
ORIGINAL ARTICLE

A survey on decision making for task migration in mobile cloud
environments

Weishan Zhang1 • Shouchao Tan1 • Feng Xia2,3 • Xiufeng Chen4 • Zhongwei Li1 •

Qinghua Lu1 • Su Yang5

Received: 16 October 2015 /Accepted: 30 March 2016 / Published online: 21 April 2016

� Springer-Verlag London 2016

Abstract The key idea of MCC is using powerful back-

end computing nodes to enhance capabilities of small

mobile devices and provide better user experiences. An

effective and widely used approach to realize this is task

migrations. Decision making is an important aspect of

migrations which affects the feasibility and effectiveness of

task migrations. There have been a number of research

efforts to MCC which help make decisions for task

migrations. In this paper, we present a comprehensive

survey on decision making for task migrations in MCC,

including decision factors and algorithms. We observe that

there are still some challenges such as comprehensive

context awareness, unified migration standards, large-scale

experiments, more involvement of latest achievements

from artificial intelligence, and flexible decision-making

mechanisms. The paper highlights these issues and chal-

lenges to attract more efforts to work on MCC.

Keywords Cloud computing � Task migration � Decision
making � Mobile cloud � Context awareness

1 Introduction

Smart mobiles have been becoming popular because of

their increasing processing capabilities, convenience, and

portability. It is predictable that mobile devices will replace

the traditional laptop and desktop computers in the near

future [1]. However, mobile systems have inherent limi-

tations, including short battery life and limited computing

and storage capabilities [2]. Enhancing capabilities of

mobile devices can be achieved by a new computing

paradigm called mobile cloud computing (MCC) [3].

MCC enhances and optimizes mobile devices’ com-

puting capability and it can alleviate storage and mobility

problems of mobile devices. It brings new types of services

and facilities for mobile users to take full advantages of

cloud computing. A number of MCC solutions have been

proposed, such as Misco [4], Clonecloud [5], and Hyrax

[6]. March [7] developed a component based mobile

application framework leveraging cloud resources. Lu [8]

proposed a conceptual architecture to perform screen ren-

dering tasks inside the cloud. SOPHRA [9] uses a

cloud centric middleware to enable mobiles to host web

services in the mHealth domain. In [1], the author

& Weishan Zhang

zhangws@upc.edu.cn

Shouchao Tan

tansc.upc@foxmail.com

Feng Xia

f.xia@ieee.org

Xiufeng Chen

chenxiufeng@hisense.com

Zhongwei Li

lizhongwei@upc.edu.cn

Qinghua Lu

dr.qinghua.lu@gmail.com

Su Yang

suyang@fudan.edu.cn

1 School of Computer and Communication Engineering, China

University of Petroleum, Qingdao 266580, China

2 School of Software, Dalian University of Technology,

Dalian 116620, China

3 Key Laboratory for Ubiquitous Network and Service

Software of Liaoning Province, Dalian 116620, China

4 Hisense TransTech, Ltd., Qingdao, China

5 College of Computer Science and Technology, Fudan

University, Shanghai 200433, China

123

Pers Ubiquit Comput (2016) 20:295–309

DOI 10.1007/s00779-016-0915-y

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-016-0915-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-016-0915-y&domain=pdf

presented a new mobile cloud architecture, leveraging the

collaboration between mobile devices and conventional

desktop or laptop computers to empower mobile comput-

ing, particularly aimed at optimizing data distribution and

resources’ utilizations so that expected Quality-of-Service

(QoS) requirements can be met. They also proposed an

algorithm to select an optimal resource allocation strategy

to satisfy various service level agreements (SLA). MCC

has been used in various applications including mobile

commerce, mobile learning, and mobile gaming [3].

Enhancing capabilities of small devices in MCC can be

achieved by migrating applications, and offloading com-

puting intensive or data intensive tasks to proximate or

remote cloud nodes [10, 11], which is called task migration

in MCC. In some occasions, the most effective application

migrations should be able to simultaneously meet multiple

user requirements [12]. A computation migration is also

confronted with several key challenges such as context

awareness and remote execution control [13]. Considering

all of the problems, we need a good migration

scheme about which part to migrate, when and where to

migrate. So decision making for task migration is an

important issue which can affect application executions

including security, performance, power consumption of

mobile devices [3] and of whole systems, and hence affect

experiences of mobile users.

In this paper, we present a relatively comprehensive

survey on the decision making of task migrations. The

motivation is to discuss some important issues in task

migration processes including what kind of decision factors

should be considered and what kind of decision mecha-

nisms are used. Besides, we present some challenges in

order to point out future research directions.

The rest of the paper is structured as follows. Section 2

gives an overview of mobile cloud computing and intro-

duces the task migration in MCC including generally steps

and architectures for task migrations. A survey of related

work and decision-making approaches for task migration is

given in Sect. 3. In Sect. 4, A comprehensive comparison

and discussions to migration decision approaches are pre-

sented. Some challenges of the task migration in MCC are

listed in Sect. 5. Section 6 concludes the paper.

2 Overview of task migration in MCC

The MCC forum defines MCC as follows:

‘Mobile cloud computing at its simplest refers to an

infrastructure where both the data storage and data

processing happen outside of the mobile device.

Mobile cloud applications move the computing

power and data storage away from mobile phones and

into the cloud, bringing applications and MC to not

just smart phone users but a much broader range of

mobile subscribers’ [14].

There are some other definitions, such as Aepona [15] and

Liu [16]. We can describe the general idea of mobile cloud

computing as the following architecture shown in Fig. 1.

Potentially, MCC has a number of advantages such as

extending battery lifetime, improving data storage capacity,

enhancing performance, and dynamic provisioning [3].

2.1 Reasons and steps to do task migrations

There are a number of reasons to conduct task migrations.

First, mobile applications are getting more complicated and

more computing intensive [17]. Second, mobile users

would like to obtain better performance when using mobile

devices which have inherent limitations with respect to a

built-in memory, battery, storage capability, and further-

more, poor bandwidth [2]. In a word, the reason for doing

task migrations in mobile cloud environment is that there

are mismatches between requirements and the mobile

devices’ capabilities.

In order to make migrations meaningful, some factors

need to be considered. We classify these factors into four

categories: applications’ characteristics, mobile devices’

characteristics, environment factors, and user’s preferences

Fig. 1 General idea of mobile cloud computing

296 Pers Ubiquit Comput (2016) 20:295–309

123

and requirements. These factors can help to decide whether

a migration should be conducted and how to proceed task

migrations.

Generally, the steps of task migrations are as follows:

1. Looking for available resources and services which

mobile devices can offload computing tasks to [18, 19].

2. Monitoring environment context information such as

status of surrounding networks and relevant devices,

predicting what are needed through some sort of

reasoning approaches [20–23].

