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Abstract Mobile crowd photography (MCP) is a widely

used technique in crowd sensing. In MCP, a picture stream

is generated when delivering intermittently to the backend

server by participants. Pictures contributed later in the

stream may be semantically or visually relevant to previous

ones, which can result in data redundancy. To meet diverse

constraints (e.g., spatiotemporal contexts, single or multi-

ple shooting angles) on the data to be collected in MCP

tasks, a data selection process is needed to eliminate data

redundancy and reduce network overhead. This issue has

little been investigated in existing studies. To address this

requirement, we propose a generic data collection frame-

work called PicPick. It first presents a multifaceted task

model that allows for varied MCP task specification. A

pyramid tree (PTree) method is further proposed to select

an optimal set of pictures from picture streams based on

multi-dimensional constraints. Experimental results on two

real-world datasets indicate that PTree can effectively

reduce data redundancy while maintaining the coverage

requests, and the overall framework is flexible.

Keywords Data selection � Mobile phone sensing � Crowd
sensing � Pyramid tree clustering � Multi-dimensional

coverage

1 Introduction

With the development of smartphone sensing, wearable

computing, and mobile social networks, a new sensing

paradigm called mobile crowd sensing and computing

(MCSC) [1], which leverages the power of ordinary users

for large-scale sensing, has become popular in recent years.

Data collected onsite in the real world, combined with the

support of the backend server where data fusion takes

place, makes MCS a versatile platform that can often

replace static sensing infrastructures.

Picture taking is a widely used sensing technique of

MCSC, referred to as mobile crowd photography (MCP) in

this paper. MCP has benefited a variety of application

areas, such as pollution monitoring [2], disaster relief [3,

4], scientific data collection [5], public sensing [6], traffic

planning [7]. Each MCP task differs in their sensing targets

and sampling contexts (e.g., place, time, shooting angle).

Nevertheless, existing MCP systems mainly aim at one or

one kind of specific task, and there is not a unified platform

for managing varied MCP tasks. The motivation for

building a generic framework for MCP is inspired by

MTurk (http://www.mturk.com/) and has the following

merits. First, it facilitates the rapid specification of MCP

tasks with different constraints, without the need to develop

individual or proprietary systems. Second, it lowers the

barrier for ordinary users to publish MCP tasks. Third, it

provides mobile users with a unique way to access MCP

tasks, which can simplify worker recruitment and infor-

mation sharing. Despite the aforementioned benefits, there

are several challenges to building such a framework.

1. Unified MCP task modeling. Different MCP tasks have

distinct needs and contextual constraints. For example,

some tasks allow for a long sampling interval [5],
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while others need short intervals [7]; some tasks may

need pictures from different shooting angles [3, 4],

while others may need only one snapshot [2, 7]. In

order to build a generic MCP framework, we should

conduct a thorough analysis of MCP concepts and

constraints, and find a way to model different tasks.

2. Selective picture collection. In participatory collection,

data is collected in a distributed manner and the data

delivered by participants arrive at the backend server

intermittently, forming a picture stream. In terms of the

MCP task requirements, later pictures might be similar

to previous ones (e.g., pictures of the same target at the

same location taken from slightly different angles) or

semantically redundant (e.g., when only one snapshot

is needed for a scene but more are captured) and have

low utility. Therefore, data selection should be

conducted to reduce redundancy and minimize the

network overhead of picture streams. In other words, a

representative subset that offers roughly the same

‘‘coverage’’ of the target but with fewer pictures should

be selected. The computation cost on selection should

also be optimized, particularly considering that the

picture set at the server side is increasing with the data

stream size.

To tackle the above challenges, we investigate the

requirements and constraints of various MCP tasks, and

propose a generic and optimized MCP data collection

framework called PicPick. Specifically, our contributions

include:

1. Proposing a generic picture collection framework for

MCP, which is applicable to tasks of varying themes

and constraints. Based on a multifaceted task model,

the framework enables the specification of tasks with

multi-dimensional constraints. It also presents a

method for coverage-based minimum data selection.

