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Abstract Ocean observation plays an essential role in

ocean exploration. Ocean science is entering into big data

era with the exponentially growth of information technol-

ogy and advances in ocean observatories. Ocean observa-

tories are collections of platforms capable of carrying

sensors to sample the ocean over appropriate spatiotem-

poral scales. Data collected by these platforms help answer

a range of fundamental and applied research questions.

Many countries are spending considerable amount of

resources on ocean observing programs for various pur-

poses. Given the huge volume, diverse types, sustained

measurement, and potential uses of ocean observing data, it

is a typical kind of big data, namely marine big data. The

traditional data-centric infrastructure is insufficient to deal

with new challenges arising in ocean science. New dis-

tributed, large-scale modern infrastructure backbone is

urgently required. This paper discusses some possible

strategies to solve marine big data challenges in the phases

of data storage, data computing, and analysis. Some

applications in physics, chemistry, geology, and biology

illustrate the significant uses of marine big data. Finally, we

highlight some challenges and key issues in marine big

data.
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1 Introduction

The ocean covers more than 2/3 of Earth’s surface. Phyto-

plankton in the surface ocean produces half of the oxygen

from photosynthesis on Earth. Ninety percent of heat from

global warming has been absorbed by the ocean. Ninety

percent of international trade travels by ship. No matter

where we live, the ocean affects our life. However, 95% of

the ocean remains unexplored and under-appreciated by

humans [1]. This calls for understanding all facets of the

ocean as well as its complex connections with Earth’s

atmosphere, land, ice, seafloor, and life—including human-

ity. It is essential not only to advance knowledge about our

planet, but also to ensure society’s long-term welfare and to

help guide human stewardship of the environment.

Oceanography is evolving from a ship-based expedi-

tionary science to a distributed, observatory-based

approach, facilitating data collection of long-term time

series and providing an interactive capability to conduct

experiments using data streaming in real time [2]. For

example, the Ocean Observatories Initiative (OOI) [3]

manages and integrates data from over 800 instruments

deployed among its seven arrays. Instruments are located

on a myriad of platforms including gliders, autonomous

underwater vehicles (AUVs), surface buoys, profilers,

inductive mooring cables, and seafloor junction boxes.

Over 200 unique data products are measured or derived

from nearly 75 models of specialized instrumentation used

in the OOI from the air–sea interface to the seafloor. Multi-

source ocean observing data are collected and stored at an

unprecedented scale and speed [4]. Based upon Gartner’s

definition of big data [5], ocean observing data do have the

3Vs (volume, velocity, and variety) characteristics.

Therefore, ocean observing data can be regarded as a

typical kind of big data, i.e., marine big data.
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These data must be stored in raw format, parsed, cali-

brated, and processed for quality control, then analyzed,

and further derived into other products such as visualiza-

tions [6]. Due to the unique characteristics of marine big

data, such as multi-source, long-lasting, uncertainty, and

incompleteness, they exceed the processing and analysis

capacities of conventional systems. This situation has

caused new challenges for the traditional technologies such

as relational databases and scale-up infrastructures [7].

Current researches involving big data primarily concern

with how to discover and make sense of such high amounts

of data more effectively and efficiently [8]. Key issues

investigated include infrastructure [9], storage [10], anal-

ysis [11], security [12], etc.

The rest of this paper is organized as follows. In Sect. 2,

we introduce some important ocean observatories and

ocean observing programs for data acquisition. In Sects. 3

and 4, we discuss some possible strategies to resolve key

issues in marine big data storage, computing, and analysis,

respectively. Applications in Sect. 5 illustrate the signifi-

cance of marine big data, followed by the conclusion in

Sect. 6.

2 Data acquisition

During data acquisition phase, ocean observatories equip-

ped with various sensors are utilized to collect raw data

from the ocean. This section will introduce some repre-

sentative ocean observing platforms and projects for mar-

ine data acquisition.

2.1 Ocean observing platforms

The ocean observatories are collections of platforms cap-

able of carrying sensors to collect data over certain spa-

tiotemporal scales. These platforms include ships,

satellites, and a range of Eulerian and Lagrangian systems

[13].