3. Conducting application partitions at a suitable granu-

larity [24] and making decision for tasks scheduling

with appropriate algorithms [25, 26].

4. Remote execution control for applications needs to be

conducted. This includes how to interact with mobile

clients, such as getting users’ input and returning

results to mobile ends.

The first and second steps make preparation for task

migration which are used to collect useful information. The

third step is the core for task migrations, namely decision

making of task migrations. Effective decisions are impor-

tant. The last one makes sure that applications can be

correctly executed even after the migrations.

2.2 Task migration architectures of MCC

A task migration architecture means what type of resources

mobile devices use to enhance their abilities and the way in

which mobile devices are connected to and interact with

cloud resources. According to the resources organization,

existing task migration architectures can be classified as the

following four types:

1. Public cloud: Mobile devices offload tasks to public

resources comprised of stationary servers located far

from the mobile nodes or proximate centralized

desktops and laptops accessible via the Internet. The

migrated tasks or portions of applications can be

executed remotely in the cloud. Some task migration

solutions use this architecture to enhance capabilities

of mobile devices and get better execution of appli-

cations. In MAUI [27], mobile devices offload code to

a infrastructure composed of immobile MAUI servers.

Smart phones use remote procedure call to communi-

cate with MAUI servers. Clonecloud [5] also uses a

computational public cloud architecture to transfer

mobile applications. It transforms a single machine

execution (e.g., smart phone computation) into a

distributed execution (e.g., smart phone plus cloud

computation) in which the resource intensive parts of

the execution are run in powerful clones in the cloud.

Public cloud is highly available, scalable, and resource

elastic with powerful computing capabilities while

mobile phones are resource constrained. A novel MCC

architecture was proposed in [1]. It leverages the

collaboration between mobile devices and conven-

tional desktop or laptop computers to empower mobile

computing to optimize data distribution and utilization

of CC resources. As said in [17], the disparity in

capabilities between public cloud and smart phones is

high and persistent. Therefore, leveraging public cloud

to augment mobile devices can benefit mobile appli-

cation executions pretty much. But the communication

time and cost must be considered for migrations

because accesses to the cloud may incur a long latency

due to wide area network (WAN) delays.

2. Cloudlet: A Cloudlet [28] is one computer or cluster of

computers that is well connected to the Internet and

available to nearby mobile devices. It is resource rich

and proximate. Due to the proximity, the end to end

response time of applications executing within it is

little (a few milliseconds) and predictable. Cloudlet

simplifies the challenge of meeting peak bandwidth

demands and gives users better experience especially

for realtime mobile applications. But using Cloudlets

also faces to some practical issues such as reliabil-

ity problems. Cloud-Vision [29] proposed a mobile-

Cloudlet-cloud architecture named MOCHA to do

realtime face recognition. The Cloudlet determines

how to partition computation among itself and multiple

servers in the cloud to optimize the overall Quality of

Service (QoS). The implementation and result demon-

strate that Cloudlet is technically feasible and high

powered to provide benefits to mobile device face

recognition applications considering its higher compu-

tational power with minimal latencies .

3. Cloud of Mobile Network Operator (MNO): A mobile

network operator or MNO is a provider of wireless

communications that owns or controls all of the

elements necessary to sell and deliver services to an

end user including radio spectrum allocation, wireless

network infrastructures, and provisioning of computer

systems and marketing [30]. There are many MNOs

like China Mobile and AT&T which has provided

cloud services [31]. As said in [32], a MNO can be a

cloud provider by deploying cloud concepts including

SaaS, IaaS. A MNO can be a cloud broker which plays

as a service mediator between cloud providers and

mobile users, and from the other aspect, a broker

across other MNOs. Cloud of MNOs is widely

covered, safe, and reliable. Mirror [33] keeps a mirror

for each smart phone on a computing infrastructure

within 3G networks. Paper [32] proposed a ser-

vice based arbitrated multi-tier infrastructure for

Pers Ubiquit Comput (2016) 20:295–309 297

123

mobile cloud computing. MNOs are used as arbitrators

between front end (mobile users) and back end (cloud

service providers) to do resource and service allocation

for more efficient executions. A MNO and its autho-

rized dealers compose the infrastructure together with

clouds.

4. Cloud of mobile devices: In the former three architec-

tures, mobile devices act as thin clients which utilize

external resources in cloud computing platforms to

process computing intensive or data intensive tasks.

But we cannot avoid situations that an access to these

platforms may be not available and/or it is too

expensive to access them. Cloud of mobile devices is

a solution to these situations. Mobile devices play the

role of resource provider, those which are in vicinity of

users and in a stable mode form a virtual cloud for task

offloadings. In Hyrax [6], the author introduced a

concept of using mobile devices as resource providers.

Similar work has been done in grid computing. Black

and Edgar [34] demonstrated the feasibility of using

mobile devices as part of a grid. With cloud of mobile

devices, users can share resources and execute jobs

among the devices to gain better experience. This is

very suitable for some scenarios like group tourism.

[35] created a cloud among devices in vicinity taking

advantage of the pervasiveness of mobile devices.

Table 1 shows a simple comparison of the four architec-

tures. Each architecture has its specific characteristics and

can meet different task migration requirements. When

doing task migrations, we can choose a suitable mobile

cloud architecture according to migration scenario and

objectives.

Apparently MCC has been a hot topic to augment

mobile devices capabilities. There have been many

research efforts on mobile cloud environment, as discussed

in [3, 24] and many solutions for task migrations in mobile

cloud computing as represented in the following Sect. 3.

3 Decision making for task migration

Section 2 delivers an overview for task migration in MCC

including the reasons to do task migrations and architec-

tures existing in MCC. To ensure efficient program exe-

cutions, a task migration needs an intelligent

decision making way to adapt to dynamic changes in

mobile cloud computing environments and achieve better

execution performance. In this section, we focus on deci-

sion making for task migration in MCC and some specific

existing approaches of task migrations will be talked about

with some detailed descriptions.

There have been many solutions about decision making

for task migration in mobile cloud computing. They are all

for augmenting mobile devices and making applications

better executed, but they are different from each other in

decision objectives and decision algorithms. A significant

difference is that a migration decision can be static or

dynamic. Now in the following is some approaches with

the two different decision making ways. We discuss each

approach with a detailed description.

