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Abstract The wide distribution of mobile vehicles instal-

led with various sensing devices and wireless communi-

cation interfaces has made vehicular mobile crowd sensing

possible in practice. However, owing to the heterogeneity

of vehicles in terms of sensing interfaces and mobilities,

collecting comprehensive tempo-spatial sensing data with

only one sensing vehicle is impossible. Moreover, the

sensing data collected may expire in the future; as a result,

sensing vehicles may have to continuously collect sensing

data to ensure the relevance of such data. Although

including more sensing vehicles can improve the quality of

collected sensing data, this step also requires additional

cost. Thus, how to continuously collect comprehensive

tempo-spatial sensing data with a limited number of

heterogeneous sensing vehicles is a critical issue in

vehicular mobile crowd sensing systems. In this work, a

heterogeneous sensing vehicle selection (HVS) method for

the collection of comprehensive tempo-spatial sensing data

is proposed. On the basis of the spatial distribution and

sensing interfaces of sensing vehicles and the tempo-spatial

coverage of collected sensing data, a utility function is

designed in HVS to estimate the sensing capacity of

sensing vehicles. Then, according to the utilities of sensing

vehicles and the restriction on the number of recruited

sensing vehicles, sensing vehicle selection is modeled as a

knapsack problem. Finally, a greedy optimal sensing

vehicle selection algorithm is designed. Real trace-driven

simulations show that the HVS algorithm can collect

sensing data with a higher coverage ratio in a more uniform

and continuous manner than existing mobile crowd sensing

methods.

Keywords Vehicular sensing � Mobile crowd sensing �
Comprehensive tempo-spatial data coverage

1 Introduction

In mobile crowd sensing systems, ordinary citizens are

recruited to collect and share sensing data from their sur-

rounding environments through their mobile devices [1, 2].

On the basis of collected sensing data, mobile crowd

sensing systems are able to provide users with various

novel applications [3], such as real-time air quality reports

[4] and road traffic monitoring [5–7]. An increasing num-

ber of vehicles are being installed with various sensing

devices and mobile communication interfaces. Therefore,

an increasing number of mobile vehicles are able to collect

and share various types of sensing data in urban environ-

ments. The extensive distribution of these vehicles in urban

areas has made vehicular mobile crowd sensing possible in

practice.

A vehicular mobile crowd sensing system is composed

of sensing vehicles, wireless networks, and sensing data

centers. Sensing data are collected by sensing vehicles and

then transmitted to a sensing data center via wireless net-

works. The application of vehicular mobile crowd sensing

to transportation can generate numerous advantages. First,

it can lower the cost of sensing data collection because

vehicles are equipped with several sensors. Second, unlike

in single-vehicle sensing systems, sensing data in vehicular

crowd sensing systems are collaboratively collected by
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multiple vehicles. As a result, vehicular mobile crowd

sensing systems can collect a large amount of compre-

hensive sensing data. Third, owing to the collaboration

between vehicles and sensing data sharing, vehicular crowd

sensing systems can provide many novel applications to the

field of transportation and other areas. To meet the sensing

data requirements of vehicular mobile crowd sensing

applications, a large amount of sensing data must be col-

lected. Therefore, vehicular mobile crowd sensing systems

are mainly aimed at collecting comprehensive sensing data

that encompass all the spatial temporal dimensions of tar-

get sensing areas. However, sensing vehicles are hetero-

geneous. First, the sensing interfaces of vehicles and the

types of sensing data that can be collected by vehicles are

different because vehicles are manufactured by different

companies with no uniform hardware and software stan-

dards. Second, vehicles are driven by different people, and

the trajectories of the vehicles also vary. Thus, collecting

all available sensing data with only one sensing vehicle is

impossible.

Sensing data are temporal, and collected sensing data

may expire at some time in the future. For example,

atmospheric temperature changes with time in any given

day; as a result, collected temperature data expire after a

few hours. Moreover, different types of sensing data may

have different life cycles. For example, the life cycle of

noise data is much shorter than that of temperature data.

Thus, vehicular crowd sensing systems should continu-

ously collect sensing data in target sensing areas to ensure

the relevance of each sensing data type to the target sensing

area.

Owing to the heterogeneity of sensing vehicles, one

sensing vehicle cannot possibly collect comprehensive

tempo-spatial sensing data. Furthermore, as collected

sensing data may expire, crowd sensing vehicles should

continuously collect sensing data to ensure their relevance.

Obviously, in vehicular mobile crowd sensing systems, the

quality of collected sensing data increases with the use of

many sensing vehicles to collect sensing data. However, a

large number of sensing vehicles equates to high cost [8].

Therefore, how to continuously collect comprehensive

tempo-spatial sensing data with a limited number of

heterogeneous sensing vehicles is a critical issue in

vehicular mobile sensing systems.

To address the aforementioned problem, a heteroge-

neous sensing vehicle selection (HVS) method for the

collection of comprehensive tempo-spatial sensing data is

proposed in this work. The proposed HVS method con-

siders not only the spatial coverage of collected sensing

data but also the temporal coverage of sensing data. A

mobility model based on a continuous-time Markov chain

is established to forecast the spatial distribution of sensing

vehicles. On the basis of the spatial distribution and sensing

interfaces of sensing vehicles and the tempo-spatial cov-

erage of collected sensing data, a utility function is

designed in HVS to estimate the sensing capacity of

sensing vehicles in the future. According to the utilities of

sensing vehicles and the restriction on the number of

recruited sensing vehicles, sensing vehicle selection is

modeled as a knapsack problem. Finally, a greedy optimal

sensing vehicle selection algorithm is designed.

The remainder of this paper is organized as follows.

Section 2 reviews the related studies on mobile crowd

sensing and vehicle sensing. Section 3 presents the vehic-

ular mobile crowd sensing system model and the con-

struction of tempo-spatial sensing data models. Section 4

presents the vehicular sensing utility formula, which con-

siders the spatial and temporal coverages of sensing data.

