
ORIGINAL ARTICLE

Evaluation of missing value imputation methods
for wireless soil datasets

Jia Shao1 • Wei Meng1 • Guodong Sun2

Received: 1 September 2016 / Accepted: 30 September 2016 / Published online: 30 November 2016

� Springer-Verlag London 2016

Abstract Soil data are very important for hydrologists to

model and predict the evolution of water–soil environ-

ments. In present, the soil data are often collected by

unattended wireless sensing system and then inevitably

involves continuous missing values due to the unreliability

of system, which is different from the manually collected

datasets with the data losses being sparsely distributed.

This paper investigates seven typical methods that are used

to infill soil missing data, and in particular we also attempt

to employ the extreme learning machine in missing-data

infilling. This work is aimed at answering such a question:

Whether or not existing methods suit for wireless sensory

soil dataset with continuous missing values, and how well

they perform. With a real-world soil dataset involving

complete samples as the benchmark, we evaluate and

compare these methods, and analyze the possible reasons

behind. This study provides insights for designing new

methods that can effectively deal with the missing values in

wireless sensory soil dataset.

Keywords Wireless sensory data � Soil dataset � Missing

value imputation � Performance evaluation � Extreme

learning machine

1 Introduction

The existence of missing data makes it very difficult to

realize accurate data analyzing and modeling. In fact, the

data missing is not only common in industry, commerce,

and scientific research fields [25, 30] but also inevitable in

those scenarios. Generally data missing happens due to the

errors or the failures of instrument or operation. Without

careful considerations of missing data, domain experts

cannot efficiently and precisely understand what their data

really indicate [9].

For the hydrology, the agriculture, or other ecological

fields, the ecological dataset is generally obtained by either

human-operating devices or remotely automatic devices

[19, 26, 43, 44]. Nowadays, a popular methodology of

implementing large-scale, micro-level ecosystem monitor-

ing is to deploy wireless sensor networks [4, 29] in the sites

concerned by scientists. It benefits much—decreasing the

costs of human resources and maintenance and realizing

real-time observations across geographically distributed

regions [5, 10, 31, 33, 35]. In practice, however, the use of

wireless sensor network in ecosystem monitoring poses

new challenges—the dataset collected by wireless sensing

systems, often called wireless sensory dataset, often

experiences more significant data losses. First, wireless

ecology sensing systems are usually left unattended in

outdoor environments, say, tropical forests, cold regions,

wetlands, desserts, and riversides, and are expected to

operate for a long term, say, a few weeks or even months.

These systems are very prone to be accidentally damaged
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by extreme weather conditions, such as storms, rains, or

lightening, and therefore cannot always record ecological

events constantly. Moreover, limited labor resources or

unpredictable harsh weathers sometimes lead to infeasible

visits to remotely deployed devices, and consequently, the

damage or the failure of devices often cannot be discovered

until the next routine checking, which aggravates the data

loss so much that the missing values or even records in the

dataset occur one after another—forming large gaps in the

dataset.

Second, the low-power low-rate wireless links used to

form ecological sensors into a network are unreliable and

rendered dynamics sometimes [20] and consequently can-

not deliver all the obtained data to end-users—also leading

to non-ignorable data missing. Different than traditional

datasets in which missing values are very sparsely scat-

tered, therefore, the wireless sensory dataset inevitably

suffers missing values that occur continuously in a larger

range and considerably undermine the completeness of

dataset. Also, it is worth noting that strictly speaking,

repeating the operations of obtaining ecological data does

not make sense because of the ceaseless temporal–spatial

dynamics of natural environment. Figure 1 indicates the

incompleteness in the dataset obtained by a small-scale

wireless sensor network we use to monitor the hydrology in

forests. Clearly, we can see the continuous data missing

due to the failed data communication through wireless

links (at sensor 2) and the unattended battery depletion (at

sensor 3). In summary, processing the data loss or deter-

mining desirable methods of infilling missing values is still

the first step for scientists of hydrology or agriculture to

well understand environmental evolution, even though they

benefit from wireless ecology monitoring systems in terms

of human resources and real-time data acquisition.