• Ships have been the primary tool for oceanographers

for centuries and will remain a central piece of

infrastructure in the foreseeable future. Ships available

to the ocean observing include both global class vessels

and smaller coastal vessels. The capabilities of the

ships have improved significantly in the station holding

and dynamic positioning, multi-beam and side-scan

sonar systems, and more complex sensors and instru-

mentation becoming routine tools when at sea.

• Satellites constitute the most essential oceanographic

technology innovation in modern times. They are the

new tools for understanding various ocean processes

and land–air–sea interactions over decadal time scales.

Satellite data, fundamental to weather and ocean state

prediction, have revealed new phenomena over critical

spatiotemporal scales which were previously inacces-

sible using only in situ observing data.

• Seafloor electro-optic cables with high bandwidth and

sustained power offer potential means for providing

sustained observation in the ocean. Seafloor cables have

been deployed off the coasts of the USA, Canada,

Japan, Europe, and China. These cables have success-

fully been used to study a wide range of topics such as

seafloor seismicity, tsunamis, seafloor dynamics,

coastal upwelling ecosystem productivity, ocean turbu-

lence, gas hydrates.

• Drifters and Floats are passive, battery powered

Lagrangian platforms used in creating surface and

subsurface maps of ocean currents and ocean proper-

ties, respectively. These platforms are relatively inex-

pensive so that thousands of these platforms can be

deployed at sea by regular crews. Measurements are

normally made hourly, and the data are transmitted by

satellite.

• Moorings provide the means to deploy sensors at fixed

depths between the seafloor and the sea surface and to

deploy packages that profile vertically at one location

by moving up and down along the mooring line/cable

or by winching themselves up and down from their

point of attachment to the mooring. They will continue

to be a key element of ocean observing infrastructure

that provides high-frequency fixed location subsurface

data to supplement the spatial data collected by ships,

autonomous underwater vehicles, and satellite remote

sensing.

• Gliders are a type of autonomous underwater vehicle

using buoyancy-based propulsion to convert vertical

motion to horizontal motion. Due to very low power

consumption, gliders provide data over large spatiotem-

poral scales, with missions lasting over half a year and

over 3500 km of range. They navigate with the help of

periodic surface GPS fixes, pressure sensors, tilt

sensors, and magnetic compasses.

• AUVs provide much-needed flexibility in ocean obser-

vations as they allow for the movement of sensors

through the water in three dimensions. Unlike gliders,

AUVs can move against most currents nominally at 3–5

knots. Therefore, they can systematically and synopti-

cally survey a particular line, area, and/or volume. Like

gliders, AUVs relay data and mission information to

shore via satellite. The endurance of AUVs depends on

the size of the vehicle as well as the power consump-

tion, allowing them to run continuous missions of a day

or more with ranges of 70–240 km.
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2.2 Ocean observing projects

The dream of long-term observation in the ocean has

explored for more than 20 years. Many countries and

organizations have given their contributions to establish

global, regional, or local ocean observing systems by using

various platforms with multiple sensors onboard. Next, we

introduce several national or international projects for

long-term ocean observation.

• Argo [14] is a global array of more than 3000 free-

drifting profiling floats that collect high-quality tem-

perature and salinity profiles from the upper 2000 m of

the ice-free global ocean and currents from intermedi-

ate depths. This allows, for the first time, continuous

monitoring of the temperature, salinity, and velocity of

the upper ocean. Deployments began in 2000 and

national programs need to provide about 800 floats per

year to maintain the Argo array. The broad-scale global

array has already grown to be a major component of the

ocean observing system. It builds on other upper-ocean

ocean observing networks, extending their coverage in

space and time, their depth range and accuracy, and

enhancing them through the addition of salinity and

velocity measurements. It is the sole source of global

subsurface datasets used in all ocean data assimilation

models and reanalyses.

• Global Ocean Observing System (GOOS) [15] in its

present form was created in 1991, when the UN

Intergovernmental Oceanographic Commission (IOC)’s

Technical Committee for Ocean Processes and Climate

(TC/OPC) agreed that the ocean observing system

concept should be broadened to include physical,

chemical, and biological coastal ocean monitoring.

