
ORIGINAL ARTICLE

An energy efficient privacy-preserving content sharing
scheme in mobile social networks

Zaobo He1 • Zhipeng Cai1 • Qilong Han2 • Weitian Tong3 • Limin Sun4 •

Yingshu Li1

Received: 29 February 2016 / Accepted: 12 June 2016 / Published online: 30 August 2016

� Springer-Verlag London 2016

Abstract The rising popularity of mobile social media

enables personalization of various content sharing and

subscribing services. These two types of services entail

serious privacy concerns not only to the confidentiality of

shared content, but also to the privacy of end users such as

their identities, interests and social relationships. Previous

works established on the attribute-based encryption (ABE)

can provide fine-grained access control of content. How-

ever, practical privacy-preserving content sharing in

mobile social networks either incurs great risk of infor-

mation leaking to unauthorized third parties or suffers from

high energy consumption for decrypting privacy-preserv-

ing content. Motivated by these issues, this paper proposes

a publish–subscribe system with secure proxy decryption

(PSSPD) in mobile social networks. First, an effective self-

contained privacy-preserving access control method is

introduced to protect the confidentiality of the content and

the credentials of users. This method is based on cipher-

text-policy ABE and public-key encryption with keyword

search. After that, a secure proxy decryption mechanism is

proposed to reduce the heavy burdens of energy con-

sumption on performing ciphertext decryption at end users.

The experimental results demonstrate the efficiency and

privacy preservation effectiveness of PSSPD.

Keywords CP-ABE � PEKS � Proxy decryption � Bilinear
maps � Threshold secret sharing scheme � Trapdoor

1 Introduction

Social networks are serving as a platform for sharing and

subscribing to user-generated contents. Furthermore, per-

vasiveness of mobile devices promotes online social net-

works to provide convenient services to people, among

which content sharing and subscribing are two most pop-

ular services. Users either share their own content or sub-

scribe interested content by presenting their credentials,

e.g., identities and interests. For example, millions of users

everyday share their photos by Flickr or Photobucket, or

videos by YouTube or NetFlix, while they subscribe

interested content through uploading their credentials to

Internet service provider like Foursquare. For some users,

the shared contents are just available to a subset of eligible

receivers, such as family members or close friends. How-

ever, just the specific target-sharing procedure incurs

serious privacy issues as the adversary has opportunities to

access users’ sensitive information such as identities,

interests or social relationships. Malicious service provi-

ders can gain benefit by digging private information and

then selling them to advertisers without users’ permission.

Ench et al. [1] monitor 30 popular Android applications,

and find that 68 instances of 20 applications exist infor-

mation leaking. Furthermore, 15 of them send users’

information to advertisers or analytical servers without any

& Zhipeng Cai

zcai@gsu.edu

& Qilong Han

hanqilong@hrbeu.edu.cn

1 Department of Computer Science, Georgia State University,

AtlantaGA, 30303, USA

2 College of Computer Science and Technology, Harbin

Engineering University, Harbin 150001, China

3 Department of Computer Sciences, Georgia Southern

University, Statesboro, GA 30460, USA

4 Beijing Key Laboratory of IOT Information Security

Technology, Institute of Information Engineering,

CAS, Beijing, China

123

Pers Ubiquit Comput (2016) 20:833–846

DOI 10.1007/s00779-016-0952-6

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-016-0952-6&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-016-0952-6&domain=pdf

notification and permission. Meanwhile, attackers may

steal these sensitive information from service providers to

threaten users’ privacy. As reported by CNN, hackers

bypass security setting to gain access to images from a

famous photo-sharing site by using a technique known as

‘‘fusking’’ leading to many private photos were accessed

and shared improperly [2]. First reported by The Wall

Street Journal, Skype exposes a user’s Internet address to

the entire world, and that there are malicious tools that can

be used to link Skype user account names to Internet

addresses [3]. Moreover, unauthorized users may collude

with the service provider or other users to gain access to

sensitive information. Google Drive security hole high-

lights this type of danger as shown in [4]. The content in a

clickable URL could be leaked to the service provider since

it can be accessed by the users with permissions.

A privacy-preserving content sharing scheme in mobile

social networks is indispensable. Sahai and Waters [5]

proposed an attribute-based encryption (ABE) scheme,

which paves a road to achieve fine-grained access control

of content. The ABE scheme is further partitioned into

ciphertext-policy ABE (CP-ABE) [6] and key-policy ABE

(KP-ABE) [7] based on whether the publisher or key

generation authority (KGA) controls who can access con-

tent. Unfortunately, original ABE scheme raises new pri-

vacy concerns due to disclosing sensitive access policy to

service provider. To overcome this drawback, public-key

encryption with keyword search (PEKS) [8] scheme is

incorporated into the ABE scheme (ABE–PEKS) which

allows service provider to perform matching without

learning anything about the shared content, access policy

and users’ credentials [9, 10]. Original ABE–PEKS gains

great success for many applications but it distributes the

decryption task to end-receivers, resulting in high energy

consumption for end-receivers. Note that, as the access

policy grows in complexity and size, the size of ciphertext

and decryption time toward it increase as well. Apparently,

ABE–PEKS poses big challenges for mobile devices as

energy efficiency is still a primary consideration.

For all of the aforementioned concerns, a general self-

contained privacy-preserving content sharing scheme that

ensures the privacy of users in an effective and efficient

manner is desired. This paper proposes a publish–subscribe

system with secure proxy decryption (PSSPD) approach

that jointly considers the confidentiality of shared content

and the privacy of publisher and subscriber without

imposing energy-intensive computational complexity to

authorized subscribers, in which:

• Any unauthorized viewers (either service provider or

users) gain no access to shared content and authorized

users gain access only if their credentials satisfy the

access policy indicated by the content publisher.

• Service provider forward the encrypted content to

authorized users without learning anything about the

private information of publishers and credentials of

subscribers.

• Authorized users merely need to decrypt a constant size

of partially decrypted ciphertext with two exponentia-

tion operation to recover the content.

The remainder of this paper is organized as follows.

Section 2 lists the challenges for privacy-preserving con-

tent sharing in mobile social networks. Section 3 presents

the proposed approach. Next, we give the preliminaries and

algorithm definitions of PSSPD as preparation in Sect. 4.

The concrete implementation of PSSPD is given in Sect. 5.

Next, the security analysis is given in Sect. 6. Section 7

reports our performance evaluation. The related works are

addressed in Sect. 8. Finally, Sect. 9 concludes this paper

and presents future works.

2 Threat model and security challenges

Before presenting the threat model and the security chal-

lenges involved in the content sharing service, we first

introduce the publish–subscribe system discussed in this

paper and the involved entities.

2.1 Publish–subscribe system and entities

A publisher generates content and would like to share it

with specific users. A subscriber subscribes to interested

contents through uploading their interests to a service

provider. After receiving uploaded contents and interests, a

service provider looks for the contents that match a sub-

scriber’s interests and then sends the contents to the cor-

responding authorized subscriber. Meanwhile, there exists

a trusted third party, KGA, that generates public and pri-

vate keys for users. All of the keys are delivered in an out-

of-band manner. Generally, the keys are allocated just at

the initialized phase for a user.

2.2 Threat model

The threat model can be described from three aspects. First,

it is assumed that the service provider is honest-but-curi-

ous. That is, it honestly executes the operations specified

by sharing scheme; however, it would like to get sensitive

information of users as much as possible. Second, it is

assumed that the service provider would like to collude

with malicious users to obtain sensitive information. Third,

it is assumed that malicious users would like to collude

with each other to obtain sensitive information. Moreover,

we do not consider the case that attackers can actively

834 Pers Ubiquit Comput (2016) 20:833–846

123

attack the transferred data, such as intercepting or delib-

erately discarding.