Section 5 proposes an optimized heterogeneous vehicle

selection algorithm based on the utilities of sensing vehicle

candidates. Section 6 evaluates the performance of the

proposed strategy through real trace-driven simulations.

Section 7 provides the conclusions.

2 Related work

Mobile crowd sensing [1] is a promising mode of collect-

ing comprehensive sensing data in urban areas. In recent

years, a large number of novel applications [3] based on

mobile crowd sensing have been deployed. For example,

The Common Sense project [9] monitored the contents of

pollutants in the air by collecting sensing data from

handheld air quality monitors. Yu et al. [10] recovered the

noise situation throughout New York City (NYC) based on

mobile crowd sensing and inferred the fine-grained noise

situation at different times of the day for each region of

NYC with the use of data from the city complaint platform,

together with social media, road network data, and points

of interests. The Mahali project [11] used GPS signals that

penetrate the ionosphere for science rather than position-

ing; a large number of ground-based sensors fed data into a

cloud-based processing environment through mobile devi-

ces, thus enabling a tomographic analysis of the global

ionosphere at an unprecedented resolution and coverage.

Zhou et al. [12] presented a novel bus arrival time pre-

diction system based on crowd sensing and predicted bus

arrival times by encouraging passengers to collect gener-

ally available and energy-efficient sensing resources,

including cell tower signals, movement statuses, and audio

recordings. Vassilis et al. [13] exploit public transit bus

passengers Bluetooth-capable devices to capture and

reconstruct micro- and macro-passenger behavior. How-

ever, owing to the lack of theoretical research on mobile

crowd sensing, existing mobile sensing applications suffer

from poor sensing data qualities; thus, the commercial
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deployment of mobile crowd sensing systems is restricted.

Collecting comprehensive tempo-spatial sensing data is the

foremost criterion of mobile crowd sensing systems.

Sensing data collected by 85 mobile nodes for two months

revealed that people from areas with a small population are

willing to collect sensing data [14]. The reverse auction-

based dynamic price (RADP) mechanism [15] introduces

incentive mechanisms to mobile crowd sensing systems.

The most inexpensive sensing data are utilized to increase

the total amount of sensing data collected by participants;

as a result, the accuracy of sensing data is improved.

However, mobile sensing nodes are usually clustered

according to time and space. Consequently, the collected

data are inhomogeneous in time and space. To collect

homogeneous sensing data, the greedy budgeted maximum

coverage (GBMC) algorithm [16] maximizes not only the

amount of collected sensing data but also the coverage of

sensing data. The Information Sampling (ISAM) [17]

minimizes the diversity between the collected data and the

forecast model to improve the quality of sensing data.

Unlike RADP, GBMC and ISAM investigate the homo-

geneous space distribution of sensing data.

In mobile crowd sensing systems, the mobile crowd

participants frequently encounter one another and are thus

provided an opportunity to collaborate and provide high-

quality sensing services. Collaborative sensing is one of the

essential features of participatory sensing systems. Context

characteristics are generated from the sensing data col-

lected by multiple nearby participants through the use of a

collaborative learning algorithm [18]. MOSDEN (a mobile

sensor data engine) [19] is a collaborative mobile sensing

framework that can operate on smartphones to capture and

share sensing data among multiple distributed applications

and users. Similarly, a cloud-assisted collaborative sensing

method was proposed in [20] to reduce the energy con-

sumption of mobile phone sensing applications.

Sensing node selection is a major challenge in mobile

crowd sensing systems because of the diversity of the

sensing capabilities of mobile devices and the uncontrol-

lable trajectories of mobile nodes [21]. Chien et al. [22]

introduced the online task assignment problem in which

heterogeneous tasks are assigned to workers with different

unknown skill sets. Reddy et al. [23] developed a selection

framework to allow organizers to identify well-suited

sensing nodes for data collection on the basis of their

geographic and temporal availabilities as well as their

habits. Tuncay et al. [24] exploited the stability of user

behavior and selected sensing nodes according to the fit-

ness of the mobility history profiles of the users. Moreover,

modeling the mobility of sensing nodes and forecasting the

traces of sensing nodes can reduce the required amount of

participating sensing nodes [25, 26]. When selecting

sensing nodes, forecasting the traces of the nodes with their

call logs can reduce energy consumption and result in high

sensing data coverage ratio [27]. Song et al. [28] proposed

a multi task oriented Dynamic participant selection (DPS)

algorithm, which selects participants under limited bud-

gets. However, none of the previous studies considered

both the heterogeneity of sensing nodes, the limited budget

of sensing systems and the properties of the sensing data.

A vehicle is a special type of node in mobile crowd

sensing systems. Considering that vehicles are widely

distributed in urban areas and equipped with various types

of sensors, vehicles provide a natural means to realize

mobile sensing. In early vehicle-based environmental

sensing applications, only one vehicle is recruited in a

system. A novel application is the monitoring of locations

through a vehicle radar [29]. Air quality can also be

monitored with a CO2 sensor installed in a vehicle [30].

Similarly, rainy weather can be monitored with an onboard

camera [31]. In [32], a laser scanner and an onboard

camera were utilized to update a street view map. How-

ever, in these applications, no sensing data are shared

among vehicles. This condition constrains the extensive

deployment of vehicle sensing-based applications. A plat-

form was designed in [33] for large-scale vehicle collab-

orative sensing. However, the algorithm was designed to

plan the trajectories of a robot team to collect sensing data

within the shortest time. In [34], multiple probe vehicles

were utilized to estimate large-scale traffic in an urban

environment. Vehicle sensing can also be utilized for safe

driving. A roadway weather information system developed

in [35] recruited probe vehicles equipped with GPS, an

anti-lock braking system, and acceleration sensors to

quickly detect the conditions of road surfaces according to

the side slip force of the vehicles in certain road segments.

