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Abstract Predicting the centrality of nodes is a significant

problem for different applications in Opportunistic Mobile

Social Networks (OMSNs). However, when calculating

such metrics, current studies focused on analyzing static

networks that do not change over time or using aggregated

contact information over a period of time. Furthermore, the

centrality measured in the past is not verified whether it is

useful as a predictor for the future. In this paper, in order to

capture the dynamic behavior of people, we focus on

predicting nodes’ future centrality (importance) from the

temporal perspective using real mobility traces in OMSNs.

Three important centrality metrics, namely betweenness,

closeness, and degree centrality, are considered. Through

real trace-driven simulations, we find that nodes’ future

centrality is highly predictable due to natural social

behavior of people. Then, based on the observations in the

simulation, we design several reasonable prediction meth-

ods to predict nodes’ future temporal centrality. Finally,

extensive real trace-driven simulations are conducted to

evaluate the performance of our proposed methods. The

results show that the Recent Weighted Average Method

performs best in the MIT Reality trace, and the recent

Uniform Average Method performs best in the Infocom 06

trace. Furthermore, we also evaluate the impact of

parameters m and w on the performance of the proposed

methods and find proper values of different parameters for

each proposed method at the same time.

Keywords Opportunistic Mobile Social Networks �
Centrality � Real mobility trace � Prediction method

1 Introduction

With the rapid development of wireless portable devices

(e.g., smartphones, iPad, PDAs) with Bluetooth or Wi-Fi,

Opportunistic Mobile Social Networks (OMSNs) begin to

emerge [1–5]. OMSNs combine opportunistic mobile net-

works and mobile social networks together. Previous

studies have shown that the performance of such networks

depends highly on the user’s social behavior as oppor-

tunistic mobile networks and mobile social networks share

many common characteristics [6–8]. Their common fea-

tures motivate an increasing research interests in OMSNs,

especially using the social network analysis technology to

help the design of routing protocols [9–12].

In order to use the social network analysis technology to

design routing protocols in OMSNs, a significant problem

is to measure the centrality (importance) of nodes in net-

works. Depending on the application, previous studies have

proposed diverse metrics to measure the relative
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importance of nodes in networks such as betweenness

centrality, closeness centrality, and degree central-

ity [13–16]. Betweenness centrality measures the extent to

which a node lies on the shortest paths linking other nodes

in the network, which has been applied to the study of

identifying bottlenecks in traffic networks. Closeness cen-

trality measures the distance a certain node to all other

reachable nodes in the network, which has been applied to

the study of information spreading. Finally, degree cen-

trality is measured as the number of direct links with other

nodes of a certain node, which can be applied to attack

networks.

However, when calculating such centrality metrics, the

current studies focused on analyzing static networks that do

not change over time or using aggregated contact infor-

mation over a period of time. Actually, nodes in OMSNs

are inherently dynamic, which is driven by natural social

behavior of people. Therefore, it is not prudent to assume

stationary behavior of people in the design of practical

applications. In particular, many researchers have also

observed that nodes in OMSNs have a regular pat-

tern [17–20]. For example, a student will go to school with

his neighbors at morning every day and have classes with

his classmates in the classroom, which brings a regular

pattern of physical contacts, etc., which in turn provides the

periodicity seen in the underlying communication pro-

cesses. Here, we make a simple assumption: Since a node’s

schedule is regular, if it is an important node in the network

in the past, then it is highly possible that its importance in

the future will be correlated with the importance in the

past.

Based on the assumption, we therefore focus on pre-

dicting nodes’ future centrality from the temporal per-

spective under three important centrality metrics, namely

betweenness, closeness, and degree centrality, using dif-

ferent real mobility traces in OMSNs. Our contributions in

this paper are threefold:

1. Through real trace-driven simulations, we find that

nodes’ temporal centrality values are highly correlated

with their past recent centrality values, and also have

periodical behavior at 24 h difference.

2. Based on the observations, several intuitive reasonable

prediction methods, e.g., Last Method, Recent Uni-

form Average Method, Recent Weighted Average

Method, Periodical Average Method and Periodical

Weighted Average Method, were designed to predict

nodes’ future temporal centrality.

3. The performance of the proposed prediction methods is

evaluated using different real mobility traces, and the

simulation results show that the best-performing

prediction methods are more accurate on average than

just using the Last Method. Moreover, we also evaluate

the impact of different parameters on the proposed

prediction methods and suggest proper values of

different parameters for the proposed prediction

methods.

