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Abstract Mobile augmented reality is an emerging

technique which allows users to use a mobile device’s

camera to capture real-world imagery and view real-world

physical objects and their associated cyber-information

overlaid on top of imagery of them. One key challenge for

mobile augmented reality is the fast and precisely local-

ization of a user in order to determine what is visible in

their camera view. Recent advances in Structure-from-

Motion (SfM) enable the creation of 3D point clouds of

physical objects from an unordered set of photographs

taken by commodity digital cameras. The generated 3D

point cloud can be used to identify the location and ori-

entation of the camera relative to the point cloud. While

this SfM-based approach provides complete pixel-accurate

camera pose estimation in 3D without relying on external

GPS or geomagnetic sensors, the preparation of initial 3D

point cloud typically takes from hours to a day, making it

difficult to use in mobile augmented reality applications.

Furthermore, creating 3D cyber-information and associat-

ing it with the 3D point cloud is also a challenge of using

SfM-based approach for mobile augmented reality. To

overcome these challenges in 3D point cloud creation and

cyber-physical content authoring, the paper presents a new

SfM framework that is optimized for mobile augmented

reality and rapidly generates a complete 3D point cloud of

a target scene up to 28 times faster than prior approaches.

Key improvements in the proposed SfM framework stem

from the use of (1) state-of-the-art binary feature descrip-

tors, (2) new filtering approach for accurate 3D modeling,

(3) optimized point cloud structure for augmented reality,

and (4) hardware/software parallelism. The paper also

provides a new image-based 3D content authoring method

designed specifically for the limited user interfaces of

mobile devices. The proposed content authoring method

generates 3D cyber-information from a single 2D image

and automatically associates it with the 3D point cloud.

Keywords Structure-from-Motion � Image-based

modeling � Mobile augmented reality

1 Introduction

Mobile augmented reality is a technique for overlaying

cyber-information, such as 3D CAD models of a building,

on top of real-world imagery captured with a mobile

device’s camera so that users can interpret their sur-

rounding contexts at any place. For example, mobile aug-

mented reality for construction can precisely overlay the

planned 3D model of a building on top of real-world

imagery of what is being constructed in order to check for

deviations in the field. Two key components of mobile

augmented reality are (1) localizing the user’s mobile
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camera in order to determine what should be visible in the

photograph and where and (2) authoring and associating

cyber-information with real-world 3D objects so that it can

be visualized with a mobile augmented reality system. The

key challenge is to deliver relevant cyber-information

precisely and quickly. In order to work regardless of users’

location and environment, it would be best for the local-

ization to be performed without pre-deployed external

infrastructure for location tracking.

Over the past decade, many research-related mobile

augmented realities (e.g., [4, 24, 39, 44, 45]) have focused

on techniques for accurate user localization, which is used

to determine the user’s current viewpoint and derive what

real-world physical objects are currently visible in the

scene and what cyber-information should be rendered over

the digital camera imagery. Prior localization approaches

have primarily used global positioning systems (GPS),

wireless local area networks (WLAN), or indoor GPS for

accurately positioning the user [10, 26, 27, 46]. The main

drawback of these radio frequency (RF)-based location

tracking technologies is their high degree of dependency on

pre-installed infrastructure, such as GPS satellites or

wireless sensors and susceptibility to noise in commodity

mobile device hardware [19], which makes them either

highly inaccurate or impractical to use in many cases.

Some research has focused on developing infrastructure-

independent location tracking systems [2, 36]. These sys-

tems are typically based on inertial measurements and

make use of highly accurate accelerometers and gyro-

scopes attached to users. However, these sensor-based

approaches suffer from accumulated drift errors, which

grow with the distance traveled by the users.

To remove the dependency on pre-installed infrastruc-

ture, inertial measurers, and/or geomagnetic sensors,

image-based localization has gained significant attention in

the computer vision community, as well as in the aug-

mented reality community [5, 14, 28, 43]. In addition,

recent advances in Structure-from-Motion (SfM) [40]

enable the creation of large-scale 3D point clouds from an

unordered set of images, which can be used to localize

mobile device camera imagery and provide extremely

accurate augmented reality systems [6–8]. Using a 3D

point cloud for user localization permits mobile augmented

reality systems to estimate the 3D position and 3D orien-

tation of the new photograph purely based on the image

captured by mobile device [18, 25, 31, 38], and therefore it

does not have any hardware constraints on mobile devices,

such as stereo cameras, GPS sensors, or highly accurate

motion tracking sensors.

However, most of the recent image-based localization

methods using 3D point clouds assume that those point

clouds are already available at the beginning of the local-

ization process. The 3D point cloud generation process,

also called as 3D reconstruction, is often separated from

the localization process and the 3D reconstruction is done

in an offline preparation step. Although there is a majority

of great works on visual SLAM (simultaneous localization

and mapping) technique [13, 28, 37, 42], which simulta-

neously constructs a sparse 3D map and localizes a device

using generated map, the visual SLAM mostly focuses on

small-scale environment, such as indoor office room, and

suffers from inconsistent loop closure problem when the

scale becomes larger, such as outdoor buildings on the

street. In addition, in the context of augmented reality, the

visual SLAM is difficult to associate arbitrary 3D cyber-

information with physical objects as the 3D coordinates of

the map are varying from the devices and their initial

location of calibration. As a consequence, the SLAM also

requires either an offline-learned 3D model or manual

association of 3D cyber-information whenever users start

SLAM with different devices.

To realize high-precision mobile augmented reality

system that supports multi-scale environment as well as

any kinds of commodity mobile devices with monocular

camera, we also target the offline SfM-based 3D point

cloud preparation for localization and cyber-information

association. Despite the scalability of recent approaches in

SfM [1, 15, 40], however, collecting image data and pro-

cessing them to prepare a 3D point cloud still takes con-

siderable amount of time. The Bundler [40], a widely used

SfM software package, takes from hours to a day to gen-

erate a 3D point cloud even with small numbers of images.

This time-consuming preparation of 3D point cloud pre-

vents using model-based localization in mobile augmented

reality, especially when users want to model a daily

changing scene such as construction site.

In order to easily and rapidly prepare 3D point clouds for

mobile augmented reality, a new parallelized 3D recon-

struction framework optimized for mobile augmented real-

ity is designed and verified in this paper. The proposed

framework, called HD4AR-SFM, makes use of (1) the

combination of different binary feature descriptors, (2) fil-

tering approach for reducing noise in the final point cloud,

(3) optimized point cloud structure with 3D point descriptor

for augmented reality, and (4) hardware/software paral-

lelism. The framework is based on our previous work,

Hybrid 4-Dimensional Augmented Reality (HD4AR) [6–8],

which utilizes 3D point clouds for fast and robust mobile

augmented reality. Specifically, this paper presents a com-

plete analysis of 3D reconstruction framework of HD4AR

and discusses 3D reconstruction for different use cases—

from small indoor objects to large buildings at outdoor. The

paper also discusses the impacts of binary descriptors used in

the proposed framework on the quality and performance of

3D reconstruction. The new contributions in this paper
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therefore include: (1) a new client–server architecture sup-

ported by cloud computing resources for 3D reconstruction

and content authoring, (2) algorithm details of each stage—

from feature extraction to incremental bundle adjustment—

in the proposed framework, and (3) analysis of the resulting

3D reconstruction, e.g., memory consumption, elapsed time,

mean re-projection error, and viewing direction comparison,

and (4) extensive experimentations on both indoor and

outdoor image data sets obtained by actual users.