2. Developing a pyramid tree (PTree) method that can

cluster the data stream and enable efficient picture

selection. With the proposed PTree model and asso-

ciated tree generation rules (e.g., branching and

layering), PicPick can intelligently cluster the dynamic

pictures and facilitate decision making on data

selection.

3. Performance validation. By recruiting 50 more partic-

ipants, we have collected two real-world MCP datasets

with different themes. Experiments on them indicate

that our approach is highly effective and efficient

compared to related studies.

The rest of this paper is organized as follows. In Sect. 2,

we present the related studies of our work. Conceptual

modeling and detailed problem analysis is given in Sect. 3,

followed by the PicPick framework in Sect. 4. The PTree

data selection method is presented in Sect. 5, and the

performance of it is evaluated in Sect. 6. We conclude our

paper in Sect. 7.

2 Related work

There are two closely related research areas in our work:

mobile crowd photography and data selection in crowd

sensing.

2.1 Mobile crowd photography

MCSC has become a novel paradigm to achieve large-scale

sensing. In MCSC, average users are allowed to share local

knowledge acquired by their smartphones. It has been

successfully used in numerous application areas, including

environment monitoring [8], urban profiling [9], indoor

floor planning [10], public safety protection [11]. Regard-

ing the various application needs, MCSC can involve dif-

ferent modalities of sensing, such as numeric readings [9,

10], audio recording [8], online posts [11], and picture

taking [2–7]. Ma et al. [12] investigated the opportunistic

characteristics of human mobility from the perspectives of

both sensing and data transmission, and presented

approaches to effectively collecting MCSC data. Zhang

et al. [13] investigated the generic four-stage lifecycle of

MCSC systems and studied the core issues in each stage.

Our previous work [1] characterized the unique features of

MCSC (e.g., grassroots-powered sensing, human–machine

intelligence fusion [14], opportunistic/transient network-

ing, and cross-space sensing) and presented the technical

challenges of it, such as participant selection, incentive

mechanisms, data quality maintenance, and cross-space

data mining [15].

Mobile crowd photography (MCP), large-scale visual

sensing via built-in cameras of smartphones, has become a

dominant form of crowd sensing. Typical examples of

MCP include traffic dynamics detection [7], creek pollution

monitoring [2], on-the-board poster reposting and sharing

[6], and emergency scene recording [3, 4]. In essence, these

MCP applications can be viewed as tasks with different

sensing targets and constraints. Though MCP is widely

used, little research has been undertaken to develop a

general MCP framework to meet diverse requirements.

PicPick is, to the best of our knowledge, the first attempt to

develop such a framework and support optimized data

collection for various MCP tasks.

2.2 Data selection in crowd sensing

Data contributed by a crowd can be redundant for task

needs. Therefore, data selection is necessary to eliminate
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data redundancy and lower transmission cost. Data selec-

tion can be conducted in two distinct ways, i.e., offline and

online. In offline selection, the server selects pictures when

the entire picture set becomes available. The information

retrieval community has worked at length on offline

redundancy elimination for the retrieved information [16,

17]. In online selection, however, the decision on whether a

picture should be selected is made instantly upon its arri-

val. Since image transmission incurs a high cost on net-

work traffic, the online model has been adopted in many

MCP systems, such as PhotoNet [3] and CARE [18]. As a

result, we will address challenges pertaining to online data

selection in MCP.

Data selection is application specific, and varied

requirements of MCP tasks should be considered. For

example, the targets of tasks might be either local (e.g.,

PhotoNet [3]) or global (e.g., Creekwatch [2]), the shooting

angles could be either single (e.g., FlierMeet [6]) or mul-

tiple (e.g., SmartPhoto [4], PhotoCity [19]), and the status

of sensed objects might change slowly (e.g., FlierMeet [6])

or quickly (e.g., SignalGuru [7]). Therefore, the generic

data selection framework for MCP should adapt to various

task requirements. PicPick is a generic MCP framework

that supports efficient online redundancy elimination based

on multi-dimensional task constraints.