The remainder of this paper is organized as follows. We

present the related work in Sect. 2 and the network model

in Sect. 3. Then, we introduce the preliminaries in Sect. 4.

Section 5 analyzes the correlation between the past and

future temporal centrality value and proposes several

methods to predict the future temporal centrality in

OMSNs. Extensive simulations are conducted to evaluate

the performance of the proposed methods in Sect. 6. At

last, we conclude the paper in Sect. 7.

2 Related work

Centrality has been well investigated in OMSNs, which is

widely applied to design social-based forwarding schemes

in OMSNs. The basic idea is to use node centrality as the

forwarding metrics, and the forwarding strategy is to for-

ward data to nodes which have centrality value than the

current node. SimBet [21] uses the egocentric betweenness

metric and social similarity-based routing protocol to

increase the performance of data delivery. BUBBLE

Rap [22] considers node egocentric betweenness based on

social communities to increase the data forwarding per-

formance. Gao et al. [14] proposed the cumulative contact

probability (CCP) as the centrality metrics to select relay

nodes for multicasting in OMSNs. Since central nodes

consume energy more quickly than other nodes, Socievole

et al. [23] proposed an energy-aware centrality metric for

information forwarding, which uses the node energy level

to avoid transmissions in nodes more central. Based on

degree centrality and betweenness centrality, Zhu

et al. [24] proposed a set of social-based throwbox place-

ment algorithms to efficiently deploy throwboxes in the

network. However, the above studies use static networks

that do not change over time or aggregated contact infor-

mation over a period of time to calculate the centrality

value. Furthermore, they do not verify whether the cen-

trality measured in the past is useful as a predictor for the

future.

Currently, some studies have attempted to capture the

dynamic behavior of people [25–27]. Chaintreau et al. [25]

found that the pairwise inter-contact time can be well

approximated by a power-law distribution. Karagiannis

et al. [26] found that the pairwise inter-contact time fol-

lows a power-law distribution, with an exponential cutoff.

Passarella et al. [27] found that the aggregate inter-contact

times distribution is not representative, in general, of the

individual pairs distributions. These results above have
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been used to model potential future contact patterns but do

not provide much insight into the problem of predicting

future network structure. To capture the dynamic behavior

of people more accurately, some studies have tried to solve

the problem from the temporal perspective [28–32]. Tang

et al. [28] proposed three temporal centrality metrics based

on temporal paths in order to measure the importance of a

node in a dynamic network. Kim et al. [29] proposed

several methods to predict nodes’ importance in the future.

Huang et al. [31] proposed a kernel regression-based esti-

mation framework for link pattern prediction in OMSNs. In

order to investigate the evolution of dynamic social net-

works, Wei et al. [32] proposed two classes of dynamic

metrics in terms of persistency and emergence, and used

three different temporal aggregation models to implement

them. Our work is similar to the work in [29], but we

ignore the lagged time, and only predict the centrality value

of a single time window in the network model, which

makes the problem more clear and the prediction results

more reasonable.

3 Network model

In this section, we introduce the network model used in this

paper. We assume that the time during which a network is

observed is finite, from tstart to tend; without loss of generality,

we set tstart = 0 and tend = T. A dynamic network contact

graph G0;T ¼ ðV ;E0;TÞ on a time interval [0, T] consists of a

set of vertices V and a set of temporal edges E0;T , where

stochastic contact process between a node pair u, v 2 V on a

time interval ½ts; te� (0� ts � te � T) is modeled as an tem-

poral edge euvts;te 2 E0;T . The characteristics of a temporal

edge are mainly determined by the properties of the inter-

contact time and contact duration among mobile nodes.

Most characterizations of dynamic networks discretize

time by converting temporal information into a sequence of

network ‘‘snapshots’’ to apply techniques derived from

graph theory to the analysis of networks. As shown in

Fig. 1, the time interval [0, T] is divided into fixed discrete

time windows f1; 2; . . .; ng. We use w ¼ T
n
to denote the

size of each time window, expressed in some time unites

(e.g., minutes or hours). In other words, a dynamic network

can be represented as a series of static graphs at each time,

G1;G2; . . .;Gn. The notation Gt ð1� t� nÞ represents the

aggregate graph which consists of a set of vertices V and a

set of edges Et where an edge euvts;te 2 Et exists only if a

temporal edge euvts;te 2 E0;T exists between vertices u and v

on a time interval such that te �wt and ts [wðt � 1Þ. In
other words, Gt is the tth temporal snapshot of the dynamic

contact graph G0;T during the tth time window.