2.3 Security challenges

For the involved three parties, i.e., publisher, service pro-

vider and subscriber, the following challenges need to be

addressed to guarantee privacy preservation and efficiency

simultaneously:

2.3.1 C1: basic privacy

How do we ensure no unauthorized viewers (either service

provider or users) gain access to the shared content?

2.3.2 C2: publisher privacy

How do we ensure no service provider and unauthorized

user knows the access policy specified by the publisher?

2.3.3 C3: subscriber privacy

In presence of a curious service provider, how does the

service provider forward content without knowing the

interests and attributes of the subscribers?

2.3.4 C4: functionality 1

In order to minimize bandwidth overhead of mobile social

networks, how do we ensure that the encrypted contents are

only forwarded to authorized subscribers?

2.3.5 C5: functionality 2

In order to minimize energy consumption of mobile devi-

ces, how do we ensure that the computational complexity

of decryption is exempted from the authorized subscribers?

3 The proposed approach

In this section, we first present a content sharing scenario

and then present the privacy-preserving approach in a

progressive way. We start from a basic scheme that par-

tially solves the privacy- preserving content sharing prob-

lem to a complete one (i.e., PSSPD) enabling content to be

shared in a secure and efficient manner.

Let us consider a scenario in the commercial environ-

ment. The board of directors of a company want to share a

memo with specific persons that satisfy certain adminis-

trative levels through a cloud service provider with the

requirement that memo is shared securely. To differentiate

different shared memos, the publisher labels the memo

with a tag Trade. The persons can subscribe any interested

document of the company by uploading their attributes

(such as identities, positions and departments) and interests

to the cloud service provider by computers or mobile

devices. To preserve confidentiality, the memo is encrypted

by an access policy that specifies who can access it. A

subscriber receives the memo only if its credentials (i.e.,

attributes and interests) satisfy the access policy. Assume

the access policy is described by a tree, in which the leaves

are composed of attributes and the non-leaf nodes are

composed of AND, OR or threshold gates. Suppose that the

memo only can be accessed either by Manager or Director

from the Sales department. Such a tree to illustrate this

access policy is shown in Fig. 1.

3.1 Scheme 1: attribute-based broadcast encryption

(ABBE)

To preserve the confidentiality of the shared content, the

publisher encrypts it with an access tree and labels it with a

tag to distinguish the content from others. Then, the

encrypted content and the associated tag are sent to the

service provider. Meanwhile, a subscriber uploads its

interests to the service provider to subscribe to interested

contents. Two sets, tag set and interest set, are managed by

the service provider to store the uploaded tags and inter-

ests, respectively, and they are initialized as empty sets.

Once a subscription comes, the service provider first looks

up the tag set to match the interest and tag. If such a match

exists, the service provider sends the encrypted content

associated with this tag to the subscriber with this interest.

Otherwise, the service provider adds the interest to the

interest set in an order and sends False to the subscriber.

When the service provider receives an uploaded tag, it

handles it in a similar way. Note that how to optimize the

structure of these two sets to enhance the quality of service

is out of the scope of this paper. Figure 1 illustrates this

scheme.

After receiving the encrypted content, only the users

whose attributes satisfy the access tree can decrypt it. Thus,

Scheme 1 ensures the confidentiality of shared content, i.e.,

it solves challenge C1. However, this scheme has the fol-

lowing drawbacks. First, the exposed access policy dis-

closes the receivers’ private information to the service

provider. For example, the service provider can infer some

commercial information from the access policy such as

management structure of this company. The service pro-

vider can also count the tag to infer the commercial

behaviors of this company in a period of time. The expo-

sure of the access policy is associated with challenge C2.

Second, a subscriber disclosing its interests and attributes

to the service provider is unadvisable. In our scenario, the

service provider can learn the position of a subscriber

Pers Ubiquit Comput (2016) 20:833–846 835

123

through its attributes. This drawback is associated with

challenge C3. Third, the service provider forward the

shared content to a subscriber just based on its interests

without checking whether the receiver is really an autho-

rized user or not, which results in unnecessary bandwidth

overhead. This drawback is associated with challenge C4.

Last, the content receivers have to make repeating attempts

to decrypt the content, which increases the energy con-

sumption for mobile devices. This drawback is associated

with challenge C5.

3.2 Scheme 2: content sharing with CP-ABE–PEKS

The goal of Scheme 2 is to ensure the confidentiality of

the shared content without leaking the access policy and

the subscribers’ credentials to the service provider and

unauthorized users. Scheme 2 takes the CP-ABE [6] and

the PEKS [8] as building blocks to conceal the access

policy and subscribers’ credentials. By matching the

encrypted subscriber’s credential with the encrypted

access policy, the service provider can evaluate who is

the authorized subscriber and then sends the encrypted

content to it. CP-ABE allows publishers to indicate who

can access the content by defining the access policy.

Meanwhile, PEKS is employed to ensure the privacy of

publisher and subscriber. The PEKS has four algorithms:

KeyGen, PEKS, Trapdoor and Test. KeyGen is executed

by KGA and it takes an attribute ai as input and outputs

a pair of public key hi and private key xi associated with

attribute ai. To hide the access policy and tags, the

leaves of the access tree are replaced by the output of

PEKS that encrypts a tag with public key hi of each

attribute ai (here ai is the attribute indicated by the

publisher). To hide the subscriber’s credentials (i.e.,

interests and attributes), Trapdoor encrypts interests with

private key xi of each attribute ai (here ai is the attribute

indicated by the subscriber). Then Test matches the

encrypted interests (output of Trapdoor) and encrypted

tag (output of PEKS). If the above two outputs match

with each other, Test returns True, otherwise False to

this leaf node.

Since the tags and interests have been encrypted by the

public key and private key of attribute, respectively, CP-

ABE–PEKS enables the service provider to find the

authorized subscribers without learning anything about the

tags, interests and attributes. The matching procedure is to

traverse the access tree from a leaf node to the root. First,

the matching algorithm runs Test at each leaf node. We say

a leaf node of an access tree is satisfied if this encrypted tag

(output of PEKS) matches any encrypted interest (output of

Trapdoor) in the interest set. Finally, if the root is also

satisfied, which means that the subscriber is an authorized

one, the service provider forward the encrypted content to

it. Scheme 2 is illustrated in Fig. 2.

As Fig. 2 shows, the service provider cannot access the

plaintext of the content so it solves challenge C1. Mean-

while, since the tag and interests are encrypted by the

public key and private key of attributes, respectively, the

tag, interests and access policy are concealed simultane-

ously. Thus, Scheme 2 solves challenges C2 and C3.

Moreover, only the authorized users get the encrypted

contents from the service provider, so Scheme 2 also solves

challenge C4.

3.3 Scheme 3: publish–subscribe system with secure

proxy decryption (PSSPD)

Although Scheme 2 ensures the confidentiality of the

shared content and preserves the privacy of publisher and

subscriber, the decryption of CP-ABE ciphertext is con-

ducted by the authorized subscribers, which is a challenge

in practice for mobile environment. Worth to note that as

the access policy grows in complexity and size, the size of

ciphertext and decryption time toward it also increase.

Thus, Scheme 2 does not adapt to mobile environment due

to the resource limitation of mobile devices. Thus, the goal

of Scheme 3 is to solve all the challenges listed in

Sect. 2.3.