3.1 Static task migration decision approaches

1. Wishbone: Wishbone [36] is an application partition

system based on a data flow graph of operators. Its

partitioning algorithm models the application partition

problem as an integer linear program (ILP). It uses an

ILP solver to solve the optimal graph partitioning

problem to get a partition scheme and then assigns

tasks to a central server or a sensor node. In this way it

Table 1 Task migration architectures of MCC

Arch Chara

Composition Distance

with user

Advantages Disadvantages Task migration

examples

Public

cloud

Centralized desktops and laptops,

stationary servers

Distant/

proximate

Highly available, scalable,

elastic, and powerful

Wide area network

(WAN) latency

MAUI [27],

Clonecloud [5]

Cloudlet One computer or cluster of

computers

Proximate Resource rich and proximate Low reliability Cloudlet [28],

Cloud-Vision [29]

Cloud of

MNO

Mobile network operator Proximate Widely covered, safe, and

reliable

May be expensive Sami [32], Mirror

[33]

Mobile

cloud

Mobile devices Proximate Convenient May be not stable Hyrax [6, 35]

The abbreviated columns represent the following: arch architecture; chara characteristics

298 Pers Ubiquit Comput (2016) 20:295–309

123

can reduce mobile devices’ cost as much as possible,

which is a linear combination of network communi-

cation overhead and CPU load. In Wishbone, the

partition approach is only suitable to those applications

which can be expressed as a data flow graph.

2. VM placement/migration: Network I/O performance

would affect application performance significantly.

Therefore, [37] proposes a network aware virtual

machine placement and migration approach in cloud

computing environment. It aims to minimize data

transfer time of an application. In the proposed VM

migration policy shown in Fig. 2, a VM migration is

triggered when the data transfer time crosses a certain

threshold due to unstable networks. Then, the next

optimized physical machine which has minimal access

time is chosen according to the current network

condition, and the VM is migrated to this physical

machine for better performance. Experiment result

shows that average task completion time is decreased

with task migrations. A precondition of the proposed

approach is that host storage and network bandwidth

must be known in advance.

3. Clonecloud: Clonecloud [5] is a system dynamically

migrating mobile applications to cloud. It uses remote

cloud resources and partitions applications at a thread

level to obtain a fine granularity and flexibility. A

mathematical optimizer chooses migration points that

optimize the objective (such as total execution time or

mobile device’s energy consumption) and makes

dynamic profiling to build a cost model. The runtime

system chooses which partition to use. After the

partition and migration, the application is under

distributed execution (parts of the execution are

seamlessly offloaded to computational cloud, while

rest are still executed locally), and the result will be

back to the mobile device to be integrated.

4. Task-resource Scheduling: In [38], the author gave a

solution to task-resource scheduling problem in cloud

computing system. It describes an application work

flow as a directed acyclic graph comprised with tasks

and their data dependency relationships. The task-

resources scheduling problem is to find a scheduling

scheme to minimize total execution cost of applica-

tions running on the resources provided by cloud

service providers. Total execution cost is the sum of

computation time and file transmission time. This

problem is reduced to a satisfiability problem and then

solved with a SAT solver. The overall process is as

shown in Fig. 3.

5. Task Scheduling with DVFS: A novel algorithm for the

MCC task scheduling problem is presented in [39].

The algorithm is designed to minimize total energy

consumption of an application in a mobile device

under a hard constraint on the application completion

time. An application is represented by a directed

acyclic task graph G ¼ ðV;EÞ. Each node vi 2 V

represents a task, and a directed edge eðvi; vjÞ 2 E

represents the precedence constraint. And the task-

precedence requirements are considered and cus-

tomized. There are three steps when doing task

scheduling. In the first step, a minimal delay task

scheduling is generated without considering energy

consumption of the mobile device. The initial schedul-

ing algorithm takes into account a joint scheduling of

tasks on local cores, wireless communication channels,

and cloud nodes. And then the task migration

algorithm performs energy reduction in the second

step by migrating tasks to the cloud or other local cores

that can bring great energy reduction without violating

the application completion time constraint. In the third

step, dynamic voltage and frequency scaling (DVFS)

technique is used to further reduce energy consumption

by making a suitable choice of the operating frequency

for each local core. To avoid high time complexity, the

Fig. 2 Network aware VM migration approach

Pers Ubiquit Comput (2016) 20:295–309 299

123

author proposed a linear time rescheduling algorithm

for the task migration. When it comes to the overall

computation complexity of the MCC task scheduling

algorithm, it is OðN3 � KÞ where N is the number of

tasks and K is the number of cores.

From above descriptions about these static deci-

sion making approaches, it is not hard to find that

static migration decisions have the advantages of

simplicity and low overhead during executions. Com-

pared with them, dynamic decision approaches make

more consideration to different runtime conditions and

are more adopted by current researches.

3.2 Dynamic task migration decision approaches

6. Parametric Analysis: The work of [40] proposes a

parametric analysis approach to achieve an optimal

program partitioning and scheduling for computation

offloading. Applications are divided into tasks

according to task control flow graphs (TCFG). And

then based on the optimal program partitioning that

corresponds to the current values of runtime parame-

ters, the program is transformed into a distributed

program which at runtime self-schedules its compu-

tation tasks to either a mobile device or a server. The

overall process is as shown in Fig. 4. There is a trade-

off between computation workload and communica-

tion cost when making a partition and migration

decision. It obtains program computation workload

and communication cost with cost analysis and

expresses them as functions of runtime parameters,

and then the parametric partitioning algorithm will

find the optimal program partitioning corresponding

to different ranges of runtime parameters.

7. (k ? 1) Multi-Constraint Partitioning Algorithm:

The paper [41] proposes an adaptive (k ? 1)

partition algorithm for application offloading. Stat-

ically, it partitions an application using a graph cut-

ting algorithm at class level according to the

application’s features (a dynamic multi-cost graph).

According to the partition scheme, the multi-con-

straint partitioning algorithm obtains a best distribu-

tion of the application where one un-offloadable

partition will run locally on the mobile device and

k offloadable partitions are distributed to

k surrogates.

8. MAUI: [27] is an architecture where mobile program

code can be offloaded to a powerful infrastructure.

MAUI decides at runtime which methods should be

remotely executed, driven by an optimization engine

that achieves the best energy savings possibility

under the mobile device’s current connectivity

constrains. To offload an application, it uses col-

lected samples of CPU utilization and the corre-

sponding smart phone energy consumption to build a

Fig. 3 Using a SAT solver to

do task-resource scheduling

Fig. 4 Parametric analysis for adaptive computation offloading

300 Pers Ubiquit Comput (2016) 20:295–309

123

simple linear model, using the least-square linear

regression. Then, it can predict the energy consump-

tion of task executions and optimize the current

model using machine learning. Based on the energy

consumption model, decision making of application

partition and migration is dynamically performed at

the method level. High level overview of the MAUI

architecture mainly includes two parts, smart phone

and MAUI server. Each end has a proxy, a profiler,

and a solver. The profilers are used to do device and

program profilings, and the MAUI solver uses data

collected by the MAUI profiler as input to determine

which remotable methods should be executed locally

and which should be executed remotely.