Until now, however, researchers have not yet paid

attention to infill the continuous missing values in wireless

sensory time-series datasets and have little knowledge

about which existing methods are possibly effective under

such a case. This study investigates several typical

approaches of infilling missing data designed for traditional

time-series dataset and Extreme Learning Machine (ELM),

which has not been employed in missing-data infilling, and

examines their performances in dealing with large-scale

continuous data missing in the dataset of soil moisture. The

purpose is to analyze and determine which approaches will

be more potential for this new task and to give some

insights for designing new data missing infilling policies

for wireless sensory ecological dataset. Our work is based

on the soil moisture dataset because as a critical environ-

mental factor [21], the soil moisture data are a common

input to hydrologic and agricultural models in the soil and

water management activities [2, 3, 8, 12, 27].

The rest of this paper is organized as follows: Section 2

shows the related works about missing value imputation

methods. Section 3 presents eight methods of infilling

missing data and how to apply them in our dataset. Sec-

tion 4 introduces the soil dataset we use and evaluates the

performances of these eight methods in terms of accuracy.

Finally, Sect. 5 concludes this study.

2 Related work

Various methods have been employed to infill the missing

values appearing different scientific fields such as statisti-

cal methods, machine learning methods, and data mining

methods. The authors in [13] apply hybrid methods, which

combine the k-nearest neighbor and the dynamic time

warping to infill the missing values in gene expression

time-series data. [22] shows how genetic algorithms are

used to develop locally weighted regressive models (LWR)

and time delay neural network (TDNN) for estimating

missing data and compare these two sophisticated methods

on short-term hourly volumes of traffic missing counts. The

results show that LWR outperforms TDNN. In [32], a

piecewise interpolation method based on the cubic Ball and

Bzier curves representation is presented to infill the miss-

ing value of solar radiation.

Recently, there have been more attempts that study the

missing values infilling methods for soil moisture datasets.

The authors in [41] present a three-dimensional method,

based on the discrete transforms, for filling the missing

values of the satellite images dataset of soil moisture.

Dumedah and Coulibaly [7] treat the soil moisture dataset

to be a time series and investigate the effectiveness of six

methods, including the multiple linear regression, the

weighted Pearson correlation coefficient, the station rela-

tive difference, the soil layer relative difference, the

monthly average, and the merged method. In their subse-

quent work [8], they further evaluate nine neural network

based infilling methods; they find that the nonlinear

autoregressive neural network, the rough set method, and

the monthly replacement can achieve better accuracy in

comparison with the methods in their previous paper.

Kornelson and Coulibaly [17] examine the effectiveness of

sensor 2

sensor 3

 

 

missing caused by dead battery

missing caused by failed link

Fig. 1 Illustration of the continuous data missing in a dataset whose

data points are returned by two wireless sensors
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the monthly average, the soil layer relative difference, the

linear and cubic interpolation, the artificial neural net-

works, and the evolutionary polynomial regression infilling

methods; the evaluation results show that the interpolation

and the artificial neural network methods are more effec-

tive, yet only for infilling small gaps in dataset.

However, these methods all assume small gaps in the

datasets and then are unable to be effectively applied to infill

continuous missing data inherently existing in the wireless

sensory datasets. In this paper we test the Extreme Learning

Machine (ELM) and seven typical methods to evaluate their

performance, which are the Linear Interpolation (LI), the

Soil Layer Relative Difference (SLRD), the Autoregressive

Integrated Moving Average (ARIMA), the Vertical Multiple

Linear Regression (VMLR), the Horizontal Multiple Linear

Regression (HMLR), the Weighted K-Nearest Neighbors

(WKNN), and Radial Basis Function networks (RBFs). We

conduct comprehensive numeric experiments based on a soil

moisture dataset with various missing gaps, and we compare

their imputation performances on a soil moisture dataset

involving unsteady records.

