
ORIGINAL ARTICLE

A development framework for mobile healthcare monitoring apps

Pilar Mata1 • Austin Chamney1 • Gary Viner2 • Douglas Archibald2,3 •

Liam Peyton1

Received: 17 November 2014 / Accepted: 26 May 2015 / Published online: 25 June 2015

� Springer-Verlag London 2015

Abstract Developing healthcare monitoring apps is non-

trivial as it requires a balance between simple, easy-to-use

interfaces, and powerful business intelligence reporting

capabilities, both of which must be integrated into the day-

to-day tasks and procedures of clinical practice. This paper

presents a development framework for building and

deploying mobile healthcare monitoring apps. The frame-

work combines an application development methodology

(that ensures adoption and effectiveness of apps when

deployed) with an application architecture and component

library (to simplify and reduce the development effort

needed to implement, deploy and maintain such apps). The

development framework is evaluated using a case study of

a mobile healthcare monitoring app developed and

deployed in collaboration with a team of healthcare

researchers and doctors to support the training of residents

in family medicine.

Keywords Application architecture � Business
intelligence � Development methodology � User-centered
design � Healthcare � Practice profiles � Performance

measurement

1 Introduction

Increased capabilities of mobile devices have led to greater

use in healthcare. Physicians have adapted to these mobile

technologies and incorporate them in their daily lives [1].

They are also used during clinical practice training for

students and residents [2]. Mobile apps can be used to

collect data and send reports to clinicians for applications

like real-time monitoring of emergency room wait times

[3] or monitoring of clinical training experience [4].

Developing healthcare monitoring apps is non-trivial as

it requires a balance between simple, easy-to-use inter-

faces, and powerful business intelligence (BI) reporting

capabilities, both of which must be integrated into the day-

to-day tasks and procedures of clinical practice. There are

often interoperability issues that affect the adoption and

effectiveness of healthcare monitoring apps [5]. These are

often due to differences between the design of these apps

and what occurs in actual healthcare settings [6] which

result from a disconnect between clinicians and the

development team. Furthermore, traditional application

architectures like .Net and J2EE support a generic approach

to implementation that leads to high code complexity [7],

and a higher level of effort is required to maintain and

customize the app to the specific and evolving needs of

clinicians. The databases that result from such frameworks

are not optimized to support powerful BI reporting. Often

the development of suitable reporting capabilities can be as

lengthy and difficult as creating the app itself [8].

This paper presents a development framework for

building and deploying mobile healthcare monitoring apps.

The framework combines an application development

methodology (that ensures adoption and effectiveness of

apps when deployed) with an application architecture and

component library (to simplify and reduce the development

& Liam Peyton

lpeyton@uottawa.ca

1 Faculty of Engineering, University of Ottawa, 800 King

Edward Avenue, Ottawa K1N 6N5, Canada

2 Faculty of Medicine/Department of Family Medicine,

University of Ottawa, 43 Bruyère Street, Ottawa K1N 5C8,

Canada

3 Bruyère Research Institute, 85 Primrose Avenue,

Ottawa K1R 7G5, Canada

123

Pers Ubiquit Comput (2015) 19:623–633

DOI 10.1007/s00779-015-0849-9

http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-015-0849-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00779-015-0849-9&domain=pdf

effort needed to implement, deploy, and maintain such

apps). The development framework is evaluated using a

case study in which a Resident Practice Profile (RPP) app

was developed and deployed in collaboration with a team

of healthcare researchers and doctors at the University of

Ottawa to support the training of residents in family

medicine. RPP is also evaluated in comparison with similar

apps built with a different application development

methodology and architecture. This paper extends and

expands upon previous work published in relationship to

the case study [9].

2 Background

There is increasing pressure on healthcare organizations to

deploy monitoring apps that measure performance related

to quality of care goals [10, 11]. A critical aspect of such

apps is to provide seamless easy-to-use interfaces that

minimize the data collection burden and maximize the

value that reports provide while ensuring user acceptance

and adoption [12].

An application architecture is ‘‘an integrated set of

software artifacts … (that) provide a reusable architecture

for a family of related applications’’ [13] so that new

applications can be developed quickly. Traditional web

application architectures, such as J2EE [14], provide a

three-tier architecture (browser-based user interface,

application server, and database) where most development

effort is directed toward code that runs on the application

server in a manner that makes it difficult to directly address

user interface or reporting effectiveness. AJAX [15] is

newer technology, which expands the development effort

to the browser-based user interface to provide more

seamless, and easy-to-use interfaces. However, reporting is

still an issue as there is no direct relationship between data

collected in these user interfaces and the effectiveness of

reporting based on that data.

Databases that are optimized for reporting are usually

organized into a star schema [16] in which data are logged

into a central fact table, linked to peripheral tables that

define dimensions along which the data can be analyzed.

Third-party business intelligence tools and dashboards [17]

can provide flexible, generalized reporting against data-

bases defined in this way.