Figure 2 shows the comparison between the aggregated

static graph and the time-varying dynamic graph, in which

tstart ¼ 0, tend = 3 and w = 1. Unlike the aggregated view

of the static graph shown in Fig. 2a, a series of static

contact graphs G1, G2, and G3 in Fig. 2b represent tem-

poral edge relationships between nodes A, B, C, and D. For

example, if we look at the aggregated static graph in

Fig. 2a, node A has a contact edge with node C; however, if

we look at the temporal static graph in G1 and G2, node

A does not have contact edge with node C. Therefore, the

contact edge in the temporal static graph is obviously dif-

ferent from that in the aggregated static graph. In the next

section, we will focus on investigating the centrality based

on the temporal static graph.

4 Preliminaries

In this section, we first define definition and notation

related to the centrality metrics and then introduce the

centrality prediction problem which will be solved in the

rest of the paper.

4.1 Network centrality measures

Centrality refers to a group of metrics that aim to quantify

the ‘‘importance’’ or ‘‘influence’’ of a particular node (or

group) within a network. There are several common

Fig. 1 A Series of ‘‘snapshots’’

(a)

(b)

Fig. 2 Comparison between the aggregated static graph and the time-

varying dynamic graph. a Aggregated static graph; b time-varying

dynamic graph
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methods to measure ‘‘centrality.’’ In this paper, we only

introduce three of them: betweenness, closeness, and

degree centrality. Formally, we use the standard definition

of the betweenness, closeness, and degree centrality, and

the centrality value of a node i can be expressed as follows

[13].

4.1.1 Betweenness centrality

Betweenness centrality measures the extent to which a

node lies on the shortest paths linking other nodes in the

network, which is calculated as the proportional number of

shortest paths between all node pairs in the network, that

pass through a certain node. Betweenness centrality of a

certain node i can be expressed as:

BetweennessðiÞ ¼
Xr

u 6¼i;v 6¼i;i2V

du;vðiÞ
du;v

ð1Þ

where du;v is the total number of shortest paths starting

from the source node u and the destination node v, and

du;vðiÞ are the number of shortest paths starting from the

source node u and the destination node v which actually

pass through node i.

4.1.2 Closeness centrality

Closeness centrality measures the distance a certain node to

all other reachable nodes in the network, which is calcu-

lated as the average shortest path length between a certain

node and all other reachable nodes. Closeness centrality

can be regarded as a measure of how long it will take

message to spread from a given node to other nodes in the

network. Closeness centrality of a certain node i can be

expressed as:

ClosenessðiÞ ¼ 1

j V j �1

Xr

j 6¼i;j2V
Di;jðiÞ ð2Þ

where Di;j is the number of hops in the shortest path from

node i to node j and V is the set of nodes in the network.

4.1.3 Degree centrality

Degree centrality is measured as the number of direct links

with other nodes of a certain node. A node with high

degree centrality has numerous contacts with other nodes

in the network. Degree centrality of a certain node i can be

calculated as:

DegreeðiÞ ¼
Pr

j 6¼i;j2V eði; jÞ
j V j �1

ð3Þ

where e(i, j) = 1 if a direct link exists between node i and

j, and V is the set of nodes in the network.

4.2 Centrality prediction problem

As shown in Fig. 3, we generalize the problem for cen-

trality prediction in this paper as follows: Given a dynamic

network G1;r observed during r past time intervals, we want

to predict the average network centrality values of the

nodes in the network in the r ? 1 time intervals. Therefore,

the purpose of this paper is to propose several prediction

methods to minimize the prediction error, and evaluate the

impact of different parameters on the performance of the

proposed prediction methods. In order to evaluate the

effectiveness of the prediction methods, we use ErrorðGtÞ
to denote the average error between the guessed centrality

values and the true centrality values, which can be

expressed as:

ErrorðGtÞ ¼
P

i2V j CtðiÞ � ĈtðiÞ j
j V j ð4Þ

where CrðiÞ is node i’s centrality value such as between-

ness(i), closeness(i), or degree(i) in Gt, and ĈtðiÞ to denote

the node i’s predicted centrality value in Gt.

5 Centrality prediction

In this section, we first use two real mobility traces, Info-

com 06 [33] and MIT Reality [34] to test whether the

centrality can be predicted. Then, based on the findings,

several methods were introduced to predict the future

temporal centrality.