2.3 Data stream clustering

Compared to entire datasets, clustering over data streams is

challenging due to its dynamic nature and online process-

ing requirements. Guha et al. [20] presented a one-pass

clustering algorithm; however, the quality of the clusters

was poor when the data evolved considerably over time.

Aggarwal et al. [21] proposed an online–offline approach

that explored the nature of the evolution of the clusters over

different time periods. Chen et al. [22] presented a density-

based approach to cluster real-time streaming data. Gaber

et al. [23] gave a review of the problems and methods on

data stream mining. They also made a summary of the

typical applications on data stream mining. Different from

previous studies, we have presented a hierarchical clus-

tering method called PTree, where every level represents a

resolution or granularity of clusters. This method can meet

the multi-dimensional constraints of MCP tasks and can

efficiently process real-time crowdsourced picture streams.

3 Conceptual modeling and problem analysis

We first present two use cases of PicPick, based on which a

generic MCP task model is presented. The problem of

online data selection under task constraints is then

analyzed.

3.1 Use cases

We use two different use cases about MCP to demonstrate

the motivation and usage of PicPick.

1. Disaster Relief. After a disaster, the rescue center

needs to gain enough knowledge about the damage

status to design rescue plans. It asks survivors and first

responders to send pictures about the disaster area

through their smartphones to the rescue center. To

obtain a complete picture about the disaster damage,

the rescue center prefers the delivery of pictures from

different places of the disaster area while not the

delivery of many pictures from only populated places

[3]. On the other hand, it wants to obtain the temporal

dynamics of the disaster area. Since the network

bandwidth is limited after the disaster, it prevents

delivery of all pictures to the rescue center. PicPick

thus needs to select pictures to maximize the spa-

tiotemporal coverage. At least two constraints are

needed to be considered in data selection: the geo-

distance of pictures (e.g., 20 m) and the time interval

(e.g., 1 h).

2. Object Imagery. Object imagery (e.g., 3D modeling of

buildings, Google’s street view) has recently devel-

oped as a hot research area. It is valuable in a number

of application areas, ranging from augmented reality to

urban planning. In object imagery, we want to reach a

rapid and even coverage of different aspects, usually

pre-defined, of the target object. To achieve this, online

data processing and visualization is often needed at the

backend server [19], which allows participants to share

in real-time the coverage status and steer them to

uncovered or poorly-covered aspects. To make people

understand the real-time coverage status, PicPick can

set multi-dimensional constraints to determine the

semantic redundancy of two submissions (i.e., they

cover the same aspect). For example, photographs

taken over 100 m apart or with shooting angles

differing by over 30� are thought to have captured

different aspects.

From the above scenarios, we can derive three require-

ments for the MCP framework.

• Unified task model. We find that different MCP tasks

have different data collection requests. In order to adapt

to various MCP tasks, PicPick should present a unified

model that allows task requesters to characterize their

different needs.

• Redundant data grouping. With the data redundancy

issue, methods should be studied to group similar

pictures (at the content- or semantic-level) over the

picture stream in a real-time manner.
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• Data selection with task constraints. Given the pre-

defined task constraints, a data selection method should

be developed to select appropriate data from the data

streams. This can improve the data transmission

performance.

3.2 Task modeling

Based on the analysis of existing MCP applications, we

propose a 7-tuple task model: Task =\whn, whr, itv, loc,

ori, imgs, cont[. Here, whn is a valid period for performing

the task, including the start time (ST) and the end time

(ET); whr refers to the targeted sensing area; loc is the geo-

distance and pictures within this might be semantically

redundant; itv refers to how often new pictures should be

collected; ori denotes the minimum orientation gap to the

pictures of the same scene; imgs refers to the threshold over

the distance among pictures using certain visual features.