While the technical aspects of the application develop-

ment process are critical, it is also fundamental to ensure

user acceptance and adoption of the technology by fol-

lowing an appropriate application development methodol-

ogy. User-centered design actively involves ‘‘users for a

clear understanding of user and task requirements, iterative

design and evaluation, and a multi-disciplinary approach’’

[18]. This approach is particularly relevant in the

healthcare domain given implementation success/failure

rates have been cited as one important issue in the literature

[19, 20]. The main reason for this is the disconnect between

clinicians and the development team. Barriers to adoption,

in particular issues related to usability, can be detected and

addressed through the use of think-aloud sessions [21] in

which users are encouraged to verbalize their thought

processes, which are recorded, while they perform tasks

using the application under development.

Recent research suggests there is a need for healthcare

monitoring apps to measure performance of resident

physicians. Recent work highlights the gap between the

quantity and type of clinical problems residents see during

their training and those required by program guidelines

[22]. Practice profile apps [23, 24] have appeared that

allow medical practitioners to log their experiences elec-

tronically to provide feedback. Just in Time Medicine [4]

was developed by researchers at the University of Michi-

gan to enable physicians to provide assessments of medical

students on their clinical experience, while LogMD [25]

was developed in conjunction with the Association of

Canadian University Departments of Anesthesia to enable

physicians to track their experience against international

benchmarks.

3 Development framework for mobile healthcare
monitoring apps

The development framework that we propose is based on

an application development methodology that engages

stakeholders and users throughout in a three-phased, iter-

ative process of application modeling, implementation, and

evaluation to ensure user acceptance and adoption. Within

our development framework, this methodology is sup-

ported by an application architecture that simplifies the

complexity and effort of the implementation phase. Our

proposed application architecture characterizes mobile

healthcare monitoring apps in terms of a simple architec-

ture optimized for BI data collection and reporting, so that

such apps can be assembled and configured using a library

of reusable templates and components.

3.1 Application development methodology

The main idea of the application development methodol-

ogy that we are proposing is to engage stakeholders and

users throughout in a three phase iterative process of

modeling, implementation, and evaluation to ensure user

acceptance and adoption. The methodology focuses on

lightweight development and evolution of mobile health-

care monitoring apps that are easily deployed which cap-

ture the minimum amount of data in easy-to-use mobile

624 Pers Ubiquit Comput (2015) 19:623–633

123

app forms needed to compute the metrics required to pro-

vide insight into healthcare performance with mobile

accessible reports.

Figure 1 shows the main tasks in the three phases of our

methodology. The methodology starts by an initial evalu-

ation of current clinical practice. The feedback from this

evaluation is used to model how clinical practice should be

monitored. This model is in turn used to implement a

mobile healthcare monitoring app that collects data to

monitor the ongoing status of clinical practice through

reports. After each implementation phase, there is a thor-

ough evaluation phase in which stakeholders and users are

systematically engaged to use and evaluate the mobile app

while it is still under development and issues can be

addressed. This cycle of evaluate, model, implement, and

evaluate again is repeated with increasingly systematic and

precise evaluations refining both the monitoring model, and

the implementation of the mobile healthcare monitoring

app. The focus is to ensure adoption and usability of the

monitoring app to improve clinical performance.

The model phase consists of understanding what the

desired goals for healthcare performance are; defining what

metrics can be used to quantify and communicate how well

those goals are being met; and identifying what data can be

collected by whom in order to measure those metrics and

generate appropriate reports for visualizing the results. There

may be existing databases or healthcare systems that can

provide some or all of the data. In practice, though, it can be

difficult and time consuming to extract and transform the

necessary data in order to measure and report on perfor-

mance. Often the analysis and understanding of goals will

reveal that the necessary data are either missing or not ade-

quately structured in the existing databases. A mobile

healthcare monitoring app becomes necessary to provide

more effective monitoring. As such, it is also important to

identify and define adoption criteria to ensure adoption and

usability of the healthcare monitoring solution.

The implementation phase consists of configuring the

reporting database to store and compute the metrics and

data defined and identified in the model; configuring the

forms and reports for the user interface of the mobile app;

and systematically mapping the clinical domain concepts

needed for healthcare monitoring (demographics, diag-

noses, etc.) to the labels and values seen in the forms and

reports of the mobile app.

The evaluation phase consists of think-aloud sessions in

which the correctness and usability of the healthcare

monitoring app are evaluated by observing users and

stakeholders performing their daily tasks; and by defining

engineering and domain checklists that can be used to

systematically quantify the extent to which the app is

meeting the adoption criteria and enabling stakeholders and

users to monitor performance. An analysis of the think-

aloud sessions and checklists is used to understand how to

improve the model and implementation in the next iteration

of development.