5.1 Analysis of correlation between past and future

centrality

Since people in reality always have regularity, we

hypothesize that the past centrality has high correlation

with the future centrality. To test this hypothesis, we use

two real mobility traces, Infocom 06 [33] and MIT Real-

ity [34] collected from real environments. Users in these

two traces are all carrying Bluetooth-enabled portable de-

vices, which record contacts by periodically detecting their

peers nearby. The traces cover various types of corporate

environments and have various experiment periods. The

details of the traces are summarized in Table 1. We use

Fig. 3 Illustration of the past and future time windows
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part of traces (a typical weekday in October of MIT Reality

trace, the second day of Infocom 06 trace) to test the

hypothesis.

Figure 4 shows each node’s betweenness centrality

value compared to its values in past windows, in the MIT

Reality trace. We find that there is a high correlation

(0.4733) between a node’s temporal betweenness centrality

value with its value 4 h ago; second, increasing the time

difference decreases the correlation (e.g., 0.3407 at -8 h

time difference and 0.2096 at -12 h time difference); and

Table 1 Trace statistics

Trace MIT Reality Infocom 06

Device Smartphones iMote

Network type Bluetooth Bluetooth

Duration (days) 246 4

Granularity (s) 300 120

No. of internal contacts 114,046 182,951

No. of devices 97 78

Contact frequency/pair/day 0.024 6.7

(a) (b)

(c) (d)

(e) (f)

Fig. 4 Scatter plots depicting

betweenness centrality

correlation between a fixed

window (y-axis) and an

increasingly distant window

from the past (x-axis) every 4 h

in the MIT trace. The axis labels

represent the low (L), medium

(M), and high (H) betweenness

centrality values. a Time

difference: -4 h, average

correlation: 0.4733, b time

difference: -8 h, average

correlation: 0.3407, c time

difference: -12 h, average

correlation: 0.2096, d time

difference: -16 h, average

correlation: 0.0625, e time

difference: -20 h, average

correlation: 0.2565, f time

difference: -24 h, average

correlation: 0.4155

Pers Ubiquit Comput (2016) 20:885–897 889

123



third, at -24 h time difference the correlation rises again

(0.432), which indicates possible periodic behavior.

Figure 5 shows each node’s betweenness centrality

value compared to its values in past windows, in the

Infocom 06 trace. We find that similar to the results in

the MIT Realty trace, recent past betweenness centrality

values are highly correlated compared with more distant

values (e.g., 0.5804 at -4 h time difference and 0.2451 at

-8 h time difference). However, different from the

results in MIT Realty trace, the pattern of repeated peaks

with -24 h time difference seems rather weak in Info-

com 06 trace. The main reason is that people attending

the IEEE Infocom 2006 conference are more likely to

seek out new colleagues to talk to at the breaks between

sessions, rather than socializing with the same people, but

students in the MIT campus are more likely to meet the

same people when they are taking classes or walking in

the campus.

Figure 6 shows each node’s closeness centrality value

compared to its values in past windows, in the MIT Reality

(a) (b)

(c) (d)

(e) (f)

Fig. 5 Scatter plots depicting

betweenness centrality

correlation between a fixed

window (y-axis) and an

increasingly distant window

from the past (x-axis) every 4 h

in the Infocom 06 trace. The

axis labels represent the low

(L), medium (M), and high

(H) betweenness centrality

values. a Time difference:

-4 h, average correlation:

0.5804, b time difference: -8 h,

average correlation: 0.2451,

c time difference: -12 h,

average correlation: 0.0731,

d time difference: -16 h,

average correlation: 0.0079,

e time difference: -20 h,

average correlation: -0.0155,

f time difference: -24 h,

average correlation: 0.0254
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trace. Similar to the results in Fig. 4, there is also a high

correlation (0.5207) between a node’s temporal closeness

centrality value with its value 4 h ago; second, increasing

the time difference also decreases the correlation (e.g.,

0.3534 at -8 h time difference and 0.2741 at -12 h time

difference); and third, at -24 h time difference the corre-

lation rises again (0.3778). Figure 7 shows each node’s

degree centrality value compared to its values in past

windows, in the Infocom 06 trace. Similar to the results in

Fig. 5, recent past degree centrality values are also highly

correlated compared with more distant values (e.g., 0.4858

at -4 h time difference and 0.3252 at -8 h time

difference), and the pattern of repeated peaks with -24 h

time difference seems also very weak in Infocom 06 trace.