9. Darwin: In [42], the authors introduced an inte-

grated automation framework called Darwin. It

enables workload migrations in a source-target

mode. The objectives are to enhance the speed,

reduce the cost and inherent risk of performing

migrations. During a workload migration, it firstly

discovers the source environment, makes analysis

to select migration target candidates, and then

creates a workload migration map. Darwin config-

ures the target platform(s) environment and appli-

cation components to carry out the migration at

last. As a framework, Darwin is able to architec-

turally support different variations but still has gaps

such as lack of open virtualization format (OVF)

integration with the request for migration XML

specification.

10. EOA: [43] proposes a novel efficient online algo-

rithm (EOA) to solve the migration problem of

batch jobs among data centers (DCs). EOA can

handle future variabilities and uncertainties of

energy sources, and can make fundamental trade-

off between energy and bandwidth costs of migrat-

ing application data and states. Online job migra-

tions are defined as minimum value problems of the

total operation cost (sums of the energy costs at a

DC and the bandwidth costs of migrating jobs

among DCs) in the cloud. As a computationally

efficient algorithm, the complexity of EOA algo-

rithm is O(logn) where n is the total number of

servers in the cloud.

11. Cloud-Vision: The work [29] introduces an applica-

tion migration approach to increasing mobiles’

performance (response time) by using proximate

Cloudlet. A Cloudlet receives processing intensive

tasks from mobile devices and then assigns them to

itself or remote cloud nodes. It has two schemes for

task migrations: equally distribution and greedy

style. Apparently in the equally distribution

scheme tasks are equally distributed among available

cloud servers (or the Cloudlet). In the greedy style

scheme, a migration decision is made according to

the time of finishing the tasks. The latter approach

has better performance, especially when the com-

munication delays of servers are different. But a

weak point is that it is difficult to know the

communication delays because of the environment’s

dynamics.

12. LALTM: The author of [44] proposed a Java byte

code transformation technique for realizing task

migrations which aims at minimizing the overhead.

It presents how to do migrations for one application

focusing on state capturing before a migration and

state restoring after execution results return. A

migration is triggered by application itself when

the execution has reached some special states such as

exceptions. The migration mechanism makes use of

asynchronous exceptions and byte code instrumen-

tation to perform state capturing which can avoid to

poll the migration state and check the migration state

repeatedly after every function returns. In the state

restoring, a technique, namely Twin Method Hier-

archy, is used to minimize the overhead induced by

code restorations. The mobile device transfers just

enough portion of the stack, methods, and objects to

the cloud node. This minimizes the overhead of

migrating tasks and allows more flexible migration

paths.

13. EMSO: [45] presents an energy efficient multisite

offloading (EMSO) algorithm that saves energy and

reduces time consumption. EMSO divides an

application by depth-first search based on a weight

object relation graph (WORG). After static analysis

to the application, partition and offloading are

dynamically performed and can adapt to environ-

ment changes. The test result of the system shows

that EMSO can significantly reduce energy and

time consumption.

14. MDP migration: In [46], the authors modeled the

service migration problem for Follow Me Cloud

(FMC) using a Markov decision process (MDP) and

formulated a decision policy to determine whether

and where to do service migrations according to the

trade-off between migration cost and user perceived

quality. The overall process of Markov decision

process is as shown in Fig. 5. FMC is a network

architecture which enables service mobility across

federated data centers (DCs). Following the mobility

of a mobile user, the service located in a given DC is

migrated at every time when an optimal DC is

available. In the MDP model, given a state (current

service location), there are a set of actions (migrate

or not) which are associated with transitions to other

Pers Ubiquit Comput (2016) 20:295–309 301

123

states. For each transition, there is a corresponding

reward and cost function. The decision policy is used

to find an optimal migration policy which has the

max discounted total reward. Numerical results show

that the proposed service migration decision mech-

anism always achieves the maximum expected

reward.

15. OSGi-PC: OSGi-PC proposed in [47] is based on the

de facto Java component standard called OSGi. In

OSGi-PC, the work for partitioning application is not

yet considered but as it uses a component based

approach, the support for application partitioning

will not be hard to add. The offloading is done via

component migrations across any kind of cloud

nodes including the migration from powerful nodes

to mobile client nodes.

16. Mobiles on Cloud Nine: The paper [48] proposes a

solution for task migration in cloud computing

systems. Some online migration strategies are

developed to make migration decisions according

to instantaneous load of the system and estimated

execution time of tasks. Following cloud scenarios,

migration policies vary from task centric migration

where migration decisions are made by the task itself

for minimizing its own execution time to cloud wide

task migration decided by the cloud provider con-

sidering the whole system’s performance. When

making task migration decisions, three factors are

explicitly taken into account: the multi-tenancy

effect resulting from interaction of co-located VMs

in a server, the cost of migrating source code and

input data of the task, and the cost of transferring

final result to the user. A migration should be

occurred only if it is beneficial for the processing

time of a task.

17. Jade: Jade [49] is an energy aware computation

offloading system for Android mobile devices. It

transports computation which contains

remotable tasks from an Android device to servers

running on the cloud. At runtime, Jade gathers

devices’ information and tasks’ information and uses

multi-level scheduling algorithm to offload tasks and

balance the workload of servers. Jade was evaluated

with two applications (face detection and path

finding), and the result showed that it can effectively

reduce up to 35 % of average power consumption for

mobile devices.

18. DCOG: Decentralized computation offloading game

(DCOG) [50] is a computing offloading decision

mechanism. The authors considered communication

and computation aspects of users’ tasks and

formulated the computation offloading decision-

making problem among multiple mobile device

users as a decentralized computation offloading

game which admits a Nash equilibrium. Within the

offloading decision mechanism, the authors used a

slotted time structure to do interference measure-

ment and to solve the decision update contention

problem cyclically and finally determined whether

users’ tasks should be executed locally or migrated

to the cloud.

19. DECM: [51] proposes a dynamic energy aware

Cloudlet based mobile cloud computing model

(DECM) which uses Cloudlets with dynamic pro-

gramming to reduce additional energy consumption

during wireless communication. DECM manages

Fig. 5 Markov decision process (MDP) for task migration in Follow Me Cloud

302 Pers Ubiquit Comput (2016) 20:295–309

123

and optimizes the cloud based infrastructure usages

and services. A dynamic Cloudlet is the main

component of DECM to find better connections

(connecting to another Cloudlet or cloud or itself) for

users. DECM uses recursion to solve service migra-

tion problems.