Another important capability in mobile augmented

reality is being able to author and associate content with

the real-world physical objects around the user. Prior work

has assumed that this content is already available and

focused on approaches for fast and accurate user localiza-

tion with 3D point clouds. Creating and associating cyber-

information with physical objects on the fly, however, is

challenging due to the complexity of spatially associating

cyber-information with the geometry of arbitrary real-

world objects, such as engine parts, in a 3D space and using

a small 2D mobile device interface. Very little research has

examined 3D cyber-physical information association for

mobile augmented reality, which is critical in order to

create applications where users can create and share cyber-

information with each other through mobile augmented

reality interfaces. As described by Arth et al. [5], the

question of how to conveniently and accurately register

even simple 3D content using a mobile device and 2D

interface is still an open problem. To address this chal-

lenge, the paper provides a new image-based 3D content

authoring method designed specifically for mobile aug-

mented reality using 3D point clouds. This content

authoring technique not only provides a method for creat-

ing 3D cyber-information within the confines of limited 2D

mobile device user interfaces, but also provides automatic

association of user-driven cyber-information with physical

objects through the 3D point cloud generated from our

framework.

The remainder of this paper is organized as follows:

Sect. 2 discusses gaps in research related to mobile aug-

mented reality using 3D point clouds; Sect. 3 presents the

details of the proposed SfM framework; Sect. 4 discusses

single-image-based 3D content authoring using 3D point

clouds; Sects. 5 and 6 present empirical results from

experiments with the proposed approaches; and Sect. 7

presents lessons learned and concluding remarks.

2 Related work and gaps in research

Many augmented reality applications that make use of 3D

point clouds assume that target 3D point clouds and their

associated 3D cyber-information already exist. Therefore,

the 3D reconstruction is often done in an offline

preparation step. Corresponding 3D cyber-information,

such as 3D drawings of buildings, is then manually aligned

to the generated 3D point clouds and these fused 3D cyber-

physical models are used for augmented reality applica-

tions [16, 17]. Although many research projects have

shown that 3D point clouds can be used to precisely

overlay cyber-information on top of each photograph and

can be used even when visual obstructions are present, they

have not focused on: (1) the speed of point cloud creation;

(2) the preparation of the requisite 3D cyber-physical

models; or (3) the user interfaces of 3D cyber-information

creation/association. If we limit our scope to SfM-based 3D

reconstruction, i.e., generating a 3D point cloud from only

2D camera images without using any sensor information or

geometric information, the time taken for 3D reconstruc-

tion cannot be ignored even though this step is done in an

offline process [8].

2.1 Research gap 1: fast algorithmic pipelines

for point cloud creation

Computer vision researchers have proposed several meth-

ods, separately from augmented reality applications, to

accelerate the speed of SfM-based 3D reconstruction. First,

the Bundler package has been developed by Snavely et al.

[40]. Snavely et al. have created the first structured pipeline

for 3D point cloud modeling from an unordered set of

large-scale internet photo collections. However, the

Bundler still takes from several hours to a day to generate a

single 3D point cloud due to exhaustive computations in

pair-wise feature matching and nonlinear multi-dimen-

sional optimization processes on single-thread CPU. In

addition, it uses the SIFT (scale-invariant feature trans-

formation) descriptor [32] for feature extraction, which has

good invariance properties but requires multiple layers of

computation for each spatial scale, and thus is time-con-

suming. More recently, a cloud computing scheme has

been introduced to accelerate the entire SfM procedure [1].

A cloud computing has achieved a remarkable performance

gain on very large-scale 3D reconstruction by distributing

tasks over several hundreds of cores. However, using

several hundreds of cores is often not feasible and the

system is still based on CPU-based SIFT descriptor.

Another approach uses both GPU-based SIFT and an image

clustering scheme on a cloudless system [15]. The pro-

posed system, however, limits the number of feature points

per image due to memory bandwidth of the GPU and its

purpose is estimating the pose of base cameras to recover

the surface of the scene rather than creating an accurate 3D

point cloud for user localization or augmented reality.

Finally, Strecha et al. [41] have proposed a dynamic and

scalable 3D reconstruction method. The proposed method

uses image meta-data, such as geo-tags, to overcome the
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fragmentation and speed problems of 3D reconstruction.

However, using image meta-data is not appropriate for our

target applications which assume that given input images

are unordered and do not have any geo-tags.

2.2 Research gap 2: validation of the speed

and robustness of varying feature descriptors

for 3D reconstruction

One of the key components of SfM-based 3D reconstruc-

tion is to use image feature descriptors, e.g., SIFT, to for-

mulate the correspondence search problem as a descriptor

matching and triangulate 3D geometry of each correspon-

dence. By considering a fact that input images for 3D

reconstruction are unordered and typically taken at random

location, the feature descriptors used in SfM should pro-

vide consistent detection and description of image regard-

less of image rotation and scaling.

The most widely used image feature descriptors are

vector-based real-number descriptors, such as SIFT or

SURF (Speeded-Up Robust Features) [9]. In particular,

SIFT is used in many recent works on 3D reconstruction [1,

15, 40] and image-based localization [25, 29, 38, 43].

Although there are many variances of SIFT, such as GPU-

based or quantized SIFT, the significant memory require-

ments and time-consuming computation of multiple layers

typically make SIFT descriptor difficult to use in fast 3D

reconstruction or real-time location recognition. Therefore,

many attempts have been made to achieve faster or real-

time computation by replacing SIFT descriptor to other

vector-based descriptors such as SURF or DAISY

descriptors (e.g., [12, 31]).

On the other hand, some research projects have used

binary descriptor, which consists of a binary bit-string

rather than a vector of real-numbers, to reduce memory

consumption and computational complexity of image pro-

cessing in localization (e.g., [23]). The advantages of using

binary descriptors are that (1) it requires much less memory

than real-number descriptors and (2) it can use Hamming

distance for descriptor matching, which is faster than

Euclidian distance. However, binary descriptors are typi-

cally considered as a trade-off, providing less robustness

against image rotation or scaling. While some researches

have compared the robustness of binary descriptors against

2D image rotation and scaling, no research has argued the

impact of binary descriptors on 3D reconstruction and

compared different feature descriptors using a single uni-

fied SfM framework. Through the extensive experiments,

we realize that recently proposed binary descriptors, such

as BRISK (Binary Robust Invariant Scalable Keypoint)

[30] or FREAK (Fast REtinA Keypoint) [3], have a strong

potential for accurate 3D reconstruction. The details of

these descriptors are discussed in Sect. 3.