3 System model

A vehicular mobile crowd sensing system is composed of

sensing data servers, wireless networks, and vehicles (i.e.,

sensing nodes), as shown in Fig. 1. Vehicular sensing

nodes are installed in multiple types of sensing devices,

Sensing Data Sensing Data 
CenterCenter

Sensing AreaSensing Area

Vehicle NodesVehicle Nodes

Wireless NetworkWireless Network

Fig. 1 Architecture of vehicular mobile crowd sensing systems
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which can collect multiple types of sensing data. All

vehicles have wireless communication interfaces. When a

vehicle is selected as a sensing node, the sensors installed

in it are turned on to sample the sensing data periodically.

All the collected sensing data coupled with the corre-

sponding information of the GPS coordinates are uploaded

and stored in the sensing data server via wireless networks.

Users of the sensing system can then make a query on the

sensing data of interest from the sensing data server.

3.1 System architecture

In vehicular mobile crowd sensing systems, a sensing node

is a vehicle installed with sensing devices and wireless

communication interfaces. All sensing nodes are supposed

to be willing to participate in the collection of sensing data.

Vehicular sensing nodes are heterogeneous.

On the one hand, vehicles are manufactured by dif-

ferent companies, and the sensing interfaces embedded in

them are different. For example, vehicle a can collect

temperature, noise, and humidity data, whereas vehicle b
can collect temperature, speed, and vibrations (the nota-

tions used in this paper are shown in Table 1). On the

other hand, vehicles are driven by different people, and

the trajectories of vehicles are random. Therefore, col-

lecting sensing data that cover an entire tempo-spatial

sensing space is difficult for a single vehicle to accom-

plish. The sensing data center is in charge of a vehicular

sensing system. The collected sensing data are stored in

the sensing data center. According to the collected sens-

ing data and the sensing interfaces, as well as to the

trajectories of the vehicular sensing nodes, the sensing

data center selects the proper sensing nodes to collect

sensing data.

Different sensing node selection strategies may have

different effects on sensing data collection. An example of

a sensing node selection scenario is shown in Fig. 2. The

right part of the figure shows the collected sensing data in

the sensing data center, and the left part of the figure shows

the sensing capabilities of the vehicles and the future

mobility traces of all available participants. In this sensing

scenario, {a, b} is a more preferable set of participants than

{a, b} when meeting the task requirements. However, in

real-world scenarios with a significantly large number of

sensing data requirements and available heterogeneous

sensing vehicles, the selection of appropriate sensing

vehicles becomes an arduous task. The present work pre-

sents a heterogeneous sensing vehicle selection strategy

Table 1 List of notations

Notation Description

I The set of subareas

i; j 2 I; 1 6 i 6 N One subarea

W ¼ w1;w2; . . .;wMf g M types of sensing data

wl Life cycle of the lth type of sensing data

X The set of candidate vehicles

a, b Sensing vehicles

Ya ¼ ya1; y
a
2; � � � ; yaM

� �
Sensing interfaces of vehicle a

nai The moment when vehicle a travels into subarea i

hai The residence time of vehicle a in subarea i

Z tð Þ The valid sensing data in the sensing data center at time t

fi;lðtÞ The valid function of the sensing data of type l in sub area i at time t

X ¼ X tð Þ; t > 0f g Mobility procedure of a vehicle

X(t) The state (i.e., location) of the vehicle at time t

Pij tð Þ The transition probability of a vehicle from sub area i to sub area j after time duration t

Q ¼ qij
� �

Q Matrix of vehicle’s mobility procedure

uai Utility of sensing node a in sub area i

Ua The utility of vehicle a

U Total budget of the sensing system within one system duty cycle

ua The cost of sensing vehicle a

S Selected sensing vehicles

HaðtÞ The indicate matrix of the sensing data collected by a

W tð Þ Temp indicate matrix of the sensing data in the sensing data center
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that can collect the most comprehensive tempo-spatial

sensing data with a limited number of vehicles.

3.2 Sensing data model

The geographic area where the vehicular crowd sensing

system collects sensing data is defined as the target sensing

area or simply the sensing area. The target sensing area is

divided into lattice cells according to the geographical

location (Fig. 2), and each lattice cell is called a subarea. A

subarea is a unit area of the sensing system; the assumption

is that the sensing data sampled at any point in the subarea

can indicate the sensing value of the subarea. The entire

sensing area is divided into N subareas, as shown in Fig. 2.

The set of subareas in the sensing area is denoted as

I = {1, 2, …, N}. The ith subarea is denoted as

i ði 2 I; 1 6 i 6 NÞ:
Given that sensing data are usually sensitive to time

(e.g., air temperature data collected an hour ago may no

longer be accurate in the succeeding hours), sensing data

should be sampled periodically in each unit sensing area.

The M types of sensing interfaces installed in vehicle

sensing nodes are denoted as W ¼ w1;w2; . . .;wMf g; and
the life cycle of the lth type of sensing data is denoted as

wl. If Ya ¼ ya1; y
a
2; . . .; y

a
M

� �
denotes the sensing data types

that can be collected by sensing node a, then

yal ¼
0

1

�
ð1Þ

where yal ¼ 1 indicates that a can collect the sensing data

of type l and yal ¼ 0 indicates that a cannot collect the data

of type l.

Vehicles away collect sensing data of a specific subarea

when it is traveling in the subarea. Let nai denote the

moment when vehicle a travels into subarea i, and hai
denotes the duration vehicle a stay in subarea i. Then, the

life cycle function of the sensing data of type wl collected

by a when it traveling in subarea i could be denoted as

follow.

