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Abstract In this paper, we present an automated behavior

analysis system developed to assist the elderly and indi-

viduals with disabilities who live alone, by learning and

predicting standard behaviors to improve the efficiency of

their healthcare. Established behavioral patterns have been

recorded using wireless sensor networks composed by

several event-based sensors that captured raw measures of

the actions of each user. Using these data, behavioral pat-

terns of the residents were extracted using Bayesian sta-

tistics. The behavior was statistically estimated based on

three probabilistic features we introduce, namely sensor

activation likelihood, sensor sequence likelihood, and

sensor event duration likelihood. Real data obtained from

different home environments were used to verify the pro-

posed method in the individual analysis. The results sug-

gest that the monitoring system can be used to detect

anomalous behavior signs which could reflect changes in

health status of the user, thus offering an opportunity to

intervene if required.

Keywords Behavior patterns � Bayesian statistics �
Anomaly detection � Wireless sensor networks

1 Introduction

Population aging is currently having a significant impact on

health care systems [25]. Improvements in medical care are

contributing to increase the survival rate among the elderly;

thus, cognitive impairments associated with aging will

increase [14]. It has been estimated that one billion people

will be over the age of 60 by the year 2025 [22]. As

demographics age and the burden of healthcare on society

increase, the need for finding more effective ways of pro-

viding care and support to the disabled and elderly at home

becomes more predominant. Automated and ambient sys-

tems for anomalous behavior detection serve a dual role

[11]: (1) to increase the safety and the sense of security of

people living on their own, and (2) to allow elderly patients

to be self-reliant longer, fostering their autonomy.

Among the available technologies for pervasive activity

monitoring, wireless sensor networks (WSNs) are consid-

ered one of the most promising approaches, due to their

suitability to supply constant supervision, flexibility, low

cost, and rapid deployment [3]. Besides, the inherent non-

intrusive characteristics of these networks have been

proved to suit perfectly with environments where privacy

and user acceptance are required [7]. If a smart house can

be instrumented with one of these networks, the occupants

would have a better chance to live safely and independently

[13], especially when they suffer from chronic and dis-

abling conditions, such as Parkinson’s or Alzheimer’s

disease. Several studies have employed these technologies

to monitor the activities of the individuals at home, in order

to predict daily behavior [6, 16] and eventually launch

alarms to alert relatives, caregivers, or healthcare personnel

when inadequate behaviors are detected [21].

The algorithm that we propose in this paper is aimed to

statistically identify anomalous human behavioral patterns,
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a problem already present in the literature which has been

addressed by several authors. Recently, Aztiria et al. [1]

developed an algorithm that compares the behavior of a

user with a set of previously discovered frequent behaviors

to identify possible shifts. Employing a set of atomic

actions, the authors defined a likelihood value for the

current behavior of the user. The number of modifications

required to turn the current behavior into a frequent

behavior is used as a metric to classify a sequence of

actions as an anomaly.

Shin et al. [15] developed an abnormality detection

system that employed several features about the activity

and mobility of the users for identifying anomalous

behavioral patterns. They proposed a system designed to

monitor the daily life of the elderly in their home using

several IR motion sensors. In order to represent the

behavior of the users, they employed three different fea-

tures, namely activity level, mobility level, and non-

response interval. A one-class classification method based

on a support vector data description (SVDD) algorithm was

employed to combine the information provided by these

features and to classify normal behavior patterns. They

used both real and simulation data to validate the proposed

abnormality detection algorithm in real and possible

anomalous situations. This approach yielded 74.2 % sen-

sitivity and 85.8 % specificity for real data and a higher

performance in the simulation data.

Yin et al. [24] also used a one-class support vector

machine (SVM) approach to detect anomalous activities of

a user from body-worn sensors. Their approach follows a

two-phase pipelined process, which combines a SVM for

filtering out the normal activities with a collection of sec-

ondary classifiers for anomalous activity detection, aimed

at reducing false-positive rate.

Another approach based on a SVM was proposed by Pal-

aniappan et al. [12]. In this case, the authors employed a multi-

class SVM for recognizing the normal activities, and the

anomalous activities were detected by ruling out all possible

activities that could be performed from the current activity.

The whole system was focused on identifying anomalous

activities with less computational time, in order to work effi-

ciently in real time. Indeed, SVMs have been used for

anomalous behavior detection not only with sensor data, but

also with video devices [23]. Wu et al. defined a method where

a discrete Fourier transformation was used to obtain different

features from video data, and a SVM was then employed to

classify the instances into normal or anomalous behaviors.