These six elements can be used as constraints/features for

data selection at the server side, while the last element cont

is a description of the task for a participant (or mobile

client) to easily understand and execute tasks. It should be

noted that the task model is flexible and we can insert new

constraints in it for task specification.

Once a picture is taken, the mobile client saves the

image file and records the associated contexts, forming a

picture record. An MCP picture record p is modeled as

p =\wid, img, t, l, ang[. Here, wid refers to the id of the

participant; img refers to the picture file; t and l denote

when and where the picture is taken; ang represents the

shooting angle of a picture in the form:\azimuth, pitch,

roll[, which can be obtained based on accelerometer and

magnetic field sensor readings [24]. Pictures are con-

tributed in a distributed manner and finally form a picture

stream P. It consists of a sequence of picture records p1,…,

pk,… arriving at timestamps t1,…, tk…
According to different task requirements, redundancy

can have distinct meanings, roughly categorized as the

following two types.

• Content-redundancy(ConR). This refers to the visual

similarity among pictures, using visual features such as

SIFT [6], color histogram [3].

• Semantic-redundancy(SemR). The similarity is defined

at the semantic or contextual level, using features such

as location [3], shooting angle [4]. For example,

different buildings may look alike in pictures, but if

their locations are different, there is no SemR because

they carry distinct information.

An example to illustrate the above definitions is shown

in Fig. 1. For a task, there are three targets Tg1–Tg3. Eight

participants w1–w8 contribute a picture stream P = p1–p8
under different contexts. The identification of redundancy

among pairs of pictures is given in the figure. For example,

though the time interval between p2 and p3 is above r, the

orientation gap between them is lower than v, so SemR is

not true. Similarly, for p4 and p5, the SemR is true, while

ConR (measured by the visual feature ImgF) is not true. p6–

p8 are both semantic and content relevant, and p6 is finally

selected because it arrives earlier.

3.3 Problem analysis

Generally, our work can be viewed as an online min-se-

lection problem, i.e., given the multi-dimensional coverage

requirements and a picture stream, dynamically selecting a

minimum set of pictures (to eliminate redundancy) that can

satisfy these constraints. Clustering is an often-used

approach for redundancy elimination [25]. With clustering,

semantically similar objects can be grouped and only rep-

resentative ones from each cluster are selected for the final

dataset. The original problem thus becomes a data stream

clustering issue [26].

Traditional clustering algorithms generally adopt the

distance over selected visual features as a metric to mea-

sure their similarity and cluster pictures. The problem is

different in MCP as we need to address multi-dimensional,

heterogeneous constraints (space, time, shooting angle,

etc.). It is difficult to integrate these constraints in a single

Fig. 1 Task, picture stream, and data selection; Task.itv = r, ori = v, imgs = s; p1–p5 are kept, while p6 is selected from among p6–p8 based on

its arrival time
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distance measurement metric, so we employ a hierarchical

manner (by considering different constraints at different

levels). Existing hierarchical clustering methods are usu-

ally based on the entire dataset with a specific feature,

which demonstrates the granularity of clusters in terms of

the feature. We have different features and need to use

them at different levels, similar to a decision tree. Though

the decision tree model is generally used for classification,

it has been explored in an unsupervised manner for hier-

archical clustering [27]. However, [27] ’s method is based

on the entire dataset and it cannot deal with data streams.

To address the above issues, we have developed Pyra-

mid Tree (PTree), a hierarchical, multi-constraint-based

clustering algorithm for selecting representative pictures

from crowdsourced data streams. This takes advantage of

the unsupervised decision tree model for interpretable,

constraint-based grouping, and proposes branching and

layering strategies for efficient clustering of picture

streams.