Fig. 1 Application

development methodology

Pers Ubiquit Comput (2015) 19:623–633 625

123

3.2 Application architecture

The main idea of the application architecture we are

proposing is to simplify and reduce the effort needed in the

implementation phase (see Fig. 1) so that the software

development team can respond quickly to the feedback

from users and stakeholders, and simplify maintenance of

the resulting mobile healthcare monitoring app. With the

right application architecture, an application should largely

be a task of configuration and linking of pre-defined

components. In Fig. 2, we define a three-tier architecture

for mobile healthcare monitoring apps that separates the

user interface (forms and reports) from the reporting

database (star schema with fact table, dimension tables, and

queries) in such a way that each can be configured and

optimized separately but automatically linked through an

application-independent middleware.

The user interface tier contains HTML, CSS, and

JavaScript that configure and sculpt the particular look and

feel of the mobile healthcare monitoring app in terms of

forms for clinical data collection and reports for clinical

monitoring. Naming conventions associate a HTML form

and its fields to a fact table and its related dimension

lookup tables (one for each form field) in the Reporting

Database tier. There is a minimal amount of JavaScript

required to interact with the JavaScript Client (AJAX) that

communicates with the reporting database through the Data

Access Object Service (REST). There is an extendable

library of customizable HTML and CSS templates that can

be used to define the look and layout of the app so that all

form factors and device types can be addressed.

The application-independent middleware tier consists of

a generic JavaScript Client that runs in the browser to

support the user interface forms and reports and a Data

Access Object Service that runs on a server to interact with

the Reporting Database in response to requests from the

JavaScript Client. The JavaScript Client provides a generic

library of user interface controls and widgets linked to the

Reporting Database that can be used to assemble powerful

and easy-to-use forms and reports. The JavaScript Client

also provides a set of API calls for making requests to the

Database Access Object Service. For forms, the API saves

form data to a fact table in the Reporting Database, and

pulls data from dimension lookup tables to populate the

dropdowns for form fields. For reports, the API executes

application-specific queries. The JavaScript Client also

manages authentication and authorization.

The Data Access Object Service handles the form and

report-related API calls with a series of parameterized SQL

queries that provide access to the Reporting Database. The

parameters consist of fact table and dimension table names

as well as values used by queries to filter and select. The

Data Access Object Service, like the JavaScript Client is

completely generic and pre-packaged and requires no

custom coding and only a minimum amount of configura-

tion to specify the database connection information for the

mobile healthcare monitoring app.

Finally, the Reporting Database is defined by a stan-

dardized generic multi-dimensional star schema optimized

for reporting and compatible with standard third-party

reporting tools. There is a strict naming convention for

columns, tables, lookups, and facts so that the user inter-

face can use name-based identifiers when it interacts with

the JavaScript Client to make requests to the Reporting

Database through the Data Access Object Service. Stan-

dardized generic templates are provided for the fact table

and many types of dimension tables (data, demographics,

diagnoses) as well as multi-select tables and authentication

and authorization tables.

4 Resident Practice Profile case study

Our research methodology is based on design science

research in which a novel or new solution to an information

systems problem is developed iteratively through a process

of problem identification, design, development, demon-

stration, and evaluation [26]. Our proposed development

framework was refined and evaluated using a case study in

which a mobile healthcare monitoring app was developed

and deployed in collaboration with a team of healthcare

researchers and doctors at the University of Ottawa to

support the training of residents in family medicine. We

went through four complete iterations of our application

development methodology during the case study and made

a significant refinement and improvement of our proposed

application architecture during the implementation phase

of the final iteration.

The app we developed, called the Resident Practice

Profile (RPP), enables residents in the family medicineFig. 2 Application architecture

626 Pers Ubiquit Comput (2015) 19:623–633

123

program to self-assess how well their clinical experience,

under the supervision of a physician supervisor, provides a

suitable breadth of experience across the types of patients,

diagnoses, and procedures that are covered in the post-

graduate family medicine curriculum. We did consider

generating reports off existing electronic health records

(EHR) systems, but it was not practical for several reasons.

First, there was no EHR common to all the clinics where

residents practiced. But, even if the case study was

restricted to a single clinic, EHR data were inconsistent

with the family medicine curriculum; there was no mech-

anism for doctors to configure the EHR to collect what was

actually needed, and there was no built-in support for third-

party reporting tools.

We also evaluated existing practice profile apps, to see if

any could be used. Just In Time Medicine and LogMD

were evaluated, but they had a different purpose (assess-

ment of medical students, self-assessment of physicians)

and were not customizable to what was needed for family

medicine residents at the University of Ottawa. A com-

parison of them and the RPP app that was built for the case

study is given in Sect. 5.

The initial version of the app RPP_1 was built as a

general purpose web application using a traditional J2EE

application architecture and a generic software develop-

ment methodology. We then went through four iterations of

our application development methodology (evaluate,

model, implement, and evaluate again). In the first three

iterations, RPP_2 was implemented with our initial pro-

posed application architecture (QuickForms 1.0). In the last

iteration, we used a much improved version of our appli-

cation architecture (QuickForms 3.0) to implement RPP_3.