Service provider
+

Tag: Trade

Interes
t: Trad

e

Interest: Trade
+ P

+ P

+ P
Interest: Trade

P: V

V

Manager

Director Sales

Fig. 1 Scheme 1: attribute-

based broadcast encryption

(ABBE)

836 Pers Ubiquit Comput (2016) 20:833–846

123

Themain idea of Scheme 3 can be described as follows. A

subscriber uploads not only its credentials (i.e., encrypted

interests with private key of attributes as described in

Scheme 2) but also a transformation key TK to the service

provider, by which the service provider can transform a CP-

ABE ciphertext of content into an ElGamal-style ciphertext

with constant size. With the partially decrypted ElGamal-

style ciphertext sent from the service provider, a user only

needs to compute two exponentiation to recover the shared

content. Note that the service provider cannot learn anything

from TK other than matching and transforming the cipher-

text. The PSSPD scheme is shown in Fig. 3.

Since Scheme 3 is an extension of Scheme 2, Scheme 3

can solve challenges C1–C4. Meanwhile, Scheme 3 avoids

the energy-intensive decryption computation at end users

so that it also solves challenge C5.

4 Preliminaries and definitions

In this section, we first introduce the background of the

bilinear maps [11] and the (k, n)-threshold secret sharing

scheme [12]. Then, we illustrate the definitions of algo-

rithms in PSSPD scheme.

4.1 Primitives

4.1.1 Bilinear maps

For two cyclic groups G1 and G2 with same order p, there

exists a function e : G1 �G1 ! G2. We call this function

e is a Bilinear Maps if it satisfies:

• Bilinearity for any x 2 G1; y 2 G2 and a; b 2 Zp, we

have eðxa; ybÞ ¼ eðx; yÞab.
• Non-degeneracy Letting g be a generator of G1,

eðg; gÞ 6¼ 1:

Moreover, e is computable.

4.1.2 (k, n)-threshold secret sharing scheme

A (k, n)-threshold secret sharing scheme divides a secret s

into n parts, i.e., s1; . . .; sn, such that the knowledge of

arbitrary k or more sið1� i� nÞ makes s easily computable.

However, the knowledge of arbitrary k � 1 or fewer

sið1� i� nÞ makes s totally undetermined. The concept of

Sharing implies that the computation of s requires mutual

cooperation of k or more si. Based on the polynomial

interpolation, there exists unique polynomial L(x) of degree

Service provider
+ P: V

V

PEKS(Trade, hManager)

PEKS(Trade, hDirector) PEKS(Trade, hSales)

Trapdo
or(Tra

de, xDire
ctor)

Trapdo
or(Tra

de, xSale
s) +TK1

Trapdoor(Trade, xManager)+TK2

Trapdoor(Trade, xDirector) +TK3

Partial
ly decr

ypted c
ipherte

xt

Partially decrypted ciphertext

Fig. 3 Scheme 3: publish–

subscribe system with secure

proxy decryption (PSSPD)

Service provider
+ P: V

V

PEKS(Trade, hManager)

PEKS(Trade, hDirector) PEKS(Trade, hSales)

Trapdo
or(Tra

de, xDire
ctor)

Trapdoor(Trade, xManager)

+ P

+ P

Trapdo
or(Tra

de, xSale
s)

Trapdoor(Trade, xDirector)

Fig. 2 Scheme 2: content

sharing with CP-ABE–PEKS

Pers Ubiquit Comput (2016) 20:833–846 837

123

k � 1 that pass through the k points

ðx1; y1Þ; . . .; ðxj; yjÞ; . . .; ðxk; ykÞ where no two xj are the

same. Thus, for the n parts of s ði.e.; sið1� i� nÞÞ, we can
select a random k � 1 degree polynomial LðxÞ ¼ c0 þ
c1xþ � � � ; ck�1xk�1 with c0 ¼ s and

s1 ¼ Lð1Þ; . . .; si ¼ LðiÞ; . . .; sn ¼ LðnÞ.
Given arbitrary k pairs (i, L(i)) to form a set S, we can

compute secret s from the following Lagrange interpolating

polynomial

s ¼ c0 ¼ Lð0Þ ¼
X

i2S
LðiÞDi;Sð0Þ

where

Di;SðxÞ ¼
Y

j2S;j 6¼i

x� j

i� j

is the Lagrange coefficient.

4.1.3 Access policy

The access policy is described as a tree T. The leaves of T

are composed of attributes (note that in the PSSPD scheme,

a leaf node is replaced by the output of PEKS) and the non-

leaf nodes are composed of AND, OR or (k, n)-threshold

gates. If non-leaf node x is AND, it corresponds to a

ðkx; numxÞ threshold gates where kx ¼ numx and numx is the

number of child nodes of x. If non-leaf node x is OR, it

corresponds to a ðkx; numxÞ threshold gates with kx ¼ 1.

Obviously, 1� kx� numx. For clarity, some functions are

introduced to describe an access tree. Let parent(x) denote

the parent node of node x. For each node x, index(x) is used

to describe its order among its siblings. att(x) denotes the

attribute indicated by leaf node x.

4.2 Algorithms

The PSSPD scheme consists of the following algorithms.

4.2.1 Setup

The setup algorithm is executed by the KGA. It takes the

implicit security parameter as input and outputs public key

PK and master key MK.

4.2.2 KeyGen(MK, S)

The KeyGen algorithm is executed by the KGA. It takes

master key MK and a user’s attribute set S as input and

outputs an intermediate transformation key ITK associated

with S. Meanwhile, for each ai 2 S, it outputs a pair of

public key hi and private key xi.

4.2.3 PEKSðPK; hi; tagÞ

The PEKS algorithm is executed by a publisher. It encrypts

a tag with hi where hi is the public key of an indicated

attribute ai:

4.2.4 PubEncrypt(PK, M, T, tag)

The PubEncrypt algorithm is executed by a publisher. It

encrypts shared content M with access tree T and then

encrypts T by replacing the leaf node of T with the output

of PEKS (i.e., encrypted tags).

4.2.5 Trapdoorðinterest; xiÞ

The Trapdoor algorithm is executed by a subscriber. It

encrypts the subscriber’s interest with xi where xi is the

private key of its attribute ai.

4.2.6 DecKeyGen(ITK, EI)

The DecKeyGen algorithm is executed by a subscriber. It

takes intermediate transformation key ITK and encrypted

interest set EI (i.e., output of Trapdoor) as input and out-

puts the transformation key TK and decryption key DK.

4.2.7 Test(ET, EI)

The Test algorithm is executed by a service provider. It

takes the encrypted tags and interests as input and returns

True if the encrypted tag matches the encrypted interest,

otherwise False.

4.2.8 MatchTransðCT ;EI; TK; T 0Þ

The MatchTrans algorithm is executed by the service

provider. It matches the credential of a subscriber with an

encrypted access policy and transforms the CP-ABE

ciphertext of content to partially decrypted ciphertext if the

subscriber is an authorized one, otherwise, it returns False.

4.2.9 SubDecryptðCT 0;DKÞ

The final decryption algorithm is executed by a subscriber.

It takes encrypted access policy CT 0 and decryption key

DK as input and outputs the plaintext of shared content M.

5 Implementation

In this section, we describe the concrete implementation of

each algorithm.

838 Pers Ubiquit Comput (2016) 20:833–846

123

5.1 Setup

The Setup algorithm is built upon a bilinear group G1 of

prime order p with generator g. It first picks two random

numbers a; b 2 Zp. Then, it computes the public key

PK ¼ G1; g; h ¼ gb; eðg; gÞa
� �

and master key MK ¼ ðb; gaÞ. PK is published to all the

users and MK is kept secretely by the KGA.