GOOS is a permanent global system for observations,

modeling, and analysis of marine and ocean variables

to support operational ocean services worldwide.

GOOS provides accurate descriptions of the present

state of the oceans, including living resources, contin-

uous forecasts of the future conditions of the sea for as

far ahead as possible, and the basis for forecasts of

climate change. GOOS is made of many observation

platforms: 3000 Argo floats, 1250 drifting buoys, 350

embarked systems on commercial or cruising yachts,

100 research vessels, 200 marigraphs and holographs,

50 commercial ships, 200 moorings in open sea.

• Ocean Networks Canada (ONC) [16], an initiative of

the University of Victoria, operates the world-leading

NEPTUNE and VENUS cabled ocean observatories in

the northeast Pacific Ocean off Canada’s west coast. In

addition, smaller-scale community observatories are

located in the Arctic at Cambridge Bay, Nunavut, and

Mill Bay, British Columbia, with more installations

under development along the BC coast and across

Canada. Its goals are to deliver science and information

for good ocean management and responsible ocean use

for the benefit of Canadians. ONC cabled observatories

collect data that help scientists and leaders make

informed decisions about coastal earthquakes and

tsunamis, climate change, coastal management, con-

servation, and marine safety.

• US Integrated Ocean Observing System (US IOOS) [17]

was approved to be founded according to the Integrated

Coastal andOceanObservation SystemAct of 2009. IOOS

is a national–regional partnership working to provide new

tools and forecasts to improve safety, enhance the economy

and protect environment. It is a vital tool for tracking,

predicting,managing, and adapting to changes in the ocean,

coastal, and Great Lakes environment. IOOS observing

systems consist of sensors that collect marine data and

technology that sends the data to a data collection center,

often with satellite telemetry. Observing systems come in

all sizes, from global scale systems collecting information

on climate down to a local system focused on a single

estuary. The US GOOS Regional Alliance is the GOOS

IOC interface to the US IOOS.

• OceanObservatories Initiative (OOI) [3]was approvedby

the National Science Board as a potential Major Research

Equipment and Facilities Construction project in 2000.

This National Science Foundation-funded OOI is an

integrated infrastructure project composed of science-

driven platforms and sensor systems that measure phys-

ical, chemical, geological, and biological properties and

processes from the seafloor to the air–sea interface. The

OOI has transformed research of the oceans by establish-

ing a network of interactive, globally distributed sensors

with near real-time data access, enhancing our capabilities

to address critical issues such as climate change, ecosys-

tem variability, ocean acidification, and carbon cycling.

The design of the OOI enables multiple scales of marine

observations integrated into one observing system. The

coastal assets of the OOI expand existing observations off

both US coasts, creating focused, configurable observing

regions. Cabled observing platforms ‘‘wire’’ a single

region in the Northeast Pacific Ocean with a high-speed

optical and high power grid. The global component

addresses planetary-scale changes viamoored open-ocean

buoys linked to shore via satellite.

3 Data storage

The collected marine data will be transmitted to a data

storage infrastructure for further processing and analysis.

Long-term sustained and multi-source data acquisition
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leads to the rapid expansion and complexity of data. It

raises huge challenges in storage and processing of these

data [18]. The datasets stored at the data center come from

many different sensors hosted on remote sensing or in situ

platforms. To optimize the system and considering storage

capability, and speed response, the metadata and some

types of data are stored in relational databases, and some

other types of data are stored in files [19]. Normally, data

types with a wide range of parameters but not too much

data, such as nutrients, pollutants, and any other sample

measurements, are stored in relational databases. However,

data types with few parameters but huge volume of data,

such as CTD (conductivity, temperature, and depth),

ADCP (acoustic Doppler current profiler) and imagery

sensors, are stored in binary, ASCII, or image files. Ocean

observation is quite complicated and task oriented. Even

for acquiring the same oceanographic parameter, e.g.,

temperature, different observing platforms with different

sensors may be chosen according to different task

requirements of spatiotemporal scales. Therefore, the

acquired data of the same oceanographic parameter may

have different data formats and need to be stored in dif-

ferent type of databases.