The results of our proposed application development

methodology are described in Sect. 4.1, while the

improvements over traditional application architectures

obtained from the two versions of our proposed application

architecture are highlighted in Sect. 4.2. The key features

of the RPP app that resulted from using our development

framework are described in Sects. 4.3, 4.4, and 4.5.

4.1 Application development methodology

The initial RPP_1 app built using traditional software

methodology and a generic application architecture was not

well received. As we started the first iteration of our

application development methodology and performed our

initial evaluation, it became clear that there was a great

deal of misunderstanding between the stakeholders and the

application developers, and that the stakeholders were not

fully aligned. There was enough feedback from a simple

attempt to walk through a demonstration of the application

to stakeholders that no think-aloud sessions with actual

residents were attempted. The feedback from RPP_1 was

used to more systematically model the healthcare moni-

toring app that was needed in terms of the goals, metrics

and data to be collected and reported on. That analysis

prompted us to design a much more specific and suitable

application architecture (QuickForms 1.0). Perhaps most

significantly, as we iterated, the feedback from each eval-

uation phase (especially think-aloud sessions) enabled us to

identify the key adoption criteria for RPP:

• Residents should log their clinical experience (patient

visits) in less than 30 s on a mobile device.

• Residents should see reports that map clinical experi-

ence in relation to the family medicine curriculum.

• Doctors responsible for family medicine should be able

to configure drop downs for RPP.

• Third-party reporting tools must be supported for in-

depth analysis to improve family medicine program.

While developing RPP_2, there were regular group

evaluation sessions of the app and its design, and three

think-aloud sessions conducted with the participation of

four residents, in addition to the research team. These

evaluation sessions occurred between September 2012 and

June 2013 before starting an official 1 year pilot of RPP

with the four residents in July 2013. RPP_3, which had

minor bug fixes, but which was re-implemented using our

improved application architecture (QuickForms 3.0), was

released in September 2013.

A total of 1607 diagnoses for 1205 different visits were

logged during the pilot. Each think-aloud session uncov-

ered significant barriers to the usefulness, usability and

adoption of the RPP app that had to be carefully analyzed

in order to arrive at the design breakthroughs needed to

address the barriers.

First, the amount of information that needed to be col-

lected for a single visit was cumbersome in combination

with the sophisticated user interface needed in the app to

select information quickly. Residents were getting lost in

the app and needed to scroll up and down to remember

what they had entered. The resolution to this resulted in

standardized application templates and summary controls

that are described in Sect. 4.3

Second, careful analysis of the family medicine cur-

riculum was needed in order to clearly identify the

dimensions needed for reporting (tracking, demographics,

diagnoses, and self-assessment) and to determine the val-

ues for each dimension that would populate the drop-down

controls for the various form fields. These dimensional

values also directly mapped to reports. This is described in

Sect. 4.4.

Finally, the sheer number of possible diagnoses (*500)

relevant to a family medicine patient visit was over-

whelming and had to be organized in an easy-to-use control

that reflected the organization of the family medicine

Pers Ubiquit Comput (2015) 19:623–633 627

123

curriculum and allowed for multi-selection. The generic,

reusable hierarchical control that provides flexible mapping

to drill-through reporting is described in Sect. 4.5.

For RPP_3, the major effort was to keep the function-

ality provided in RPP_2, but completely refactor the

organization of the user interface and JavaScript Client

tiers to have an order of magnitude simplification in the

amount and complexity of code needed to configure the

RPP app. This was described in Sect. 4.1. In addition, a

number of routine fixes and a few new reports have been

incorporated into RPP_3 based on the feedback from the

RPP_2 pilot. RPP_3 will be further evaluated as it is rolled

out in December 2014 for use by 75 residents in family

medicine.

4.2 QuickForms application architecture

The RPP_1 app built in J2EE had 3154 lines of code and it

became quite complex to manage all the custom code in the

different tiers, although it was not even feature complete.

Worse, it was not easy to optimize the user interface for

different types of mobile devices and form factors, and it

was difficult to create anything other than simple reports.

The RPP_2 app, built in QuickForms 1.0, that was feature

complete, had 4551 lines of code, almost all of which were

written in JavaScript. QuickForms 1.0 provided the basic

architecture shown at the bottom in Fig. 3, but the Java-

Script Client was poorly organized with no attempt to

encapsulate re-usable pre-defined components. There was a

lot of custom code in the user interface that was very

complex. All the desired functionality for RPP was deliv-

ered, but it was just as complex for a developer to build as

the initial RPP_1 app. The final RPP_3 app built in

QuickForms 3.0 has only 1273 lines of code and includes a

half dozen extra reports that were not part of RPP_2. The

functionality for the user is the same as RPP_2, but the

JavaScript Client and user interface were completely

refactored. It provides a systematic approach to encapsu-

lating reusable controls so that developing any healthcare

monitoring application is now largely a matter of

configuration.