Based on the results reported above, we have two key

observations:

1. Recent past centrality values are highly correlated

compared with more distant values in 1 day.

2. A node’s temporal centrality value with its value at

24 h difference are highly correlated, which indicates

possible periodic behavior.

In the next part, we will present several prediction methods

based on these observations.

(a) (b)

(c) (d)

(e) (f)

Fig. 6 Scatter plots depicting

closeness centrality correlation

between a fixed window (y-axis)

and an increasingly distant

window from the past (x-axis)

every 4 h in the MIT Reality

trace. The axis labels represent

the low (L), medium (M), and

high (H) closeness centrality

values. a Time difference:

-4 h, average correlation:

0.5207, b time difference: -8 h,

average correlation: 0.3534,

c time difference: -12 h,

average correlation: 0.2741,

d time difference: -16 h,

average correlation: 0.00726,

e time difference: -20 h,

average correlation: 0.2433,

f time difference: -24 h,

average correlation: 0.3778
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5.2 Prediction methods

Based on the analysis above, in this part, we introduce

several methods to predict the future temporal centrality.

Last Method As the first candidate, we just use the

node’s temporal centrality value in the last temporal net-

work (Gr) at time window r. In other words, for i 2 V , we

use the temporal centrality CrðiÞ in Gr as the future tem-

poral centrality CfuðiÞ in Grþ1.

Recent Uniform Average Method In order to improve

the accuracy of the prediction, we can use the node’s m

previous centrality values instead of one last previous

centrality value. A reasonable idea is to use the node’s

uniform average centrality value between Gr�mþ1, ..., Gr�1,

Gr where 0\m� r as the node’s future temporal centrality

value. Formally, the future temporal centrality CfuðiÞ can

be expressed as:

CfuðiÞ ¼
1

m

Xr

k¼r�mþ1

CkðiÞ ð5Þ

We want to find the best m given the cost of computation

and the accuracy of prediction, and will suggest values

based on different real traces.

(a) (b)

(c) (d)

(e) (f)

Fig. 7 Scatter plots depicting

degree centrality correlation

between a fixed window (y-axis)

and an increasingly distant

window from the past (x-axis)

every 4 h in the Infocom 06

trace. The axis labels represent

the low (L), medium (M), and

high (H) degree centrality

values. a Time difference:

-4 h, average correlation:

0.4858, b time difference: -8 h,

average correlation: 0.3252,

c time difference: -12 h,

average correlation: 0.1511,

d time difference: -16 h,

average correlation: 0.0009,

e time difference: -20 h,

average correlation: -0.0699,

f time difference: -24 h,

average correlation: 0.056
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Recent Weighted Average Method In order to consider

the relative importance of the recent temporal networks, we

can use the recent weighted average centrality value

instead of the uniform average centrality value. Therefore,

the future temporal centrality CfuðiÞ using the recent

weighted average centrality method can be expressed as:

CfuðiÞ ¼
Xr

k¼r�mþ1

CkðiÞWd=Wtotal ð6Þ

where 0\m� r; d ¼ r þ 1� k is the time difference

between the past kth time window and the future time

window r ? 1; Wtotal ¼
Pr

k¼r�mþ1 Wd. In fact, the recent

uniform average centrality is a special case of the recent

weighted average centrality when Wd ¼ 1=m. Here, we

consider the linear (Wd ¼ 1
d
) weight assignments depending

on the time difference d between Gk and Grþ1.

Periodical Average Method According to the analysis

above, we find that activities of people are repeated peri-

odically. Hence, an intuitive method is to use these peri-

odical patterns to improve the accuracy of the prediction.

For contact network of people, reasonable periods are a day

or week. Given the period p of a day or a week, we con-

sider using the node’s periodical average centrality value

between Gr�mþ1, ..., Gr�1, Gr where 0\m� r as the

node’s future temporal centrality value. Hence, we first

have to find periodical time windows of the (r ? 1)th time

window. We define a ¼ minrk¼r�mþ1ðr þ 1� kÞw mod p as

the time window which is the closest to the periodical time

window of the (r ? 1)th time window. Then, we define f(k)

as:

f ðkÞ ¼ 1; kw mod p � a;
0; kw mod p 6¼ a:

�
ð7Þ

Then, the future temporal centrality CfuðiÞ in Grþ1 can be

expressed as:

CfuðiÞ ¼
Pr

k¼r�mþ1 f ðkÞCkðiÞPr
k¼r�mþ1 f ðkÞ

ð8Þ

Periodical Weighted Average Method In order to con-

sider the relative importance of the recent temporal net-

works, similar to the method above, we can use the recent

periodical weighted average centrality value instead of the

periodical uniform average centrality value. Therefore,

based on Eqs. 7 and 8, the future temporal centrality CfuðiÞ
in Grþ1 using the recent periodical weighted average cen-

trality method can be expressed as:

CfuðiÞ ¼
Pr

k¼r�mþ1 f ðkÞWdCkðiÞPr
k¼r�mþ1 Wtotal

ð9Þ

where d ¼ ðr þ 1� kÞ=p is the periodical time difference

between the past kth time window and the future time

window r ? 1; Wtotal ¼
Pr

k¼r�mþ1 f ðkÞWd. Similar to the

method above, we consider the linear (Wd ¼ 1
d
) weight

assignments depending on the periodical time difference d

between Gk and Grþ1.

6 Performance evaluation

In this section, we aim to evaluate the performance of the

proposed methods above in the Infocom 06 and MIT

Reality traces, and the impact of several parameters (e.g., m

and w) on the performance of the proposed methods above.

We use part of MIT Reality traces (the first 10 days of

October), and all traces in the Infocom 06 trace to evaluate

the performance of our proposed methods. For each pre-

diction method, ErrorðGtÞ is used to evaluate the prediction

accuracy of the proposed methods. Here, we use Last to

denote the Last Method, RUA to denote the Recent Uni-

form Average Method, RWA to denote the Recent

Weighted Average Method, PUA to denote the periodical

uniform average method, and PWA to denote the Period-

ical Weighted Average Method.

6.1 The impact of parameter m on the performance

of the proposed methods

In this part, we focus on evaluating the impact of parameter

m on the performance of the proposed methods, and find a

proper value of m for each proposed method at the same

time.

Figure 8 shows the temporal centrality prediction results

of different prediction methods in the MIT Reality trace by

varying m. We find that the RWA achieves the best results

in closeness and degree, and is very close to the best results

in betweenness. Moreover, RWA reaches the minimum

ErrorðGtÞ more quickly than RUA, and is more stable than

other methods. Therefore, we recommend to use RWA to

predict the future temporal centrality in the MIT Reality

trace. It is worth noticing that with the increasing of m,

RWA achieves the minimum ErrorðGtÞ ( below 0.0045 in

closeness and 0.0113 in degree) when m is around 100 h in

closeness and degree, and then the ErrorðGtÞ values will be
stable after this time interval.

Although the performance of PWA is not as good as that

of RWA, it outperforms the other prediction methods in

closeness and degree. This is because the periodic patterns

of nodes are clearly shown in the MIT Reality trace.

Therefore, considering the performance of PWA, we rec-

ommend using PWA as an alternative. However, we would

not recommend using Last Method because its relative

accuracy is not enough, although its computation cost is

relatively cheap.
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Figure 9 shows the temporal centrality prediction results

of different prediction methods in the Infocom 06 trace by

varying m. By contrast, we find that with the increasing of

m, RWA and PWA are not as good as that in the MIT

Reality trace, especially the PWA. Actually, we have

already observed that there is no noticeable periodic pat-

terns while the recent past centrality values are highly

correlated in the Infocom 06 trace—Fig. 5 illustrates this.

Therefore, we recommend to use RUA to predict the future

temporal centrality value in the Infocom 06 trace. Fur-

thermore, RUA achieves the minimum ErrorðGtÞ (0.1095

in betweenness, 0.1415 in closeness, and 0.0671 in degree)

when m is 3 h, and then the ErrorðGtÞ values will increase
after this time interval. This imply that the centrality value

at a specific time in the Infocom 06 trace is highly related

to the recent past centrality values in 3 h.

The performance of RWA is very close to that of RUA.

Therefore, we recommend using RWA as an alternative.

Similar to the results in the MIT Reality trace, we would

not recommend using Last Method because its relative

accuracy is not enough, although its computation cost is

relatively cheap.

In summary, we recommend to use RWA and PWA to

predict the future temporal centrality in the MIT Reality

trace, and use RUA and RWA to predict the future tem-

poral centrality in the Infocom 06 trace. Moreover, the

parameter m also has a significant impact on the perfor-

mance of the proposed prediction methods. RWA in the

MIT Reality trace will achieve the minimum ErrorðGtÞ and
then be stable when m increases to a certain value, while

RUA will achieve the minimum ErrorðGtÞ when m

increases to a certain value, and then the ErrorðGtÞ values
will increase after this time interval.