4 Comparisons of decision-making approaches

In Table 2, we summarize the decision-making approaches

for task migrations aforementioned from the following

aspects: the scenario of task migration problem, the algo-

rithm proposed to make a decision for task migration, the

migration granularity, whether the decision making is

dynamic or static, what factors are considered when mak-

ing decisions for task migrations, the complexity of the

decision algorithm, and finally the decision mode in which

centralized or distributed decision making is adopted.

4.1 Decision-making algorithms for task migration

in MCC

There are a number of application migration algorithms

proposed so far. A common approach is graph based par-

titioning such as HELVM [41] and operation data flow

graph partitioning in [36] which can make better analyses

to an application and get a migration scheme easily. Some

other partition methods can be used under certain circum-

stances such as a SAT solver which is used to solve SAT

problems transformed from minimization problems [38].

MDP [46] is associated with state transitions of a task

migration, and DVFS algorithm [39] is used to reduce

energy consumption as described in Table 2. Each deci-

sion-making algorithm has complexity different from oth-

ers which leads to different migration overheads [44].

4.2 Static or dynamic task migration decisions

Some of the algorithms make migration decision statically

before an application’s execution [36, 39]. Therefore, a

program is partitioned during development, and task

migration is usually performed only once within static

decision approaches. Some migration decisions are made in

a dynamic way taking into account the runtime environ-

ment and application executions. Task migrations usually

are triggered when program executions have reached some

special states such as in [37] or an attribute value exceeds a

threshold such as in [46].

Static algorithms are relatively simple and lead to low

overhead during executions without monitoring computing

contexts, but there are limitations considering dynamic

situations, such as static decision approaches are valid only

when parameters can be accurately predicted in advance. In

contrast, dynamic decisions can adapt to different runtime

conditions and can be particularly useful since most

information of computing environment cannot be known in

advance due to the dynamic nature of mobile cloud com-

puting environments (fluctuating network bandwidth, con-

stantly changing memory and CPU). However, dynamic

migration decisions may lead to higher runtime overhead.

4.3 Decision mode for task migrations

Task migration mechanisms may be centralized whose

decisions are made by a central migration manager or

processor considering the whole system’s condition or

performance [46, 47]. These centralized decision-making

approaches are relatively simple but may cause bad per-

formance to one specific computing node or task. Cur-

rently, there are some distributed decision approaches

proposed such as [44, 48] in which the decision making

responsibility belongs to several nodes for better resources

utilization. Servers or tasks possibly make autonomous

decisions independently or make cooperative decisions, not

only considering its own objectives but also that of other

nodes.

4.4 Decision factors considered for meaningful

migrations

In order to make migrations meaningful, some factors need

to be considered when making decisions as shown in

Fig. 6.

1. Applications characteristics. Only computing inten-

sive or communication intensive applications and

applications requiring a large amount of data which

is remotely located need to do task migrations.

Otherwise, the benefit is not enough to offset the cost

of migration produces by communication or latency.

Therefore, when deciding whether and where to do

migration, we must consider some applications’ or

tasks’ information such as data volume, and computing

time [38, 41, 45, 50].

2. Mobile devices’ and cloud’s characteristics. Mobile

cloud environment is heterogeneous (in terms of the

hardwares, platforms, the services, and networks). We

need to know status and features of nodes, such as

performance, availabilities, reliabilities, distance, and

elasticity and costs. A migration should be performed

when there is no enough resources to support appli-

cations’ execution in mobile or cloud nodes, or in

order to have better execution performance. These

characteristics include CPU processing capacities of

Pers Ubiquit Comput (2016) 20:295–309 303

123

Table 2 Comparisons of decision-making approaches in MCC

No. MS MO MA MG DS DF AC MM

(6) [40] Different execution

environment, input

parameters and data files

will make difference in

applications execution.

Minimize total

cost of

computing,

communication

and scheduling

Parametric

analysis

partition

Task D Computing and

communication

time, data

volume

Oðnd
2Þ Program

itself

(7) [41] Offloading decision should

satisfy multiple

constraints imposed by

users or mobile

resources.

Reduce resource

consumption

HELVM

(heavy-

edge, light-

vertex

matching)

Class D CPU, memory,

bandwidth, data

communication

Oðn4Þ Central

(1) [36] Sensor network

applications are data

intensive, while the

environment is

heterogeneous and

resource-constrained.

Minimize a

combination of

network load

and CPU

consumption

Operation

data flow

graph

partition

Operation S Computing and

communication

time, CPU and

memory

utilization

NA (not

available)

Central

(2) [37] Network I/O performance

would affect data-

intensive applications’

performance hosted by

networked VMs.

Minimize the data

access time

Traverse VM S Data storage

information,

network status

Oðn2Þ Central

(8) [27] Offloading should be fine-

grained and can

maximize energy saving

with minimal burden on

programmer.

Achieve the best

energy savings

NG (not

given)

Method D CPU, energy

consumption,

network

bandwidth

NA Central

(9) [42] Migrating workload to

cloud in a smooth and

cost effective way, with

minimal disruption, is a

challenge.

Enhance speed,

reduce inherent

risk of

migration

/ Application D CPU utilization,

workload,

resource

information

/ Central

(3) [5] Migration of mobile

applications lacks of

flexibility and

widespread adaptability.

Optimize

execution time

or energy

consumption

NG Thread D Time and

bandwidth

NA Central

(10) [43] Judicious job migration

approaches are needed to

handle the trade-off

between energy and

bandwidth cost.

Balance energy

saving and

bandwidth cost

in data center

operation

EOA

(efficient

online

algorithm)

Job D Energy price,

resource

information,

bandwidth

Oðn2Þ Central

(11) [29] With effective partition

and migration, face

recognition can benefit

from the cooperation of

mobiles and cloud.

Minimize the

overall response

time (latency,

compute time)

of application

Fixed/greedy

algorithm

Task D/

S

Bandwidth, task

execution time
OðnÞ=Oðn2Þ Central

(4) [38] Task-resource management

is severely related to the

efficiency of cloud

computing systems.

Minimize the

total cost

(execution time,

access cost) of

servers

SAT solver Task S Execution time,

communication

cost, data

volume

Oðn2Þ Central

(12) [44] There is insufficient in

current application-level

task migration

approaches.

Reduce overhead

and increase

flexibility of

migration

/ Stack/

method/

object

D Migration

overload, time

consumption,

resource

utilization

/ Program

itself

304 Pers Ubiquit Comput (2016) 20:295–309

123

both mobile devices and cloud [36, 42, 49], mobile

device energy information and mobility [39, 46], and

load and resource utilization such as memory and

storage on cloud [43, 47, 48].

3. Network environment. Mobile cloud computing is

developed depending on the utilization of networks.