2.3 Research gap 3: mobile cyber-physical content

authoring for augmented reality applications

In terms of 3D content authoring for mobile augmented

reality, a number of methods have been presented based on

3D drawing tools and manual association [2, 11, 16, 20,

24]. All of these works used existing commercial 3D

drawing tools to create 3D cyber-information and manually

aligned cyber-information to real-world physical objects or

3D point clouds. The main problem with this approach is

that it requires specific 3D design frameworks (e.g., CAD)

and tools (e.g., mouse, pen, etc.), which are not available

on mobile devices. Furthermore, the 3D point clouds from

SfM approach are typically sparse and it is difficult to align

the 3D cyber-information to the target point clouds even

with manual processes [11, 16].

A specific aim of this paper was to overcome the

aforementioned challenges, speeding up overall time of 3D

reconstruction and providing new algorithmic methods for

creating and aligning 3D cyber-information against gen-

erated 3D point clouds. The details of each framework and

method are discussed in the remainder of this paper.

3 A new parallelized SfM framework for mobile
augmented reality

As described in Sects. 1 and 2, an initial 3D point cloud

must be created to serve as a reference model for the

model-based localization and/or mobile augmented reality.

Creating this 3D point cloud requires collection of an initial

set of base images of the target scene, and processing these

images using the SfM algorithm estimates the 3D positions

of 2D image feature points. To speed up 3D reconstruction

task, new types of feature descriptors are first investigated

to replace the time-consuming SIFT descriptor. As a con-

sequence, GPU-based SURF, CPU-based BRISK, and

CPU-based FREAK are comprehensively analyzed and

compared within the proposed framework. A new filtering

approach is also developed for accurate 3D reconstruction

and the structure of point cloud is optimized for further

application, such as mobile augmented reality and image-

based localization. In addition, an entire framework

exploits hardware/software parallelism including paral-

lelized nearest neighbor searching to scale the performance

of 3D reconstruction. The proposed SfM framework, called

HD4AR-SFM, follows some of the original algorithmic

steps in [40], but significantly alters others in order to

vastly accelerate the process and improve robustness and

accuracy. As aforementioned, the key modifications that

make the most substantial impact on performance are: (1)

the combination of different feature detectors and

descriptors to optimize the 3D reconstruction performance,
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(2) new filtering approach for reducing noise in the 3D

point clouds and improving localization accuracy, (3)

memory-efficient point cloud structure for mobile aug-

mented reality, and (4) a parallelized multicore CPU and

GPU hardware implementation for faster processing. Fig-

ure 1 illustrates the overview of the HD4AR-SFM, con-

sisting of four algorithmic stages. The details of each

algorithmic stage are further discussed in the following

subsections.

3.1 Feature Detector/Extractor stage

The first stage of the HD4AR-SFM is the Feature Detector/

Extractor process, which extracts image keypoints and

feature descriptors for each base image. Figure 2 shows the

overall structure of the Feature Detector/Extractor stage.

To find a set of image keypoints, a feature detection

algorithm is first run on each input image. CPU-based SIFT

and GPU-based SURF are implemented and used in the

Detector module. Both SIFT and SURF are invariant to

image scale and rotation and thus appropriate for 3D

reconstruction from unordered photographs. However,

SIFT and SURF algorithms use slightly different ways of

detecting feature points. SIFT builds a set of image pyra-

mids, filtering each layer with Difference of Gaussians

(DoG) [32]. On the other hand, SURF creates a stack

without downsampling for higher levels in the pyramid and

it filters the stack using a box filter approximation of sec-

ond-order Gaussian partial derivatives to speed up the

processing time [9].

Next, the Extractor module extracts feature descriptors

at the detected image keypoints. These extracted feature

descriptors will be used as the basis for pair-wise image

matching. CPU-based SIFT, GPU-based SURF, CPU-

based FREAK, and CPU-based BRISK are implemented

and used in this module. In contrast to SIFT and SURF,

FREAK uses retinal sampling patterns to compare image

intensities and produces a cascade of binary strings [3].

BRISK also assembles a bit-string descriptor from intensity

comparisons retrieved by dedicated sampling of each

keypoint neighborhood [30]. These resulting binary

descriptors consume much less disk space compared to

vector-based real-number descriptors, such as SIFT and

SURF, and use Hamming distance instead of Euclidian

distance for descriptor matching. After extracting feature

descriptors, the pixel color information of detected key-

points is read by the Color Reader module. This informa-

tion will be used later to assign colors to 3D points for

visualization purpose. Then, all outputs are stored as binary

files for faster input/output (I/O) tasks.

To investigate how feature detector and feature

descriptor affect the performance and quality of 3D

reconstruction, we have tested four different detector–de-

scriptor combinations in our experiments, i.e., SIFT-SIFT,

SURF-SURF, SURF-FREAK, and SURF-BRISK. To

simplify the name of these combinations, we refer to them

as SIFT, SURF, FREAK, and BRISK, respectively. Fig-

ure 3 shows invariant properties of each combination

against 2D image rotation and scaling. From this simple

test result, we can infer that all these combinations will

work well for 3D reconstruction. The detailed experimental

results of 3D reconstruction are presented and fully dis-

cussed in Sects. 5 and 6.

3.2 Robust matcher stage

The next step is finding correspondences between all image

pairs (i.e., pair-wise matching) using extracted feature

descriptors. For binary feature descriptors (FREAK and

BRISK), the FANN Matcher module first creates hierar-

chical clustering trees of each image descriptors and runs

the Fast Approximate Nearest Neighbors (FANN) search-

ing algorithm [34] to rapidly find the two nearest neighbors

of each descriptor in the image. For vector-based real-

number descriptors (SIFT and SURF), it runs randomized

k-d tree searching algorithm with four parallel trees to

Fig. 1 A new parallelized SfM

framework for mobile

augmented reality
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improve the search speed [33]. With all recovered nearest

neighbor results, the FANN Matcher module then performs

a distance ratio-test [32] with threshold 0.5 to remove

suspicious matches. In addition, if more than one feature

descriptor matches the same feature in the opposite image,

it removes all of the matches for that pair.

After the distance ratio-test, the F-matrix module

robustly estimates a fundamental matrix and further

removes outlier for every image pair using the RANSAC

(RANdom SAmple Consensus) algorithm with the eight-

point algorithm [22]. This filtering process removes false

matches using an epipolar geometry constraint given by the

estimated fundamental matrix. In other words, the maxi-

mum allowed distance from a keypoint to an epipolar line

is rF pixels, beyond which the point is considered as an

outlier. This outlier constraint can be expressed as:

jjxTi Fijxjjj � rF ¼ maxðwi; hi;wj; hjÞ � 0:006 ð1Þ

where xi ¼ ½ui; vi; 1�T and xj ¼ ½uj; vj; 1�T are homogenous

coordinates of the matched keypoints in image i and j,

respectively, Fij is the estimated fundamental matrix from

RANSAC iteration, and ðwi; hiÞ and ðwj; hjÞ are the

dimension of image i and j, respectively.