5.1.1 KeyGen(MK, S)

To generate ITK, the KeyGen algorithm first randomly

picks two numbers r 2 Zp and z 2 Zp. Then, it randomly

picks ri 2 Zp for each attribute ai 2 S. ITK can be com-

puted as

ITK ¼ D ¼ gðaþrÞ=ðbzÞ;
�

8ai 2 S : Di ¼ gr=z � HðaiÞri=z;Di
0 ¼ gri=z

�

where H is a hash function that maps the binary value into

group G1. Then, the KGA sends ITK to the subscriber

associated with S in an out-of-band manner.

To generate pairs of public key hi and private key xi for

an arbitrary attribute ai, the algorithm picks a random xi 2
Z�p and computes hi ¼ gxi . Because one attribute can be

shared by different users, it is necessary to set two con-

tainers PUB and PRI to store public keys and private keys

for all attributes, respectively. Initially, PUB and PRI are

empty. Then, the KGA updates PUB and PRI by PUB
PUB [ðai; hiÞ and PRI PRI [ðai; xiÞ, respectively, if

there is a new attribute ai that is uploaded to the service

provider. Then, PUB is published to all the users and each

user with specific attributes gets the corresponding private

keys from PRI.

5.2 PEKSðPK; hi; tagÞ

The PEKS algorithm encrypts each tag with the public key

of each attribute indicated by publisher. For attribute ai, the

algorithm picks a random number k 2 Z�P and computes

ET ¼ gk;H0 eðHðtagÞ; hirÞð Þ
� �

where H0 is a hash function that maps the items in G2 into

binary value.

5.3 PubEncrypt(PK, M, T, tag)

The PubEncrypt algorithm encrypts shared content M

with access tree T. To protect the access tree and tag

from leaking, the leaf node of the access tree is replaced

by the encrypted tag, (i.e., the output of PEKS). Note

that kx denotes the threshold gate of node x (threshold

gate definition can be found in Sect. 4.1.1). The

encryption procedure for content M is to traverse T in a

top-down manner. For root node R of T, the algorithm

randomly selects a polynomial LR with degree

dR ¼ kR � 1. Then, it randomly selects s 2 Zp and sets

LRð0Þ ¼ s. The other dR points are chosen randomly to

completely define LR. For an arbitrary non-leaf node x, it

randomly selects a polynomial Lx with degree dx ¼
kx � 1 and set Lxð0Þ ¼ LparantðxÞðindexðxÞÞ. Then, it

chooses other dx points randomly to completely define

Lx. After the above traversing and selecting procedure,

each node in T is associated with a polynomial.

Y is used to denote the leaves of T, the ciphertext CT can

be computed as

CT ¼ eC ¼ Meðg; gÞas; C ¼ hs;
�

8y 2 Y : Cy ¼ gLyð0Þ;Cy
0 ¼ HðattðyÞÞLyð0Þ

�
:

Next, the access tree and tag need to be encrypted. For

the tag indicated by the publisher, PubEncrypt calls the

PEKS algorithm to encrypt the tag with hi where hi is the

public key of attribute ai. Then, the leaf node of T is

replaced by the corresponding output of PEKS. For

example, if the leaf node of T is ai, it is replaced by

PEKSðPK; hi; tagÞ. The encrypted access tree is denoted by

T 0.

5.4 Trapdoorðinterest; xiÞ

For attribute ai, the Trapdoor algorithm encrypts the

interest with xi where xi is the private key of ai and com-

putes the encrypted interest EI as EI ¼ HðinterestÞxi .

5.4.1 DecKeyGen(ITK, EI)

By the DecKeyGen algorithm, the transformation key

should reflect a mapping between a subscriber’ credentials

and its ITK. Thus, the subscriber constructs the transfor-

mation key TK as follows:

TK ¼ 8ai 2 S : ðEIi; ITKiÞð Þ

where S is the set of attributes uploaded by a subscriber and

EIi is the encrypted interest with private key of ai, and

ITKi

¼ D ¼ gðaþrÞ=ðbzÞ;Di ¼ gr=z � HðaiÞri=z;Di
0 ¼ gri=z

� �
:

Correspondingly, the decryption key is DK ¼ z. TK is

sent to the service provider to partially decrypt the

encrypted content, and DK is kept secretly by the

subscriber.

Pers Ubiquit Comput (2016) 20:833–846 839

123

5.4.2 Test(ET, EI)

For an arbitrary pair of encrypted interest EI and encrypted

tag ET, The Test algorithm computes H0ðeðEI; gkÞÞ¼? ET

and returns True or False.

5.4.3 MatchTransðCT ;EI; TK; T 0Þ

The MatchTrans algorithm matches the credential of a

subscriber with an encrypted access policy and transforms

the CP-ABE ciphertext to partially decrypted ciphertext if

the subscriber is an authorized one or returns False

otherwise.

We first design a recursive function DecryptNo-

de(CT, ITK, x) that takes ciphertext CT, intermediate

transformation key ITK and an arbitrary tree node x as

input. If x is a leaf node and ai ¼ attðxÞ, MatchTrans calls

the Test algorithm to evaluate whether an encrypted tag

ETi matches an encrypted interest EIj. If a match exists, the

ITKj that corresponds to EIj is picked from TK and

computes

DecryptNodeðCT ; ITKj; xÞ ¼
eðDj;CxÞ
e D0j;C

0
x

� �

¼
e gr=z � HðaiÞrj=z; gLxð0Þ
� �

e grj=z;HðaiÞLxð0Þ
� �

¼ eðg; gÞðr=zÞ�Lxð0Þ:

If there is no match for leaf node x, we set x as False.

Otherwise, we consider the case that x is a non-leaf node

and assume the threshold gate of x is kx. Under this case,

DecryptNode(CT, ITK, x) is proceeded as follows. We use

y to denote an arbitrary child node of x. For each y, we run

DecryptNode(CT, ITK, y) and denote the output as Fy. If

there does not exist an arbitrary kx-sized set of Fy such that

Fy is not set as False, DecryptNode(CT, ITK, x) returns

False. Otherwise, MatchTrans algorithm denotes these

arbitrary kx-sized set of child node y as Kx and computes

Fx ¼
Y

y2Kx

Fy
Di;K0x
ð0Þ

¼
Y

y2Kx

eðg; gÞðr=zÞ�Lyð0Þ
� �Di;K0x

ð0Þ

¼
Y

y2Kx

eðg; gÞðr=zÞ�LparentðyÞðindexðyÞÞ
� �Di;K0x

ð0Þ

¼
Y

y2Kx

eðg; gÞðr=zÞ�Lxð0Þ�Di;K0x
ð0Þ

¼ eðg; gÞðr=zÞ�Lxð0Þ

where i ¼ indexðyÞ and K 0x ¼ findexðyÞ : y 2 Kxg.