There is no doubt that communication technologies and

network capabilities have significant impacts on task

migrations, especially wireless networks between com-

puting nodes. As said in [37], network I/O performance

would affect the overall application performance sig-

nificantly, especially on data intensive applications

which need frequent data communication. Conse-

quently, network environment information is of partic-

ular importance to task migrations. Moreover, network

condition is variedwith time, so it usually needs realtime

monitoring or prediction. So many researches have

brought the network factor into decisionmaking for task

migrations such as in [5, 29, 46, 48].

4. Users’ preferences and requirements. Users should

have rights to decide whether to do migrations, and

migrations should satisfy users’ requirements such as

the demand to finish application executions within a

certain time. Users’ preferences and requirements are

probably the most important factors in decision making

of task migrations [46, 50].

Mobile cloud computing environment is complex, and it

may be difficult to obtain all these information when

making task migration decisions. As a result, getting

Table 2 continued

No. MS MO MA MG DS DF AC MM

(13) [45] Offloading computation

to multiple servers/sites

is more promising for

mobile devices to save

energy.

Minimize the

total energy

consumption

and time cost of

mobile devices

EMSO

algorithm

based on

WORG

Object D Energy,

bandwidth,

application

feature

Oðn4Þ Central

(14) [46] Service migration can

bring profit but also

may be expensive given

the communication

between DCs.

Trade-off

between cost

and user-

perceived

quality

MDP Service D Migration time

consumption,

QoS, mobility

NG Central

(15) [47] A supporting

infrastructure of

component/service

migrations is needed

for small devices.

Enhance memory

utilization

OSGi-PC Component D Memory

information of

servers

O(n) Central

(5) [39] To get benefit from task

migration for

augmenting mobile

devices, many factors

should be considered.

Minimize energy

consumption

under hard

completion

time constraint

Initial,

rescheduling,

and DVFS

algorithm

Task S Execution time,

task

precedence,

bandwidth,

energy

Oðn3Þ Local/cloud

(16) [48] Task execution time may

vary in cloud because

of sharing resources

with other co-located

tasks.

Minimize

execution time

of tasks

NG Task D Server load, time,

communication

cost, mobility,

multi-tenancy

effect

NA Server/task-

centric/cloud-

wide

(17) [49] Performance of mobiles

conflicts with longer

battery life.

Reduce energy

consumption

Work stealing

and HRRN

Task D Device status,

energy and

execution time

NA Server and

client

(18) [50] Network competition can

cause low energy

efficiency for

migration.

Minimize

computation

overhead

/ Task D Bandwidth,

power, CPU,

task’s size, user

preference

O(n) Device-self

(19) [51] Migration may result in

extra energy waste and

latency.

Minimize energy

consumption

Recursive

algorithm

Service D Energy

consumption

and execution

time

Oðn3Þ Central

The papers are sorted by the publication year, and the abbreviated columns represent the following: MS migration scenario, MO migration

objective, MA migration algorithm, MG migration granularity, DS dynamic or static, DF decision factors, AC algorithm complexity, MM

migration mode (central/distributed)

Pers Ubiquit Comput (2016) 20:295–309 305

123

optimal solutions may be not possible in real cloud sce-

narios. Instead, suboptimal solutions can be tried choosing

a part of decision factors like most of proposed solutions

do.

4.5 Migration granularity

In terms of migration granularities, a finer granularity level

for instance thread level or object and method level out-

sources computational load at a refined level, which

requires intensive monitoring and synchronization mecha-

nisms on mobile devices and cloud nodes at runtime [4, 5].

Furthermore, a finer granularity level has the issue of

ensuring consistency in distributed executions of mobile

applications. Higher level of granularities such as module

level [52] and entire application level [28] may be more

simple and have lighter overhead but may result in

increased data transmission and potentially have high

security threats.

• Thread level: a thread level partition and migration[4,

5].

• Method level: partitioning occurs at a method level and

intensive methods are migrated to remote servers [27].

• Object level: an entire object is migrated to a remote

environment [44, 45].

• Class level: objects of the same class are offloaded to

the same server [28].

• Module level: an entire module or bundle is migrated to

remote processing [52].

• Task level: a application is a collection of tasks and

some tasks are migrated [4, 5].

• Entire application: the whole application is offloaded to

remote servers [28, 44].

4.6 Migration motivationa and objectives

Application or task migration mechanisms aim at aug-

menting processing potentials of resources constrained

mobile devices in MCC and makes better executions for

user tasks. For doing this, diverse objectives are consid-

ered: saving energy [27, 53] and processing time [40, 48],

balancing migration incomes with overhead [46], and

maximizing utilization of system resources [41, 47]. They

are all for obtaining best execution performance and sat-

isfying user requirements under various scenarios.

5 Challenges of decision making for task
migration in MCC

Although there have been research efforts for task migra-

tion in MCC, it is still in early stage and there is not yet a

matured approach to making this really work efficiently

and effectively in a large scale deployment environment.

The main challenges are:

• Comprehensive context awareness should be achieved

in order to facilitate decision making for task migra-

tions. It is known that context awareness is particular

important when it comes to mobile devices [54].

Location, weather conditions, security, and other rele-

vant contexts should be managed besides battery,

power consumption, bandwidth, application data vol-

ume, and server workload. Currently, the existing

approaches on decision making for task migration

consider limited contexts such as power consumption

and bandwidth. However, this decision process can be

complicated considering weather conditions, trustwor-

Fig. 6 Decision factors considered for meaningful migrations

306 Pers Ubiquit Comput (2016) 20:295–309

123

thiness, security, and privacy of cloud nodes. This calls

for a dedicated context awareness framework which

supports task migrations.

• Deep context awareness for big data computing

environment is needed. Big data is arising from various

applications, and it is becoming more difficult to obtain

the so-called deep contexts for big data computing due

to complexities of big data [56]. Deep learning has been

receiving great popularity from both academics and

industries due to its excellent performance in many

practical problems [55], such as image and voice

recognition. Deep learning may be used to help achieve

deep level awareness of contexts which can be called

in-depth context awareness that can help to make better

decisions [56].

• Unified standards for interacting with both mobile

clients and cloud servers. Currently, every approach is

developing in-house closed framework for supporting

task migrations in a unique way which does not satisfy

interoperability. There arises the requirement for uni-

fying these work including framework, communication

protocol, and decision-making process. Unification

helps to adopt a standard way to promote MCC’s

industrialization and commercialization.

• Large-scale deployment and testing of task migrations

which can be globally optimized. This is to make sure

task migrations can consistently work in for example a

big smart city application. The current researches are

mainly tested in a small scale in laboratory. In view of

this situation, we need to have a larger scale of testing

for globally optimized task migrations, considering

possibly conflicting optimization parameters. This also

calls for more efforts for the research of light weight

but powerful decision mechanisms to achieve this.

