
ORIGINAL ARTICLE

Structural health monitoring by using a sparse coding-based deep
learning algorithm with wireless sensor networks

Junqi Guo • Xiaobo Xie • Rongfang Bie •

Limin Sun

Received: 20 February 2014 / Accepted: 29 April 2014 / Published online: 21 August 2014

� Springer-Verlag London 2014

Abstract Structural health monitoring has received

remarkable attention due to the arising structural safety

problems. Most of these structural health problems are

accumulative damages such as slight changes in structural

deformations which are very hard to be detected. In addi-

tion, the complexity of real structure and environmental

noises make structural health monitoring more difficult.

Existing methods largely use various types of sensors to

collect useful parameters and then train a machine learning

model to diagnose damage level and location, in which a

large amount of training data are needed for the model

training, while the labeled data are rare in the real world.

To overcome this problem, sparse coding is employed in

this paper to achieve structural health monitoring of a

bridge equipped with a wireless sensor network, so that a

large amount of unlabeled examples can be used to train a

feature extractor based on the sparse coding algorithm.

Features learned from sparse coding are then used to train a

neural network classifier to distinguish different statuses of

the bridge. Experimental results show the sparse coding-

based deep learning algorithm achieves higher accuracy for

structural health monitoring under the same level of envi-

ronmental noises, compared with some existing methods.

Keywords Structural health monitoring � Sparse coding �
Wireless sensor network

1 Introduction

Structural deterioration is a growing problem both in China

and around the world. For instance, bridges easily suffer

from persistent traffic, wind loading, material aging,

environmental corrosion, earthquakes and so on. All these

factors can result in structural deficiencies and damages,

which greatly shorten the lifetime of structures. Sometimes

these imperceptible damages may cause serious security

incidents such as collapse and subsidence, which may lead

to significant casualties and loss of properties. For exam-

ple, in August 2012, the Yangmingtan bridge in Harbin city

collapsed with several cars falling down and three people

died. Another serious accident occurred in Hunan province

of China, the Tuojiang bridge under construction suddenly

collapsed, causing 64 workers died. Many facts and

experiences show that the continuously structural health

monitoring is extremely necessary to avoid such incidents

happen.

To solve this problem, great attention has recently been

paid to structural health monitoring (SHM) techniques [1–

5]. The early researches of SHM focus on real physical

models trying to mimic the status of a real structure, which

is called model-driven method [6, 7]. This method uses

mathematical modeling and physical laws to represent the

monitored structure. By analyzing and solving the model,

the degree and location of the damage place can be accu-

rately detected. However, when the complexity of the

J. Guo � X. Xie � R. Bie (&)

Beijing Normal University, Beijing, People’s Republic of China

e-mail: rfbie@bnu.edu.cn

J. Guo

e-mail: guojunqi@bnu.edu.cn

X. Xie

e-mail: to_xiexiaobo@163.com

L. Sun

Beijing Key Laboratory of IOT Information Security

Technology, Institute of Information Engineering, CAS,

Beijing, People’s Republic of China

e-mail: sunlimin@iie.ac.cn

123

Pers Ubiquit Comput (2014) 18:1977–1987

DOI 10.1007/s00779-014-0800-5

monitored structure grows as well as the environmental

factors are taken into consideration, building and solving

such a complex model become much more difficult. Since

the mid-1990s, model-driven method has been gradually

replaced by a kind of new approach named data-driven

method [8–15], in which wireless sensor networks (WSN)

[16–19] companied with machine learning [20] are

employed for better data collection and processing in SHM.

For instance, Worden et al. [21, 22] take an experiment on

laboratory structures by using novel detection algorithms

such as outlier analysis and auto-associative neural net-

work. Hoon Sohn [23] also applies time series analysis

combined with auto-regressive and outlier analysis to

identify different structural conditions of a fast patrol boat.

Since physical data of engineering structures collected by

wireless sensors are intelligently collected and analyzed by

these data-driven methods, structural health problems

hidden in raw data can be promptly detected and remaining

lifetime of architectures may be predicted with less cost of

time and labor.