4 The PicPick framework

Based on the identified requirements, we have developed

the PicPick framework, as shown in Fig. 2. The framework

consists of several important components. The multifaceted

task model is responsible for defining tasks with different

types of requests and constraints. The task publishing &

allocation component allows task requesters to specify and

publish new tasks. It can also allocate tasks to a group of

qualified participants, as discussed in our previous work

[28]. In task execution, pictures and their associated con-

texts are recorded and intermittently transmitted to the

backend server. The generated data stream is fed into the

data selection module, which selects data from the picture

stream in view of pre-defined task constraints. Three core

components are involved: PTree layering, branching and

distance measurement. To reduce network costs, a

thumbnail of an incoming picture and associated contexts

(extremely light weight compared to the original image)

will first be sent to the backend server. The thumbnail will

then be used as an input for a dynamically generated PTree

and clustered with existing pictures. The clustering result is

used to judge whether the full-size picture should be sub-

mitted or not.

5 Pyramid tree-based picture selection

We describe the PTree model and use examples to explain

its working mechanism.

5.1 The pyramid tree model

PTree is a tree structure for data stream clustering with

multi-dimensional features or constraints. A PTree has

d ? 2 layers if the task has d features. The root node exists

at layer-0, and the other layers are defined as layer-

l (1 B l B d ? 1). Leaf nodes (LNs) only exist at the

bottom layer, consisting of picture record instances. Each

non-leaf node (NLN) n corresponds to a micro-cluster,

composed of the LNs whose ancestors involve n. Each

node in a PTree has an id and an index. id is the serial

number of a node among its siblings. We define the path

from the root node to this node as the index of the node,

composing of a sequence of ids of nodes in the path.

Assuming that the picture stream is {p1,…,p12} and the

task has three constraints, a 5-layer PTree can be generated,

as shown in Fig. 3a. Each node is represented by its index

(e.g., N12). Records p1, p3, and p5 belong to the micro-

cluster of N111, and p1–p6 belong to the micro-cluster of

N11.

The generation of a PTree consists of two collaborative

operations: branching and layering. Branching decides

which cluster a new picture should be placed in (at the

horizontal level), while layering refers to the one-to-one

mapping between the feature set and the layer set (at the

vertical level).

5.2 Branching and picture selection

In data stream clustering, we must decide whether an

incoming picture should be grouped in an existing cluster.

To do this in PTree, we first calculate the semantic/content

distance between the picture and already generated micro-

clusters. Since we are conducting hierarchical clustering

with PTree, it needs to be matched from the top to the

bottom layers with the micro-clusters at each layer. If a

picture record has a distance less than th_t (a threshold) to a

micro-cluster at layer-t, we call the associated NLN an

m-NLN (matched-NLN). The distance measurement

method will be described in Sect. 5.3. A picture can have

more than one m-NLN on the same layer. To choose a

suitable one, we use two methods: Fast-match (fastM) and

Min-match (minM). The former method chooses the first-Fig. 2 PicPick framework
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matched m-NLN, while the latter chooses the m-NLN with

the shortest distance value. The branching process is

elaborated in detail below.

• If m-NLN Nj is chosen as a match for picture record p,

then only the child nodes of Nj will be searched in the

next layer. If the next layer is the bottom layer, an LN

(with the picture record p) will be created as the child

node of Nj.

• If the m-NLN of p is not found in layer-t, a new branch

from the m-NLN Nj in layer (t-1) to the bottom layer

will be created.

An example of the branching process is shown in

Fig. 3b, and the PTree grows with the arrival of records p1–

p7 by using fastM. For example, when p7 arrives, N1 is its

m-NLN in layer-1 and no m-NLN is found in the next

layer, so a new branch from N1 to N121 is created.

To ensure constraint coverage and reduce the network

cost, the time-priority method is used for picture selection,

where only the first-arriving item of a micro-cluster needs

the full record. For example, p1, p3 and p5 have the same

ancestor N111. Since p1 arrives first, the full-size picture is

submitted. For p3 and p5, we only keep their thumbnails

and contexts. With this strategy, the final selection result

for Fig. 3a is {p1, p2, p4, p7, p8, p9}.