• Adaptive and intelligent decision algorithms to make

more adaptive migration decisions. Current task migra-

tion solutions in mobile cloud computing use traditional

algorithms to make decisions as discussed in Sect. 3

which are limited in terms of efficiency and performance.

Task migration decisions may need to combine with the

latest development of artificial intelligence. Decision

making can also use interdisciplinary theories and

approaches such as auction or game theory in economic

theories to break through the limitation of existing

algorithms and obtain better migration performance.

• Distributed decision mechanisms are needed in order to

make migration more flexible and accurate. Currently,

the majority of work is using a centralized way to make

decisions, which may be a bottleneck when there are

emergent situations or a global decision is not possible.

Centralized decision making needs a powerful central

decision component to consider the whole system and

to communicate with all the machines and tasks. This

inevitably results in heavy network cost. Distributed

decision mechanisms allow tasks or machines to make

migration decisions according to their own situations.

Thus, it is more fine grained, flexible, and accurate.

Tasks and machines can get benefit from distributed

task migration decisions.

6 Conclusion

Mobile cloud computing is an important computing para-

digm today. A decade of efforts by many researchers have

developed core concepts, techniques, and mechanisms to

provide a solid foundation for progress in this area. Task

migration is the main approach in MCC which offloads

tasks in small nodes to other powerful cloud nodes. Cur-

rently, there are a number of approaches to decision

making for task migrations. In this paper, we present a

relatively comprehensive survey on these task migration

approaches and analyze their solutions to decision making.

They differ from each other in application migration

algorithms, granularities, decision-making factors, and

decision modes (centric overall decision or distributed

decision at a server level or task level). Even though we

can benefit from task migrations, there are still challenges

that need future efforts, which include in-deep context

awareness for big data environments, distributed migration

decision mechanisms and algorithms, unified stands for

interactions, and other issues.

Acknowledgments This research was supported by the Interna-

tional S&T Cooperation Program of China (ISTCP, 2013DFA10980).

References

1. Hung PP, Bui TA, Morales MAG et al (2014) Optimal collabo-

ration of thinthick clients and resource allocation in cloud com-

puting. Pers Ubiquitous Comput 18(3):563–572

2. Kristensen MD (2010) Empowering mobile devices through

cyber foraging. Ph. D. Dissertation, Aarhus University

3. Dinh HT, Lee C, Niyato D et al (2013) A survey of mobile cloud

computing: architecture, applications, and approaches. Wirel

Commun Mobile Comput 13(18):1587–1611

4. Dou A, Kalogeraki V, Gunopulos D et al (2010) Misco: a

mapreduce framework for mobile systems. In: Proceedings of the

3rd international conference on pervasive technologies related to

assistive environments. ACM, p 32

5. Chun BG, Ihm S, Maniatis P et al (2011) Clonecloud: elastic

execution between mobile device and cloud. In: Proceedings of

the sixth conference on computer systems. ACM, pp 301–314

6. Marinelli EE (2009) Hyrax: cloud computing on mobile devices

using MapReduce. Carnegie-Mellon University, Pittsburgh

school of computer science

7. March V, Gu Y, Leonardi E et al (2011) Cloud: towards a new

paradigm of rich mobile applications. Proc Comput Sci

5:618–624

Pers Ubiquit Comput (2016) 20:295–309 307

123

8. Lu Y, Li S, Shen H (2011) Virtualized screen: a third element for

cloud–mobile convergence. MultiMed IEEE 18(2):4–11

9. Lomotey RK, Deters R (2014) Using a cloud-centric middleware

to enable mobile hosting of Web services: mHealth use case. Pers

Ubiquitous Comput 18(5):1085–1098

10. Shiraz M, Gani A (2014) A lightweight active service migration

framework for computational offloading in mobile cloud com-

puting. J Supercomput 68(2):978–995

11. Kakadia D, Saripalli P, Varma V (2013) MECCA: mobile, effi-

cient cloud computing workload adoption framework using

scheduler customization and workload migration decisions. In:

Proceedings of the first international workshop on Mobile cloud

computing & networking. ACM, pp 41–46

12. Gu X, Nahrstedt K, Messer A et al (2004) Adaptive offloading for

pervasive computing. Pervasive Comput IEEE 3(3):66–73

13. Abolfazli S, Sanaei Z, Ahmed E et al (2014) Cloud-based aug-

mentation for mobile devices: motivation, taxonomies, and open

challenges. Commun Surv Tutor IEEE 16(1):337–368

14. http://www.mobilecloudcomputingforum.com

15. AEPONA (2010) Mobile cloud computing solution brief. White

Paper

16. Liu L, Moulic R, Shea D (2010) Cloud service portal for mobile

device management. In: 2010 IEEE 7th international conference

on e-Business engineering (ICEBE). IEEE, pp 474–478

17. Chun BG, Maniatis P (2009) Augmented smartphone applications

through clone cloud execution. HotOS 9:8–11

18. Kallonen T, Porras J (2006) Use of distributed resources in

mobile environment. In: International conference on software in

telecommunications and computer networks, 2006. SoftCOM

2006. IEEE, pp 281–285

19. Ververidis CN, Polyzos GC (2008) Service discovery for mobile

ad hoc networks: a survey of issues and techniques. Commun

Surv Tutor IEEE 10(3):30–45

20. Preuveneers D, Berbers Y (2005) Adaptive context management

using a component-based approach. In: Distributed applications

and interoperable systems. Springer, Berlin

21. Miraoui M, Tadj C, Fattahi J et al (2011) Dynamic context-aware

and limited resources-aware service adaptation for pervasive

computing. Adv Softw Eng 2011:7

22. Makris P, Skoutas DN, Skianis C (2013) A survey on context-

aware mobile and wireless networking: on networking and

computing environments’ integration. Commun Surv Tutor IEEE

15(1):362–386

23. Yuan B, Herbert J (2014) Context-aware hybrid reasoning

framework for pervasive healthcare. Pers Ubiquitous Comput

18(4):865–881

24. Kumar K, Liu J, Lu YH et al (2013) A survey of computation

offloading for mobile systems. Mobile Netw Appl 18(1):129–140

25. Balan RK, Satyanarayanan M, Park SY et al (2003) Tactics-based

remote execution for mobile computing. In: Proceedings of the

1st international conference on Mobile systems, applications and

services. ACM, pp 273–286

26. Frey S, Hasselbring W (2011) The cloudmig approach: model-

based migration of software systems to cloud-optimized appli-

cations. Int J Adv Softw 4(3 and 4):342–353

27. Cuervo E, Balasubramanian A, Cho D et al (2010) MAUI:

making smart phones last longer with code offload. In: Pro-

ceedings of the 8th international conference on Mobile systems,

applications, and services. ACM, pp 49–62

28. Satyanarayanan M, Bahl P, Caceres R et al (2009) The case for

vm-based cloudlets in mobile computing. Pervasive Comput

IEEE 8(4):14–23

29. Soyata T, Muraleedharan R, Funai C et al (2012) Cloud-vision:

real-time face recognition using a mobile-cloudlet-cloud accel-

eration architecture. In: 2012 IEEE symposium on computers and

communications (ISCC). IEEE, pp 59–66

30. https://en.wikipedia.org/wiki/Mobile_network_operator

31. AT&T cloud services. [Online]. http://www.business.att.com/

enterprise/Family/hosting-services/cloud/

32. Sanaei Z, Abolfazli S, Gani A et al (2012) SAMI: Service-based

arbitrated multi-tier infrastructure for Mobile Cloud Computing.