3 Description of infilling methods

This section will introduce eight methods for infilling

missing values in the soil moisture dataset. They are Linear

Interpolation (LI), the Soil Layer Relative Difference

(SLRD), the Autoregressive Integrated Moving Average

(ARIMA), the Vertical Multiple Linear Regression

(VMLR), the Horizontal Multiple Linear Regression

(HMLR), the Weighted K-Nearest Neighbors (WKNN),

the Radial Basis Function networks (RBF), and the

Extreme Learning Machine (ELM). The reasons why we

chose these eight methods are as follows. The LI, a simple

but effective method, is commonly used in practice to infill

missing values. The SLRD is commonly employed by field

experts to infill the hydrological data. The ARIMA model

always appears in the reconstruction of time-series data

with missing values. The VMLR and HMLR are the mul-

tiple linear regressions to infill the missing soil moisture

values; the difference is that they leverage different sensing

attributes in modeling: The first uses the attributes from

different layers of a given station, and the second uses the

attributes from different stations at the same layer. The

WKNN is a kind of typical machine learning method,

which is also used to predict the missing values. ELM and

RBF are both Single Layer Feed Forward Neural Networks

(SLFNs). The RBF recently has widely used to impute the

missing values and achieved the ideal results. However, the

ELM shows better generalization performances and then

has been applied to many fields recently, such as hydrol-

ogy, pattern recognition, neuroscience, and consumer

electronics; we want to know the potential of ELM in the

scenario of the soil data infilling. We develop programs

based on the R language and MATLAB to implement those

methods.

3.1 Linear interpolation (LI)

Based on the curve fitting with linear polynomials, the

linear interpolation (LI) is a simple but effective method in

practice [23]. The LI fills the missing values of time series

by Eq. (1), where y0 and y1 are the soil moisture values on

time t0 and t1ðt1 [ t0Þ, respectively, and then y will be the

missing value on time t which ranges from t0 to t1.

y ¼ y0 þ ðy1 � y0Þ
t � t0

t1 � t0
ð1Þ

3.2 Soil layer relative difference (SLRD)

For infilling missing values of soil data, field experts often

resort to the SLRD method [40], which usually employs the

parametric test of relative difference among soil moisture

data. Equation (2) shows how to impute the missing soil

moisture data. Suppose that there are n soil-monitoring

stations in a given region, each of which reports a time-

series soil records including samples returned by the probes

of different depths (layers). For a given sampling depth j, in

Eq. (2), hi;jðtÞ represents the soil moisture of depth j at

station i at time t, and �hjðtÞ represents the average over the

depth-j soil moisture values reported by all the n stations at

time t. And, di;j, called the relative difference, is calculated

by the first equation of Eq. (2).

di;jðtÞ ¼
hi;jðtÞ � �hjðtÞ

�hjðtÞ

�hjðtÞ ¼
1

n

Xn

i¼1

hi;jðtÞ
ð2Þ

Note that the SLRD method only takes into consideration

the data with as the same depth as the missing data,

because it assumes that across different stations, the soil

moisture data with an identical depth are relatively corre-

lated [7]. When soil moisture is missing at depth j of station

i at time t, �hjðtÞ is computed by the available depth-j data of

all the other stations, while �di;j is estimated by the mean of

all the values of the j-th depth at station i. The estimated

soil moisture hest can be expressed with Eq. (3).

hestðtÞ ¼ �hjðtÞ þ �hjðtÞ � �di;j ð3Þ
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3.3 Autoregressive integrated moving average

(ARIMA)

Typical for statistics, the ARIMA model is widely used to

analyze the time-series data [16]. In fact, ARIMA involves

three types of models: the autoregressive model (AR), the

moving average model (MA), and the model (ARMA)

combining MA and AR. To process a non-stationary data

series, like the soil data we use, ARIMA has to difference

this data series to make it stationary for the const statistical

properties. We do not consider the seasonal effect of our

soil data because it is collected in winter; we then use the

non-seasonal ARIMA(p, d, q) model [11] to predict (infill)

the missing values, in which p is the number of autore-

gressive term, d, the number of non-seasonal differences

for keep stationary, and q, the number of lagged forecast

errors. The general ARIMA model is given together in

Eqs. (4) and (5).