The intuition behind data-driven approaches for SHM is

simple: When there are some damages occurred in a

structure, properties of the structure may change, which

could be reflected in sensor data. By extracting features

from these raw data, a classifier can be built to distinguish

different statuses of the structure. Therefore, a SHM task is

converted into a classification problem which can be solved

by machine learning-based algorithms such as neural net-

work [24–30] and support vector machine. There are many

advantages of the machine learning-based approaches for

structural health monitoring. First, it is very suitable for

complex structures because their analysis on structure rely

on the data collected by sensor, not the model self. Second,

this kind of method can automatically learn the damage

degree and location according to large amounts of data.

However, performance of such methods heavily depends

on the size of training data, while obtaining enough labeled

data for training brings high cost of time and manpower

which may limit performance of traditional supervised

learning algorithms. Another factor that may affect clas-

sification performance is feature selection. For traditional

supervised learning algorithms, suitable features should be

selected from raw data according to engineering experience

and professional knowledge, which makes feature selection

a challenging task.

To overcome these problems, we seek to apply a sparse

coding-based deep learning algorithm to build a feature

extractor from unlabeled data. Since Geoffrey Hinton

proposed a new method in which a deep ‘‘autoencoder’’

network is trained to learn low-dimensional codes from

high-dimensional input vectors in 2006 [31], deep learning

approaches have gained great interests. So far, deep

learning has beaten many state-of-the-art algorithms in a

wide range of areas. Hinton et al. use deep neural networks

(DNNs) for acoustic modeling in speech recognition and

outperform GMM-HMMs model which has already been

widely used in most current speech recognition systems

[32]. In image classification field, Andrew Ng [33] builds a

nine-layer network to learn a high-level feature detector

from unlabeled images which outperforms most of other

existing methods. Deep learning techniques have also been

extensively studied in natural language processing (NLP)

and achieved many breakthroughs [34–37]. Although deep

learning has been widely studied in many applications, as

far as we know, seldom literatures have introduced deep

learning techniques into SHM.

In deep learning, sparse coding [37] provides an efficient

way to find succinct representations of unlabeled data. It

learns basis functions which capture high-level features in

the data, making classification tasks much easier and more

accurate. In this paper, we employ a sparse coding-based

deep learning algorithm to achieve structural health mon-

itoring of a bridge equipped with a wireless sensor net-

work. The wireless sensor network system is responsible

for data collecting. After data preprocessing stage, we

perform sparse coding to learn valid feature representations

from only unlabeled data. These feature representations

will be taken as the input of neural network to classify

different statuses of structure. The contribution of this

paper is that deep learning techniques such as sparse cod-

ing are firstly introduced in SHM applications.

The rest of this paper is organized as follows: in Sect. 2,

we will discuss data collection, data preprocessing, feature

extraction and the theory of sparse coding in detail. In Sect.

3, experiments setting and results will be given to dem-

onstrate the efficiency of our approach. Finally, a short

conclusion will be drawn in Sect. 4.

2 System design

Basically, the architecture of our system design consists of

three main layers. The first layer is responsible for data

preparation, including data collection and data prepro-

cessing. The second layer is the key layer in which feature

extraction is performed, including sparse coding module

and modal analysis module. The last layer is the classifi-

cation layer, in which we adopt neural network as the

classification algorithm. Figure 1 describes our system

design.

2.1 Data collection

To validate the proposed algorithm in this paper, we

choose a three-span bridge to monitor its health status. As

is shown in Fig. 2, wireless sensors are allocated in joints

1978 Pers Ubiquit Comput (2014) 18:1977–1987

123

and some key parts of the bridge. These sensors will

measure acceleration data in a constant interval and store

them.

Data collected by each sensor can be denoted as a vector

Di ¼ ðd1; d2; . . .; dt; . . .Þ . Our algorithm runs the data in

database every day, so that a report about the current health

situation can be given based on the analytical results.

2.2 Data preprocessing

Generally, data collected by each sensor can be represented

by an unlimited-dimensional vector or a time series. In data

preprocessing stage, these time series are cut into small

pieces by using a time frame, as shown in Fig. 3. Suppose

there are r sensors attached in the bridge, the time frame

size is t, and sampling frequency is f. The number of data

pieces in one time frame is r. If we concatenate these

pieces of data into a vector x ¼ ðp1; p2; . . .; prÞ 2 <r�t�f ,

along with a class label y 2 f1; . . .;Cg, where C denotes

the number of category, then one training example fx; ygis
formed. Repeatedly do the same procedure described

above, we obtain labeled training set of m examples

fðxð1Þl ; yð1ÞÞ; ðxð2Þl ; yð2ÞÞ; . . .; ðxðmÞl ; yðmÞÞg. When the health

status of the bridge is unknown, we can also construct a set

of k unlabeled examples x
ð1Þ
u ; x

ð2Þ
u ; . . .; x

ðkÞ
u 2 <r�t�f .