Based on the DecryptNode function, the MatchTrans

algorithm just needs to run DecryptNode(CT, TK, R) at

root node R to evaluate whether one subscriber is an

authorized one or not. If it returns False, this subscriber

is not an authorized one. Otherwise, DecryptNode

ðCT ; TK;RÞ ¼ eðg; gÞðr=zÞ�LRð0Þ ¼ eðg; gÞðr=zÞ�s will be

returned (s is used to denote LRð0Þ as described in

PubEncrypt algorithm). Denoting eðg; gÞðr=zÞ�s as A, the

MatchTrans algorithm computes

eC=ðeðC;DÞ=AÞ ¼ Meðg; gÞas � eðg; gÞðr=zÞ�s

eðhs; gðaþrÞ=ðbzÞÞ

¼ Meðg; gÞas � eðg; gÞðr=zÞ�s

eðgbs; gðaþrÞ=ðbzÞÞ

¼ M � eðg; gÞ
ðaþr

zÞs

eðg; gÞ
aþr
z
s

¼ M � eðg; gÞas�ð1�1=zÞ

and

fraceðC;DÞA ¼ eðhs; gðaþrÞ=ðbzÞÞ
eðg; gÞrs=z

¼ eðg; gÞas=z

Finally, MatchTrans outputs the partially decrypted

ciphertext CT 0 as:

CT 0 ¼ M � eðg; gÞas�ð1�1=zÞ; eðg; gÞas=z
� �

For clearly, CT 0 is represented as CT 0 ¼ ðCT 01;CT 02Þ.

5.5 SubDecryptðCT 0;DKÞ

In this algorithm, the receiver just needs to compute

M ¼ CT 01
ð1�1=zÞ�1=CT 02

�z
.

6 Security analysis

In this section, we make the security analysis of the PSSPD

scheme. First, PSSPD is collusion-resistance: (1) in the

case that multiple users collude with each other by pooling

their private keys, it is impassible to decrypt a ciphertext.

Since the ITK of each user is independently randomized,

they can decrypt a ciphertext if and only if at least one of

these users can decrypt it by itself. (2) In the case that users

collude with the service provider, what they got is no more

than the information that have been obtained by one of

these malicious users. The reason is that the service pro-

vider can only see the encrypted interests and tags and ITK

of users is independently randomized so that both of them

cannot exchange any valuable information. The other one

840 Pers Ubiquit Comput (2016) 20:833–846

123

security challenge for PSSPD is to ensure the security of

access policy and subscriber’s credentials. Theorem 3.1

of [8] shows that PEKS scheme is secure to ensure the

security of the leaves of access policy and encrypted cre-

dentials of subscriber.

7 Performance analysis

To evaluate the performance of the PSSPD scheme, we

build a prototype of PSSPD based on the open-source-

libfenc1 library that provides the implementation of CP-

ABE. The PEKS scheme that is used to extend the CP-ABE

is implemented based on the PBC2 library. A 3.10 GHz

Intel Core platform with 4 GB RAM running 64-b Ubuntu-

14.04.1 is deployed as the service provider, and two

Samsung Galaxy SIII smartphones with 1.4 GHz processor

and 1GB RAM running Android-4.1.1 are deployed as

subscriber and publisher, respectively. We crossly compile

PSSPD for the ARM architecture so that the publisher’s

encryption and subscriber’s decryption can be imple-

mented on the smartphones. We execute the operation in

each stage for 30 rounds then compute the average

overhead.

7.1 Overhead of key generation

KeyGen is run by the KGA to generate both intermediate

transformation key ITK and search key for each ai (i.e., hi
and xi) where ai 2 S and S is an user’s attribute set. Thus,

we run KeyGen on an Intel platform. The generation time

of ITK and search key are closely related to the size of the

attribute set. To capture this, we first generate a set of 100

attributes a1; a2; . . .; a100. Then, we randomly select N

items from the above items to generate 100 different

attribute sets Sið1� i� 100Þ, with N increasing from 1 to

100. Figure 4 shows the effect of the size of the attribute

set on the generation time of ITK and search key. As can be

seen, with the size of attribute set increases, the generation

time of both ITK and search key have a linear growth.

Meanwhile, the generation time of ITK is larger than that of

search key due to larger computational complexity. Thus, it

shows that the computational complexity of key generation

time is HðjAjÞ where A is the attribute set of a user.

7.2 Overhead of encryption of one publisher

PubEncrypt is run on the ARM platform. First, the shared

content is encrypted with the access policy defined by the

subscriber. Then, the access policy is concealed by

replacing the leaf node of access policy with the encrypted

tags. The encryption time is closely related to the scale of

the access policy which involves the size of attribute or tag

set indicated by publisher, and the logical combination of

attributes.

To capture the influence of the size of attribute set, we

first generate 100 different leaves with one tag t1 and 100

attributes ða1; a2; . . .; a100Þ shown as follows:

PEKSðt1; a1Þ; . . .;PEKSðt1; a100Þ. Then, we randomly pick

n items from the above items to generate an access policy

APn, with n increasing from 2 to 100. For an arbitrary APn

assuming its leaves is PEKS1, PEKS2, …, PEKSn, we set it

as PEKS1 � PEKS2 � � � �PEKSn where � is randomly set

as OR with probability 0, 0.5 and 1, respectively. We

denote these three cases by ALL-AND, Half-AND and All-

OR, respectively. Figure 5a shows the effect of the size of

attribute set on the encryption time of one subscriber in the

above three cases, respectively. As we can see, with the

size of attribute set increases, the time for encrypting a

content has linear growth. Since the access tree has the

same hight for cases All-AND and All-OR, both of them

have the same computational complexity. For the case

Half-AND, the encryption time for one publisher is larger

due to the larger hight of the access tree.

Similarly, to capture the influence of the size of tag set,

we generate the leaves of the access tree with 10 attributes

and t tags where t ¼ 1; 2; . . .; 10. Keeping the other settings

unchanged, Fig. 5b shows the effect of the size of tag set

on the encryption time of one publisher in the above three

cases, respectively. We can observe that, with the size of

tag set increases, the encryption time for a content has

linear growth.

Finally, we investigate the case of the size of attribute

and tag set increasing simultaneously. To capture this, we

generate the leaves of access tree with a attributes and t

tags where a ¼ 2; 3; . . .; 10 and t ¼ 2; 3; . . .; 10. Keeping

the other settings unchanged, Fig. 5c shows that the time

for encrypting a content grows quadratically with the

0 10 20 30 40 50 60 70 80 90 100
0

50

100

150

200

250

300

350

400

Size of attribute set

K
ey

 g
en

er
at

io
n

tim
e

(in
 m

s)

ITK
Search key

Fig. 4 Effect of the size of attribute set on key generation time

1 https://code.google.com/p/libfenc/.
2 http://crypto.stanford.edu/pbc/.

Pers Ubiquit Comput (2016) 20:833–846 841

123

https://code.google.com/p/libfenc/
http://crypto.stanford.edu/pbc/

increasing size of attribute and tag set simultaneously.

Thus, it shows that the computational complexity of

encryption of one publisher is HðjAj � jTjÞ where A is the

attribute set indicated by the publisher and T is the tag set.

7.3 Overhead of encryption of one subscriber

We run Trapdoor on the ARM platform to encrypt interests

with the private key of attributes indicated by a subscriber.

The encryption time is closely related to size of the attri-

bute or interest set. To capture this, we generate the leaves

of the access tree with (1) ten interests and a attributes

where a ¼ 2; 3; . . .; 10; (2) ten attributes and i interests

where i ¼ 2; 3; . . .; 10; (3) a attributes and i interests where

a ¼ 2; 3; . . .; 10 and i ¼ 2; 3; . . .; 10. As shown in Fig. 6,

with the size of attribute set or interest set increases, the

encryption time of one subscriber has linear growth. Fur-

thermore, it grows quadratically with the increasing of the

size of attribute set and interest set. Thus, it shows that the

computational complexity of encryption time of one sub-

scriber is HðjA0j � jIjÞ where A0 is the attribute set of the

subscriber and I is the interest set.

7.4 Overhead of matching and transformation

We run MatchTrans on the Intel platform to match the

credential of a subscriber with an encrypted access policy

and transform the CP-ABE ciphertext to partially decryp-

ted ciphertext if the subscriber is an authorized one. The

matching and transformation time is closely related to the

scale of access policy and the size of the credentials of

subscriber.