Other approaches to model behavioral patterns are based

on circadian activity rhythms (CARs). Virone et al. [19]

developed a monitoring system focused on elderly people

living alone, which established behavioral patterns using a

statistical predictive algorithm that modeled CARs and

their deviations. They employed a system composed of

different types of wireless sensors to monitor the health

status and the behavior of an individual within his living

environment [18]. The system analyzed different statistical

metrics, employing the activity and presence level of the

user to detect deviations in the behavioral patterns. They

also constructed a credible interval to identify behaviors

considered as non-habitual.

However, modeling human behavior is still a challeng-

ing problem because there are changes in how each person

performs a specific activity and the human actions are

usually executed in a non-deterministic way. In order to

handle such issues, Bayesian methods provide a good

framework to develop modeling techniques that specifi-

cally take uncertainty into account. Indeed, Bayesian sta-

tistics has been proved to be particularly well suited for

automatic analysis of human behavior [4] and anomaly

detection [5]. In this paper, we postulate that we can pro-

vide an improved estimation of the behavior of a person

statistically through Bayesian probabilistic modeling. In

order to accomplish that, we propose three probabilistic

features related to the monitoring system, that are not

present in the literature, to the best of our knowledge.

2 Sensing system and data collection

In this paper, we have employed datasets generated by a set

of simple state-change sensors installed in three different

environments. The sensing system was chosen according to

two main criteria: ease of installation and minimal intru-

sion. Sensors that need to be worn on the body may be

considered intrusive by the user, and sensors that are easy

to install can increase the overall acceptance of the system.

The system consists of a set of wireless network nodes

to which simple binary sensors are attached. Such wireless

network was manufactured by RFM and included an

energy efficient proprietary firmware. Each wireless node

can be used with a large variety of sensors. We used this

technology because it offers a simple and cheap way to

deploy a highly scalable monitoring system. In our case, a

collection of various sensors to measure different situations

were employed: pressure mats to measure sitting on a

couch or lying in bed; passive infrared sensors to detect

motion in a specific area; contact switches for open–close

states of doors and cupboards; and float sensors to measure

the toilet being flushed. Figure 1 provides an overview of

one of the employed sensors systems.

As previously stated, the system was installed in three

different home settings. For each home setting, a dataset

containing raw measures of the actions of the corre-

sponding user was recorded. Data collected when more

than one person were in the house were excluded. These

datasets are named and described in Table 1.
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Users’ profiles were selected according to their level of

autonomy in order to introduce variability in the ground

truth. The different profiles of the selected candidates are

as follows:

1. A completely autonomous and independent adult man

(‘DatasetA’).

2. An elderly woman diagnosed with Parkinson’s disease

(‘DatasetB’).

3. An autonomous elderly woman with no life-threaten-

ing diseases (‘DatasetC’).

3 Methodology

In this study, we have defined anomalous conditions based

on three different probabilities related to the sensors sys-

tem. We postulate that such probabilities can represent the

behavioral patterns of a person, modeling the distribution

of the next features: (1) when each sensor is activated, (2)

in which order, and (3) for how long.

We use these distributions as priors, meaning that they

reflect our belief, a priori, of what the parameter values

(and therefore the behavior of our subject) should be.

Bayes rule provides the mechanism by which our prior

beliefs can be converted into posterior beliefs when new

data arrives. These behavior features are modeled using

Bayesian statistics because, when proper prior information

is available, Bayesian estimators typically provide more

accurate results with less bias and smaller mean-squared

errors between the true and the estimated values than the

maximum likelihood estimators. Table 2 shows the distri-

butions employed to model our knowledge, and the cor-

responding prior distributions. The precise distribution of

our features is always unknown (because we never have

infinite data to learn that distribution), but, by marginal-

izing out the parameters, we can compute the expectation

of the distribution instead.

3.1 Features for behavioral modeling and anomaly

detection

The three features we propose in this paper to represent

the behavior of a person can provide relevant information

by which to judge the abnormality of human actions and

behavioral patterns. The sensor activation likelihood

(SAL) represents circadian rhythms and hence is of

potential value for long-term health status monitoring.

The sensor sequence likelihood (SSL) may be helpful in

identifying confusional states or delirium. The sensor

event duration likelihood (SDL) is related to the subject’s

physical conditions, such as weaknesses, falls, and unre-

sponsive statuses. Besides, any of them can be very

helpful to determine if the subject suffers from cognitive

disorder.

We consider any of these likelihoods quite informative

and useful as stand-alone, although a combination of

information between these features should be also consid-

ered due to the expected improvement.

3.1.1 Sensor activation likelihood : SAL

SAL estimates the likelihood of each sensor being fired at

each specific time interval. Raw data streams must be pro-

cessed to provide a proper temporal format; thus, the

timeline is discretized into a set of time slices. The times-

lices represent the measurements of the binary sensors taken

at intervals that are regularly spaced with a predetermined

time granularity Dt. Sensor events are denoted as xi
t, indi-

cating whether sensor i is fired at least once between time t

and time t þ Dt, with xi
t 2 f0; 1g. Therefore, in a home

environment with N state-change sensors, a binary obser-

vation vector xt ¼ ðx1
t ; x

2
t ; . . .; xN�1

t ; xN
t Þ

T
is defined for each

time slice (see Fig. 2).