yt ¼

Yt d ¼ 0

Yt � Yt�1 d ¼ 1

ðYt � Yt�1Þ � Yt�1 � Yt�2 d ¼ 2

� � � � � �

8
>><

>>:
ð4Þ

ŷt ¼ lþ /1yt�1 þ � � �/pyt�p � h1et�1 � � � � hqtt�q ð5Þ

In Eq. (4), Yt is the observed data series until time t, yt is d-

th difference of Yt, and generally, that d 2 ½0; 4� is adequate

to lead to a stationary series. For the general forecasting

given by Eq. (5), /ið1� i� pÞ and hið1� i� qÞ are model

parameters, while p and q are the model orders. The

parameters /i and hi are often estimated according to the

least square or the maximum likelihood methods.

When a missing value is of sequence k in the whole data,

ARIMA first chooses a sub-series of length Lk before the k-

th data point. In this paper, we plot the original soil

moisture data and find its non-stationarity. After empiri-

cally differencing the non-stationary soil data of length Lk
with a proper d, we can determine a desirable pair of p and

q by examining the auto-correlation and the partial corre-

lation of yt. Finally we mainly use the arima function

provided by the R language to complete the missing value

imputation.

3.4 Vertical multiple linear regression (VMLR)

Each sensing probe attached to the station can sample not

only the soil moisture but also the soil temperature and the

electrical conductivity data. The VMLR method assumes

that for a given depth k, the soil moisture data of depth k

correlate both with the soil moisture values of other depths

and with the temperature and the electrical conductivity of

depth k.

ŷk ¼ a1 � tk þ a2 � ck þ
Xm

i¼1;i 6¼k

bi yi ð6Þ

If there are m layers, the VMLR model is expressed in

Eq. (6) where tk and ck represent the temperature and the

electrical conductivity of depth k, respectively, and yi, the

soil moisture value of depth iði 6¼ kÞ. Therefore, the task of

the VMLR is to find parameters a1, a2, and bi.

3.5 Horizontal multiple linear regression (HMLR)

Similar to the VMLR method, the HMLR method also uses

the multiple linear regression to infill the missing soil

moisture values. Yet the HMLR method focuses on the

correlation of data points at the same depth from different

stations; in other words, for a given station s, the soil

moisture data of depth k at s correlate both with the soil

moisture values of depth k of other stations and with the

temperature and the electrical conductivity of depth k at

station s. The correlation of sensing attributes from nearby

sensors is often employed to predict the missing data due to

faulty devices [42].

ŷs;k ¼ a1 � ts;k þ a2 � cs;k þ
Xm

i¼1;i6¼s

bi � yi;k ð7Þ

The HMLR model is given by Eq. (7) where m denotes the

number of stations, ts;k and cs;k are the temperature and the

electrical conductivity values of depth k at station s.

3.6 Weighted K-nearest neighbors (WKNN)

The WKNN resorts to K similar observations to impute

missing values. In practice, the Euclidean distance is

commonly used to determine the similarity between two

data points. For the simplicity, suppose that data point x has

a missing value at attribute a, denoted by xðaÞ, and that

there are n data points, y1, y2,...yn in the training dataset.

The similarity between x and yið1� i� nÞ can be calcu-

lated by Eq. (8) where m is the number of attributes of x or

yi.

dðx; yiÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xm

j¼1;j 6¼a

xðjÞ � y
ðjÞ
i

� �2

vuut ð8Þ

After obtaining all the distances between x to yi, we can

determine the k-nearest neighbors. For instance, if the k-

nearest neighbors of x are shown in Fig. 2 and the distance

from x to yi is equal to di, we can infill xðaÞ with x̂ðaÞ

calculated by Eqs. (9) and (10), both of which together

express an implementation of a K-nearest neighbors model

with a weighted function.
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x̂ðaÞ ¼
Xk

i¼1

y
ðaÞ
i wðdiÞ ð9Þ

wðdiÞ ¼ e�di ð10Þ

3.7 Extreme learning machine (ELM)

Extreme learning machine (ELM) proposed by [14, 15] is a

kind of machine learning method for Single Layer Feed

Forward Neural Networks (SLFNs). It shows better gen-

eralization performances and higher speed of learning

process, compared with the SVM and other traditional

SLFNs trained by gradient-based algorithms. Therefore,

the ELM has been applied to many fields, such as

hydrology [6, 38, 45], pattern recognition [24], neuro-

science [36], and consumer electronics [1].