Upon receiving the inliers from the F-matrix module,

the H-matrix module finds a homography matrix using the

RANSAC with normalized Direct Linear Transform [22]

for every image pair. The outlier constraint is in the form

of

jjxTi �Hijxjjj � rH ¼ maxðwi; hi;wj; hjÞ � 0:004 ð2Þ

where xi ¼ ½ui; vi; 1�T and xj ¼ ½uj; vj; 1�T are homogenous

coordinates of the inliers after fitting to fundamental

matrix, and Hij is the estimated homography matrix from

RANSAC iteration, and ðwi; hiÞ and ðwj; hjÞ are the

dimension of image i and j, respectively. Then, the per-

centage of number of inliers with homography matrix, H-

score, is calculated and recorded. The H-score will be used

in Structure-from-Motion stage and image-based content

authoring method to select the proper image sets.

Since the pair-wise matching is the most performance

bottleneck in 3D reconstruction, each image pair is pro-

cessed on different threads with lock-free parallelization, in

addition to FANN searching, to shorten the overall pro-

cessing time. Figure 4 shows the overall structure of the

Robust Matcher stage. Due to FANN matching and multi-

threading of the tasks, the performance of pair-wise

Fig. 2 Overall structure of

Feature Detector/Extractor

stage

Fig. 3 Descriptor invariance

test on real-world imagery.

a Rotation invariance test,

b scaling invariance test
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matching is significantly improved compared to existing

SfM package, e.g., the Bundler.

3.3 Track Creator/Feature Compactor stage

The Track Creator/Feature Compactor stage first creates

tracks from matching results, where a track is a connected

set of matching keypoints across multiple images. Figure 5

illustrates the overall procedures of this stage. Through

extensive experiments, we found that some false matches

can still survive in matching stage even after robust tests,

such as distance ratio-test and fitting to the fundamental

matrix, were performed. This situation is likely to happen

when the target scene has repeated patterns such as mul-

tiple similar windows in the building. If these surviving

false matches are organized into tracks, the SfM procedure

may generate a very noisy 3D point cloud.

Therefore, we have designed and included a track ratio-

test in this stage to remove false matches from each track

by comparing all the matching distances of the keypoints

inside the track. If one of the matching keypoints con-

nected to a track has very high distance than others, that

keypoint is erased from the track. In other words, the

Cleaner module removes a keypoint from the track if

dm=dk\rTR ð3Þ

where dm is the minimum matching distance among all

keypoints in the track and dk is the matching distance of

each keypoint in the track. We call this procedure as a track

ratio-test and the rTR is typically set to 0.3. In addition to a

track ratio-test that removes the inconsistent keypoints for

each track, the Cleaner module also removes inconsistent

tracks by observing the length of each track. If the length of

a track is less than rTL, which means that the track is seen

by only rTL � 1 cameras, the track will not be considered

in 3D reconstruction. The rTL can be set to 3–4 for very

accurate 3D modeling if the input photographs were taken

with specific purpose and have numerous overlapping

images of target scene. However, the rTL is typically set to

2 since we target an unordered set of photographs taken at

random locations.

Finally, the Feature Compactor module extracts and

merges the feature descriptors of keypoints that are

remaining in the set of consistent tracks. This process

significantly reduces the disk space consumption as well as

the speed of I/O task in the next stage.

3.4 Structure-from-Motion (SfM)/Model

Compactor stage

The final stage of the HD4AR-SFM is the Structure-from-

Motion (SfM)/Model Compactor stage that estimates a set

of camera parameters, such as focal length, rotation matrix,

and translation vector, for each image and a 3D location for

each track. Similar to the Bundler, the component uses an

incremental approach, i.e., recovering a few cameras at a

time. Once the 3D point cloud is reconstructed, the com-

ponent also extracts and imposes a representative feature

descriptor for each 3D point, making 3D point clouds ready

for direct 2D-to-3D matching used in image-based local-

ization. Figure 6 shows overall structure of the stage and

Fig. 7 shows an example of 3D point clouds generated by

our framework using real-world construction element and

static building photos.

The SfM stage first starts with initial image pair to

recover camera parameters using Nistér’s five-point algo-

rithm [35] and triangulates their feature points using poly-

nomial method [21]. As discussed in [40], this initial pair

should have a large number of matched feature points, but

also have a long separation distance between the cameras to

Fig. 4 Overall structure of

Robust Matcher stage
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Fig. 5 Overall structure of

Track Creator/Feature

Compactor stage

Fig. 6 Overall structure of SfM/

Model Compactor stage

Fig. 7 Example of 3D point

clouds from the proposed

framework. Resulting 3D point

clouds well represent the target

construction element and

building. a Initial input images,

b 3D point clouds from the

proposed framework

1282 Pers Ubiquit Comput (2015) 19:1275–1294

123



avoid getting stuck in a local minima during the optimiza-

tion process. To fulfill this requirement, the component

selects an initial image pair which has the lowest H-Score

among all possible pairs of images. However, our experi-

ments have shown that the H-score should be greater than

0.25 and the number of matches between selected pairs

should be greater than 200 to generate the most accurate 3D

point cloud. Therefore, these conditions are also taken into

account the initial image pair selection. After calibrating the

camera parameters and triangulating feature points of initial

image pair, bundle adjustment optimization is run to mini-

mize the overall mean re-projection error, i.e., the differ-

ence between predicted 2D positions of the feature points in

the photographs given their triangulated 3D positions and

the locations of where the feature points are actually

extracted in the images. To significantly enhance the speed

of this optimization, we adopt GPU-based parallel bundle

adjustment approach [47].

Then, the SfM algorithm goes through iterations to

calibrate camera parameters of each additional input image

using the already triangulated 3D points and matching

information between the images. This calibration is done

using PnP (Perspective-n-Point) camera estimation method

with RANSAC and Levenberg–Marquardt optimization

[22]. If the component successfully recovers camera

parameters of an additional base image, it registers the new

camera and runs local bundle adjustment, i.e., optimizing

only the newly added cameras. This camera registration

fails in the event that an additional input image does not

have any matched feature points against the previously

registered images. After local bundle adjustment, the

component triangulates the 3D points seen by the newly

registered cameras and pre-filters 3D points which have

high re-projection error. Through extensive experiments,

we realized that this pre-filtering step is vital for accurate

3D modeling. Very little number of high-error 3D points

can destroy an entire shape of 3D point cloud even with the

bundle adjustment which tries to minimize overall mean re-

projection error. The outlier threshold for this pre-filtering

based on re-projection error is set to the same value used in

the F-matrix module of the Robust Matcher stage.