Figure 3 compares the tiers of the initial J2EE applica-

tion architecture with the tiers of the final QuickForms 3.0

application architecture based on code complexity, as this

factor can significantly increase the level of effort required

to create and maintain the application in response to the

specific and evolving needs of users and stakeholders. In

the J2EE tiers (on top), complex custom code is written in

all tiers to define the application, its user interface, and its

data access. Typically, an Application Model Database is

generated from the custom-coded objects in the application

and data access. It can be complex to define reports against

this database since it is optimized for transactional data

entry and not reporting. Often there is an extract, transform

and load process [16] to move the data to a database

structured around a dimensional model which is optimized

for reporting and compatible with third-party reporting

tools. There is no direct mapping between data elements in

the user interface, application, data access, application

model, or dimensional model. Maintaining consistency

between them is a painstakingly manual process as any

change is potentially repeated in all five places and may

require custom coding by five different developers. There

are no pre-defined components to optimize the user inter-

face or Reports for a mobile healthcare monitoring app.

In the QuickForms tiers (on the bottom in Fig. 3), there

is no Application Model, and the JavaScript Client and

Data Access Object Service tiers are completely generic

and pre-defined. There is no customer code to write for

them, as they are designed to automatically manage the

relationship between the user interface and Reporting

Database. The complexity of these two tiers for the

application developer is essentially reduced to zero. A

developer simply has to annotate the fields in an HTML

form with the names of the dimension tables in the

Reporting Database. Controls and API calls provided by

the JavaScript Client automatically populate drop-down

choices for fields and save collected data to the Reporting

Database through communication with the Data Access

Object Service. There is also a powerful set of pre-defined,

customizable HTML and CSS templates to optimize the

user interface (including built-in reports) for a mobile

healthcare monitoring app as well as a pre-defined,
Fig. 3 Comparison of J2EE and QuickForms application

architectures

628 Pers Ubiquit Comput (2015) 19:623–633

123

customizable fact and dimension tables for the Reporting

Database.

4.3 Templates and summaries

Figure 4 shows an overview of the RPP app. On the left is the

home page which uses one of the built-in home page tem-

plates with header, application tabs, and a standard login/

logout. The titles, tabs, etc., are customizable in an appli-

cation configuration file. There is a sophisticated, built-in

grid control for displaying visits that supports filtering,

searching, sorting by clicking on columns, etc. The columns

used both in the grid and in the associated filters are all easily

configured. On the right is the overview summary for a

particular visit. The user can see at a glance a summary of

what has been logged for tracking, demographics, and

assessment without opening the forms for those. The form

summaries are a built-in control that can be flexibly config-

ured to determine what fields are summarized. The idea for

form summaries came from one of the think-aloud sessions

when residents were having difficulty seeing the complete

overview ofwhat they had filled in for a patient visit. Aswell,

the tracking summary greatly simplified data entry. Typi-

cally, a resident would see many patients in a row at a given

clinic. When the tracking information was entered once for a

visit, it was automatically repeated and pre-filled for subse-

quent visits and the resident could see at a glance that no data

entry was needed for tracking.

4.4 Simple forms and reports with lookup table

management

The critical element of the QuickForms application archi-

tecture is, of course, the ability to separate and yet auto-

matically link forms with the Reporting Database. In

Fig. 5, we see the Demographics Form on the left and its

associated Age/Gender report on the right. The developer

links a field in the form to the dimensional table that

supplies the drop-down values for that field by simply

adding a reference to the table name in the HTML defini-

tion of the form. These same values are used in the report

associated with the form. The Age/Gender Report uses the

same values for Age and Gender that appear in the selec-

tion controls for Age and Gender.

In this case, the resident has seen a disproportionate

number of females to male patients in the 21–35 year

range, but this is normal for family doctors who see

maternity patients. There is also a similar Special Popula-

tions/Gender report corresponding to the Care of Special

Populations drop down in the form, but this is not shown

here. In addition, there is a special design button on the

form on the left that is available for users with adminis-

trator privileges. The design button brings up a dialog

where administrators can edit the values in the lookup

tables for any of the form fields, or download and upload

files of the values for the dimension lookup table of a

particular field.

Fig. 4 RPP overview: templated with summaries

Pers Ubiquit Comput (2015) 19:623–633 629

123

4.5 Multi-level selection control and drillable

reporting

The form for assessment is more complex. In Fig. 6 on the

left, we see a tabbed multi-level selection control provided

by QuickForms that a resident can use to select any and all

diagnoses and procedures that apply to a patient. There are

roughly 500 diagnoses and procedures covered by the

family medicine curriculum and they are organized in the

multi-selection control in a similar, though simplified,

fashion to their classification in the curriculum. At the top

level, there are six tabs corresponding to the major cur-

riculum domains: Care of Adults, Care of Children and

Adolescents (CoCA), Care of Elderly, Maternity, End of

Life, and Procedures. Within each tab, there is another list

of groupings, and within each grouping there are the

selections to be made. In this case, the resident is selecting

‘‘Removal of Foreign Body’’ from the list of Eye, Ear, and

Nose procedures under the Procedures tab.