5.3 Distance measurement

The distance measurement in clustering is measured with

the center of a micro-cluster (or NLN) and the picture

record. The center of NLN N111 in Fig. 3a is calculated

based on the value of items p1, p3, and p5. The method of

calculating the center of an NLN is relevant to the feature

used in that layer. For location or shooting angle, the mean

value can be used as the value of the center. For other

features such as visual features, it is somewhat difficult to

obtain an average value. For simplicity’s sake, we use

either first-as-center (FaC) or last-as-center (LaC) to set

the center of an NLN. As shown in Fig. 3a, the center of

N111 with FaC and LaC is p1 and p5, respectively. The

method for calculating distance varies for different fea-

tures. Some of them used in this work are given below.

• Location/time. We use the Euclidean distance to

measure them.

• Shooting angle distance. It refers to the angle between

the shooting directions of two pictures in the 3D space.

• Visual features. We use the SIFT feature to identify the

matched points of two pictures. The visual distance refers

to the ratio of unmatched points to the entire point set.

5.4 Layering strategy

Layering is associated with the one-to-one mapping of the

attribute set with the layers of a PTree. Given the task con-

straints, we can estimate the number of potential branches

(NPB) for each constraint. For example, for task t, theNPB to

the time constraint can be estimated as TE� TSð Þ=t:itv.
During task execution, if the crowd contributions ade-

quately meet the constraints (e.g., data is distributed with the

right time- and geo-distances), a near-complete tree with all

potential branches to each constraint can be generated.

However, due to uncertain crowd behavior patterns and the

dynamics of targets to be sensed, in many cases people tend

to contribute more data in certain contexts (e.g., time slots,

places), while few or none in others. The resulting PTree

might be incomplete in these cases. In such situations, the

PTree generation process is similar to the Trie-tree con-

struction problem [29], where the computational cost

is greatly affected by the feature used at each layer.

Fig. 3 Pyramid tree example

330 Pers Ubiquit Comput (2016) 20:325–335

123



Its optimization is difficult since it is hard to anticipate the

dynamics of the picture stream. However, the computational

cost can be lowered when generating a gradually expanding

tree (we call this an A-shape) for Trie-trees [29]. To achieve

this, one strategy is to have features with smaller NPBs in

the upper layers. Due to uneven coverage, if a feature with a

small NPB is placed at lower layers, few branches will be

generated, which may destroy the A-shape. An example is

given in Fig. 3c, which moves layer-3 in Fig. 3a to layer-1

so that the A-shape tree cannot be generated.

6 Evaluation

The aim of PicPick is to enable optimized and efficient

picture selection over diverse MCP task constraints. We

first present the measurement metrics and then the results

over two real-world datasets.

6.1 Metrics, baseline, and datasets

1. Metrics. We define the following metrics for

evaluation.

• Effectiveness. Given a picture set P, if two pictures

in P are identified as similar under certain

constraint settings, we build a link/edge between

them. This generates a graph G (each picture is a

vertex in G), and finding the full-coverage subset of

P equals the retrieval of the maximum independent

set (MIS) of G. Each member of MIS is called a

facet of P. We use SP to denote the selected subset

of P using PTree. The precision and recall of the

performance on data selection is formulated as

Eqs. (1) and (2). The former equation can be

explained as the redundancy-elimination ratio,

while the latter is the facet-coverage ratio.