Each sensor observation is modeled as an independent

Bernoulli distribution, where qi
t is the parameter of the i

sensor for time interval t. The likelihood of a sensor i to be

fired at time interval t is then denoted by the following:

Fig. 1 Proposed monitoring system for the subject living alone:

a floor plan of one of the home environments (‘DatasetB’) and

locations of the sensors; b general view of the RFM wireless sensor

nodes

Table 1 Home settings description

DatasetA DatasetB DatasetC

Description Adult man Elderly woman Elderly woman

Setting House Apartment House

Rooms 4 2 5

Days 14 days 25 days 21 days

Sensors 12 12 12
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pðxi
tjqi

tÞ ¼ ðqi
tÞ

xi
tð1� qi

tÞ
1�xi

t : ð1Þ

In this approach, we have adopted a solution for estimating

the parameter qi
t that takes into account not only the current

interval t, but also the values of the sensor in a certain

number of intervals around t. There is no point in trying to

estimate the behavior of a sensor at a particular time when

the activity of such sensor an instant before or after is being

ignored. For this reason, we define a parameter W that

provides a sort of simple sliding window method in the qi
t

parameter estimation process.

Since we are using a Bernoulli likelihood, the natural

conjugate prior has the form of a beta distribution:

pðqi
tjai

t; b
i
tÞ ¼ Betaðqi

tjai
t; b

i
tÞ ¼

1

Bðai
t; b

i
tÞ

qi
t

ai
t�1ð1� qi

tÞ
bi

t�1

ð2Þ

where Bðai
t; btÞ is the beta function. Hence, the posterior

probability for parameter qi
t is denoted by the following:

pðqi
tjxi
ft�W=2g. . .xi

ftþW=2gÞpðxi
ft�W=2g. . .xi

ftþW=2gjqi
tÞ

� pðqi
tÞ / Betaðqi

tjai
t þ Ri

t; b
i
t þ Si

tÞ
ð3Þ

where Ri
t ¼

PtþW=2

z¼t�W=2
ri

zn and Si
t ¼

PtþW=2

z¼t�W=2
si

zn are

respectively the effective number of observations of ones

and zeros for sensor i over the window W centered at t.

Being n a weighting factor to adjust the relevance of

intervals in the window, and

ri
t ¼

1

D

XD

d¼1

11fxi
t¼1g ð4Þ

and

si
t ¼

1

D

XD

d¼1

11fxi
t¼0g ð5Þ

the number of ones and zeros, respectively, for sensor i at

interval t over the D number of days that compose the

dataset; 11f�g denotes an indicator function. For this feature,

we use the values ai
0 ¼ bi

0 ¼ 1, resulting in a non-infor-

mative prior. Finally, by integrating out the parameters of

the model, we estimate the sensor activation likelihood for

sensor i, resulting:

SALtðiÞ ¼ pðxi
t ¼ 1jxi

ft�W=2g � � � xi
ftþW=2gÞ

¼
Z 1

0

pðxi
t ¼ 1jqi

tÞpðqi
tjxi
ft�W=2g � � � xi

ftþW=2gÞdqi
t

¼
Z 1

0

qi
tBetaðqi

tjai
t þ Ri

t; b
i
t þ Si

tÞdqi
t ¼

E½qi
t� ¼ E½qi

t� ¼
ðai

t þ Ri
tÞ

ðai
t þ Ri

tÞ þ ðbi
t þ Si

tÞ

ð6Þ

Figure 3 shows an example of the sensor activation feature

over 24 h when Dt ¼ 60 seconds and W ¼ 50 (50 min).

3.1.2 Sensor sequence likelihood : SSL

The sensor sequence likelihood is estimated to predict the

behavior of the user infering a plausible sensor sequence in

terms of a plan structure. The sequence of sensors activated

by the subject is taken as input. The first step is to extract

the sequence of sensor firings, denoted by S, from the

dataset. The transition probability distribution pðsjjsiÞ rep-

resents the probability that the sensor sj is fired after the

activation of sensor si. This is given by N multinomial

distributions, one for each sensor, where individual tran-

sition probabilities are denoted as hij � pðst ¼ jjst�1 ¼ iÞ.
In this case, transition parameters are assumed to be dis-

tributed as a Dirichlet, so our prior is given by the following:

pðhi
!jgi
!Þ ¼ Dirðhi

!jgi
!Þ ¼ 1

Zðgi
!Þ
� hgi1�1

i1 � � � hgiN�1
iN ð7Þ

Table 2 Overview of the

distributions used to model the

set of features, and the

corresponding prior distribution

Feature Likelihood Prior distribution

Name Name Parameters Name Hyperparameters

Sensor activation Bernoulli q Beta a; b

Sensor sequence Multinomial h Dirichlet g

Sensor event duration Normal l; k Normal-gamma /; j; a; b

Δt Δt Δt Δt Δt

x3

x2

x1

xt xt+1 xt+2 xt+3 xt+4

Fig. 2 Temporal segmentation and relation between sensor readings

xi and time intervals Dt
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ZDirðgi
!Þ ¼