The organization of the tabs and groupings and selec-

tions is automatic based on the lookup table for the

assessment field in the database. All the developer has to

Fig. 5 Demographics form and age/gender report

Fig. 6 Multi-level selection control for diagnoses and drillable report

630 Pers Ubiquit Comput (2015) 19:623–633

123

do is specify the column name in the fact table that links to

the lookup table. The organization is driven by the classi-

fication columns (one for tabs, one for groupings), and the

sequence number column to specify the order of values. As

well the design button facilitates maintenance of diagnoses

and procedures by launching a dialog that allows separate

files to be uploaded and downloaded for each tab.

The drillable report on the right in Fig. 6 leverages the

same classification columns from the assessment lookup

table to organize the report of how many assessments and

procedures a resident has seen. One can see at a glance that,

in addition to Eye, Ear and Nose procedures, the resident

has done very few gastrointestinal, injection, or resuscita-

tion procedures. In addition, most of their diagnoses have

been for the Care of Adults.

5 Results and discussion

In this section, we evaluate our proposed development

framework. It should be emphasized that these are pre-

liminary results that are only intended to establish the

potential for our approach to improve adoption and

usability of mobile healthcare monitoring apps, while

reducing the effort and complexity required to build and

deploy such apps.

In terms of adoption, we found that standard web

application development methodology is not sufficient to

address adoption barriers in clinical practice. It was not

possible to recognize and understand adoption criteria such

as recording data in less than 30 s, and ensure value to

residents in terms of the reporting using a methodology that

left the software development team disconnected from the

context of integrating a mobile app into day-to-day activ-

ities and thought processes of the residents who would use

the app.

Table 1 shows innovations resulting from evaluation at

each iteration to address user adoption. The RPP_1 app in

J2EE had major disconnects between clinician needs and

what was delivered. Making changes to address those flaws

was difficult. RPP_2a, 2b, and 2c correspond to the three

iterations in which QuickForms 1.0 was used. QuickForms

3.0 was used for RPP_3.

Using our development methodology, major innova-

tions, reflecting a deep understanding of user and stake-

holder needs, resulted from the evaluation and model-based

analysis that was done in each iteration. In the first itera-

tion, insight into the need for mapping from forms to

database tables to reports based on a goal model, resulted

in a much improved application template and appropriate

application architecture. In the second iteration, insight into

the need to eliminate scrolling on the mobile device and

target less than 30 s for data entry resulted in sub dialogs,

multi-level selection, and summary controls in the app.

By the third and fourth iterations, the development team

was in synch with clinical users and stakeholders so the

focus was on minor refinements like customizable filters

and drillable reports using third-party reporting tools. We

also refined our application architecture (QuickForms 3.0)

to reduce even more the time and effort required to respond

to user needs. Our development methodology that lever-

aged think-aloud sessions and expert checklists was critical

to understand and recognize barriers to adoption.

In terms of usability, Table 2 compares RPP with sim-

ilar practice profiling applications: Just In Time Medicine

(JIT) and LogMD which were reviewed by the entire team

of software engineering and healthcare researchers, and

doctors.

All three apps are focused on reporting and ease of use

for data entry. JIT has a rigid and more detailed data entry

to ensure the same steps are followed for all students to

ensure consistency in how students were assessed for a

single clinical experience. RPP was designed for faster data

entry, because it was important for a resident to log all

patient encounters so they could self-assess their entire

clinical experience. RPP has the most sophisticated support

for capturing diagnoses, because the full spectrum was

needed to document the clinical experience. RPP is argu-

ably easier to use for integrated data collection and

reporting because of its support for form/report linkage,

templated summaries, and drill-through reporting.

It is also important to note that our application archi-

tecture support for third-party reporting and application

configuration addresses three of the four key criteria from

our case study (described in Sect. 4.1) better than JIT and

LogMD.

Table 1 Evaluation—major innovations

RPP_1 RPP_2a RPP_2b RPP_2c RPP_3

Architecture J2EE Quick Forms1.0 Quick Forms1.0 Quick Forms1.0 Quick

Forms3.0

Major

innovations

Major

disconnect

and hard to fix

App template and simple forms

mapped to tables mapped to

reports

Sub dialogs, summary controls,

multi-level selection,\30 s, no

scroll

Drillable reports,

customizable

filters

Minor bug

fixes, 6 extra

reports

Pers Ubiquit Comput (2015) 19:623–633 631

123

• Residents should see reports that map clinical experi-

ence in relation to the family medicine curriculum.

• Doctors responsible for family medicine should be able

configure drop downs for RPP.

• Third-party reporting tools must be supported for in-

depth analysis to improve family medicine program.

In fact, it was precisely because these criteria were not

met, that RPP was built using the QuickForms application

architecture. This was an issue for all family medicine

EHR systems that were reviewed as well as for JIT and

LogMD. The general multi-level selection control descri-

bed in Sect. 4.5 is a reusable control that can map the

diagnoses in any healthcare domain, not just family

medicine.

