report as found and

wait for the correct authority (new sensor event). This

approach assumes child (sensor event) has limited meta-

data about itself. However, this approach also has its lim-

itation because a child (sensor event with metadata) may

have multiple parents claiming for custody (i.e. sensor

event belonging to multiple ADLs).

6 Conclusion

This paper presents a semantical-based approach to sepa-

rating and segmenting the real-time sensor stream into

multithreads. The notion of interlinked session, sub-activ-

ity and broadcast queue are used to not only calculate

dynamic time window but also infer the ongoing activity.

The ontology and rules are used to infer and segment a

given complex activity to support AR phase. In addition to

terminology (T-Box) and generic rules, user preferences-

based assertion (A-Box) and rules are applied to find any

association of a sensor event within a given activity thread.

This approach further enables new learnt activity models

and rules to be more easily incorporated into the existing

model at run-time and automatically taken into consider-

ation during the separation and segmentation process. The

future direction of this work is to implement and evaluate

the proposed approach within a real-time sensing envi-

ronment that was developed in the previous work [28, 29].

Moreover, efficient HAR and activity learning algorithms

will be investigated to enrich and expand the initial domain

model incrementally over period of time to provide

impersonal and personal service to the user(s). After

achieving desired accuracy and performance of a single-

user complex AR, the challenge of identifying and tracking

multi-user complex activities will be investigated.
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