Vehicles collect the sensing data of a specific subarea

when traveling in such subarea. The moment when vehicle

a travels into subarea i is denoted as nai , and the time

duration within which vehicle a stays in subarea i is

denoted as hai . Then, the life cycle function of the sensing

data of type wl collected by a when traveling in subarea i

can be denoted as follows:

hailðtÞ ¼
yal nai 6 t 6 nai þ hai þ wl

0 other

�
ð2Þ

The valid sensing data in the sensing data center at time t is

denoted as Z tð Þ, which is expressed as

ZðtÞ ¼

f1;1ðtÞ f1;2ðtÞ . . . f1;MðtÞ
f2;1ðtÞ f2;2ðtÞ f2;MðtÞ

..

. ..
.

fN;1 fN;2ðtÞ . . . fN;MðtÞ

2

66664

3

77775
; ð3Þ

Historical mobility trace

Predicted mobility trace

Vibration sensor Brightness sensor

Temperature sensorPM2.5 sensor

Recruited vehicles

ataDgnisneSdetcelloCaerAgnisneStegraT

a

b

c

Fig. 2 Data collection by heterogeneous vehicles
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where fi;lðtÞ is the valid function of the sensing data of type

l in subarea i at time t.

fi;lðtÞ
1 the sensing data is effective at t

0 the sensing data is ineffective at t

�
ð4Þ

3.3 Mobility model

A time-continuous life cycle of sensing data is considered

in this paper. As a result, to estimate the precise collection

time of the sensing data, a time-continuous Markov Chain-

based mobility model is used. In vehicular crowd sensing

systems, vehicles are traveling in or transferring between

subareas. The mobility process is denoted as

X ¼ X tð Þ; t > 0f g, where X(t) denotes the state of the

vehicle at time t (i.e., the subarea in which the vehicle stays

at time t). Normally, the state of a vehicle is only related to

its state at the last moment. Consequently, for any

0 6 t0\t1\ � � �\tn\tnþ1, and ik 2 I, 0 6 k 6 nþ 1, we

have

P X tnþ1ð Þ ¼ inþ1jX t0ð Þ ¼ i0; X t1ð Þ ¼ i1; . . .; X tnð Þ ¼ inf g
¼ P X tnþ1ð Þ ¼ inþ1jX tnð Þ ¼ inf g

ð5Þ

Equation (5) means that the mobility process X ¼
X tð Þ; t > 0f g is a time-continuous Markov chain. For any

s; t > 0, and i; j 2 I, we have

P X sþ tð Þ ¼ jjX sð Þ ¼ if g
¼ P X tð Þ ¼ jjX 0ð Þ ¼ if g
¼ Pij tð Þ

ð6Þ

where Pij tð Þ denotes the transition probability of a vehicle

from subarea i to subarea j after time duration t. The matrix

of transition probability is denoted as P tð Þ ¼ Pij tð Þ
� �

,

i; j 2 I. We define the transfer rate matrix of the mobility

process X ¼ X tð Þ; t > 0f g as Q ¼ qij
� �

, which is also

called the Q matrix. For any i 2 I, we define

qii ¼ lim
Dt!0

1� Pii Dtð Þ
Dt

ð7Þ

For any i; j 2 I, j 6¼ i, we also define

qij ¼ lim
Dt!0

Pij Dtð Þ
Dt

ð8Þ

where qij denotes the transition intensity of the vehicle

from subarea i to subarea j. As the number of the subareas

in the target sensing area is limited, for 8i 2 I,

0\
P

j 6¼i qij ¼ qi\1. The average duration that the

vehicle stays in state X 0ð Þ ¼ i is determined by qi.

Therefore, the value of qi can be estimated by the historical

mobility traces of the vehicles.

According to the Kolmogorov backward differential

equation,

P0 tð Þ ¼ QP tð Þ ð9Þ

If P 0ð Þ ¼ I, then the transition probability of the Markov

chain X could be derived as follows:

P tð Þ ¼ eQt ð10Þ

4 Utility of sensing vehicles

4.1 Utility function

The sensing capacity of a sensing vehicle is indicated by

the utility of the vehicle. The utility of vehicle a in the

following time interval tu is denoted as ta. The utility of a

sensing vehicle is the metric for its sensing capacity. The

amount of sensing data collected by a vehicle depends

largely on the duration within which the sensing vehicle

collects the sensing data. If the vehicle spends a long time

collecting sensing data, its sensing utility will be large.

However, the computing cost of the utility will also be high

if the sensing time is considerably long. Therefore, a sys-

tem duty cycle, tu, is set to reduce the cost of utility cal-

culation. At the beginning of a system duty cycle, the

utilities of the sensing vehicles are updated. Then, the

proper sensing nodes are selected according to the utilities

of the sensing vehicle candidates. If uai denotes the utility

of sensing node a in subarea i, then

uai ¼
XM

l¼1
yal �

Z tu

0

hail tð Þ � hail tð Þ � fil tð Þ
� �

dt

� �
ð11Þ

Utility uai denotes the amount of sensing data that vehicle a
can collect in the next system duty cycle tu in subarea i;

hail tð Þ denotes the effective duration of the sensing data of

type l collected by a in subarea i. If a arrives in subarea i at

time t then stays in subarea i for a duration of s (i.e., nai ¼ t,

hai ¼ s), then
Z tu

t¼0
hail tð Þdt ¼ sþ wl ð12Þ

Thus, for any nai and hai , we have
Z tu

t¼0
hli a; tð Þdt

¼
ZZ

t2 0;tuð Þ;s2 0;tu�tð Þ
P nai ¼ t
� �

�P hai ¼ s
� �

� sþwlð Þ
� 	

� dsdt

ð13Þ

where P nai ¼ t
� �

is the probability density of the time that

vehicle a arrives in subarea i and P hai ¼ s
� �

is the
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probability density of the duration within which vehicle a
stays in subarea i. Equation (13) is to calculate the cumu-

lative efficient sensing data of type l that can be collected

by node a in subarea i in one system duty cycle. If a arrives
subarea i at time t, then the effective duration of the col-

lected sensing data in the current system duty cycle is tu� t

. Therefore, in Equation (13), the region of s is 0; tu� tð Þ.
Then, the utility of vehicle a can be calculated as follows:

Ua ¼
XN

i¼1
uai ð14Þ

4.2 Distribution of residence time

Theorem If hi denotes the residence time of a vehicle in

subarea i, then hi obeys the exponential distribution with

parameter ki, which is the average residence time of the

vehicle in subarea i.