Finally, the effort and complexity required to implement

a mobile healthcare monitoring app are evaluated in

Table 3 by comparing the three different application

architectures that were used for RPP. We can see that

RPP_2 achieved the main application requirements in

terms of features, adoption, and usability, while RPP_3

greatly reduced the complexity of the code through better

encapsulation and packaging of pre-defined components.

This improved the ability to configure the application and

greatly reduced development effort.

It is, of course, premature to use a single case study to

claim that this approach works for all healthcare monitor-

ing apps. However, the application development method-

ology is designed to reduce disconnects between

developers and users for any healthcare monitoring app and

in the application architecture, the star schema and library

of user interface (UI) controls is completely generic and is

also intended to be reusable for any healthcare monitoring.

There is enough demonstrated potential here to justify

further study.

6 Conclusions and future work

Our proposed development framework has established the

potential to improve adoption and usability of mobile

healthcare monitoring apps, while reducing the effort and

complexity required to implement such apps. It signifi-

cantly reduced the disconnects between software develop-

ers and users and guided the resolution of adoption criteria

in our case study. As well, the application architecture

significantly reduced the effort in building RPP, and it

significantly improved the configurability and user expe-

rience for both data collection and reporting compared to a

traditional web application development framework.

More work is needed, of course, before we can make

any definitive claims about how well the development

framework would work for other teams and other apps. It

should be noted that there is a number of simplifying

assumption in our work:

• The storage needs for such apps are not compromised

by restricting to a star schema.

Table 2 Evaluation of RPP versus JIT and Log MD

Criteria JIT LogMD RPP

Purpose Student assessment Physician self-assessment Resident self-assessment

Form factors All form factors All form factors All form factors

Data entry 2–5 min rigid \2 min \30 s

Diagnosis selection One level Two levels (procedures) Two levels (all)

Form/report linkage No Yes Yes

Templated summaries No No Yes

Drill-through reporting No No Yes

Third-party reporting No. Hard-coded reports No. Hard-coded reports Yes. Dimensional model

Application configuration None None Data tables. UI controls

Table 3 Evaluation of different versions of RPP

Criteria RPP_1 (J2EE) RPP_2 (QuickForms 1.0) RPP_3 (QuickForms 3.0)

Form factors PC browser optimized All form factors All form factors

Form/report linkage No Yes Yes

Third-party reporting No. Hard-coded reports Yes. Star schema database Yes. Star schema database

Application configuration None Data tables Data tables. UI controls

Encapsulation No. Mixed layers No. Complex JavaScript Yes. QuickForms library

Lines of code 3154 4551 1273

632 Pers Ubiquit Comput (2015) 19:623–633

123

• No rich content or content management (Voice,

Pictures, Attachments).

• Multi-locale issues are ignored.

• Concurrency issues in which two or more users might

edit the same form or edit the same lookup table at the

same time are ignored. The nature of our apps so far

allows us to assume only one user at a time.

• Communication, service, and/or application integration

issues. Apps are strictly standalone.

• Security and fault tolerance issues except for obvious

issues are ignored. The simplicity and benign nature of

our apps in a research setting have allowed this so far.

We believe our approach should be useful for most

form-based monitoring and logging apps where data are

collected for analysis and/or performance management. It

addresses the development of apps in complex environ-

ments (i.e., healthcare) with evolving information needs

and where access to existing data sources constitutes a

challenge. By reducing the code complexity of the apps

and reducing the disconnects between clinicians and the

development team, applications are more likely to be

adopted as it could be easily customized, deployed, and

maintained. The QuickForms 3.0 application architecture

used in our approach was published as an open source

project [27] in April, 2014.

Acknowledgments This work was supported by an AIME grant

from the School of Medicine at the University of Ottawa, the Mitacs

Accelerate program, IBM and an NSERC Discovery Grant. We would

like to thank the residents who participated in this case study, espe-

cially Alexandre Labelle. We would also like to thank Dr. Susan

Humphrey-Murto and Dr. Eric Wooltorton for their participation and

extremely useful feedback throughout this research.

References

1. Kafeza E, Chiu D, Cheung S, Kafeza M (2004) Alerts in mobile

healthcare applications: requirements and pilot study. IEEE Trans

Inf Technol Biomed 8(2):173–181

2. Kho A, Henderson L, Dressler D, Kripalani S (2006) Use of

handheld computers in medical education. J Gen Intern Med

21(5):531–537

3. Baarah A, Mouttham A, Peyton L (2012) Architecture of an event

processing application for monitoring cardiac patient wait times.