Figure 3 illustrates the basic schematic topological

structure of an ELM network. Briefly, the basic theory of

the ELM model states that for N arbitrary distinct input

samples ðxk; ykÞ 2 Rn � Rm, the standard SLFNs with M

hidden nodes and an activation g(.) function can be

mathematically described as Eq. (11)

XM

i¼1

bigðxk; ci;wiÞ ¼ yk k ¼ 1; 2; . . .N ð11Þ

where ci 2 R is the bias of the ith hidden node, wi 2 R is

the input weight vector connecting the ith hidden node and

the input nodes, bi is the weight vector connection the ith

hidden node to the output node, and gðxk; ci;wiÞ is the

output of the ith hidden node with respect to the input

sample xk. In ELM, the input weights and hidden biases are

randomly generated. By doing so, the nonlinear system can

be converted to the following linear system:

H� b ¼ Y ð12Þ

where H, b, and Y are expressed with Eqs. (13), (14), and

(15) shown as follows, respectively.

H ¼

gðx1; c1;w1Þ . . . gðx1; cM ;wMÞ
..
. ..

. ..
.

gðxN ; c1;w1Þ . . . gðxN ; cM ;wMÞ

0
BB@

1
CCA

N�M

ð13Þ

b ¼ ðbT
1 ; b

T
2 ; . . .b

T
MÞ

T
m�M ð14Þ

Y ¼ ðyT
1 ; y

T
2 ; . . .y

T
NÞ

T
m�N ð15Þ

Thus, determining the output weights b is as simple as

finding the minimum norm least-square (LS) solution to the

linear system, described as Eq. (16). As been analyzed by

[14], by using such a MP inverse method, ELM tends to

obtain good generalization performance and increase the

learning speed dramatically.

b̂ ¼ HyY ð16Þ

In this paper, we denote, by Y, the attributes with missing

values, and by X, the other attributes. All complete records

were used to train the ELM. wi and ci are randomly gen-

erated within ½�1; 1�. In order to ensure the statistical

significance of the result, in this paper, we repeat 100 times

training and predicting processes and use average predict-

ing values to infill the missing values. It is worth noting

that the number of hidden neutrons has great influence on

the accuracy of the prediction. Through a large number of

experiments, shown in Fig. 4 we found that the more the

number of neurons, the greater the accuracy, but too many

neutrons do not improve the prediction accuracy signifi-

cantly. Therefore, we empirically set a topology of ELM

with 60 neurons in the hidden layer.

3.8 Radial basis function networks (RBF)

Radial basis function networks are also a kind of SLFNs, so

the topology of ELM is the same with the RBFs. Different

than the other SLFNs, for the RBF model, the weights

between input layer and hidden layer are set to be one. In

addition, for a given input x, each hidden node of the RBF

model will employ a radial basis function to quantify the

degree of activation, both of which significantly reduce the

SLFN parameters and make the SLFNs easy to be imple-

mented. The general topology of the radial basis function

x

y1 y2 yk

d1 d2 dk

Fig. 2 Illustration for the WKNN method where the white block

represents the attribute with missing value

Fig. 3 General topology of the ELM model
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neural networks (RBF NNs) is shown in Fig. 5 where yk is

a weighted linear combination of the activation degrees of

incoming input xk:

XM

i¼1

biHiðxkÞ ¼ yk k ¼ 1; 2; . . .N ð17Þ

In the case with the Gaussian type of RBFs, we have

HiðxkÞ ¼ expð�rikxk � mik2Þ ð18Þ

where xk = ½x1; . . .xn�T, represents the n-dimensional input

vector, and vi ¼ ½v1; . . .vn�Tand ri represent center vector

of the ith nodes of the hidden layer and the spread

parameter of the ith nodes of the hidden layer, respectively.