P hi 6 tjX 0ð Þ ¼ if g ¼ 1� exp �qitð Þ ð15Þ

where qi ¼ ki.

Proof If the sensing node arrives in subarea i at time 0,

that is, X 0ð Þ ¼ i, and the residence time hi can be defined

as

hi ¼ inf t : t[ 0;X tð Þ 6¼ X 0ð Þ;X 0ð Þ ¼ if g ð16Þ

then

P hi [ tjX 0ð Þ ¼ ið Þ ¼ P X uð Þ ¼ i; 0 6 u 6 tjX 0ð Þ ¼ i½ �
ð17Þ

First, the uncountable events are translated into count-

able events, as shown in Equation (18).

B ¼ ! : X uð Þ ¼ i; 0 6 u 6 tf g ¼
\

06u6t

! : X uð Þ ¼ if g

ð18Þ

where B indicates that the sensing node stay in subarea i in

time duration [0, t]. Then, the interval [0, t] is uniformly

divided into 2n subintervals as follows:

An ¼ ! : X
k

2n
t


 �
¼ i; k ¼ 0; 1; 2; � � � ; 2n

� �

¼
\2n

k¼0
! : X

k

2n
t


 �
¼ i

� � ð19Þ

An is the event that sensing node is in subarea i at time k
2n
t,

where k ¼ 0; 1; 2; . . .; 2n. Given that: Anþ1 � An, it could

be denoted as follows:

A ¼
\1

n¼1
An ¼ lim

n!1
An ð20Þ

A also indicates the event that the sensing node stays in

subarea i from time 0 to time t. Obviously, B = A.

Therefore,

P hi [ tjX 0ð Þ ¼ if g
¼ P X uð Þ ¼ i; 0 6 u 6 tjX 0ð Þ ¼ if g
¼ P BjX 0ð Þ ¼ if g
¼ P AjX 0ð Þ ¼ if g
¼ lim

n!1
P AnjX 0ð Þ ¼ if g

¼ lim
n!1

P X
k

2n
t


 �
¼ i; k ¼ 0; 1; 2; . . .; 2njX 0ð Þ ¼ i

� �

¼ lim
n!1

Pii

t

2n

� 
n o2n

¼ lim
n!1

exp 2n lnPii

t

2n

� 
n o

¼ lim
n!1

exp
ln 1� qi

t
2n

� �
þ o t

2n

� �� �

�qit=2n
�qitð Þ

� �

¼ exp �qitð Þ
ð21Þ

Thus, the residence time of a vehicle in subarea i is subject

to the exponential distribution with parameter qi. The

average residence time in the subarea is denoted as ki, and
ki ¼ qi, which means that the parameter of the exponential

distribution can be estimated by the average residence time

of the sensing vehicles in the subarea.

4.3 Distribution of arrival time

The arrival time of a vehicle in subarea j under the con-

dition that the vehicle is in subarea i at the initial time (i.e.,

t = 0) is denoted as nij and defined as

nij ¼ inf t : t[ 0;X tð Þ ¼ jjX 0ð Þ ¼ if g ð22Þ

where nij ¼ 0 if X 0ð Þ ¼ j.

Fij tð Þ is defined as the distribution function of nij and is

expressed as

Fij tð Þ ¼ P nij 6 t
� 	

; i; j 2 I; i 6¼ j; t > 0 ð23Þ

If #1 ¼ inf t : t[ 0;X tð Þ 6¼ X 0ð Þf g denotes the moment

that the vehicle leaves its initial state and

Gi xð Þ ¼ P #1 6 xjX 0ð Þ ¼ ið Þ ¼ 1� exp �qixð Þð Þ, then

Fij tð Þ ¼ q�1i qijGi tð Þ þ q�1i

X

k 6¼i;k 6¼j;k2I
qik

Z t

0

Fkj t � uð ÞdGi uð Þ

ð24Þ

If #0 ¼ inf t : t[ 0;X #1 þ tð Þ ¼ jf g and X0 tð Þ ¼ X #1 þ tð Þ,
then # ¼ #1 þ #0. Based on the total probability formula

and the strong Markov property, #1 and X #1ð Þ are condi-

tionally independent when X 0ð Þ ¼ i; thus, Eq. (24) is true.
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5 Selection of Heterogeneous Sensing Vehicles

The total cost of the sensing system within a system duty

cycle is denoted as U, and the cost of the sensing vehicle a
is ua in a system duty cycle. If X denotes the set of the

sensing vehicle candidates, then the total utility should be

maximized under the constraint of the maximum number of

vehicles for sensing data collection.

Max
X

a2S
Ua

s:t:
X

a2S
ua 6 U

ð25Þ

In Eq. (25), S denotes the selected sensing vehicles. The

target of the optimization problem is to select a set S of

vehicles from X, and the total cost of the selected sensing

vehicles in a system duty cycle is less than U. Furthermore,

the selected vehicles in S are able to collect the most

comprehensive tempo-spatial sensing data (i.e., the sum of

the utilities of the vehicles in S is maximized).

The optimization formula in Eq. (25) is a knapsack

problem. Therefore, a greedy algorithm denoted as Algo-

rithm 1 is designed to obtain the solution S in Eq. (25). The

goal of Algorithm 1 is to select a set of vehicles from the

candidates so as to collect as much sensing data as possible

in the sensing area within the budget at each system duty

cycle.