Finally, global bundle adjustment is run to optimize

entire 3D points currently retrieved and all parameters of

currently registered cameras. During this optimization,

however, it is possible that some 3D points have a high re-

projection error while other 3D points have a very small re-

projection error, resulting in a small mean re-projection

error. The ultimate purpose of the HD4AR-SFM is user

localization and/or mobile augmented reality, not the visual

representation of target scene, and it is very important to

reduce such noise in the 3D point cloud by removing 3D

points with a high re-projection error. To achieve this, the

SfM algorithm in the HD4AR-SFM uses a double-threshold

scheme for the post-filtering stage. The first threshold is for

controlling the target mean squared error (MSE) of bundle

adjustment. This threshold value is set to be 0.25 pixel2 so

that the target average re-projection error of entire 3D point

cloud is equal to 0.5 pixels. Another threshold, which

called an absolute re-projection threshold, is for removing

individual 3D points from a 3D point cloud. This threshold

is adaptively calculated based on the current distribution of

re-projection errors of each base image. Nevertheless, the

maximum value of this threshold is set to be 4.0 pixels so

that no 3D points in the final 3D point cloud have a re-

projection error greater than 4.0 pixels. After post-filtering

stage, if the registered camera has number of visible 3D

points less than 16, that camera is removed from 3D

reconstruction as it will not provide an accurate estimation

of camera parameters due to small number of points. The

entire SfM procedure including global bundle adjustment

and post-filtering is iteratively executed until there are no

more cameras to register. Due to the algorithmic

enhancements and parallelization, the HD4AR-SFM is up

to 30 times faster than the Bundler package. In Sects. 5

and 6, experimental results of this new SfM algorithm are

discussed in detail.

Once the 3D points and camera parameters of input

images are successfully recovered, the Model Compactor

module finally collects image feature descriptors for all

triangulated tracks and creates a representative descriptor

for each 3D point to enable direct 2D-to-3D matching. As

described in [8, 38], a direct 2D-to-3D matching method

has a considerable potential for fast and accurate user

localization. We propose to use minimum-distance criteria,

rather than averaging image descriptors proposed by Sattler

et al. [38], as the framework should be able to handle

binary descriptors, such as FREAK or BRISK. This pro-

cedure can be summarized as follows: for each 3D point Xn

in the 3D point cloud,

1. Find a list of base images ðI1; . . .; IkÞ and their

corresponding 2D image points ðx1; . . .; xkÞ that par-

ticipated in triangulation of the 3D point during the 3D

reconstruction.

2. Collect image feature descriptors ðd1; . . .; dkÞ at dis-

covered 2D image points ðx1; . . .; xkÞ, where each

descriptor is typically a 64-dimensional (SURF,

FREAK, BRISK) or 128-dimensional (SIFT, SURF)

vector.

3. For each feature descriptor ðd1; . . .; dkÞ, sum Hamming

(BRISK, FREAK) or Euclidean (SIFT, SURRF) dis-

tances to all other descriptors in the set.

4. Select the descriptor, which has the minimum summa-

tion value, as a representative descriptor of the 3D point.
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Due to this representative descriptors approach, the local-

ization time will depend on the number of 3D points in the

point cloud, not on the number of input images used in 3D

reconstruction. In addition, this approach does not only

create representative descriptors of 3D points, but also

provides higher probability of finding 2D-to-3D corre-

spondences as it selects the descriptor, which has the

minimum distance across all input images, as a represen-

tative descriptor for each 3D point.

4 3D cyber-physical content authoring
from a single 2D image

To realize the augmented reality system with 3D point

cloud, all deliverable cyber-information should have 3D

positional information and be associated with given point

cloud. The most straightforward method for this 3D content

authoring is preparing a 3D drawing of target object or

building and manually aligning it to given point cloud [17],

as shown in Fig. 8. Although this approach can deliver a

plenty of information to end users, it always requires

manual association and a 3D drawing generated with

specific 3D design frameworks, such as Computer-Aided

Design (CAD) tools.

Therefore, a new approach, which can create 3D cyber-

information and associate them with the point cloud using a

single 2D image, is proposed in this paper. With this

approach, a user can easily create and associate new 3D

cyber-information by simply drawing a polygon on the

photograph, and thus can work with commodity smart-

phones which typically have 2D user interfaces. This 3D

content authoring method is based on plane image trans-

formation, i.e., homography matrix. By its definition, the

homography is an invertible transformation in a projective

space that maps an image plane to another image’s plane.

For example, each pixel in image plane 1 can be trans-

formed to another image plane 2 via homography matrix,

as shown in Fig. 9:

s

x2

y2

1

2
64

3
75 ¼ H12

x1

y1

1

2
64

3
75 ð4Þ

where H12 is an estimated homography matrix between

image 1 and 2, ðx1; y1Þ is a pixel coordinates in image plane

1, and ðx2; y2Þ is a transformed pixel coordinates of ðx1; y1Þ
in the image plane 2.

Since the 3D reconstruction framework discussed in

Sect. 4 keeps all estimated homography matrices between

base images, we utilize these matrices to find correspon-

dences of a user-created 2D element on each base image.

For example, windows drawn by the user can be correctly

found on other base images using homography matrices, as

illustrated in Fig. 10a, b. To increase the accuracy of cor-

respondences, we only investigate base images in which H-

Score is greater than 0.85. Using this correspondence

information as well as intrinsic and extrinsic camera

parameters recovered during 3D reconstruction, our

Fig. 8 Example of 3D cyber-

physical model. a 3D point

cloud of construction site, b 3D

building plan model aligned

with the point cloud (adopted

from [17])

Fig. 9 Example of homography transformation. Image 1 is trans-

formed to image plane 2
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method then triangulates each vertex of the user-created

polygon to impose 3D positional information to user-cre-

ated 2D element. After fixing camera parameters and

running bundle adjustment to minimize a re-projection

error of the triangulated polygon, the resulting 3D element

is well aligned with the existing 3D point cloud as shown in

Fig. 10c. Once this user-created element has 3D positional

information, it can be precisely overlaid on other pho-

tographs from different viewpoints using model-based

localization, as shown in Fig. 10d.

This simple and robust 3D cyber-physical content

authoring method can help users create 3D cyber-contents

easily by drawing a simple polygon on a single 2D image.

In addition, the approach automatically associates user-

driven cyber-information with the 3D point cloud and

therefore users do not have to manually position and

associate 3D cyber-information in 3D geometry. Therefore,

this approach can be used in any commodity smartphones

which typically have a capability of showing an image on

their displays and tracking user’s touch points to draw the

polygon. Figure 11 shows an example of 3D cyber-physi-

cal models, i.e., 3D cyber-contents with point cloud, gen-

erated from the proposed method.

5 Experimental results

This section presents experimental results of the proposed

3D reconstruction framework, i.e., HD4AR-SFM, and 3D

cyber-physical content authoring approaches. The details

of the data set specifications and validation metrics are

discussed in the following subsections.

5.1 3D reconstruction

In order to assess the improvements provided by

HD4AR-SFM for point cloud creation, the proposed SfM

framework was compared against the Bundler package, the

most widely used SfM package using incremental

approach. Specifically, the speed, accuracy, and memory

consumption of the Bundler package were measured and

compared against HD4AR-SFM to demonstrate the per-

formance gains resulting from track compression, double-

threshold filtering, parallelized matching, etc. In addition,

in order to fill the key research gap in Sect. 2.2, we tested

the four feature detector–descriptor combinations described

in Sect. 3, i.e., SIFT, SURF, FREAK, and BRISK, to

investigate the impact of feature descriptors on the per-

formance of 3D reconstruction for mobile augmented

reality.