6.2 The impact of parameter w on the performance

of the proposed methods

In this part, we focus on evaluating the impact of parameter

m on the performance of the proposed methods, and find a

proper value of w for each proposed method at the same

time.

Figure 10 shows the temporal centrality prediction

results of different prediction methods in the MIT Reality

trace by varying w, and Fig. 11 shows the temporal cen-

trality prediction results of different prediction methods in

the Infocom 06 trace by varying w. We find that the error of

all prediction methods (except RUA in the MIT Reality

trace) increases with w increases, not only in the MIT

(a) (b)

(c)

Fig. 8 Temporal centrality

prediction results by varying

m in the MIT Reality traces

when w is 1 h. a betweenness,

b closeness, c degree
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(a) (b)

(c)

Fig. 9 Temporal centrality

prediction results by varying

m in the Infocom 06 traces when

w is 1 h. a betweenness,

b closeness, c degree

(a) (b)

(c)

Fig. 10 Temporal centrality

prediction results by varying

w in the MIT Reality traces

when m is 48 h. a betweenness,

b closeness, c degree
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Reality trace, but also in the Infocom 06 trace. This is

reasonable because a finer granularity may be desired to

improve the prediction accuracy. However, w cannot be too

small, because larger w means larger computation cost.

Therefore, we should set the value of w according to the

requirement of different applications. With the increase of

w, RWA still performs best in the MIT Reality trace.

Therefore, we still recommend to use RWA to predict the

future temporal centrality in the MIT Reality trace. Simi-

larly, RUA performs best in the Infocom 06 trace, and

RWA is very close to the performance of RUA. Therefore,

we recommend to use RUA or RWA to predict the future

temporal centrality in the Infocom trace.

In summary, the parameter w has a significant impact on

the performance of the proposed methods. Although the

error of all prediction methods (except RUA in the MIT

Reality trace) increases with the increase of w, w cannot be

too small. Larger w means larger computation cost. We

should set the value of w according to the requirement of

different applications. Furthermore, with the change of w,

we recommend to use RWA to predict the future temporal

centrality in the MIT Reality trace, and RUA or RWA to

predict the future temporal centrality in the Infocom trace.

7 Conclusions

In this paper, we have predicted nodes’ future importance

from the temporal perspective under three important met-

rics, namely betweenness, closeness, and degree centrality,

using different real mobility traces in OMSNs. Through

real trace-driven simulations, we find that nodes’ centrality

values are highly correlated with their past recent centrality

values, and have periodical behavior at 24 h difference.

Then, based on the observations in the simulation, we

design several reasonable prediction methods to predict

nodes’ future temporal centrality. Extensive real trace-

driven simulation results show that the Recent Weighted

Average Method performs best in the MIT Reality trace,

and the Recent Uniform Average Method performs best in

the Infocom 06 trace. Furthermore, we also evaluate the

impact of parameters m and w on the performance of the

proposed prediction methods, and suggest proper values of

parameters m and w for each proposed prediction method at

the same time. In the future, we plan to analyze other real

mobility traces to study their common characteristics, and

use the predicted temporal centrality to design efficient

routing protocol in OMSNs.

(a) (b)

(c)

Fig. 11 Temporal centrality

prediction results by varying

w in the Infocom 06 traces when

m is 48 h. a betweenness,

b closeness, c degree

896 Pers Ubiquit Comput (2016) 20:885–897

123



Acknowledgments This research was supported in part by NSFC

under Grants 61602272, 61503147, and 41172298, the Open Research

Project of State Key Laboratory of Synthetical Automation for Pro-

cess Industries under Grant PAL-N201507, and Hubei Key Labora-

tory of Intelligent Vision Based Monitoring for Hydroelectric

Engineering under Grant 2014KLA07.

References

1. Fan J, Chen J, Du Y, Wang P, Sun Y (2011) Delque: a socially-

aware delegation query scheme in delay tolerant networks. IEEE

Trans Veh Technol 60(5):2181–2193

2. Zhang D, Zhang D, Xiong H, Hsu C, Vasilakos A (2014) BASA:

building mobile ad-hoc social networks on top of android. IEEE

Netw 28(1):4–9

3. Yu Q, Chen J, Fan Y, Shen X, Sun Y (2010) Multi-channel

assignment in wireless sensor networks: a game theoretic

approach. In: Proceedings of IEEE INFOCOM, pp 1–9

4. He J, Cheng P, Chen J, Shi L, Lu R (2014) Time synchronization

for random mobile sensor networks. IEEE Trans Veh Technol

63(8):3935–3946

5. Zhou H, Chen J, Zheng H, Wu J (2016) Energy efficiency and

contact opportunities tradeoff in opportunistic mobile networks.