Precision ¼ TP

TPþ FP

¼ MISðSPÞj j
MISðSPÞj j þ ð SPj j � MISðSPÞj jÞ

¼ MISðSPÞj j
SPj j ð1Þ

Recall ¼ TP

TPþ FN

¼ MIS SPð Þj j
MIS SPð Þj j þ ð MISðPÞj j � MIS SPð Þj jÞ

¼ MIS SPð Þj j
MISðPÞj j

ð2Þ

• Efficiency. We compute the computation cost

(ComC) as the number of pairwise matches when

generating the PTree over a picture set. The

flexibility of PTree on different picture stream

sizes is tested as well. We also measure the

performance difference on different layering

strategies.

2. Baseline and ground truth. The content-based priori-

tization scheme (CAP) by PhotoNet [3], which aims to

maximize event coverage, is used as the baseline. It is

based on linear pairwise comparisons, while PTree

uses hierarchical clustering. The computation overhead

is thus different. To validate the selection approach, we

should obtain the ground truth, i.e., the MIS of the

picture set. Finding the MIS is an NP-hard problem,

and we employ the method from [30] and use content

similarity (by SIFT, similarity threshold th_s = 0.1) to

compute the MIS.

3. Datasets. We used two real-world datasets for our

experiments. The first dataset was the FlierMeet [6]

dataset. It is an MCS app that allows people to repost

and share fliers distributed on urban surfaces. Thirty-

eight students in our university were recruited to use

the application to capture fliers on university campus,

and over 2000 pictures were collected within 8 weeks.

The second dataset refers to another kind of MCS app,

used for social event sensing (SESense for short). The

data was collected from an academic forum at our

university. The attendees were asked to record inter-

esting or important moments during the event, and a

total of 155 pictures were collected. All the partici-

pants were rewarded in data contribution.

6.2 Performance measurement

To evaluate the performance, we tested the approach under

different constraint settings. Two constraints were used:

location and visual features. We used three pairs of con-

straint thresholds (th_l, th_v), namely (5.0,0.1), (5.5,0.1),

and (6.0,0.1). Two layering approaches, LV ({(location, l1),

(visual, l2)}) and VL, were used to validate the impact of

layering. Furthermore, the performance difference of fastM

and minM in clustering was also tested.

The results show that the selection performance was

affected by constraint settings. The redundancy ratio was

greatly reduced by PTree, while the facet-coverage ratio

was maintained (precision and recall are around 90 and

85 % under different settings). As shown in Fig. 4, under

the same setting, the performance of mimM had slight

differences with fastM. However, its ComC was much

higher. This reveals that we can choose fastM in clustering.

Compared to the baseline approach CAP, PTree performs

better for all metrics, i.e., it has better selection quality with

low computational costs. There are two possible reasons.
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First, CAP is mainly based on content diversity, while the

various semantic constraints are not considered. Second,

the fusion of location and visual features at the same level

also impacts its performance. In contrast, PTree achieves a

higher performance by using hierarchical decision making,

and the affect of each feature is addressed.

We also tested the flexibility of PTree over the Flier-

Meet dataset, using the data streams sized from 100 to

1400. As shown in Fig. 4e, the effectiveness of PTree on

redundancy elimination changes quite slowly as the dataset

size rises. It is not surprising that almost the whole com-

putation cost increases linearly with the dataset size.

However, we found that the average computation cost

(ComC/|P|) of each picture changed much more slowly (it

increases two times with a ten times increase in the dataset

size). The results indicate that our approach is flexible,

considering that most tasks have tens to thousands of user

contributions.

Though VL is more effective than LV, its computation

cost is considerably higher (2578 vs. 1449). We further

compared the trees generated to explain the reason. Two

PTrees with the SESense dataset and the same constraints,

but different layer mappings (VL and LV), are shown in

Fig. 5. The left tree has a bigger fan-out degree in the top

layers compared with the right one, thus resulting in a

higher computation cost. The experiment proves that set-

ting proper layers can reduce ComC, and clustering the

picture stream with the A-shape is more efficient.