The 3D reconstruction experiments were conducted on a

single Amazon EC2 instance with 22.5 GB memory and

two Intel Xeon X5570 processors running Ubuntu version

12.04. An NVIDIA Tesla M2050 graphic card was used for

GPU computations. The image data sets used to create the

3D point clouds can be categorized as: (1) outdoor: existing

buildings on the street and (2) indoor: car interior, kitchen,

etc. Table 1 shows the summary of data sets that were used

for our experimentation. These data sets were obtained

from real-world mobile augmented reality photo sets pro-

vided by PAR Works Inc. An entire 3D reconstruction

procedure of the HD4AR-SFM was run on each data set to

produce the 3D point clouds. To compare the generated 3D

point clouds against those from the Bundler, the following

metrics were measured:

Fig. 10 Example of 3D cyber-

physical content authoring. a A

user marks windows on the

photograph, b using the

estimated homographies, the

system automatically finds

correspondences of windows for

each base image, c the system

triangulates window elements

using camera information of

base images (which is recovered

during the 3D reconstruction),

d mobile augmented reality:

user-created window contents

can be precisely overlaid on

other photographs from

different viewpoint
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1. Number of registered images how many pre-collected

photographs were calibrated. This metric measures the

completeness of the 3D reconstruction process. Higher

numbers of calibrated cameras will increase the

reliability of the positional information of 3D points

triangulated during the 3D reconstruction.

2. Number of 3D points how many 3D points were

successfully triangulated. Larger numbers of 3D points

increase the probability of direct 2D-to-3D matching

and 3D localization success for mobile augmented

reality.

3. Mean re-projection error overall mean re-projection

error is computed by projecting each 3D point into

each calibrated camera of the base images in order to

measure the positional error of generated 3D point

clouds. This metric measures the robustness and

accuracy of a 3D point cloud and affects the accuracy

of 3D localization for mobile augmented reality.

4. Point cloud size how much disk space is consumed by

a single 3D point cloud. To directly use a point cloud

on a mobile device, memory consumption is a key

concern.

5. Elapsed time how long does it take to generate a single

3D point cloud. A specific aim of our framework was

reducing this time in order to rapidly enable mobile

augmented reality using 3D point cloud models.

Tables 2, 3, and 4 compare the overall results of 3D

reconstruction on the indoor data sets. Although there are

many factors that influenced the performance, such as the

number of base images, the image sizes, and the texture of

the target scenes, the HD4AR-SFM is 661–1558 % faster

than the Bundler in all indoor data sets we study.

Regardless of used feature descriptors, the HD4AR-SFM

generated all 3D point clouds for indoor data sets within

3 min, while the Bundler took up to 25 min. For ‘‘dash-

board’’ and ‘‘ikea’’ data sets, HD4AR-SFM with the SIFT

combination achieved the fastest point cloud creation and

the SURF combination was the fastest one for ‘‘kitchen’’

data set. However, the SIFT combination (also used in the

Fig. 11 Example of generated

3D cyber-physical models using

the proposed method, a user-

input on 2D image,

b backprojected 3D cyber-

information. It is well aligned to

the 3D point clouds

Table 1 Data set specification

for 3D reconstruction
Environment Name Number of images Image resolution Camera model

Indoor Dashboard 27 2592 � 1944 Samsung Galaxy Nexus

Ikea 44 3265 � 2448 Apple iPhone 4S

Kitchen 47 2048 � 1536 Samsung Galaxy Nexus

Knu 50 2592 � 1458 Samsung Galaxy Nexus

Outdoor Patton 40 2592 � 1944 Samsung Galaxy Nexus

Rh 155 2144 � 1424 Nikon D300
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Bundler) produced the less number of 3D points for indoor

data sets.

Next, HD4AR-SFM significantly reduces the memory

consumption of 3D point clouds as it only records the

representative descriptors of each 3D point, while the

Bundler stores all feature descriptors from the entire set of

base images. In addition, the Bundler only uses the SIFT

descriptor, which is 128-dimensional real-number vector,

so it consumes a lot of disk space to store information

related to 3D point clouds for localization (called regis-

tration in the Bundler) and mobile augmented reality.

Memory consumption is important when multiple mobile

clients perform online localization simultaneously with

different 3D physical models. Large file sizes prevent from

pre-loading multiple point clouds into memory and reduce

server-side localization speed due to increased disk I/O and

memory swapping. Large file sizes prevent from mobile

clients from pre-loading multiple point clouds into memory

and reduce server-side localization speed due to increased

disk I/O. In our experience, file I/O for reading 3D point

could for localization takes about 6 s when the 3D point

cloud size excesses 300 MB, and it is about 70 % of the

entire model-based localization process if the server does

not cache the point cloud in the memory.

Finally, the mean re-projection errors show that the

HD4AR-SFM generates more accurate 3D point clouds for

the indoor data sets. The HD4AR-SFM achieved mean re-

projection errors less than 1.3 pixels for all cases, while the

Bundler resulted up to 2.3 pixels of error. The mean re-

projection error represents how accurate the resulting 3D

point cloud and the calibrated camera parameters are, as

the re-projection error is calculated by projecting each 3D

Table 2 Performance

comparison of 3D

reconstruction for ‘‘dashboard’’

data set

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Number of registered images 27/27 27/27 27/27 27/27 27/27

Number of 3D points 5210 5806 9179 7962 5962

Mean re-projection error (pixels) 0.881 0.677 0.967 0.767 0.755

Point cloud size (MB) 34.64 12.10 8.83 2.80 2.17

(memory gain) (1�) (2.86�) (3.92�) (12.37�) (15.96�)

Elapsed time (s) 736 93.031 111.330 104.675 60.373

(performance gain) (1�) (7.911�) (6.611�) (7.031�) (12.191�)

Table 3 Performance

comparison of 3D

reconstruction for ‘‘ikea’’ data

set

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Number of registered images 34/44 43/44 39/44 40/44 36/44

Number of 3D points 3013 7375 6350 14,868 9043

Mean re-projection error (pixels) 2.308 0.781 1.284 0.788 0.790

Point cloud size (MB) 24.69 16.30 5.98 5.35 3.37

(memory gain) (1�) (1.52�) (4.13�) (4.62�) (7.33�)

Elapsed time (s) 1533 98.420 145.863 167.802 126.222

(performance gain) (1�) (15.576�) (10.510�) (9.136�) (12.145�)

Table 4 Performance

comparison of 3D

reconstruction for ‘‘kitchen’’

data set

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Number of registered images 47/47 47/47 47/47 47/47 46/47

Number of 3D points 9091 8159 11,441 8852 7517

Mean re-projection error (pixels) 1.047 0.855 1.020 0.890 0.893

Point cloud size (MB) 27.02 19.00 12.20 3.50 3.22

(memory gain) (1�) (1.42�) (2.22�) (7.72�) (8.39�)

Elapsed time (s) 922 59.522 57.249 68.164 76.288

(performance gain) (1�) (15.490�) (16.105�) (13.526�) (12.086�)
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point into each calibrated camera of the base images and

computing the distance to the position of original image

feature point. The results illustrate that the generated 3D

point clouds with HD4AR-SFM have only 1-pixel mean re-

projection error and well represent the target scenes.