In our algorithm, after a sensing vehicle is selected, the

indicate matrix of its expected sensing data are added into a

temp indicate matrix of the sensing data in the sensing data

center. Then, the utilities of the left sensing candidates are

updated according to the new indicate matrix of the sensing

data. It will circulate until the total budget of the system in

the specific duty cycle is exhausted. The indicate matrix of

the sensing data collected by a is denoted as

HaðtÞ ¼

h1;1ðtÞ h1;2ðtÞ . . . h1;MðtÞ
h2;1ðtÞ h2;2ðtÞ h2;MðtÞ

..

. ..
.

hN;1 hN;2ðtÞ . . . hN;MðtÞ

2

66664

3

77775
ð26Þ

where t 2 0; tu½ �. The temp indicate matrix of the sensing

data in the sensing data center is denoted as W tð Þ, which is

expressed as

W tð Þ ¼

w11 tð Þ w12 tð Þ . . . w1M tð Þ
w21 tð Þ w22 tð Þ . . . w2M tð Þ

..

. ..
. ..

.

wN1 tð Þ wN2 tð Þ . . . wNM tð Þ

2

66664

3

77775
ð27Þ

At the beginning, W tð Þ ¼ Z tð Þ. After the sensing vehicle a
is selected, W tð Þ  W tð Þ þHa tð Þ, where

wil tð Þ  wil tð Þ þ cail tð Þ � wil tð Þ � cail tð Þ

. Then, the temp utility function of sensing vehicle a is

defined as Eq. (28).

U0a ¼
XM

l¼1

XN

i¼1

Z tu

t¼0
cail tð Þ � cail tð Þ � wil tð Þ
� �

dt

( )�
ua

ð28Þ

6 Evaluation

Real vehicle GPS traces from the T-Drive trajectory [36,

37] are utilized to simulate and evaluate the proposed HVS

strategy. The T-Drive trajectory data set contains one-week

trajectories of 10357 taxis. The total number of GPS points

in this data set is approximately 15 million, and the total

distance of the trajectories is 9 million kilometers. The time

frequency of data sampling is set to 5 seconds. Taxi drivers

can usually find an optimal route to a destination based on

their experience. Therefore, the T-Drive project attempts to

improve the efficiency of the navigation software accord-

ing to the experience of taxi drivers. The traces of taxis can

reflect the characters of passengers. As the mobilities of

passengers are not completely random, the mobilities of

taxis are also predictable. For example, Huang et al. [38]

designed a vehicle mobility model on the basis of the

regular patterns derived from the traces of 4000 taxis in

Shanghai.

In our simulations, a rectangular region around the

Fourth Ring Road of Beijing is adopted as the target

sensing area (Fig. 3), whose latitude is between

(39.840018� N, 39.993971� N), and longitude is between

(116.276206� E, 116.494243� E). The traces in the rect-

angular area are used in the simulations. Although the

traces are not limited in the target sensing area, we abstract

404 Pers Ubiquit Comput (2016) 20:397–411

123



the area out of the target sensing area as subarea 0 and the

subareas in the target sensing area as 1; 2; 3; . . .. The 1000

vehicles with the longest traces in the rectangular region

are employed as sensing vehicle candidates, and the traces

are used to calculate the arrival and residence time distri-

bution among the subareas.

The default parameters of the experiments are set as

follows. The default number of selected sensing vehicles is

60. The total time of the experiment is 533315 seconds

(more than 6 days). The rectangular region is uniformly

divided into 100 (10� 10) subareas. The system duty cycle

is set to 1000 s. Ten types of sensors are employed to

collect data for the sensing system, and each vehicle has

50% possibility to be equipped with each sensor. The

default upper bound of each type of sensing data life cycle

is 10 system duty cycles. The cost of the sensing system is

assumed to be directly proportional to the number of

selected vehicles. Then, the number of selected sensing

vehicles is used to denote the cost of the sensing system.

The simulation parameters and their default values are

shown in Table 2.

We compare the HVS algorithm with three other algo-

rithms, as shown in Table 3. Dynamic participant selection

(DPS) [28] is a multitask-oriented mobile crowd sensing

system. Although the objective of DPS is to collect sensing

data for all sensing tasks instead of comprehensive tempo-

spatial sensing data, it proposes a greedy sensing node

selection algorithm on the basis of utility calculation. DPS

does not consider sensing data life cycle when estimating

the sensing capacity of a sensing node; instead, it uses a

probability-based mobility model. Random selection (RS)

algorithms randomly select sensing vehicles under the

system budget constraint; specifically, RS1 considers

sensing data life cycle, whereas RS2 does not.

During the simulations, the collected sensing data are

recorded in a list, and each record is composed as follows:

node name; time index; location; sensing data½
type and value( A, B, C, ...) ]

The sensing data coverage ratio is the ratio of the effective

sensing data coverage to the product of the simulation

period length and the number of subareas. As the relation

between the system budget and the number of selected

vehicles is linear, the number of selected vehicles is used in

the following simulations instead of the system budget in

each system duty cycle.

6.1 Impact of the number of selected vehicles

on sensing data coverage ratio

In this subsection, the impact of the number of selected

vehicles on the sensing data coverage ratio is evaluated.

The number of selected vehicles bears the most significant

impact on the sensing data coverage ratio because it

determines the amount of data that can be collected. Given

the number of sensing vehicles that varies from 5 to 100 in

increments of 5 for a system duty cycle, we show the

sensing data coverage ratio results in Fig. 4. The collected

data cannot match all the data requirements even if 100

available vehicles are selected because the traces are not

uniformly distributed in spatial and temporal spaces.

Figure 4 shows the impact of the number of selected

vehicles on the coverage ratio of the collected sensing data.

The experiment is executed 10 times, and the results in

Fig. 4 show the average values from the 10 executions.

Figure 4 shows that the coverage ratios of the collected

sensing data of the four algorithms increase with an

increase in the number of selected vehicles because many

vehicles can collect a large amount of sensing data.