The notation k � k in Eq. (18) is the function calculating the

Euclidean distance. There are many algorithms to train

RBF models [18, 28, 34, 37, 39]. In this paper, we use the

standard RBF training algorithm of MATLAB neural net-

work toolbox to infill the missing values in the soil

moistures.

4 Analysis

4.1 Soil dataset

The dataset used in this paper is collected by a soil-mon-

itoring system deployed in the Jiufeng National Forestry

Park, Beijing, China; this system is shown in Fig. 6, and it

locates at 115.7E� and 39.4�N (marked with a red point).

Beijing is of dry and monsoon-influenced humid conti-

nental climate, where the daily average temperature is only

-3.7 �C in January and the precipitation from June to

August is about three-fourths of the total yearly precipita-

tion. In this system, there are three soil-monitoring stations

around ten meters away from each other; they report their

data to a data logger which buffers the collected the data in

local SD card. Every week, an operator manually pulled

out the soil data file from the SD card. Each station is

equipped with five soil sensing probes arranged at five top-

bottom layers (depths): 2, 5, 10, 15, and 20 cm, respec-

tively, and each probe simultaneously captures three attri-

butes with an interval of 15 minutes: the soil moisture, the

soil temperature, and the soil electrical conductivity. Also,

the logger associates a timestamp with each record.

4.2 Setup

The monitoring system in our study site operated from

October 2010 to October 2012. In the whole dataset of two

years, there are a large amount of irregularly distributed

data losses. We elaborately find that the set of records

obtained from October 2010 to January 2011 involves only

one missing soil moisture value; therefore, this set of

records can be reasonably reckoned to be a complete

dataset; specifically, we choose the data—returned by the

sensing probe of depth 5 cm at a station—as the bench-

mark dataset to evaluate the eight infilling methods. The

benchmark has 6060 records of three soil attributes (the

soil moisture, the soil temperature, and the soil conduc-

tivity). Figure 7 shows the distribution of all the soil

moisture values in the benchmark dataset.

To simulate the continuous missing characteristics of

soil dataset returned by wireless sensing system, we arti-

ficially specify various missing segments with different

ratios. We first remove the missing segment from the

benchmark dataset and then apply the eight imputation

methods to infill the values in this missing segment.

Table 1 gives the missing ratios used in this paper. The

choices of five missing ratios are determined by the

inspection (physical visit) period in practice, which is

usually half a day, 1 day, 1 week, or 1 month (4 weeks). It

is clear, in Fig. 7, that the moisture varies steadily before

the 2500-th data point, but drastically after the 3000-th data

70 80 90 100

R
M
SE

0.005

0.01

0.015

0.02

0.025

0.03

neurons
0 10 20 30 40 50 60

0

Fig. 4 Effect of the number of neutrons on the accuracy

Fig. 5 General topology of the RBF model
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point. So, to evaluate the performance of the eight methods

under steady and dynamic time-series data, we specify two

data points in the benchmark dataset: Start I, the 1001-th

data point, and Start II, the 3001-th data point, as labeled in

Fig. 7. According to Table 1, missing segments 1–5 all

start from Start I and missing segments 6–10 all start from

Start II.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
Xn

i¼1

ðŷi � yiÞ2

s
ð19Þ

In this study, we use the root-mean-square error (RMSE),

widely adopted in the community [8], to evaluate the eight

methods of infilling the missing soil moisture data. In

detail, as shown in Eq. (19), RMSE is the root of the

Fig. 6 Deployment of the soil-

monitoring site at Jiufeng

National Forestry Park, Beijing,

China

0 1000 2000 3000 4000 5000 6000

0.
10

0.
12

0.
14

0.
16

0.
18

0.
20

data point

m
oi

st
ur

e 
(m

3 /m
3  ) Start I

Start II

Fig. 7 Soil moisture data from

the sensing probe of depth 5 cm

at a station

Table 1 Configuration of the

missing records in evaluation
Missing segment Missing range Missing ratio (%) Duration (days)