To capture the influence of the size of tag set, we gen-

erate the leaves of access tree with two attributes and t tags

where t ¼ 1; 2; . . .; 10, while generating the Trapdoors with
2 attributes and one interest. In the worst case, the service

provider must run Test 40 times to evaluate whether any

leaf node of the access tree (i.e., output of PEKS) matches

any encrypted interest (i.e., output of Trapdoor) when no

encrypted tag matches any encrypted interest. Figure 7a

shows the effect of the size of tag set on the matching and

transformation time of one service provider. We observe

that, with the size of tag set increases, the matching and

transformation time for service provider has linear growth.

To capture the influence of the size of interest set, we

generate the Trapdoors with two attributes and i interests

where i ¼ 1; 2; . . .; 10, while generating the leaves of

access tree with two attributes and one tag. In the worst

case, the service provider also must run Test 40 times to

evaluate whether any leaf node of the access tree (i.e.,

output of PEKS) matches any encrypted interest (i.e.,

output of Trapdoor) when no encrypted tag matches any

encrypted interest. Similarly, we observe that, with the size

of interest set increases, the matching and transformation

time of one service provider has linear growth as shown in

Fig. 7b.

Finally, we investigate the case of the size of tag and

interest set increasing simultaneously. To capture this, we

generate the leaves of access tree with five tags and two

attributes, while generating the Trapdoors with two attri-

butes and five interests. In the worst case, the service

provider must run Test 100 times to evaluate whether any

0 20 40 60 80 100
0

500

1000

1500

2000

2500

Size of attribute set

E
nc

ry
pt

io
n

tim
e

of
 o

ne
 p

ub
lis

he
r

(in
 m

s)

All−AND
All−OR
Half−AND
PEKS

(a)

1 2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Size of tag set

E
nc

ry
pt

io
n

tim
e

of
 o

ne
 p

ub
lis

he
r

(in
 m

s)

All−AND
All−OR
Half−AND
PEKS

(b)

2 3 4 5 6 7 8 9 10
0

500

1000

1500

2000

2500

Size of attribute and tag set

E
nc

ry
pt

io
n

tim
e

of
 o

ne
 p

ub
lis

he
r

(in
 m

s)

All−OR
All−AND
Half−AND
PEKS

(c)

Fig. 5 Effect of the size of a attribute, b tag, c attribute and tag set on the encryption time of one publisher

2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

Size of attribute, interest or "attribute and interest" set

E
nc

ry
pt

io
n

tim
e

of
 o

ne
 s

ub
sc

rib
er

 (
in

 m
s)

attributes only
interests only
attributes and interests

Fig. 6 Effect of the size of attribute, interest or ‘‘attribute and

interest’’ set on encryption time of one subscriber

842 Pers Ubiquit Comput (2016) 20:833–846

123

leaf node of the access tree (i.e., output of PEKS) matches

any encrypted interest (i.e., output of Trapdoor) when no

encrypted tag matches any encrypted interest. We observe

that the matching and transformation time for service

provider grows quadratically with the increasing of the size

of tag and interest set as shown in Fig. 7c.

Thus, it shows that the computational complexity of

matching and transformation is OðjAjjT j � jA0jjIjÞ. Mean-

while, encrypting a 5 B textfile under the access tree with

100 leaves results in 29 kB CP-ABE ciphertext that

requires 2 s to decrypt it. However, the proxy decryption

reduces the ciphertext size to a constant size of 187 b.

Figure 8a, b shows the sizes of the ABE ciphertext and

partially decrypted ciphertext, respectively. Thus, the

subscriber just needs to download a constant-size cipher-

text form the service provider each time, which is mean-

ingful in mobile environment.

7.5 Overhead of decryption of one subscriber

We run SubDecrypt on the ARM platform. Since the ser-

vice provider has transformed the CP-ABE ciphertext into

the ElGamal-style ciphertext with constant size, the

subscriber just needs to do two simple exponential opera-

tions to recover the message. As shown in Fig. 8c, the time

for decrypting a 187 b partially decrypted ciphertext is

76 ms. Thus, it shows that the computational complexity of

decryption of a subscriber is Hð1Þ.

8 Related work

Privacy threats in the publishing or subscribing procedure

in social networks are becoming more and more serious.

Extensive studies take efforts on protecting subscriber

privacy or the confidentiality of the shared content in

mobile social networks. For instance, the work in [13]

constructs an index of encrypted subscription employing a

partitioning method. The work in [14] employs a trusted

third party to obfuscate subscription and requires the ser-

vice provider to match and route the encrypted content to

the subscriber. However, the above methods cannot be

employed to publish–subscribe systems since the limited

energy of mobile devices cannot support frequently upda-

ted subscriptions and energy-intensive encryption and

decryption. Few works consider that brokers (service

1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

Size of tag set

M
at

ch
in

g
an

d
tr

an
sf

or
m

at
io

n
tim

e
(in

 m
s)

worst case
All−OR
All−AND
Half−AND

(a)

1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

120

140

160

Size of interest set

M
at

ch
in

g
an

d
tr

an
sf

or
m

at
io

n
tim

e
(in

 m
s)

worst case
All−OR
All−AND
Half−AND

(b)

1 2 3 4 5
0

500

1000

1500

2000

Size of interest and tag set

M
at

ch
in

g
an

d
tr

an
sf

or
m

at
io

n
tim

e
(in

 m
s)

worst case
All−OR
All−AND
Half−AND

(c)

Fig. 7 Effect of the size of a tag, b interest, c interest and tag set on matching and transformation time for service provider

20 40 60 80 100
0

5

10

15

20

25

30

Size of attribute set

S
iz

e
of

 A
B

E
 c

ip
he

rt
ex

t (
in

 K
b)

(a)

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Size of attribute setS
iz

e
of

 p
ar

tia
lly

 d
ec

ry
pt

ed
 c

ip
he

rt
ex

t (
in

 K
b)

(b)

20 40 60 80 100
0

20

40

60

80

100

Size of attribute set

D
ec

ry
pt

io
n

tim
e

 (
in

 m
s)

(c)

Fig. 8 Effect of the size of attribute set on a the size of ABE ciphtertext, b the size of partially decrypted ciphertext, c decryption time of

subscriber

Pers Ubiquit Comput (2016) 20:833–846 843

123

providers such as Facebook, Twitter, etc.) may be

untrustful. Hence, the spate of privacy threats has spurred a

large body of research in constructing energy efficient

privacy-preserving publish–subscribe systems for mobile

social networks.

Data encryption is generally employed to protect the

privacy of publishers and subscribers, requiring a publisher

to encrypt the content prior to sending the content to an

untrustful service provider. Without the description key, a

service provider cannot learn anything about the content.

However, the simple symmetric cryptography is not suit-

able for large-scale social networks. For instance, if a

publisher encrypts the content with the public-key

encryption methods, the users’ public key is required.

Hence, many copies of ciphertext for each data item are

produced in a network, which proportionally expend with

the number of users.

With this concern, attribute-based encryption was firstly

proposed by Sahai and Waters [5], which is widely

employed to protect the confidentiality of the shared con-

tent. Well-established ABE are applied to achieve fine-

grained access control of content, which view one’s iden-

tity as a set of attributes and express the feature of the user

form the access policy by taking logical expressions such

as AND, OR or NOT. Later studies broaden ABE into CP-

ABE [6] and KP-ABE [7]. The publisher encrypts a shared

content with an access policy indicating the attribute

requirements so that the receiver can decrypt the encrypted

content if and only if the attributes of the receiver satisfy

the access policy. KP-ABE allows a Key Generation

Authority (KGA) to determine who can access the shared

content. Instead, in CP-ABE, the publishers determine that.