3.1 Storage foundation

Existing massive storage technologies can be classified

as direct-attached storage (DAS), network-attached

storage (NAS), and storage area network (SAN). Various

hard disks directly connect with servers in DAS, and data

management is server centric. However, due to its low

scalability, DAS is mainly used in personal computers

and small-sized servers. NAS directly connects to a

network through a hub or switch through TCP/IP pro-

tocols, and data are transmitted in the form of files. SAN

is especially designed for data storage with a scalable

and bandwidth intensive network. From the organization

of a data storage system, DAS, NAS, and SAN all can be

divided into three parts: disk array, connection and net-

work sub-systems, and storage management software

[20].

File systems, the bottom level in storage mechanisms,

are the foundation of the applications at upper levels. Many

companies and researchers have their solutions to meet the

different demands for storage of big data. For example,

Google’s GFS is an expandable distributed file system to

support large-scale, distributed, data-intensive applications

[21]. HDFS [22] and Kosmosfs are derivatives of open

source codes of GFS. Microsoft developed Cosmos to

support its search and advertisement business [23]. Face-

book utilizes Haystack to store the large amount of small-

sized photos [24].

3.2 NoSQL databases

Traditional relational databases cannot meet the challenges

on categories and scales brought about by marine big data.

NoSQL databases are becoming the core technology for

big data storage. NoSQL databases feature flexible modes,

support for simple and easy copy, simple API, eventual

consistency, and support of large volume data [20]. This

section will introduce three main NoSQL databases based

on different data models: key-value databases, column-

oriented databases, and document-oriented databases.

3.2.1 Key-value databases

Key-value databases are constituted on a simple data

model, and data are stored corresponding to key-values.

Every key is unique, and customers may input queried

values according to the keys. Such databases feature a

simple structure, and the modern key-value databases have

higher expandability and shorter query response time than

relational databases. Over the past few years, many key-

value databases have appeared as motivated by Amazon’s

Dynamo system.

• Dynamo [25] is a highly available and expandable

distributed key-value data storage system. It is used to

store and manage the status of some core services,

which can be realized with key access, in the Amazon

e-Commerce Platform. The public mode of relational

databases may generate invalid data and limit data scale

and availability. However, Dynamo can resolve these

problems with a simple key–object interface constituted

by simple reading and writing operations. Dynamo

achieves elasticity and availability through the data

partition, data copy, and object edition mechanisms.

3.2.2 Column-oriented databases

Column-oriented databases store and process data accord-

ing to columns other than rows. Both columns and rows are

segmented in multiple nodes to realize expandability.

Many column-oriented databases are mainly inspired by

Google’s BigTable.

• BigTable [26] is a distributed, structured data storage

system, which is designed to process the large-scale

(PB class) data among thousands commercial servers.

The basic data structure of BigTable is a multi-

dimensional sequenced mapping with sparse, dis-

tributed, and persistent storage. Indexes of mapping

are row key, column key, and timestamps, and every

value in mapping is an unanalyzed byte array. Each row

key in BigTable is a 64-KB character string. By
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lexicographical order, rows are stored and continually

segmented into Tablets for load balance. The columns

are grouped according to the prefixes of keys, and thus

forming column families. The timestamps are 64-bit

integers to distinguish different editions of cell values.

3.2.3 Document-oriented databases

Compared with key-value storage, document storage can

support more complex data forms. Since documents do not

follow strict modes, there is no need to conduct mode

migration. In addition, key-value pairs can still be saved.

MongoDB, SimpleDB, and CouchDB are three important

representatives of document storage systems [20].

• MongoDB [27] is an open-source and document-

oriented database. MongoDB stores documents as

Binary JSON (BSON) objects, which is similar to

object. Every document has an ID field as the primary

key. Query in MongoDB is expressed with syntax

similar to JSON. The system allows query on all

documents, including embedded objects and arrays.

MongoDB supports horizontal expansion with auto-

matic sharing to distribute data among thousands of

nodes by automatically balancing load and failover.

• SimpleDB [28] is a distributed database and is a Web

service of Amazon. Data in SimpleDB are organized

into various domains in which data may be stored,

acquired, and queried. Domains include different

properties and name/value pair sets of projects. This

system does not support automatic partition and thus

could not be expanded with the change of data volume.