Among the four strategies, the HVS algorithm acquires

the highest coverage ratio because it considers tempo-

spatial sensing data coverage when selecting sensing

Fig. 3 Target sensing area

Table 2 Simulation parameters

Parameter Default Value

Simulation time 533315 s

Number of selected vehicles 60

Number of vehicle candidates 1000

System duty cycle 1000 s

Sensor types 10

Sensing data life cycle 10 System duty cycles

Area partition 100 (10� 10)
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vehicles. Indeed, the life cycle of sensing data is usually

much longer than the system duty cycle. Therefore, col-

lecting a certain type of sensing data in each system duty

cycle is unnecessary. Sensing data are better collected just

before they expire in the sensing data server. As a result,

the consideration of the temporal coverage of sensing data

allows the HVS algorithm to acquire relatively high sens-

ing data coverage ratios.

In calculating the coverage ratio, both the HVS algo-

rithm and RS1 consider the sensing data temporal cover-

age. As a result, their coverage ratios are higher than those

of DPS and RS2. Moreover, the coverage ratio of the HVS

algorithm is higher than that of RS1 by up to 20%. This

result may be ascribed to the fact that the HVS algorithm

selects vehicles according to their historical traces, sensing

interfaces, and the collected sensing data in the sensing

data center, whereas RS1 randomly selects vehicles. The

coverage ratio of the HVS algorithm is four times higher

than that of DPS because it considers the temporal sensing

data coverage when calculating the expected contributions

to the existing collected sensing data; furthermore, the

HVS algorithm predicts the location of sensing vehicles

using a time-continuous Markov chain-based mobility

model, which is more accurate than that employed in DPS.

Figure 5 shows the impact of the number of selected

vehicles on the standard deviation of the data coverage

ratio. Since the relation between the number of selected

vehicles and data coverage ratio of the four algorithms are

shown in Fig. 4, only the results of HVS and DPS are

shown in Fig. 5 for clarity. In Fig. 5, the standard deviation

of DPS increases from 0.015 to 0.17 with an increase in the

number of selected sensing vehicles from 5 to 100, whereas

the standard deviation fluctuation of the HVS algorithm is

small (i.e., from 0.02 to 0.09). Figure 5 also reveals that the

standard deviation of the HVS algorithm is lower than that

of DPS. The deviation of vehicle traces is high when

numerous vehicles are selected, and the high deviation of

the vehicle traces leads to a considerable deviation in the

coverage ratio of the collected sensing data. The fluctuation

of the coverage ratio of the collected sensing data is also

significantly reduced with the HVS algorithm because of

its adoption of a time-continuous Markov chain-based

mobility model and consideration of the uniformity of the

temporal coverage of the different types of sensing data.

Thus, the sensing data collection of the HVS algorithm is

more sustainable and stable than those of the other

algorithms.

6.2 Impact of sensing data life cycle on coverage

ratio

The life cycle of sensing data are usually longer than the

system duty cycle. Therefore, collecting a certain type of

sensing data in each system duty cycle is unnecessary.

Table 3 Evaluated algorithms
Algorithm HVS DPS RS1 RS2

Node selection Greedy Greedy Random Random

Mobility model Time-continuous

Markov chain-based

Probability based No No

Sensing data life cycle Yes No Yes No
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Collecting sensing data just before it expires is preferred to

keep the sensing data effective along the temporal space.

An experiment is conducted in this study to evaluate the

impact of the upper bound of the sensing data life cycle on

the sensing data coverage ratio. The life cycle of each type

of sensing data is randomly chosen at an interval of 0 to the

upper bound of the sensing data life cycle.

Owing to the data lifetime are not considered in DPS

and RS2, only the coverage ratio of HVS and RS1 are

compared in this experiment. In the experiment, the upper

bound of the sensing data life cycle changes from 2 to 20 in

increments of 2. As shown in Fig. 6, the coverage ratios of

the HVS algorithm and RS1 increase with an increase of

the upper bound of the sensing data life cycle because the

long temporal coverage of sensing time leads to few

requirements for sensing data collection. The coverage

ratio of the HVS algorithm when the life cycle upper bound

is 20 is 55 % higher than that when the upper bound of the

sensing data life cycle is 2 system duty cycles. As the HVS

algorithm selects sensing vehicles according to their utili-

ties, its coverage ratio is higher than that of RS1 by about

15 % under the same upper bound of the sensing data.

6.3 Impact of the sensing area partition on coverage

ratio

Another experiment is conducted to test the sensing data

coverage ratio for different sensing area partitions. The

default number of sensing vehicles is 60. The area partition

is selected from fð2; 2Þ; ð4; 4Þ; ð6; 6Þ; ð8; 8Þ; ð10; 10Þg, as

shown in Fig. 7. The HVS algorithm has the highest cov-

erage ratio in each area partition. When the area partition is

(6, 6), the HVS algorithm obtains the highest sensing data

coverage ratio (i.e., 89 %).

When the sensing area is fine-grained partitioned into

100 subareas, as a consequence of the system budget lim-

itation in each system duty cycle, the sensing data coverage

ratio decreases from 89 to 72 % with an increase in the

partition fineness from (6, 6) to (10, 10). As the mobility

traces of the vehicles are random, the sensing data cover-

age ratio is low when the number of divided subareas is

small. For the same reason, DPS and RS1 acquire the

highest ratios when the area partition is (4, 4). If the

number of the divided subareas is small to (2, 2), then the

coverage ratio deviation between the HVS algorithm and

RS1 is also small to 0.02. The reason is twofold. First, the

probability for one vehicle to travel into each subarea is

sufficiently high, and the efficiencies of the mobility

models are reduced. Second, the requirements for sensing

data collection are fewer than those when the sensing area

is fine-grained partitioned. However, when the number of

subareas increases, the mobility model and the estimation

of future sensing capacity show highly significant effects.