ABE is widely used in mobile environment due to the

uncertainty of decrypting parties, such as mobile health

applications [11, 15–17], mobile cloud computing [18–21],

or mobile social networks [22–30].

However, the original CP-ABE scheme raises a new

privacy concern that the exposure of the access policy will

disclose sensitive information to the service provider [31].

For the expressive tree policy, the leaves of the tree are

composed of users’ attributes and the intermediate nodes

are composed of AND, OR or threshold gate that describe

the combinational relationship of attributes. Thus, the

access policy implies sensitive information of users. Take a

military application as an example, the access policy used

to encrypt a military instruction exposures some sensitive

information to adversaries such as some instructions are

sent to General-level officers, the code of combat troops, or

the organizational structure of troops and so forth.

For this concern, the CP-ABE scheme with hidden

policy (CP-ABE-HP) is proposed [32–35]. The CP-ABE-

HP scheme attempts to provide fine-grained access control.

However, the existing CP-ABE-HP schemes assume the

end-to-end interaction between publisher and receiving

parties, i.e., there is no service provider to forward or

process intermediately. Under this assumption, a user

knows whether itself matches the access policy only after

receiving the encrypted content. This type of sharing sys-

tem is not practical nowadays since mobile users can

upload or download content just relying on Internet service

providers in most cases. Untrustful service providers are

not suitable for matching users’ credentials with policies

directly. This concern motivates the technique of incor-

porating PEKS [8] into ABE, i.e., ABE-PEKS [36–39].

ABE-PEKS allows the service provider to perform

matching without learning anything about the shared con-

tent, access policy and users’ credentials. For example, the

work in [9] proposes an electronic health record (EHR)

management system based on ABE-PEKS that allows

patients to exchange data with health-care providers

securely. Similarly, the work in [10] proposes the PIDGIN

scheme based on a publish–subscribe system, which

enables privacy-preserving content sharing in opportunistic

networks by taking the CP-ABE and PEKS techniques as

building blocks.

Certainly, ABE-PEKS enables users to share content

through the service provider without leaking sensitive

information. However, one drawback of the ABE-PEKS is

that it distributes the decryption task to end-receivers,

which is a big challenge for mobile devices practically. As

the access policy grows in complexity and size, the size of

ciphertext and decryption time toward it also increase.

Thus, proxy security mechanism is proposed in many

works [40–42]. Aiming at the efficiency concern, the

existing works based on the ABE-PEKS scheme mainly

enforce encryption or decryption to a cloud-proxy server

with the assumption that the cloud-proxy server is trustful

[16, 43]. Obviously, this assumption is not suitable for

mobile environment in which the service provider has to

serve as both a forwarding server and a cloud-proxy server.

Such as the work in [42], it proposes a cloud-assisted pri-

vacy-preserving mobile health monitoring system to ensure

the privacy of the healthcare users, in which the compu-

tational complexity is shifted from the users to an assumed

trusted cloud server without comprising the privacy of both

users and the service provider.

9 Conclusions

This paper presents PSSPD which is an energy efficient

privacy-preserving content sharing scheme in mobile social

networks. PSSPD neither leaks information to untrusted

parties nor incurs the heavy burden of energy consumption

at end users. To show the feasibility of PSSPD, it is

evaluated toward smartphones employing the overhead of

844 Pers Ubiquit Comput (2016) 20:833–846

123

each algorithm involved in PSSPD as the evaluation met-

rics. The security analysis shows the privacy-preserving

effectiveness and energy efficiency of our scheme. In fact,

the attribute-based encryption operation is also a compu-

tation-intensive burden for a publisher. Thus, providing

both proxy encryption and decryption would significantly

improve the performance of a privacy-preserving content

sharing system. We will investigate a more efficient

scheme that can further reduce energy consumption of both

publishers and subscribers.

Acknowledgments This work is partly supported by the NSF under

Grant Nos. 1252292, National Natural Science Foundation of China

under Grant Nos. 61502116, 61370084 and 61370217, the Funda-

mental Research Funds for the Central Universities under Grant

No. HEUCF100605, and the Strategic Priority Research Program of

the Chinese Academy of Sciences, Grant No. XDA06040100, and

Research fund of the Doctoral Program of Higher Education of China

under Grant No. 20132302120045.

References

1. Enck W, Gilbert P, Chun B-G, Cox LP, Jung J, McDaniel P,

Sheth AN (2010) Taintdroid: an information-flow tracking sys-

tem for realtime privacy monitoring on smartphones. In: Pro-

ceedings of the 9th USENIX conference on operating systems

design and implementation

2. http://www.redorbit.com/news/technology/1112674890/photo

bucket-fusking-081412/

3. http://krebsonsecurity.com/2013/03/privacy-101-skype-leaks-

your-location/

4. https://nakedsecurity.sophos.com/2014/07/10/google-drive-secur

ity-hole-leaks-users-files/

5. Sahai A, Waters B (2005) Fuzzy identity-based encryption. In:

Proceedings of the 24th annual international conference on theory

and applications of cryptographic techniques, pp 457–473

6. Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy

attribute-based encryption. In: Proceedings of the IEEE sympo-

sium on security and privacy, pp 321–334

7. Goyal V, Pandey O, Sahai A, Waters B (2006) Attribute-based

encryption for fine-grained access control of encrypted data. In:

Proceedings of the 13th acm conference on computer and com-

munications security. ACM, pp 89–98

8. Boneh D, Di Crescenzo G, Ostrovsky R, Persiano G (2004)

Public key encryption with keyword search. In: Advances in

cryptology—EUROCRYPT 2004. Springer, Berlin, pp 506–522

9. Narayan S,GagnéM, Safavi-Naini R (2010) Privacy preserving ehr

system using attribute-based infrastructure. In: Proceedings of the

ACM workshop on cloud computing security workshop, pp 47–52

10. Asghar MR, Gehani A, Crispo B, Russello G (2014) PIDGIN:

privacy-preserving interest and content sharing in opportunistic

networks. In: Proceedings of the 9th ACM symposium on

information, computer and communications security, pp 135–146

11. Khader D (2014) Introduction to attribute-based searchable

encryption. In: Communications and multimedia security.

Springer, Berlin, pp 131–135

12. Shamir A (1979) How to share a secret. Commun ACM

22(11):612–613

13. Raiciu C, Rosenblum D (2006) Enabling confidentiality in con-

tent-based publish/subscribe infrastructures. In: Securecomm and

workshops, pp 1–11

14. Nabeel M, Shang N, Bertino E (2012) Efficient privacy pre-

serving content based publish subscribe systems. In: Proceedings

of the 17th ACM symposium on access control models and

technologies, pp 133–144

15. Lu R, Lin X, Shen XS (2013) SPOC: a secure and privacy-pre-

serving opportunistic computing framework for mobile-healthcare

emergency. IEEE Trans Parallel Distrib Syst 24(3):614–624

16. Li M, Yu S, Zheng Y, Ren K, Lou W (2013) Scalable and secure

sharing of personal health records in cloud computing using

attribute-based encryption. IEEE Trans Parallel Distrib Syst

24(1):131–143

17. Guo L, Zhang C, Sun J, Fang Y (2014) A privacy-preserving

attribute-based authentication system for mobile health networks.