IEEE Trans Veh Technol 65(5):3723–3734

6. Zhao D, Ma H, Tang S, Li X (2015) Coupon: a cooperative

framework for building sensing maps in mobile opportunistic

networks. IEEE Trans Parallel Distrib Syst 26(2):392–402

7. Li F, Wu J (2009) MOPS: providing content-based service in

disruption-tolerant networks. In: Proceedings of IEEE ICDCS

8. Wang Z, Liao J, Cao Q, Qi H, Wang Z (2015) Friendbook: a

semantic-based friend recommendation system for social net-

works. IEEE Trans Mob Comput 29(4):40–45

9. Zhou H, Chen J, Zhao H, Gao W, Cheng P (2013) On exploiting

contact patterns for data forwarding in duty-cycle opportunistic

mobile networks. IEEE Trans Veh Technol 62(9):4629–4642

10. Yuan Q, Cardei I, Wu J (2009) Predict and relay: an efficient

routing in disruption-tolerant networks. In: Proceedings of ACM

Mobihoc, pp 95–104

11. Chen H, Lou W (2016) Contact expectation based routing for

delay tolerant networks. Ad Hoc Netw 36:244–257

12. Chen H, Lou W (2014) Gar: Group aware cooperative routing

protocol for resource-constraint opportunistic networks. Comput

Commun 48:20–29

13. Scott J (1988) Social network analysis. Sociology 22(1):109–127

14. Gao W, Li Q, Zhao B, Cao G (2009) Multicasting in delay tol-

erant networks: a social network perspective. In: Proceedings of

ACM Mobihoc. ACM, pp 299–308

15. Fan J, Chen J, Du Y, Gao W, Wu J, Sun Y (2013) Geo-com-

munity-based broadcasting for data dissemination in mobile

social networks. IEEE Trans Parallel Distrib Syst 24(4):734–743

16. Wang S, Huang L, Hsu C, Yang F (2016) Collaboration reputa-

tion for trustworthy web service selection in social networks.

J Comput Syst Sci 82(1):130–143

17. Hui P, Chaintreau A, Scott J, Gass R, Crowcroft J, Diot C (2005)

Pocket switched networks and human mobility in conference

environments. In: Proceedings of the ACM SIGCOMM workshop

on Delay-tolerant networking. ACM, pp 244–251

18. Zhou H, Chen J, Fan J, Du Y, Das SK (2013) ConSub: incentive-

based content subscribing in selfish opportunistic mobile net-

works. IEEE J Sel Areas Commun 31(9):669–679

19. Zhou H, Wu J, Zhao H, Tang S, Chen C, Chen J (2015) Incentive-

driven and freshness-aware content dissemination in selfish

opportunistic mobile networks. IEEE Trans Parallel Distrib Syst

26(9):2493–2505

20. Zhao H, Zhou H, Yuan C, Huang Y, Chen J (2015) Social dis-

covery: exploring the correlation among three-dimensional social

relationships. IEEE Trans Comput Soc Syst 2(3):77–87

21. Daly EM, Haahr M (2007) Social network analysis for routing in

disconnected delay-tolerant manets. In: Proceedings of ACM

MobiHoc, pp 32–40

22. Hui P, Crowcroft J, Yoneki E (2008) Bubble rap: social-based

forwarding in delay tolerant networks. In: Proceedings of ACM

MobiHoc, pp 241–250

23. Socievole A, De Rango F (2015) Energy-aware centrality for

information forwarding in mobile social opportunistic networks.

In: IEEE IWCMC. IEEE, pp 622–627

24. Zhu Y, Zhang C, Mao X, Wang Y (2015) Social based throwbox

placement schemes for large-scale mobile social delay tolerant

networks. Comput Commun 65:10–26

25. Chaintreau A, Hui P, Crowcroft J, Diot C, Gass R, Scott J (2007)

Impact of human mobility on opportunistic forwarding algo-

rithms. IEEE Trans Mob Comput 6(6):606–620

26. Karagiannis T, Le Boudec J, Vojnović M (2010) Power law and
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