In: 2012 1st IEEE international conference on communications in

china workshops (ICCC). IEEE, pp 14–19

33. ZhaoB,XuZ,ChiC et al (2010)Mirroring smart phones for good: a

feasibility study. In: Mobile and ubiquitous systems: computing,

networking, and services. Springer, Heidelberg, pp 26–38

34. Black M, Edgar W (2009) Exploring mobile devices as Grid

resources: using an x86 virtual machine to run BOINC on an

iPhone. In: 2009 10th IEEE/ACM international conference on

grid computing. IEEE, pp 9–16

35. Huerta-Canepa G, Lee D (2010) A virtual cloud computing

provider for mobile devices. In: Proceedings of the 1st ACM

workshop on mobile cloud computing & services: social net-

works and beyond. ACM, p 6

36. Newton R, Toledo S, Girod L et al (2009) Wishbone: profile-

based partitioning for sensornet applications. NSDI 9:395–408

37. Piao JT, Yan J (2010) A network-aware virtual machine place-

ment and migration approach in cloud computing. In: 2010 9th

international conference on grid and cooperative computing

(GCC). IEEE, pp 87–92

38. Gorbenko A, Popov V (2012) Task-resource scheduling problem.

Int J Autom Comput 9(4):429–441

39. Lin X, Wang Y, Xie Q et al (2015) Task scheduling with dynamic

voltage and frequency scaling for energy minimization in the

mobile cloud computing environment. Services Comput IEEE

Trans 8(2):175–186

40. Wang C, Li Z (2004) Parametric analysis for adaptive compu-

tation offloading. In: ACM SIGPLAN notices, vol 39, no. 6.

ACM, pp 119–130

41. Ou S, Yang K, Liotta A (2006) An adaptive multi-constraint

partitioning algorithm for offloading in pervasive systems. In:

Fourth annual IEEE international conference on pervasive com-

puting and communications, PerCom 2006, vol 10. IEEE, p 125

42. Ward C, Aravamudan N, Bhattacharya K et al (2010) Workload

migration into clouds challenges, experiences, opportunities. In:

2010 IEEE 3rd international conference on cloud computing

(CLOUD). IEEE, pp 164–171

43. Buchbinder N, Jain N, Menache I (2011) Online job-migration

for reducing the electricity bill in the cloud. In: NETWORKING

2011. Springer, Berlin, pp 172–185

44. Ma RKK, Wang CL (2012) Lightweight application-level task

migration for mobile cloud computing. In: 2012 IEEE 26th

international conference on advanced information networking

and applications (AINA). IEEE, pp 550–557

45. Niu R, Song W, Liu Y (2013) An Energy-efficient multisite

offloading algorithm for mobile devices. Int J Distrib Sensor

Netw. 2013:9 doi:10.1155/2013/518518

46. Ksentini A, Taleb T, Chen M (2014) A Markov decision process-

based service migration procedure for follow me cloud. In: 2014

IEEE international conference on communications (ICC). IEEE,

pp 1350–1354

47. Zhang WS, Chen LC, Liu X et al (2014) An OSGi-based flexible

and adaptive pervasive cloud infrastructure. Sci China Inf Sci

57(3):1–11

48. Gkatzikis L, Koutsopoulos I (2014) Mobiles on cloud nine:

efficient task migration policies for cloud computing systems. In:

2014 IEEE 3rd international conference on cloud networking

(CloudNet). IEEE, pp 204–210

49. Qian H, Andresen D (2015) An energy-saving task scheduler for

mobile devices. In: 2015 IEEE/ACIS 14th international confer-

ence on computer and information science (ICIS). IEEE,

pp 423–430

308 Pers Ubiquit Comput (2016) 20:295–309

123

http://www.mobilecloudcomputingforum.com
https://en.wikipedia.org/wiki/Mobile_network_operator
http://www.business.att.com/enterprise/Family/hosting-services/cloud/
http://www.business.att.com/enterprise/Family/hosting-services/cloud/
http://dx.doi.org/10.1155/2013/518518

50. Chen X (2015) Decentralized computation offloading game for

mobile cloud computing. IEEE Trans Parallel Distrib Syst

26(4):974–983

51. Gai K, Qiu M, Zhao H et al (2016) Dynamic energy-aware

Cloudlet-based mobile cloud computing model for green com-

puting. J Netw Comput Appl 59:46–54

52. Chun BG, Maniatis P (2010) Dynamically partitioning applica-

tions between weak devices and clouds. In: Proceedings of the 1st

ACM workshop on mobile cloud computing & services: social

networks and beyond. ACM, 2010, p 7

53. Hung SH, Shih CS, Shieh JP et al (2012) Executing mobile

applications on the cloud: framework and issues. Comput Math

Appl 63(2):573–587

54. Grønli TM, Ghinea G, Younas M (2014) Context-aware and

automatic configuration of mobile devices in cloud-enabled

ubiquitous computing. Pers Ubiquitous Comput 18(4):883–894

55. Zhang K, Chen X (2014) Large-scale deep belief nets with

mapreduce. IEEE Access 2:395–403

56. Zhang Weishan, Duan Pengcheng, Li Zhongwei, Lu Qinghua,

Gong Wenjuan, Yang Su (2015) A deep awareness framework for

pervasive video cloud. IEEE Access 3:2227–2237

Pers Ubiquit Comput (2016) 20:295–309 309

123

	A survey on decision making for task migration in mobile cloud environments
	Abstract
	Introduction
	Overview of task migration in MCC
	Reasons and steps to do task migrations
	Task migration architectures of MCC

	Decision making for task migration
	Static task migration decision approaches
	Dynamic task migration decision approaches

	Comparisons of decision-making approaches
	Decision-making algorithms for task migration in MCC
	Static or dynamic task migration decisions
	Decision mode for task migrations
	Decision factors considered for meaningful migrations
	Migration granularity
	Migration motivationa and objectives

	Challenges of decision making for task migration in MCC
	Conclusion
	Acknowledgments
	References