QN
j¼1 CðgijÞ

Cð
PN

j¼1 gijÞ
ð8Þ

where the probabilities sum to one (
P

k hik = 1). For esti-

mating this feature, the non-informative prior is chosen as

8g0 ¼ 1. Hence, the posterior probability for parameter hi
!

,

representing the multinomial distribution of sensor i, is

denoted by the following:

pðhi
!jS; gi

!Þ ¼ Dirðgi1 þ Ui1; . . .; giN þ UiNÞ ð9Þ

where Uij ¼
PS

s¼2 11fst�1¼i;st¼jg is the number of transitions

from sensor i to sensor j in the firing sequence. Finally, we

can determine the probability of the subject to activate the

sensors in a fixed order, estimating the sensor sequence

likelihood from sensor si to sensor sj as follows:

SSLiðjÞ ¼ pðhijjSÞ ¼
gij þ Uij

Ui þ
P

N giN

ð10Þ

Figure 4 shows an example of sensors activation sequence

S over a single day of data.

3.1.3 Sensor event duration likelihood : SDL

The sensor event duration likelihood reflects the duration

of the activities and movements of the subject, which is

likely to be very informative for anomaly detection. First,

sensor data are processed obtaining activation durations for

each sensor, each duration defined in terms of a number of

intervals. As previously stated, data streams are discretized

into a set of time slices regularly spaced with a time

granularity Dt. For each sensor i, there is a set Li :¼
fli1. . .liNg composed by N values, representing the

Fig. 3 Activation likelihood

estimated using frequentist

statistics (solid line) and SAL

(dotted line) for a motion sensor

installed in a sink

Fig. 4 Sequence S of sensor

activations over a single day of

data for dataset ‘DatasetA’

Pers Ubiquit Comput (2015) 19:259–270 263

123



durations in intervals for such sensor, and l being the

averaged mean of the data. The duration of each sensor is

modeled as a normal distribution, where li and ki are the

mean and precision for the duration of the sensor i,

respectively. Such distribution is a well-known solution for

modeling human motion [20]. The likelihood is denoted by

the following:

pðLijli; kiÞ ¼
1

ð2pÞN=2
kN=2

i exp � ki

2

XN

n¼1

ðlin � liÞ2
 !

ð11Þ

In this case, we use a uniform prior with normal-gamma

conjugate priors for the parameters li and ki, so the prior of

the sensor event duration likelihood is as follows:

NGðli; kij/i; ji; ai; biÞ ¼ N ðlij/i; ðjikiÞ�1ÞGaðkijai; biÞ

¼ 1

ZNG

k
ai�1

2

i exp � ki

2
½jiðli � /iÞ2 þ 2bi�

� �

ð12Þ

ZNGð/i; ji; ai; biÞ ¼
CðaiÞ

bai

i

2p
ji

� �1
2

ð13Þ

we use the values ji ¼ ai ¼ bi [ 0:1 and /i ¼ 0, resulting

in a non-informative prior. As in other approaches [9], we

have found no differences when comparing our normal-

gamma prior with other non-informative conjugate priors.

Thus, the posterior probability for parameters li and ki,

representing the normal distribution for the duration of

sensor i, is denoted by the following:

pðli; kijLiÞ ¼ NGðli; kij/0i; j0i; a0i; b0iÞ ð14Þ

where

/0i ¼
jili þ Nl

ji þ N
ð15Þ

j0i ¼ ji þ N ð16Þ

a0i ¼ ai þ N=2 ð17Þ

b0i ¼ bi þ
1

2

XN

n¼1

ðln � lÞ2 þ jiNðl� liÞ2

2ðji þ NÞ ð18Þ

At this point, we can compute the likelihood for sensor i of

being active during l time intervals. The sensor event

duration likelihood is estimated using a Student’s t distri-

bution as follows:

SDLiðlÞ ¼ pðljLiÞ ¼ t2a0
i

lj/0i;
b0iðj0i þ 1Þ

a0ij
0
i

� �

ð19Þ

3.1.4 Anomalies classification

In order to estimate whether an output of any of the pre-

sented features is anomalous or not, we define a Bayesian

credible interval (BCI). Such mechanism has been suc-

cessfully employed in other anomaly detection approaches

[5]. Taking the values of each likelihood at each time

interval, anomalies can be detected sequentially as new

outputs become available by constructing a BCI for each

feature. The marginal posterior distributions of each feature

can be used to construct BCIs for the set of values obtained

from the training data. The p % BCI indicates that the

posterior probability of the current value likelihood is

falling within the interval p; thus, the BCI defines the range

of plausible values for the different features. Hence, any

values that fall outside of the p % BCI are classified as

anomalous. The 100ð1� aÞ% BCI for a new value can be

calculated as follows:

x� za=2

ffiffiffiffiffi
r2
p

ð20Þ

where za=2 is the 100ð1� a=2Þth percentile of a normal

distribution, and r2 is the variance of the marginal pos-

terior distribution in the values prediction. It must be noted

that in some cases (for instance, with the sensor sequence

likelihood), the values considered as anomalies are only

those under the range of plausible values (a sensor transi-

tion is only anomalous when it is very unlikely, not the

opposite).

4 Proposed approach validation

To validate the proposed approach, two different types of

datasets were employed. In order to be a reliable anomaly

detection system, the proposed methodology must be

verified with real data. But, due to the complexity in

properly identifying all of the anomalous events that may

exist in the real data, synthetic data are also included in

the evaluation as proposed by other authors [5, 15], thus

obtaining further validation. Hence, both real and syn-

thetic data were employed to evaluate the performance of

the method in real and possible anomalous situations.

Real data obtained from the sensors were analyzed, and

after being coached by an expert, the abnormal sensor

readings had to be manually identified. Synthetic data

were generated as a complement of the real datasets to

compare the performance of the anomaly detection

method developed in this study. Taking a real dataset as

base, synthetic errors were generated according to the

equation

D� ¼ D� D ð21Þ

where D� is the anomalous measurement, D is the true

measurement, and D is an offset. Using this mechanism,

synthetic anomalies were randomly introduced into each

dataset independently with a frequency of 5 %.
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Therefore, for each one of the datasets described in

Table 1, we have created a corresponding synthetic dataset

where, apart from the real anomalies, a collection of

anomalous measurements have been manually introduced.

Such mechanism is useful to verify whether the perfor-

mance of our approach increases asymptotically as more

anomalous data are added.

It must be noticed that we have not generated the syn-

thetic datasets from scratch, but they are a modified version

of the datasets we have obtained using our instrumented

environments. So, for each real dataset, a synthetic version

of such dataset exists, where the number of anomalies is

considerably higher.

4.1 Setup

Our Bayesian approach was validated splitting the original

data into a test and training sets using a ‘leave one day out’

approach. In this approach, one full day of sensor readings is

used for testing and the remaining days are used as training

data. The process is then repeated for each day and the

average performance measure reported. For these experi-

ments, the data were segmented in intervals of lenght Dt ¼
60 seconds. In previous studies related to the area, such

interval length has been proved to be long enough to be

discriminative and short enough to provide good results [17].

4.2 Parameter optimization

The first experiment performs an individual analysis of the

features proposed in our approach. To test the performance

of the features, both real and synthetic datasets are

employed. The three features are evaluated individually

using three metrics: precision, recall, and F measure. The

precision represents the proportion of predicted anomalies

which actually correspond with an abnormal behavior,

while the recall measures the proportion of actual anoma-

lies which are correctly identified.

The use of these metrics assumes a two-class (normal

and abnormal) problem and calculates the measures with

respect to the number of true positives [10]. Precision and

recall can be calculated using the confusion matrix shown

in Table 3 that reports the number of false positives, false

negatives, true positives, and true negatives. Putting it into

words, the true positives represent the number of anomalies

correctly identified, the false positives represent the num-

ber of normal events incorrectly classified as anomalies, the

true negatives represent the number of normal events cor-

rectly rejected as anomalies, and the false negatives the

number of anomalies incorrectly classified as normal

events.

Precision and recall are often combined into a single

measure known as the F measure, which is a weighted

average of the two measures [8]. Precision and recall

metrics are defined as follows:

Precision ¼ TP

TPþ FP
ð22Þ

Recall ¼ TP

TPþ FN
ð23Þ

while the F measure is defined as follows:

Fmeasure ¼ 2 � Precision � Recall

Precisionþ Recall
ð24Þ

In our approach, the parameter BCI determines the trade-

off between the proportion of actual anomalies and non-

anomalous patterns which are correctly identified.