SimpleDB allows users to query with SQL. It is worth

noting that SimpleDB can assure eventual consistency

but does not support to multi-version concurrency

control (MVCC).

• Apache CouchDB [29] is a document-oriented database

written in Erlang. Data in CouchDB are organized into

documents consisting of fields named by keys/names

and values, which are stored and accessed as JSON

objects. Every document is provided with a unique

identifier. CouchDB utilizes the optimal copying to

obtain scalability without a sharing mechanism. The

consistency of CouchDB relies on the copying mech-

anism. CouchDB supports MVCC with historical Hash

records.

3.3 In-memory databases

To optimize the application performance, data centers not

only scale their sizes but also change system architectures

with a particular focus on storing and retrieving large

datasets more quickly. Accessing data stored in secondary

devices is time consuming. Therefore, it is highly unlikely

that a high-performance application would be able to per-

form jobs efficiently using disk-based system architectures,

such as Hadoop and GFS. Notable trends are the growth of

in-memory databases and the widespread adoption of flash

SSDs in data centers [30]. In-memory databases primarily

rely on DRAM main memory for data storage. They are

orders of faster than disk-optimized databases in typical

data analytics queries. New databases with simpler data

models (often referred to as ‘‘NoSQL’’ or ‘‘NewSQL’’)

become popular for applications that do not require rich

RDBMS (relational database management system) func-

tionalities. These systems offer superior scalability and a

low response time. Ever increasing main memory capaci-

ties have fostered the development of in-memory database

systems [31]. For example, CedCom caches data in main

memory [32], which combines the power of cache-only

memory architecture (COMA) and the structural principle

of Hadoop. Stanford University’s RAMClouds aim to build

a cluster scale storage system entirely with DRAM [33].

4 Data computing and analysis

Due to the multi-source, massive, heterogeneous, and

dynamic characteristics of application data involved in a

distributed environment, one of the most important char-

acteristics of big data is to carry out computing on the

petabyte (PB), even the exabyte (EB)-level data with a

complex computing process [34]. Therefore, utilizing a

parallel computing infrastructure to efficiently analyze and

mine the distributed data are the critical goals for big data

processing. In this section, we introduce some representa-

tive computing infrastructures, methods, and tools for big

data analysis.

4.1 Computational model

Big data are generally stored in hundreds and even thou-

sands of commercial servers. Thus, the traditional parallel

models, such as Message Passing Interface (MPI) and Open

Multi-Processing (OpenMP), may not be adequate to sup-

port such large-scale parallel programs. Recently, some

proposed parallel programming models effectively improve

the performance of NoSQL and reduce the performance

gap to relational databases. Therefore, these models have

become the cornerstone for the analysis of massive data

[20].

• MapReduce [35] is a simple but powerful programming

model for large-scale computing using a large number

of clusters of commercial PCs to achieve automatic
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parallel processing and distribution. In MapReduce,

computing model only has two functions, i.e., Map and

Reduce, both of which are programmed by users. The

Map function processes input key-value pairs and

generates intermediate key-value pairs. Then, MapRe-

duce will combine all the intermediate values related to

the same key and transmit them to the Reduce function,

which further compress the value set into a smaller set.

MapReduce has the advantage that it avoids the

complicated steps for developing parallel applications,

e.g., data scheduling, fault tolerance, and internode

communications. The user only needs to program the

two functions to develop a parallel application.

• Dryad [36] is a general-purpose distributed execution

engine for processing parallel applications of coarse-

grained data. The operational structure of Dryad is a

directed acyclic graph, in which vertexes represent

programs and edges represent data channels. Dryad

executes operations on the vertexes in clusters and

transmits data via data channels, including documents,

TCP connections, and shared-memory FIFO. During

operation, resources in a logic operation graph are

automatically mapped to physical resources. Dryad

allows vertexes to use any amount of input and output

data, while MapReduce supports only one input and

output set.