Seg. 1 1001–1048 0.79 0.5

Seg. 2 1001–1192 3.17 2

Seg. 3 1001–1672 11.09 7

Seg. 4 1001–2344 22.18 14

Seg. 5 1001–3688 44.36 28

Seg. 6 3001–3048 0.79 0.5

Seg. 7 3001–3192 3.17 2

Seg. 8 3001–3672 11.09 7

Seg. 9 3001–4344 22.18 14

Seg. 10 3001–5688 44.36 28
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average squared differences between the predicted value

(ŷi) and the original one (yi). In general, the smaller the

RSME derived by a method is, the better the effectiveness

of this method is.

4.3 Results

This section compares the performance of the eight infill-

ing methods with different missing scales and different

fluctuations. Figure 8 plots the data points infilled by the

eight methods and the real data points. Note that the

observed soil moisture values are marked by black circles,

and the predicted values of the eight methods are marked

by different colors shown as the legend in Fig. 8a. For the

shortest missing segment over the steady dataset (Fig. 8a),

these infilling methods except for the SLRD all work well;

for the longest missing segment over the fluctuating dataset

(Fig. 8j), the eight methods differentiate much in perfor-

mance. From Fig. 8, it can be seen that as the missing ratio

increases, the LI and the ARIMA both give straight lines to

fit the observed data, regardless of the beginning points of

missing segment (Start I or Start II), while the SLRD

always performs poorly. However, the VLMR, the ELM,

the WKNN, the RBF, and the HMLR all can predict the

variation trend of the datasets even with different accura-

cies. Furthermore, we can see that the fitting performance
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Fig. 8 Comparisons of the eight

methods with five different

missing ratios. The legend for

a works for all the other sub-

figures. a 0.79% missing from

the 1001-th data point. b 0.79%

missing from the 3001-th data

point. c 3.17% missing from the

1001-th data point. d 3.17%

missing from the 3001-th data

point. e 11.09% missing from

the 1001-th data point. f 11.09%

missing from the 3001-th data

point. g 22.18% missing from

the 1001-th data point.

h 22.18% missing from the

3001-th data point. i 44.36%

missing from the 1001-th data

point. j 44.36% missing from

the 3001-th data point
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of the HMLR and the RBF both experience a significant

degradation in the case with 44.36% missing ratios. Nev-

ertheless, estimates from the VLMR, the ELM, and the

WKNN are very well consistent with the trend of observed

soil moisture, especially the VLMR in larger missing

ratios.

The eight methods are further compared in Fig. 9. It is

obvious that the imputation performances of these eight

methods all degrade in different degrees for the missing

segments that start at Start II and involve drastically varying

data points. It is worth mentioning that the imputation

performances of the LI and the ARIMA become very poor,

when the missing segments are chosen from here. The LI

method uses only two reference points; therefore, it does not

work well for fluctuating datasets, especially when the

missing gap is larger. The ARIMA just uses a segment of

steady data before the missing values (Start II), which does

not contain sufficient information (large or periodic dataset

is preferable for ARIMA) and consequently results in lower

performance. The RBF has a significant degradation in the

44:36% missing ratios from the Start II. The reason is that

there are no sufficient various training samples to build the

RBF model. And compared with the ELM, the RBF has the

risk of overfitting or underfitting as a result of the restriction

of the standard RBF training algorithm in MATLAB neural

network toolbox. Interestingly, the VMLR demonstrates the

most steady and precise prediction as the dataset becomes

unsteady and the missing ratio is larger. Both the VMLR

and the HMLR employ the multiple linear regression to

infill the missing soil moisture values, but the VMLR is

preferred to the HMLR—suggesting that for a given station,

the different soil layers (depths) for the VMLR can profile

the temporal correlation of soil moisture with higher

accuracy, i.e., the data from vertically arranged layers at the
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Fig. 9 Comparisons of the eight methods with different missing ratios. a Missing segments starting from the 1001-th data point. b Missing

segments starting from the 3001-th data point

Table 2 RSMEs of eight methods with different missing ratios. Given a method, avg. I represents the average RSME over segments from 1 to 5

and avg. II, the average RSME over segments from 6 to 10

Method RMSE at different missing segments (%)