6.4 Cumulative amount of collected sensing data

In this subsection, the variation trend in the cumulative

amount of the collected sensing data during the simulation

is evaluated. The simulation time is divided into 30 sub-

time intervals. In each subtime interval, the effective

coverages of the sensing data collected by the vehicles are

computed. Figure 8 shows that the HVS algorithm exhibits

a faster data collection speed than the other algorithms. At

the end of our simulation, sensing data collected by HVS is

3 times more than that of DPS. As DSP and RS2 do not

count the life cycles of the sensing data, the cumulative

amounts of the sensing data collected with DSP and RS2

are less than that of the HVS algorithm. Moreover, the
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sensing data collection speeds of DPS and RS2 are much

slower than that of the HVS algorithm.

6.5 Sustainability of data collection

In this subsection, the sustainability of the data collection

of each of the four algorithms is evaluated with the use of

the temporal entropy of the collected sensing data. The

temporal entropy serves as an indicator of the uniformity of

the collected sensing data at different intervals during the

simulation process. Therefore, the entropy can evaluate the

sustainability of the sensing data collection. A large tem-

poral entropy equates to a highly sustainable sensing data

collection algorithm. The method for calculating temporal

entropy is shown in Eq. (29).

st ¼ �
Xn

k¼1
pk log pk ð29Þ

where

pk ¼
effective data coverage in time interval k

total effective data coverage

In Fig. 9, all temporal entropies increase with the number

of selected vehicles. Thus, the HVS algorithm can acquire

sensing data sustainably. Furthermore, the HVS algorithm

has the highest temporal entropy among the four algo-

rithms when few vehicles are selected to collect sensing

data. This result reveals that the HVS algorithm can collect

sensing data sustainably with few sensing vehicles because

it typically selects vehicles according to their utilities. This

feature suggests the capacity of the algorithm to collect

scarce sensing data. When numerous sensing vehicles are

selected, the four algorithms can acquire uniformly dis-

tributed sensing data because the number of vehicles is

sufficiently large to generate high deviations among

mobilities and heterogeneities and consequently collect

various types of sensing data in all subareas.

6.6 Spatial uniformity of collected sensing data

In this subsection, the impact of the number of selected

sensing vehicles on the spatial entropy of the collected

sensing data is evaluated. The spatial entropy of the col-

lected sensing data reveals the spatial uniformity of the

collected sensing data. The spatial entropies are derived

from the probability distribution of the collected sensing

data in all the partitioned subareas, as shown in Eq. (30).

ss ¼ �
XN

i¼1
pi log pi ð30Þ

where

pi ¼
data coverage in subarea i

coverage of all collected data

Figure 10 shows the relationship between the spatial

entropy and the number of selected vehicles. As shown in

Fig. 10, the HVS amount of vehicles has the highest spatial

entropy. Thus, this algorithm is able to collect uniformly

distributed sensing data with the same number of sensing

vehicles. Moreover, the advantage of the HVS algorithm is

highlighted when the number of selected vehicles is small

for three reasons. First, the mobility model is able to pre-

dict the locations of sensing vehicles. Second, when cal-

culating the utility of each sensing vehicle, both the

expected collected sensing data and the collected sensing

data in the sensing data center are considered. Therefore,

the selected sensing vehicles are more likely to collect

scarce sensing data; as a result, the spatial uniformity of the

collected sensing data is improved. Third, the life cycle of
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sensing data is longer than the system duty cycle; conse-

quently, the uniformity of sensing data is further enhanced.

Figure 11 reveals the relationship between the sensing

area partition and the spatial entropy of the collected

sensing data. Obviously, the spatial uniformity of the col-

lected sensing data is high when several other subareas are

partitioned. In Fig. 11, the spatial entropies of the four

algorithms almost converge when the area partition is

(2, 2) because when the number of subareas is small, the

influence of mobility and heterogeneity on sensing capacity

is low. Then, the spatial entropy increases with an increase

in the number of area partitions. The spatial entropy of the

HVS algorithm is slightly higher than those of the other

algorithms when the area partition is (10, 10). Neverthe-

less, the variation tendencies of the four algorithms are

almost the same.

Figure 12 reveals the impact of the upper bound of the

sensing data life cycle on the spatial entropy of the col-

lected sensing data. Since DPS and RS2 do not select

participants according to the lifetime of sensing data, the

spatial entropies of HVS and RS1 are evaluated in this

experiment. The spatial entropies of the HVS algorithm

and RS1 decrease with an increase in the upper bound of

the sensing data life cycle because the non-uniformity of

the life cycles of the different types of sensing data increase

with an increase in the upper bound of the sensing data life

cycle. Then, the heterogeneity of the collected sensing data

will also increase. As a result, the spatial entropy will be

small because the upper bound of the sensing data life

cycle is high. As the HVS algorithm estimates the types

and effective duration of the sensing data that could be

collected by vehicles in the following system duty cycle,

the spatial entropy of the HVS algorithm is higher and

decreases slower than that of RS1. Therefore, the HVS

algorithm can mitigate the drawbacks arising from the

heterogeneity of the sensing data life cycle and spatial

distribution of the collected sensing data.

7 Conclusion

The continuous collection of comprehensively covered

tempo-spatial sensing data with limited heterogeneous

sensing vehicles is a critical issue in vehicular mobile

sensing systems. In this work, the HVS algorithm for the

collection of comprehensive tempo-spatial sensing data is

proposed. First, on the basis of the expected spatial dis-

tribution of a vehicle and its sensing interfaces, a utility

function is established to estimate the ability of the vehicle

to collect sensing data in the next system duty cycle. Then,

according to the utility function and system budget
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restriction, the sensing vehicle selection problem is for-

mulated as a knapsack problem. Finally, a greedy optimal

sensing vehicle selection algorithm is designed. Real trace-

driven experiments show that the sensing data collected by

the HVS algorithm exhibit higher coverage ratio and more

uniform tempo-spatial distribution than those collected by

other mobile crowd sensing algorithms.
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