• Pregel [37] facilitates the processing of large-sized

graphs, e.g., analysis of network graphs and social

networking services. A computational task is expressed

by a directed graph constituted by vertexes and directed

edges. Every vertex is related to a modifiable and user-

defined value, and every directed edge related to a

source vertex is constituted by the user-defined value

and the identifier of a target vertex. When the graph is

built, the program conducts iterative calculations,

which is called supersteps among which global syn-

chronization points are set until algorithm completion

and output completion.

• All-Pairs [38] is a system specially designed for

biometrics, bio-informatics, and data mining applica-

tions. It focuses on comparing element pairs in two

datasets by a given function. All-Pairs can be expressed

as three-tuples (Set A, Set B, and Function F), in which

Function F is utilized to compare all elements in Set A

and Set B. The comparison result is an output matrix M,

which is also called the Cartesian product or cross-join

of Set A and Set B.

4.2 Data analysis

Data analysis is the final and the most important phase in

the value chain of big data, with the purpose of extracting

potential useful values and providing suggestions or deci-

sions. However, data analysis is a broad area, which fre-

quently changes and is extremely complex. Many

traditional data analysis methods may still be utilized for

big data analysis, such as cluster analysis, factor analysis,

correlation analysis, regression analysis, A/B testing, sta-

tistical analysis, data mining. Some big data analysis

methods can be used to speed up the extraction of key

information from massive data. At present, the main pro-

cessing methods of big data include bloom filter, hashing,

index, triel, parallel computing, etc.

For marine data analysis applications, data mining is an

essential method to extract hidden, unknown, but poten-

tially useful information and knowledge from massive,

incomplete, noisy, fuzzy, and random data. In 2006, The

IEEE International Conference on Data Mining (ICDM)

series identified ten most influential data mining algorithms

[39], including C4.5, k-means, SVM, Apriori, EM,

PageRank, AdaBoost, kNN, Naive Bayes, and CART.

These ten algorithms cover classification, clustering,

regression, statistical learning, association analysis, and

linking mining, all of which are the most important topics

in data mining research and development. To adapt to the

multi-source, uncertain, dynamic marine big data, existing

data mining methods should be expanded in many ways,

including efficiency improvement of single-source knowl-

edge discovery methods [40], mining frequent or interested

patterns from uncertain data [41, 42], designing a data

mining mechanism from a multi-source perspective [43], as

well as the study of dynamic data mining methods and the

analysis of stream data [44].

Parallel processing has been the mainstream of design-

ing efficient data-processing platforms so that data could be

processed in a distributed and parallel manner, improving

the throughput of data processing [45]. MapReduce is the

most representative paradigm. Modern research on big data

analysis has focused mostly on employing the MapReduce

programming paradigm and the Hadoop Ecosystem, giving

rise to a number of DBMSs that can be deployed in a

distributed cloud-based environment [46], such as Pig [47]

and Hive [48].

After algorithm parallelization, the traditional analysis

software tools will have the ability of big data processing.

Das et al. [49] integrated R, an open-source statistical

analysis tool, and Hadoop to improve the weak scalability

of traditional analysis tool and poor analysis capabilities of

Hadoop. The in-depth integration pushes data computation

to parallel processing, which enables powerful deep anal-

ysis capabilities for Hadoop. Standard Weka, an open-

source machine learning and data mining tool, can only run

on a single machine with a limitation of 1-GB memory.

Wegener et al. [50] integrated Weka and MapReduce to

break through the limitations, taking the advantage of
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parallel computing to handle more than 100-GB data on

MapReduce clusters. In recent years, extracting valuable

information and insightful knowledge from big data has

become an urgent need in many disciplines. Due to its high

impact in many areas, more systems and analytical tools

have been developed for big data analysis, such as Apache

Mahout, MOA, SAMOA, and Vowpal Wabbit [51].

5 Applications of marine big data

Marine big data are fundamental to a variety of research

fields in biology, earth science, and ocean and atmospheric

science. This section will give some examples of physical,

chemical, geological, and biological applications to

demonstrate the potential uses of marine big data.