Tables 4, 5, and 6 show the performance values for the

three different datasets (‘DatasetA,’ ‘DatasetB,’ and ‘Da-

tasetC,’ respectively) when evaluated using BCIs of 80, 85,

90, 95, and 98 %. It can be noticed how, as expected, the

precision increases as BCI narrows. In general terms, the

performance improves when synthetic data are added to

the datasets, due to the incorporation of inherently anom-

alous sensor activations.

The overall performance is highly influenced by the

BCI. The SAL obtains the best results consistently when

using 95 % BCI for both types of data. However, the

performance of the SSL feature is determined by the

data employed requiring a high BCI to obtain a relevant

precision. The SDL, in general terms, performs better

using 98 % BCI for real data and 80 % BCI for syn-

thetic data. Such feature is quite sensitive to the distri-

bution of the data, and when artificial anomalies (and

hence easier to detect) are included, the recall is severely

affected.

5 Results

The main contribution of this study is to use three fea-

tures to assess the daily living pattern of the elderly and

develop an abnormality detection method using Bayesian

probabilistic modeling. The next experiment is aimed to

evaluate the approach when the values of the three fea-

tures are combined as a single output. When combining

Table 3 Confusion matrix in a two-class classification problem

Inferred

Normal Anomalous

Actual

Normal True positive (TP) False negative (FN)

Anomalous False positive (FP) True negative (TN)
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every feature, the system will consider as an anomaly

each time interval where the outcome of any feature is

outside the range of plausible values defined by the BCI.

In this experiment, for further evaluation and comparison

purposes, four describing values were calculated from

each dataset to analyze the performance of the abnor-

mality detection algorithm. In this problem domain, the

size of the positive data is usually small in proportion if

compared with that of the negative class. In cases like

this, where unbalanced data are present, it is common to

use ranking-based evaluation metrics such as area under

the receiver operating characteristic (ROC) [2]. Such area

under the curve (AUC) is defined in terms of true-positive

rate (sensitivity) in function of the false-positive rate

(specificity). Sensitivity and specificity are defined as

follows:

Sensitivity ¼ TP

TPþ FN
ð25Þ

Specificity ¼ TN

TNþ FP
ð26Þ

It can be noticed how sensitivity is equivalent to recall.

Although the accuracy is not a proper measure when

dealing with unbalanced dataset, it is also included in the

comparative for further evaluation. Accuracy is defined as

follows:

Table 4 Individual experiments of the features for dataset ‘DatasetA’

BCI Dataset ‘DatasetA’

SAL SSL SDL

Precision Recall F measure Precision Recall F measure Precision Recall F measure

Real

98 0.92 0.59 0.72 0.34 0.62 0.44 0.86 0.99 0.93

95 0.72 0.99 0.83 0.29 0.62 0.40 0.71 0.99 0.83

90 0.37 0.99 0.54 0.29 0.68 0.41 0.60 0.99 0.75

85 0.25 0.99 0.40 0.28 0.81 0.42 0.43 0.99 0.60

80 0.19 0.99 0.32 0.26 0.87 0.40 0.39 0.99 0.56

Synthetic

98 0.96 0.56 0.71 0.41 0.71 0.52 0.92 0.16 0.27

95 0.89 0.89 0.89 0.32 0.24 0.43 0.92 0.25 0.40

90 0.77 0.90 0.83 0.33 0.78 0.46 0.85 0.32 0.47

85 0.69 0.98 0.81 0.31 0.84 0.45 0.83 0.42 0.56

80 0.63 0.99 0.77 0.29 0.90 0.44 0.80 0.49 0.61

Table 5 Individual experiments of the features for dataset ‘DatasetB’

BCI Dataset ‘DatasetB’

SAL SSL SDL

Precision Recall F measure Precision Recall F measure Precision Recall F measure

Real

98 0.95 0.41 0.57 0.90 0.25 0.39 0.99 0.79 0.86

95 0.77 0.73 0.75 0.91 0.34 0.49 0.25 0.99 0.40

90 0.45 0.91 0.60 0.87 0.40 0.55 0.11 0.99 0.20

85 0.32 0.94 0.48 0.87 0.43 0.58 0.10 0.99 0.18

80 0.25 0.94 0.39 0.82 0.45 0.58 0.08 0.99 0.15

Synthetic

98 0.98 0.68 0.80 0.99 0.28 0.44 0.90 0.25 0.40

95 0.93 0.86 0.90 0.90 0.43 0.59 0.90 0.34 0.49

90 0.82 0.94 0.88 0.69 0.59 0.63 0.87 0.41 0.56

85 0.69 0.98 0.81 0.31 0.84 0.45 0.83 0.42 0.56

80 0.63 0.99 0.77 0.29 0.90 0.44 0.80 0.49 0.61
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Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
ð27Þ

Employing the parameters configuration obtained from the

previous experiment, the performance of our Bayesian

approach is then calculated. Figures 5, 6, and 7 show the

results when the values of the three features are combined

as a single output, for datasets ‘DatasetA,’ ‘DatasetB,’ and

‘DatasetC,’ respectively.