Int J Inf Technol Web Eng 7(1):1–16

4. Ferenchick G, Solomon D (2013) Using cloud-based mobile

technology for assessment of competencies among medical stu-

dents. PeerJ Inc 16(5–6):407–411

5. Mouttham A, Kuziemsky C, Langayan D, Ling Y, Peyton L,

Pereira J (2012) Interoperable support for collaborative, mobile,

and accessible health care. J Inform Syst Front 14(1):73–85

6. Novak L, Brooks J, Gadd C, Anders S, Lorenzi N (2012)

Mediating the intersections of organizational routines during the

introduction of a health IT system. Eur J Inf Syst 21(5):552–569

7. Johnson R (2005) J2EE development frameworks. Computer

38(1):107–110

8. Simitsis A, Vassiliadis P, Sellis T (2005) Optimizing ETL pro-

cesses in data warehouses. In: Proceedings 21st international

conference on data engineering, pp 564–575

9. Chamney A, Mata P, Viner G, Archibald D, Peyton L (2014)

Development of a resident practice profile in a business intelli-

gence application framework. In: 4th international conference on

current and future trends of information and communication

technologies in healthcare, Halifax, Canada. http://www.science

direct.com/science/article/pii/S1877050914010059

10. Leggat S, Bartam T, Stanton P (2012) High performance work

systems: the gap between policy and practice in health care.

J Health Organ Manag 25(3):281–297

11. Waterson P (2014) Health information technology and

sociotechnical systems: a progress report on recent developments

within the UK National Health Service (NHS). Appl Ergon

45(2):150–161

12. Rowley P, Gough R, Doylend N, Thirkill A Leicester P (2013)

From smart homes to smart communities: advanced data acquisi-

tion and analysis for improved sustainability and decision making.

In: International conference on Information Society, pp 263–268

13. Schmidt DC, Gokhale A, Natarajan B (2004) Leveraging appli-

cation frameworks. ACM Queue 2(5):66–75

14. Jing-Mei L, Guang-Sheng M, Gang F, Yu-Qing M (2006)

Research on Web application of struts framework based on MVC

pattern. In: International workshop on advanced web and network

technologies, and applications. Springer, Harbin, pp 1029–1032

15. Matthijssen N, Zaidman A, Storey M, Bull I, Van Deursen A

(2010) Connecting traces: understanding client–server interac-

tions in Ajax Applications. In: IEEE 18th international confer-

ence, pp 216–225

16. Kimball R, Ross M (2013) The data warehouse toolkit: the com-

plete guide to dimensional modeling, 3rd edn. Wiley, New York

17. Gangadharan G, Sundaravalli S (2004) Business intelligence

systems: design and implementation strategies. Inform Technol

Interf 139–144

18. Vredenburg K, Mao JY, Smith PW, Carey T (2002) A survey of

user-centered design practice. In: Proceedings of the SIGCHI

conference on human factors in computing systems, pp 471–478

19. Ammenwerth E, Iller C, Mahler C (2006) IT adoption and the

interaction of task, technology and individuals: a fit framework

and a case study. BMC Med Inform Decis Mak 6(1):3. doi:10.

1186/1472-6947-6-3

20. Heeks R (2005) Health information systems: failure, success and

improvisation. Int J Med Inform 75(2):125–137

21. Fonteyn M, Kuipers B, Grobe S (1993) A description of think

aloud method and protocol analysis. Qual Health Res 3:430–441

22. Epstein RM, Siegel DJ, Silberman J (2008) Self-monitoring in

clinical practice: a challenge for medical educators. J Contin

Educ Health Prof 28(1):5–13

23. Iglar K, Polsky J, Glazier R (2011) Using a Web-based system to

monitor practice profiles in primary care residency training. Can

Fam Phys 57:1030–1037

24. Lyman J, Schorling J, Nadkarni M, May N, Scully K, Voss J

(2008) Development of a web-based resident profiling tool to

support training in practice-based learning and improvement.

J Gen Intern Med 23(4):485–488

25. LogMD. http://www.logmd.com. Accessed Apr 2015

26. Peffers K, Tuunanen T, Gengler C, Rossi M, Hui W, Virtanen V,

Bragge J (2006) The design science research process: a model for

producing and presenting information systems research. In: Pro-

ceedings of the first international conference on design science

research in information systems and technology, pp 83–106

27. QuickForms3. https://github.com/uoForms/quickforms3. Acces-

sed Apr 2015

Pers Ubiquit Comput (2015) 19:623–633 633

123

http://www.sciencedirect.com/science/article/pii/S1877050914010059
http://www.sciencedirect.com/science/article/pii/S1877050914010059
http://dx.doi.org/10.1186/1472-6947-6-3
http://dx.doi.org/10.1186/1472-6947-6-3
http://www.logmd.com
https://code.google.com/p/quickforms3/

	A development framework for mobile healthcare monitoring apps
	Abstract
	Introduction
	Background
	Development framework for mobile healthcare monitoring apps
	Application development methodology
	Application architecture

	Resident Practice Profile case study
	Application development methodology
	QuickForms application architecture
	Templates and summaries
	Simple forms and reports with lookup table management
	Multi-level selection control and drillable reporting

	Results and discussion
	Conclusions and future work
	Acknowledgments
	References