5.1 Physical application

• El Niño is a warming of surface waters in the eastern

tropical Pacific Ocean (shown in Fig. 1). Together with,

La Niña, these make up two of the three states of the

constantly changing El Niño/Southern Oscillation

(ENSO) that can affect weather patterns around the

globe. When ocean and atmospheric conditions in one

part of the world change as results of ENSO or any

other oscillation, the effects are often felt around the

world. The rearrangement of atmospheric pressure,

which governs wind patterns, and sea-surface temper-

ature, which affects both atmospheric pressure and

precipitation patterns, can drastically rearrange regional

weather patterns, occasionally with devastating results.

Extreme climate events are often associated with pos-

itive and negative ENSO events. Severe storms and

flooding have been known to ravage areas of South

America and Africa, while intense droughts and fires

have occurred in Australia and Indonesia during El

Niño events.

5.2 Chemical application

• Ocean acidification is an emerging global problem.

When carbon dioxide (CO2) is absorbed by seawater,

chemical reactions occur that reduce seawater pH,

carbonate ion concentration, and saturation states of

biologically important calcium carbonate minerals.

These chemical reactions are termed ocean acidifica-

tion. Since the beginning of the Industrial Revolution,

the pH of surface ocean waters has fallen by 0.1 pH

units, which represents approximately a 30 percent

increase in acidity. Future predictions indicate that the

oceans will continue to absorb carbon dioxide and

become even more acidic. Estimates of future carbon

dioxide levels, based on business as usual emission

scenarios, indicate that by the end of this century the

surface waters of the ocean could be nearly 150 percent

more acidic, resulting in a pH that the oceans have not

experienced for more than 20 million years [52].

The Global Ocean Acidification Observing Network

(shown in Fig. 2) is a collaborative international approach

to document the status and progress of ocean acidification

in open-ocean, coastal, and estuarine environments, to

understand the drivers and impacts of ocean acidification

on marine ecosystems, and to provide spatially and tem-

porally resolved biogeochemical data necessary to opti-

mize modeling for ocean acidification. Since sustained

efforts to monitor ocean acidification worldwide are only

beginning, it is currently impossible to predict exactly how

ocean acidification impacts will cascade throughout the

marine food chain and affect the overall structure of marine

ecosystems.

Fig. 1 Global maps of sea

surface temperature during El

Niño (left) and La Niña (right)

episodes (source: http://www.

whoi.edu/main/topic/el-nino-

other-oscillations)
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5.3 Geological application

• Tsunami is a massive, fast-moving wave created by an

underwater earthquake or landslide. The large volume

of water displaced by a sudden movement of the sea-

floor creates a pulse in the ocean that races out from its

source at a speed of up to 500 miles per hour and

extends thousands of feet below the surface. Although

rare, tsunamis like those that occurred in March 2011 in

Japan and December 2004 around the Indian Ocean

were tragic reminders of the destructive power of the

ocean. As a result, governments of countries sur-

rounding the Pacific and Indian Oceans, with help from

scientists from around the world, continuously monitor

the ocean bottom for possible tsunami-producing seis-

mic activity and the fast-moving signs of tsunamis in

the open ocean. Even a few minutes’ warning can mean

the difference between wide-scale catastrophe and

saving hundreds or thousands of lives.

On April 1 at 4:46:45 PM Pacific Daylight Time

(23:46:45 UTC), a magnitude 8.2 earthquake occurred off

Chile’s Pacific coastline, according to the US Geological

Survey. Ocean Networks Canada instrumentation captured

both ground shaking and a very small tsunami as they

crossed the northeast Pacific (shown in Fig. 3).

5.4 Biological application

• Biodiversity refers to the variety of life, encompassing

variation at all levels of complexity—genetic, species,

ecosystems, and biomes—and including functional

diversity and diversity across ecosystems. The main-

tenance of coastal and marine biodiversity is critical to

sustained ecosystem and human health and resilience in

a globally changing environment. The condition of

marine biodiversity offers a proxy for the status of

ocean and coastal ecosystem health and ability to pro-

vide ecosystem services such as food, oxygen, socioe-

conomic benefits that support livelihoods, and a

stable climate. Thus, managing our marine resources in

a way that conserves existing marine biodiversity

would help address other ocean management objectives

[53].

A case study is an assessment of reef fish population.