The estimated AUCs show a good performance for all

datasets, and it is specially noticeable for dataset ‘Data-

setC.’ Dataset ‘DatasetA’ obtains a 0.90 and 0.94 AUC for

real and synthetic data, respectively. In the case of dataset

‘DatasetB,’ the values of the AUC are 0.90 and 0.98 for

real and synthetic data, respectively. Our method obtains a

remarkable 0.99 AUC for both types of data in dataset

‘DatasetC.’

It can be noticed from Table 7 how the method is quite

accurate identifying negative results when using our

parameter configuration. Although, in our domain, it can be

more interesting to obtain a higher sensitivity to prevent

anomalous situations, in that case, as shown in previous

tables, by reducing the BCI, the value of the sensitivity will

notably increase, but the overall performance of the

method will be affected.

5.1 Feature performance example

In order to show how the approach can differentiate

between normal and anomalous behaviors, an example

Table 6 Individual experiments of the features for dataset ‘DatasetC’

BCI Dataset ‘DatasetC’

SAL SSL SDL

Precision Recall F measure Precision Recall F measure Precision Recall F measure

Real

98 0.91 0.52 0.66 0.24 0.88 0.38 0.79 0.50 0.62

95 0.87 0.83 0.85 0.92 0.32 0.48 0.26 0.66 0.37

90 0.75 0.95 0.84 0.84 0.49 0.62 0.25 0.82 0.39

85 0.67 0.97 0.79 0.73 0.56 0.64 0.27 0.90 0.42

80 0.60 0.98 0.75 0.68 0.62 0.64 0.30 0.98 0.45

Synthetic

98 0.86 0.38 0.53 0.72 0.99 0.84 0.76 0.47 0.58

95 0.75 0.87 0.80 0.21 0.99 0.35 0.25 0.64 0.36

90 0.47 0.96 0.63 0.11 0.99 0.20 0.25 0.81 0.38

85 0.32 0.98 0.48 0.06 0.99 0.12 0.26 0.89 0.40

80 0.25 0.99 0.41 0.05 0.99 0.11 0.27 0.97 0.42

Fig. 5 ROC curve for dataset ‘DatasetA,’ combining the features

outputs
Fig. 6 ROC curve for dataset ‘DatasetB,’ combining the features

outputs
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using the SAL feature with the ‘DatasetB’ dataset is given

in Fig. 8. We have chosen such dataset because it was

generated by an elderly woman diagnosed with Parkinson’s

disease, and we represent the sensor activation likelihood

because this feature is more illustrative and easier to plot.

When people diagnosed with Parkinson’s disease start to

take medication, they usually notice that their symptoms go

away for hours (ON times), but the symptoms return after a

time (OFF times). During OFF periods, patients experience

stiffness and lack of muscular coordination. During ON

times, patients feel relatively fluid, clear, and in control of

their movement. The fluctuations between ‘ON–OFF’

periods are unpredictable and represent dangerous states.

In Fig. 8b, we can see the averaged value of the SAL

feature over all data for the pressure sensor installed in the

bed. From 11:00 to 21:00, there are four activity peaks that

strictly correspond with OFF periods of the user along

different days. It can be noticed how the system identi-

fies such periods as anomalous behaviors, because the

likelihood of using the bed at that time in a normal day is

very low.

In addition, Fig. 8a shows the value of the SAL feature

for the motion sensor installed in the main door. Apart

from the anomalies detected close to the threshold defined

by the BCI, in this case, a clear anomaly represented by the

activation during the night is noticeable, between 03:00

and 4:00. Such activation matches with a time when the

user had to leave the house to be hospitalized and high-

lights how the approach can be combined with an alarm

system.

5.2 Comparative

Our last experiment was aimed to compare the perfor-

mance of our model with another system that has been

shown to perform well in a similar domain. In our com-

parative, we introduce the approach proposed by Shin et al.

[15], where also three factors are calculated in order to

detect anomalous behavior of elderly people living alone.

These factors are activity level, mobility level, and non-

Fig. 7 ROC curve for dataset ‘DatasetC,’ combining the features

outputs

Table 7 Performance of the approach for each dataset, combining the

features outputs

Specificity Sensitivity Accuracy AUC

Real

DatasetA 0.96 0.77 0.95 0.90

DatasetB 0.99 0.62 0.99 0.86

DatasetC 0.99 0.81 0.99 0.96

Avg 0.98 0.73 0.97 0.90

Synt

DatasetA 0.99 0.83 0.98 0.96

DatasetB 0.99 0.84 0.99 0.96

DatasetC 0.99 0.85 0.99 0.97

Avg 0.99 0.84 0.98 0.96

Fig. 8 Performance examples of the SAL feature for dataset

‘DatasetB’ using real anomalies. Shaded periods of time represent

intervals where anomalous behaviors are identified. a PIR sensor of

the main door, b pressure sensor of the bed
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response interval. A SVDD method was used to classify

normal behavior patterns and to detect anomalous behav-

ioral patterns based on such features.