Therefore, we can conclude that the generated 3D point

clouds can be indeed used for accurate model-based image

localization and the mobile augmented reality applications

targeting 3D localization. Figure 12 shows the generated

3D point clouds from all data sets using BRISK

combination.

Tables 5, 6, and 7 compare the overall results on out-

door data set and Fig. 13 shows the generated 3D point

clouds using BRISK combination. Again, the

HD4AR-SFM outperformed the Bundler and is 304–

2875 % faster for outdoor data sets. In addition, the

HD4AR-SFM achieved the memory gain up to 2759 % and

all generated 3D point clouds have mean re-projection

error smaller than 0.703 pixels. While binary descriptors,

i.e., FREAK and BRISK, achieved a huge gain on both

reconstruction speed and memory consumption on the

outdoor data sets, they produced little less dense 3D point

clouds. The outdoor images typically have a plenty of

textures, and therefore, the invariance properties of feature

descriptors shown in Fig. 3 affect the number of true

matches between photographs taken at random location

and orientation. A key question is whether or not the

reduction in point cloud density impacts mobile client

localization. Based on visual analysis of the point clouds,

we believe that the reduced density of the 3D point clouds

would not affect model-based 6-DOF localization since all

3D point clouds well represent the target scene, as shown in

Fig. 13. Rather, the smaller number of 3D points acceler-

ates the direct 2D-to-3D matching by focusing on the most

significant feature points and therefore improves localiza-

tion speed.

In order to present the accuracy of camera calibration,

we also compared the recovered camera parameters of the

‘‘patton’’ 3D point cloud to the reference camera positions

which were manually measured. The reference positions

and orientations were derived by manually selecting 2D-to-

3D correspondences and computing the rotational matrix

and translation vector from those correspondences.

Although this approach does not represent the ground truth

comparison, it is useful to demonstrate the accuracy of 3D

reconstruction and calibrated camera parameters. Further-

more, we aligned camera center positions of the 3D point

cloud to the geotags of photographs using RANSAC

algorithm to derive real-world distance. Table 8 summa-

rizes results of the comparison, including viewing direction

and distances of corresponding cameras. For the camera

orientation, the mean angle difference of viewing direction

is within 0.45� and the SIFT combination produced the best

estimates of viewing direction. For the camera position, it

is important to note that the geo-information was measured

by noisy GPS sensor installed in Galaxy Nexus smart-

phone, and therefore the translational difference in meter is

not highly credential. Nevertheless, HD4AR-SFM cali-

brates the camera position within 1 meter, except the

BRISK combination. Compared to the Bundler, we can

Fig. 12 3D reconstruction

results with BRISK

combination (SURF-BRISK).

a Initial input images (indoor),

b 3D point clouds from the

proposed framework, c 3D point

clouds with estimated camera

positions of input images
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conclude that HD4AR-SFM is also accurately calibrated

cameras during the 3D reconstruction, in terms of viewing

direction and position, even with significant performance

and memory gains.

5.2 3D cyber-physical content authoring

from a single 2D image

As described in Sect. 4, we developed a plane transfor-

mation-based 3D cyber-physical content authoring method

using a single 2D image. Since it is impractical to measure

the ground truth position of every objects on the 3D point

cloud, which often consists of sparse 3D points, we focused

on demonstrating the capability of generating 3D cyber-

information from 2D interface using commodity smart-

phones and empirically made a decision whether cyber-

information is accurately associated with physical objects

or not. In addition to visual analysis, however, we also

measured the mean re-projection error of triangulated 3D

driven element with base images that were participated in

back-projection. The experimentation for 3D cyber-physi-

cal content authoring is performed in following procedure:

(1) let users draw polygons on interesting objects on the

single image with smartphones, (2) perform the proposed

content authoring method and visualize generated 3D

cyber-information with 3D point cloud to see the accuracy

of 3D cyber-information triangulation and back-projection,

and (3) test localization/augmentation on different location

and viewpoint to verify that created cyber-contents are

indeed well associated in 3D geometry. The test tool for

augmentation was based on our previous work on HD4AR

[6–8].

Table 5 Performance

comparison of 3D

reconstruction for ‘‘knu’’ data

set

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Number of registered images 50/50 49/50 50/50 49/50 49/50

Number of 3D points 37,356 51,730 40,858 32,827 33,122

Mean re-projection error (pixels) 0.681 0.504 0.673 0.595 0.552

Point cloud size (MB) 223.16 104.00 41.38 12.02 11.97

(memory gain) (1�) (2.15�) (5.39�) (18.57�) (18.64�)

Elapsed time (s) 4424 469.687 314.944 321.040 378.303

(performance gain) (1�) (9.419�) (14.047�) (13.78�) (11.694�)

Table 6 Performance

comparison of 3D

reconstruction for ‘‘patton’’ data

set

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Number of registered images 40/40 40/40 40/40 40/40 40/40

Number of 3D points 129,693 147,798 72,000 47,163 46,318

Mean re-projection error (pixels) 0.661 0.578 0.596 0.502 0.498

Point cloud size (MB) 446.90 331.00 72.80 16.30 16.20

(memory gain) (1�) (1.35�) (6.14�) (27.42�) (27.59�)

Elapsed time (s) 8571 2824.424 923.932 300.358 298.095

(performance gain) (1�) (3.035�) (9.277�) (28.536�) (28.753�)

Table 7 Performance

comparison of 3D

reconstruction for ‘‘rh’’ data set

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Number of registered images 155/155 155/155 155/155 149/155 151/155

Number of 3D points 59,533 27,247 36,854 31,738 41,097

Mean re-projection error (pixels) 0.818 0.603 0.703 0.567 0.600

Point cloud size (MB) 247.08 60.00 38.80 14.20 18.10

(memory gain) (1�) (4.12�) (6.37�) (17.40�) (13.65�)

Elapsed time (s) 16,070 980.450 2474.513 1329.698 1371.612

(performance gain) (1�) (�16.390) (6.494�) (12.085�) (11.716�)

Pers Ubiquit Comput (2015) 19:1275–1294 1289

123



Table 9 and Figs. 14 and 15 show the results of 3D

cyber-physical content authoring with the proposed

method. When selecting the base image to find corre-

spondence using homographies, we only use the images in

which H-Score is greater than 0.85. In all cases, the pro-

posed method successfully generated 3D contents from

user inputs on a single 2D image. For example, a user drew

several polygons on the dashboard buttons for ‘‘dashboard’’

image and the proposed method precisely triangulated and

associated them with corresponding objects in the ‘‘dash-

board’’ 3D point cloud, as shown in Fig. 14. Similarly,

user-driven windows on patton (outdoor) image were

successfully associated with windows in the patton 3D

point cloud, as shown in Fig. 15. Once these user-driven

elements were successfully attached and aligned to 3D

point clouds, users can see this cyber-information precisely

overlaid on the photograph taken from different locations

(see Figs. 14c, 15c). Based on experimental results, we can

conclude that the proposed method purely creates 3D

cyber-information using user inputs from a single 2D

image. By using plane transformation to automatically find

correspondences of user-driven elements and triangulating

all of those correspondences against the 3D point cloud, the

proposed method automatically associates user-driven

cyber-information with corresponding physical objects in

3D geometry. As a result, users do not require any priori

knowledge of the coordinates of point clouds and the

generated 3D cyber-physical model from our method can

be used in mobile augmented reality to deliver any arbi-

trary cyber-information created by users using a single 2D

image. In addition, the proposed method can be used with

any mobile devices if mobile devices have a capability of

showing an image on the screen.