This assessment is used to establish reef fish Annual Catch

Fig. 2 Map of Global Ocean Acidification Observing Network with

ship surveys, moorings, floats, and gliders (source: http://www.pmel.

noaa.gov/co2/file/GOA_ON_Map)

Fig. 3 Map of the epicenter and 16 aftershocks along the subduction

zone between the Nazca and South American plates, April 1, 2014

(Source: http://www.oceannetworks.ca/tsunami-alert-follows-82-

quake-chile)

Fig. 4 Locations of the reef areas surveyed by Pacific Islands

Fisheries Science Center/Coral Reef Ecosystem Division (Source:

http://www.ioos.noaa.gov/biological_observations/welcome.html)
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Limits as defined by the Magnuson-Stevens Fishery Con-

servation and Management Reauthorization Act (MSRA).

The biological observations used for this project are spe-

cies presence/absence/abundance and life history data for

reef fishes in the Hawaiian Archipelago and other locations

in the Pacific region (shown in Fig. 4).

6 Conclusion

Ocean science is entering into big data era with the expo-

nentially growth of information technology and advances

in ocean observatories. However, marine big data are still

in its infancy. Many key technical issues, such as big data

storage, computing model, analysis method, and applica-

tion system supporting decision making should be fully

investigated. Some challenges need to be resolved in the

future work.

• Infrastructure Various ocean observatories are collect-

ing and transmitting data continuously. Data quantity

reaches to an unprecedented scale that will surpass the

storage and processing capacities of existing infras-

tructures. A traditional data-centric infrastructure, in

which a central data management system ingests data

and serves them to users on a query basis, is insufficient

to accomplish the range of scientific tasks, e.g.,

collecting real-time data, analyzing data and modeling

the ocean on multiple scales and enabling adaptive

experimentation within the ocean. The increasingly

growing data and its real-time requirement cause

problems of how to store and manage such huge

heterogeneous datasets with moderate requirements on

hardware and software infrastructure.

• Data transfer Marine big data are often acquired and

stored at different locations. Meanwhile, data volumes

are continuously growing. PB- or EB-level data transfer

may be involved in data acquisition, transmission,

storage, and other spatial transformations. Data transfer

usually incurs high costs, which is the bottleneck for

big data computing. For example, typical data mining

algorithms require all data to be loaded into the main

memory. Even if we do have a super large main

memory to hold all data for computing, moving such a

huge amount of data across different locations is too

expensive due to intensive network communication and

other I/O costs. Data transfer time is far greater than its

computing time. So improving the transfer efficiency is

a key issue to improve computing in big data

applications.

• Data quality Data quality is mainly manifested in its

accuracy, completeness, redundancy, and consistency.

Uncertainty and incompleteness are defining features

for marine big data due to inaccurate data readings and

collections. Unexpected transmission or computing

errors may also restrict data quality. With the huge

volume of generated data, the fast velocity of arriving

data, and the large variety of heterogeneous data, the

quality of marine big data is far from perfect. Poor

quality data can have serious consequences on the

results of data analyses, which will influence data

utilization, wasting transmission, storage, and comput-

ing resources. Although some methods have been

adopted to improve data quality, this problem has not

been well resolved. Therefore, data quality manage-

ment remains a challenging research field to detect and

repair erroneous data in a scalable and timely manner.

• Ocean analytics Ocean analytics is an exciting new

way to distill and exploit the vast amount of marine

data available from in situ or remote sensing observa-

tories. It can be designed for modeling and forecasting

of both short-term high-impact events, such as earth-

quakes and tsunamis, and long-term large-area events,

such as ocean acidification and global warming. It can

also be applied to a multitude of different decision

support applications that use large amounts of data and

require complex calculations. Many existing data

mining algorithms do not scale beyond datasets of a

few million elements or cannot tolerate the statistical

noise and gaps in marine data. New developed analyt-

ical algorithms should strengthen scalability, effective-

ness, fault tolerance, and parallelization.

The ocean affects our life. In turn, human activities

affect the ocean. We need observe, measure, assess, pro-

tect, and manage the ocean. Researches on marine big data

provide new tools and forecasts of decision making to

improve safety, enhance the economy, and protect our

environment. Marine big data pave the way for sustainable

development and better life.
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