IEEE Trans Mob Comput 9(13):1927–1941

18. Wang G, Liu Q, Wu J (2010) Hierarchical attribute-based

encryption for fine-grained access control in cloud storage ser-

vices. In: Proceedings of the 17th ACM conference on computer

and communications security, pp 735–737

19. Yu S, Wang C, Ren K, Lou W (2010) Achieving secure, scalable,

and fine-grained data access control in cloud computing. In:

Proceedings of the IEEE INFOCOM, pp 1–9

20. Li J, Huang X, Li J, Chen X, Xiang Y (2014) Securely out-

sourcing attribute-based encryption with checkability. IEEE

Trans Parallel Distrib Syst 25(8):2201–2210

21. Zhang Y, Zheng D, Chen X, Li J, Li H (2015) Efficient attribute-

based data sharing in mobile clouds. Pervasive and Mob Comput

63(3):135–149

22. Yuan X, Wang X, Wang C, Squicciarini A, Ren K (2014)

Enabling privacy-preserving image-centric social discovery. In:

IEEE 34th international conference on distributed computing

systems (ICDCS), pp 198–207

23. Wang Y, Xu D, Li F (2016) Providing location-aware location

privacy protection for mobile location-based services. Tsinghua

Sci Technol 21(3):243–259

24. Wang J, Han Y, Yang X (2016) An efficient location privacy

protection scheme based on the Chinese remainder theorem.

Tsinghua Sci Technol 21(3):260–269

25. He Z, Cai Z, Yu J, Wang X, Sun Y, Li Y (2016) Cost-efficient

strategies for restraining rumor spreading in mobile social net-

works. IEEE Trans Veh Technol. doi:10.1109/TVT.2016.2585591

26. Wang Y, Cai Z, Yin G, Gao Y, Tong X, Wu G (2016) An

incentive mechanism with privacy protection in mobile crowd-

sourcing systems. Comput Netw 102:157–171

27. Zhang L, Cai Z, Wang X (2016) FakeMask: a novel privacy

preserving approach for smartphones. IEEE Trans Netw Serv

Manag 13(2):335–348

28. He Z, Cai Z, Wang X (2015) Modeling propagation dynamics and

developing optimized countermeasures for rumor spreading in

online social networks. In: ICDCS, pp 205–214

29. Li J, Cai Z, Yan M,Li Y (2016) Using crowdsourced data in

location-based social networks to explore influence maximiza-

tion. In: INFOCOM

30. Han M, Yan M, Cai Z, Li Y (2016) An exploration of broader

influence maximization in timeliness networks with opportunistic

selection. J Netw Comput Appl 63(3):39–49

31. Lai J, Deng RH, Li Y (2012) Expressive cp-abe with partially

hidden access structures. In: Proceedings of the 7th ACM sym-

posium on information, computer and communications security,

pp 18–19

32. Zhang Y, Chen X, Li J, Wong DS, Li H (2013) Anonymous

attribute-based encryption supporting efficient decryption test. In:

Proceedings of the 8th ACM SIGSAC symposium on informa-

tion, computer and communications security, pp 511–516

33. Hur J (2013) Attribute-based secure data sharing with hidden

policies in smart grid. IEEE Trans Parallel Distrib Syst

24(11):2171–2180

Pers Ubiquit Comput (2016) 20:833–846 845

123

http://www.redorbit.com/news/technology/1112674890/photobucket-fusking-081412/
http://www.redorbit.com/news/technology/1112674890/photobucket-fusking-081412/
http://krebsonsecurity.com/2013/03/privacy-101-skype-leaks-your-location/
http://krebsonsecurity.com/2013/03/privacy-101-skype-leaks-your-location/
https://nakedsecurity.sophos.com/2014/07/10/google-drive-security-hole-leaks-users-files/
https://nakedsecurity.sophos.com/2014/07/10/google-drive-security-hole-leaks-users-files/
http://dx.doi.org/10.1109/TVT.2016.2585591

34. Frikken K, Atallah M, Li J (2006) Attribute-based access control

with hidden policies and hidden credentials. IEEE Trans Comput

55(10):1259–1270

35. Holt JE, Bradshaw RW, Seamons KE, Orman H (2003) Hidden

credentials. In: Proceedings of the ACM workshop on privacy in

the electronic society

36. Khader D (2014) Attribute-based search in encrypted data:

ABSE. In: Proceedings of the ACM workshop on information

sharing & collaborative security

37. Zheng Q, Xu S, Ateniese G (2014) VABKS: Verifiable attribute-

based keywordsearch over outsourced encrypted data. In: Pro-

ceedings of the IEEE INFOCOM, pp 522–530

38. Liu P, Wang J, Ma H, Nie H (2014) Efficient verifiable public

keyencryption with keyword search based on KP-ABE. In: Ninth

international conference on broadband and wireless computing,

communication and applications (BWCCA), pp 584–589

39. Shi Y, Liu J, Han Z, Zheng Q, Zhang R, Qiu S (2014) System

model of attribute-based access control for proxy re-encryption

with keyword search. PLoS One 9(12):e116325

40. Liu Q, Wang G, Wu J (2014) Time-based proxy re-encryption

scheme for secure data sharing in a cloud environment. Inf Sci

258:355–370

41. Wu X, Xu L, Zhang X (2011) Poster: a certificateless proxy re-

encryption scheme for cloud-based data sharing. In: Proceedings

of the 18th ACM conference on computer and communications

security, pp 869–872

42. Lin H, Shao J, Zhang C, Fang Y (2013) Cam: Cloud-assisted

privacy preserving mobile health monitoring. IEEE Trans Inf

Forensics Secur 8(6):985–997

43. Xu L, Wu X, Zhang X (2012) ‘‘Cl-pre: A certificateless proxy re-

encryption scheme for secure data sharing with public cloud,’’ In:

Proceedings of the 7th ACM Symposium on Information, Com-

puter and Communications Security, pp 87–88

846 Pers Ubiquit Comput (2016) 20:833–846

123

	An energy efficient privacy-preserving content sharing scheme in mobile social networks
	Abstract
	Introduction
	Threat model and security challenges
	Publish--subscribe system and entities
	Threat model
	Security challenges
	C1: basic privacy
	C2: publisher privacy
	C3: subscriber privacy
	C4: functionality 1
	C5: functionality 2

	The proposed approach
	Scheme 1: attribute-based broadcast encryption (ABBE)
	Scheme 2: content sharing with CP-ABE--PEKS
	Scheme 3: publish--subscribe system with secure proxy decryption (PSSPD)

	Preliminaries and definitions
	Primitives
	Bilinear maps
	(k, n)-threshold secret sharing scheme
	Access policy

	Algorithms
	Setup
	KeyGen(MK, S)
	PEKS(PK, h_i, tag)
	PubEncrypt(PK, M, T, tag)
	Trapdoor(interest, x_i)
	DecKeyGen(ITK, EI)
	Test(ET, EI)
	MatchTrans(CT, EI, TK, T^{\prime })
	SubDecrypt(CT^{\prime }, DK)

	Implementation
	Setup
	KeyGen(MK, S)

	PEKS(PK, h_i, tag)
	PubEncrypt(PK, M, T, tag)
	Trapdoor(interest, x_i)
	DecKeyGen(ITK, EI)
	Test(ET, EI)
	MatchTrans(CT, EI, TK, T^{\prime })

	SubDecrypt(CT^{\prime }, DK)

	Security analysis
	Performance analysis
	Overhead of key generation
	Overhead of encryption of one publisher
	Overhead of encryption of one subscriber
	Overhead of matching and transformation
	Overhead of decryption of one subscriber

	Related work
	Conclusions
	Acknowledgments
	References