2.3 Modal analysis

The second layer is the feature extraction layer. Basically,

this layer consists of two steps. In the first step, a sparse

coding algorithm is applied to learn high-level features

from raw acceleration data. We will talk about this topic

later in the next subsection. While in the second step, we

use built-in solver function fe_eig provided by SDT—to

obtain modal frequencies as the complementary features.

The fe_eig function returns the eigendata—including

both mode shapes and natural frequencies—in a structured

matrix with fields .def for shapes and .DOF to code the

DOFs (Degree of freedom) of each row in .def and .data

giving the modal frequencies in Hz. This function can be

call with the following form:

Eigopt ¼ SolutionMethod nm . . .½ �;
Def ¼ fe eig model; eigoptð Þ;

the function parameter model is a matlab structure which

holds the bridge we construct, and eigopt is an array which

describes related parameters with this function. We choose

Lanczos solver as the solution method because it is more

suitable for complex models. Parameter nm represents the

number of mode shapes we need. In addition, we also need

to define load and boundary conditions, materials and

section properties and sensors before using this function.

Modal Analysis

Sparse coding

training

Extract features

input

Data preprocess

merge

merge
70%30%

Neural network

Testing

Training
10 fold

output

Input: sensor
data

Feature extraction

Data preparation

Classification

Fig. 1 System design for structural health monitoring

Fig. 2 Structural health monitoring of a bridge

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

Time (s)

A
cc

el
er

at
io

n
(m

/s
2)

0 10 20 30 40 50 60 70 80 90 100
-10

0

10

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

0 10 20 30 40 50 60 70 80 90 100
-5

0

5

Fig. 3 Data preprocessing

Pers Ubiquit Comput (2014) 18:1977–1987 1979

123

When a structure get damaged, some properties of this

system will also change. Most of the time, these changes will

be directly reflected in the modal frequencies of this struc-

ture. In other word, the modal frequencies are strong indi-

cators for the health statuses of structures. In this paper, we

perform the modal analysis to obtain the modal frequencies

for each status of the structure, and then these frequencies are

merged into the feature vector as a part of features.

2.4 Sparse coding

Another module in the second layer is the sparse coding

module. As we have mentioned in the previous section,

since the labeled data are rare, a method which can make

full use of large amounts of unlabeled data and automati-

cally capture features from input data is preferred. Sparse

coding, which is an unsupervised feature learning algo-

rithm, feeds all the requirements above. Sparse coding was

first proposed by Olshausen and Field [38], which origi-

nally used as an unsupervised computational model of low-

level sensory processing in human beings. Here is the

architecture of a sparse coding:

Sparse coding consists of three layers: an input layer, a

hidden layer and an output layer. Each neuron has weights

connected to all neurons in the next layer. Given an unla-

beled training example set fxð1Þ; xð2Þ; xð3Þ; . . .g, where

xðiÞ 2 <n, sparse coding employs the backpropagation

algorithm, setting the target values to be equal to the

inputs, which means that the sparse coding tries to learn an

identity function hw;bðxÞ � x. If we add a constraint on the

network to limit the number of hidden units, the network is

forced to learn a compress representation of the input. We

can also reconstruct the input data as similar as possible by

using the learned features. In practical, we do not limit the

number of hidden units; instead, we impose a sparsity

constraint on the hidden units to limit the number of

‘‘active’’ units. Informally, if the output of a neuron is close

to 1, we consider it as being ‘‘active,’’ otherwise, it is

‘‘inactive.’’ What we want is to constrain the neurons in

hidden layer to be inactive in most of the time (Fig. 4).