Although the datasets employed in the validation are

different, the focus of both approaches is similar, and the

domain and metrics employed to evaluate the systems are

exactly the same. Therefore, we consider this comparative

very useful to determine whether our results are satisfac-

tory and comparable to the results obtained with other

similar approaches.

Table 8 shows the results of the comparative between

both systems. The first row shows the performance of our

approach where SAL, SDL, and SSL are employed to

model the data and the BCI to distinguish between normal

and anomalous behaviors. The second row shows the per-

formance of the approach that uses activity level, mobility

level, and non-response interval as features and a SVDD to

classify the behaviors. It can be noticed how the specificity

is significantly better in our case, and the sensitivity is

slightly better in the other approach.

A two-tail Student’s t test at a confidence interval of

95 % reveal how there are no significant differences in

terms of sensitivity, while differences in specificity are

indeed statistically significant.

6 Discussion

The automated behavior analysis system presented here is

geared to monitor the behavioral patterns of an individual

living alone and does not handle the presence of multiple

users.

Experimental evaluation shows not only that the pro-

posed approach offers a very good performance identifying

anomalous events, but also that in terms of specificity, it

performs even better than other established methods, as the

system proposed by Shin et al.

This anomaly detection method is primarily focused on

detecting when something unusual is happening in the

behavior of the user, but more research is still needed to

establish when these anomalous behaviors are truly sig-

nificant from the medical point of view. Given the nature of

the Bayesian method employed, the behavior anomalies are

identified statistically and the system cannot obtain enough

semantic information to provide more details about if an

anomaly represents that the health of the user is whether

recovering or deteriorating. However, the method allows

for a simple tuning of the sensitivity and specificity that

will allow for personalization of the level of service

depending on the situation of the user (from healthy people

to people with cognitive impariment). In an integral system

for assisting elderly and disabled living alone, other

information coming from the home and the healthcare

system should be used to interpret the information coming

from our model, and this could include holiday periods,

clinical appointments, recovery periods after hospital

admissions or surgery, and other information.

Nevertheless, the anomalies analysis provided by this

approach is very suitable to be integrated as an intelligence

provider service into a more complex telecare system, as

the one presented by Williams et al. [21]. Defining several

threshold levels, it is quite straightforward the adaptation of

the statistical output of this approach into an alarm-based

warning system. Besides, the continuous behavior super-

vision devised is much more sensible than current telecare

services, as it detects everyday needs, not only urgent need

for help, and provides a feeling for safety and emotional

support to both the older adult and the family caregivers.

One limitation of the model lies in its inability to

identify periodic variation of users routine behaviors, such

as adopting one routine on weekdays and another on

weekends. Although this problem can be addressed by

separating the data appropriately, how to make this process

automatic remains an open problem.

7 Conclusions

We have presented an anomaly detection method based on

Bayesian statistics that can be effectively applied for

identifying anomalous human behavioral patterns. The

method relies on an approximate estimation of the living

patterns of the user, and on prior knowledge that reflects

our belief, a priori, of how such patterns should be. We

have defined three probabilistic features to model the

behavior of a person, whose value and efficacy as anomaly

detection methods are illustrated using a case study,

involving three datasets collected from different instru-

mented real home environments. The features presented in

this work provide valuable insights about behavioral pat-

terns of the monitored cohort, and Bayesian statistics has

resulted in a very consistent way to reason under the

uncertainty of human behavior.

Since we use Bayesian statistics, our approach easily

integrates any known prior knowledge about the living

patterns of the user, and new data arriving from the sensors

Table 8 Comparative between our Bayesian approach and the system

proposed by Shin et al. [15]

Approach Real data Synthetic data

Features Specificity Sensitivity Specificity Sensitivity

SAL & SDL &

SSL

0.98 0.73 0.99 0.84

NRI & AL &

ML

0.85 0.74 0.85 0.86
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can be incorporated in near real time into the model. The

whole learning process is quite fast, since we do not have

to deal with convergence issues.

We concede that the amount of data to evaluate the

models should be (and will be) increased; nonetheless, we

emphasize that our system offers a good performance in

every dataset and the features presented represent a

promising approach. Moreover, the evaluation showed a

consistent performance even when inherently anomalous

synthetic data were introduced. The results suggest that our

monitoring system and the Bayesian approach presented in

this work can be a valuable framework in a home moni-

toring system.
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