Seg. 1 Seg. 2 Seg. 3 Seg. 4 Seg. 5 Avg. I Seg.6 Seg. 7 Seg. 8 Seg. 9 Seg. 10 Avg. II

LI 0.050 0.089 0.109 0.110 0.765 0.225 0.053 0.843 1.049 3.098 2.703 1.549

SLRD 2.779 2.855 3.020 3.309 3.520 3.097 2.201 2.889 2.645 2.899 2.932 2.713

VMLR 0.181 0.211 0.157 0.138 0.172 0.172 0.228 0.181 0.222 0.220 0.234 0.217

HMLR 0.159 0.238 0.444 0.393 0.465 0.340 0.662 0.427 0.424 0.738 2.198 0.890

ARIMA 0.030 0.089 0.136 0.249 0.779 0.257 0.060 0.876 1.068 2.760 3.444 1.642

WKNN 0.035 0.041 0.116 0.238 0.309 0.148 0.905 0.490 0.407 0.662 1.144 0.722

ELM 0.026 0.038 0.051 0.059 0.25 0.085 0.180 0.120 0.170 0.240 0.680 0.278

RBF 0.025 0.032 0.057 0.070 0.360 0.109 0.100 0.120 0.150 0.260 2.23 0.572

Bold values represent the best performance in the column it belongs to

Pers Ubiquit Comput (2017) 21:113–123 121

123



same station render closer correlation, in comparison with

the same layers at different stations.

A comprehensive numeric comparison in terms of

RMSE is given in Table 2. For the missing segments

beginning at Start I, in average, the ELM is the best pre-

dictor, followed by the RBF, the WKNN, the VMLR, all of

which are not significantly different, and the worst is the

SLRD. For the missing segments beginning at Start II, in

average, the VMLR performs the best, followed by the

ELM, both of which are similar, and the SLRD still is the

worst. We can conclude that when being applied to infill

the dataset with the shortest missing ratio, the LI is rec-

ommended, considering that this method is simple and has

a relatively high infilling accuracy. As missing ratio of the

dataset is increasing, the ELM and the RBF are suggested

to infill the missing values. However, it is noticeable that

the VMLR, with the average RMSE of 0.217% over the

missing segments beginning at Start II, outperforms other

methods and seems suitable to infill unsteady dataset with

the largest missing ratio. Based on the time-series dataset

used in this paper, the evaluation results show that the

VMLR, the ELM, the RBF, the WKNN, the LI, the

ARIMA, and the HMLR are all preferred to the SLRD,

which is commonly used by field experts.

5 Conclusions

Ecological time-series dataset collected by wireless sensing

systems often experiences continuous data losses which

pose new challenges for missing-data processing.

Researchers now have little knowledge about effective

approaches to addressing this issue. This paper has inves-

tigated seven typical methods that are used to infill missing

data in a soil time-series dataset and ELM which has not

been employed in this task. We find that totally, the

VMLR, the ELM, and the RBF can achieve a better

accuracy in infilling continuous missing soil moisture data.

In detail, to infill short missing segments, the ELM, the

RBF perform desirably. The reason is that the ELM and

RBF are Single Layer Feed Forward Neural Networks

(SLFNs). They both have the ability to approximate arbi-

trary function, but the ELM shows better generalization. To

infill missing values in unsteady soil dataset with a larger

continuous missing segments, the VMLR overwhelms all

the other methods, and the accuracy of the ELM is slightly

lower than that of the VMLR. Therefore, we can see the

ELM has a promising potential to infill the missing values

in different missing segments. For all the specified missing

segments, the VMLR is almost always preferred to the

HMLR, indicating that the data from different layers of a

given station are more strongly correlated than the data

from different stations at the same layer. Thus, taking into

account the correlation among multiple factors will be a

promising start to design effective approaches of infilling

the missing values in wireless soil datasets.
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