6 Discussion on results

Based on experimental results discussed in the previous

section, we illustrate the potential of the HD4AR-SFM for

rapidly creating 3D point clouds from real-world data sets.

Fig. 13 3D reconstruction

results with BRISK

combination (SURF-BRISK).

a Initial input images (outdoor),

b 3D point clouds from the

proposed framework, c 3D point

clouds with estimated camera

positions of input images

Table 8 Mean differences

between camera pose estimates

in ‘‘patton’’ 3D point clouds and

the manually measured

references

Package Bundler The proposed SfM framework (HD4AR-SFM)

Detector–descriptor SIFT SIFT SURF FREAK BRISK

Rotational difference 0.398� 0.410� 0.449� 0.419� 0.426�

Translational difference (in 3D coordinatesa) 0.0277 0.0115 0.0258 0.0362 0.016

Translational difference (mb) 8.242 0.941 0.194 0.214 9.878

a Each point cloud has its own 3D coordinates formed during the SfM
b Aligned to geotags measured by noisy sensors in Galaxy Nexus
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Due to enhancements presented in this paper, such as

combination of binary feature descriptor, post-filtering

during the SfM, and hardware/software parallelism, the

HD4AR-SFM took at most 3 min to generate a 3D point

cloud for indoor images. Compared to the Bundler, the

most widely used SfM package with incremental bundle

adjustment, the HD4AR-SFM achieved the performance

gain up to 2875 %. By considering all the results shown in

Tables 2, 3, 4, 5, 6, and 7, we can conclude that the

HD4AR-SFM works well with both indoor and outdoor

data sets and achieves significant gains on both speed and

accuracy. The binary feature descriptors, such as FREAK

and BRISK, are appropriate for fast 3D reconstruction and

still generate accurate 3D point clouds with less memory

consumption. Furthermore, the HD4AR-SFM successfully

generates 3D point clouds purely based on images and does

not require any constraints on photographs, such as geo-tag

and ordered sequence. In all cases, the maximum re-pro-

jection error is few image pixels, and therefore, generated

3D point clouds well represent target scene and can be used

for mobile augmented reality.

In addition, the proposed homography-based 3D content

authoring method purely creates 3D cyber-contents using

user inputs from a single 2D image. By automatically

finding correspondences of user-driven elements and tri-

angulating all of those correspondences against the 3D

point cloud, the proposed method supports from 3D content

generation to automatic association of generated cyber-

contents (e.g., product manual, history, website) using

commodity mobile devices. As discussed in Sect. 5.2, the

cyber-information generated by the proposed method can

be precisely overlaid on other mobile devices at different

location through model-based localization. The interface of

the proposed method only requires a capability of drawing

a polygon on the image and thus is intuitive and straight-

forward. The convenient method for cyber-contents cre-

ation is especially important when designing the mobile

augmented reality applications, as the 3D cyber-physical

Table 9 3D cyber-physical

content authoring results with

3D point clouds generated by

the BRISK combination

Environment Name Number of vertices Number of base images Mean re-projection

for user-driven elements participated in triangulation error (pixels)

Indoor dashboard 20 4 0.432

Ikea 4 3 0.686

Kitchen 4 2 0.205

Knu 4 4 0.268

Outdoor Patton 15 8 2.619

Rh 4 5 0.914

Fig. 14 Results of 3D cyber-

physical content authoring with

the proposed method on indoor

data sets. a User-created

information on the 2D image,

b 3D elements driven from the

user-created 2D elements and

correspondences found by

homography. Here the dense 3D

point cloud is used for

visualization purpose, and

c augmentation results of the

user-created elements on

another smart device on the site
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information association is critical in order to create appli-

cations where users can create and share cyber-information

with each other through mobile augmented reality

interfaces.

While this paper presented the extensive experimental

results with remarkable performance gain on 3D recon-

struction as well as 3D content authoring, several chal-

lenges remain. Some of the open research problems that we

will address in our future work include:

• Develop a metric which can guide user to take minimal

number of images for accurate 3D reconstruction.

• Cluster the 3D point cloud using supplemental infor-

mation such as mobile GPS information available in

smartphones to further speed up 3D reconstruction.

• Analyze actual use cases of our framework on mobile

augmented reality applications.

• Develop a scheme for mobile augmented reality that

works with multiple 3D point clouds on the system.

Most of SfM-based augmented reality assumes that

users and systems know which 3D point cloud should

be used for localization and augmentation, which is not

practical in many cases.

7 Conclusion

In this paper, a new Structure-from-Motion (SfM)-based

3D cyber-physical modeling for mobile augmented reality

is proposed and developed. By introducing HD4AR-SFM, a

new parallelized SfM framework which accelerates an

existing 3D reconstruction pipeline by a factor of 28, we

make model-based localization feasible in mobile aug-

mented reality which provides much shorter point cloud

preparation time compared to existing work. To speed up

the 3D reconstruction, our framework has used four

approaches: (1) the combination of several state-of-the-art

feature detectors and feature descriptors including binary

descriptors, (2) new filtering procedure on both track cre-

ation and SfM to reduce ambiguous matches and the noise

of a final 3D point cloud, (3) extracting representative 3D

descriptors to optimize the memory consumption, and (4) a

scheme for use of multi-core CPU and GPU. We have also

demonstrated that binary feature descriptors are suitable for

fast 3D reconstruction and still generate accurate 3D point

clouds with much less memory consumption compared to

real-number descriptors, such as SIFT or SURF.

Along with the proposed 3D reconstruction framework,

a new plane transformation-based 3D cyber-physical con-

tent authoring approach is proposed and validated. The

proposed approach purely creates 3D cyber-information

using user inputs from a single 2D image and automatically

associates user-driven cyber-information with correspond-

ing physical objects in 3D geometry. Validation results

show that all user-driven elements on 2D images can be

accurately triangulated and associated with objects in 3D

point cloud and generated 3D cyber-information can be

precisely overlaid on other photographs taken at com-

pletely different locations. By considering a fact that the

3D content authoring from 2D interface is still an open

Fig. 15 Results of 3D cyber-

physical content authoring with

the proposed method on outdoor

data sets. a User-created

information on the 2D image,

b 3D elements driven from the

user-created 2D elements and

correspondences found by

homography. Here the dense 3D

point cloud is used for

visualization purpose, and

c augmentation results of the

user-created elements on

another smart device on the site
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problem, the proposed approach can address the open

problem and make 3D cyber-physical content authoring

feasible on any mobile devices. In our future work, we will

study the applicability of the 3D cyber-physical models

generated by the proposed method on mobile augmented

reality and address the open research challenges discussed

in this paper, such as real-time model-based localization,

by developing point cloud clustering or cached matching

scheme, etc.
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