Fig. 4 Experiment results for clustering effectiveness, efficiency, and

computation cost. a th_l = 5.0 m, dataset = SESense, b th_l =

5.5 m, dataset = SESense, c th_l = 6.0 m, dataset = SESense,

d ComC, dataset = SESense. e, f th_l = 400 m, th_t = 4 days,

fastM, dataset = FlierMeet
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6.3 A case study of PicPick data selection

To illustrate the effectiveness of our data selection

framework, we made a case study based on the SESense

dataset. The raw pictures contributed by five attendees

(A1–A5) are shown in upper of Fig. 6 (sequenced along

a timeline), and the pictures after data selection with

fastM-LV are shown in the bottom of Fig. 6. Around

68 % pictures (13 over 19) were finally selected. The

result indicates that PicPick selected pictures from the

attendees at different shooting angles (the five attendees

were located at different places in the forum venue:

front-left, front-middle, back-left, etc.). Therefore, we

can have multifaceted visual information (at the

semantic-diversity level) about the event. Further, visu-

ally similar pictures taken from the same direction/place

were not selected to reduce redundancy. For example,

the first two pictures from A2 were visually similar and

only the first one was selected, while the four pictures

contributed by A4 were not visually similar and all of

them were selected.

6.4 Discussion

The above experiments demonstrate the effectiveness and

flexibility of PTree. There are several limitations that need

to be improved in the future.

1. Task modeling. Our task model allows people to pre-

specify the task constraints for data selection. How-

ever, sometimes task providers cannot predict the

distribution or the context of sensed objects, and they

might set ambiguous or incorrect task constraints.

Also, the characteristics of the picture stream may

evolve over time, which may result in changing

constraint settings. In order to maintain the sensing

quality, a more complex and dynamic task model

should be built.

2. PTree performance. As the ComC increases when a

PTree grows and some micro-clusters might not get

new items for a certain period of time, it is possible to

remove static branches to save computing cost. When

and how to make branch-cuttings needs to be further

studied.

Fig. 5 PTree generation with two layer mappings: VL and LV (th_l = 5.5 m, th_v = 0.1, fastM)

Fig. 6 Selection result to the SESense dataset (partial) using the LV layering strategy (th_l = 5.5 m, th_v = 0.1, fastM), A1–A5 represent the

five attendees
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3. Quality of sensing. In addition to data redundancy, data

quality is another significant issue in crowd sensing.

For example, participants may contribute low-quality

pictures (e.g., pictures are blurred or taken under poor

lighting environments) in MCP tasks. In PicPick, time-

priority is used for picture selection. However, as we

can cluster similar pictures into groups, later-coming

pictures which have better quality than the previously

selected ones (in the same group) can also be selected

for full-size picture submission. In other words, an

integrated time-quality-priority strategy can be used

for picture selection. The quality of pictures can be

measured based on its sensing contexts, as discussed in

our previous work [6].

4. Centralized versus cooperative. In the current study,

we used a centralized approach for picture selection,

which may become a bottleneck when there are

large-sale tasks in processing. Nevertheless, cooper-

ation among peers was not considered. It is therefore

important to leverage the local and opportunistic

cooperation and data selection among peers to

reduce the server burden. We leave this as future

work.

7 Conclusion

We have presented our approach for optimized data

selection and redundancy elimination in mobile crowd

photography. A generic, task-driven MCP framework

supports coverage-based data collection for varied MCP

tasks. A PTree-based method is proposed to meet the

multi-dimensional constraints by hierarchically and

online clustering the picture stream. Experimental results

indicate that PTree can successfully reduce data redun-

dancy while maintaining coverage needs. Experiments

on different-sized picture streams also prove the flexi-

bility of our approach. We also use a case study about

event sensing to demonstrate the usefulness of our

framework.

In the future, we will first extend our task model to

address evolvable and dynamic constraint settings. Second,

PTree will be improved by using branch pruning tech-

niques and quality-oriented data selection strategies. Third,

we will investigate opportunistic collaboration of partici-

pants to achieve local data selection and optimized

transmission.
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