Suppose that a
ð2Þ
j ðxÞ denotes the activation of hidden

unit j, given a specific input x. In forward propagation

process, the activation of hidden layer can be denoted as:

að2Þ ¼ sigmoidðW ð1ÞxÞ. W ð1Þis the weight between input

layer and hidden layer. So the average activation of hidden

unit j can be given by:

q̂j ¼
1

m

Xm

i¼1

½að2Þj ðxðiÞÞ� ð1Þ

We would like to let q̂j be close to a small value q,

which is called the sparsity parameter. To achieve this, we

add an extra term to the objective function that penalizes q̂j

deviating significantly from q. We choose KL divergence

as our penalty term:

XL2

j¼1

q log
q
q̂j

þ ð1� qÞ log
1� q
1� q̂j

ð2Þ

Recall that the cost function of neural network can be

defined as follows:

CðW ; bÞ ¼ 1

m

Xm

i¼1

1

2
hw;bðxðiÞÞ � yðiÞ
�� ��2

� �" #

þ k
2

Xnl�1

l¼1

Xml

i¼1

Xmlþ1

j¼1

ðwðlÞij Þ
2 ð3Þ

So the cost function for sparse coding can be modified as

below:

CsparseðW ; bÞ ¼ CðW ; bÞ þ b
XL2

j¼1

KLðqjjq̂jÞ ð4Þ

where KLðqjjq̂jÞ ¼ q log q
q̂j
þ ð1� qÞ log 1�q

1�q̂j
.

In order to find the optimal parameters of sparse coding,

we need to minimize CsparseðW ; bÞ as a function of W and

b. Batch gradient descent is a proper choice. Each iteration

of gradient descent updates the parameters W, b:

w
ðlÞ
ij ¼ w

ðlÞ
ij � b

o

ow
ðlÞ
ij

CðW ; bÞ ð5Þ

b
ðlÞ
i ¼ b

ðlÞ
i � b

o

ob
ðlÞ
i

CðW ; bÞ ð6Þ

The backpropagation algorithm can compute the partial

derivatives efficiently. However, for sparse coding training,

it will be slightly different from the backpropagation

algorithm. We need to compute a forward pass on all

training examples to compute the average activation q̂j.

Then, a second forward pass will be conducted to do

backpropagation on training examples. Here is the sparse

coding algorithm:

x1

x2

x3

x4

+1

h1

h2

x1

+1

x2

x3

x4

Layer 1

Layer 2

Layer 3

Hw,b(x)

Fig. 4 Architecture of sparse coding

1980 Pers Ubiquit Comput (2014) 18:1977–1987

123

Input : an training example (,)x y

1: Random initialize W and b
2: Perform forward propagation to compute ˆ

jρ
3: for unit i in output layer do

4: () 2

,()

1
|| () || () ()

2
l l

l

nn

iibWi n

i

h x y y a f x
z

δ
∂

= − = − − ⋅
∂

5: end for
6: for 1,..., 2ll n= − do

7: for each neuron i in layer l do

8:
()

()

() ()

l

l i

i l l

i i

aC

a z
δ

∂∂
= ⋅

∂ ∂

9:
1

)()()1(

1

1
()

ˆ ˆ1

l
m

lll

ijij

j j j

zfw
ρ ρ

δ β
ρ ρ

+

+

=

− ′= + − + ⋅
−

⎛ ⎛ ⎞⎞
⎜ ⎜ ⎟⎟
⎝ ⎝ ⎠⎠
∑

10: end for
11: end for
12: compute the partial derivatives.
Output :

13: (1) ()

()
(,)

l l

j il

ij

C W b
w

δ α+∂
=

∂

14: (1)

()
(,)

l

jl

i

C W b
b

δ +∂
=

∂

Algorithm: Backpropagation for sparse coding

Once we have trained a sparse coding, it can learn high-

level features from unlabeled data. To try to understand

what it has learned, we visualize the features captured by

hidden units. Notice that W ð1Þ 2 <h�n denotes the weight

between input layer and hidden layer, and ith row of W ð1Þ

represent the parameters for ith hidden unit. Take ith row

of W ð1Þ as the input of sparse coding, the activation of ith

hidden unit will be maximal. In Fig. 5, we randomly

choose 8 units from 156 hidden units to illustrate features

learned from input data. This figure shows some basic

patterns or features learned by hidden units.

After building a sparse coding to extract features using

unlabeled data, a classifier can be constructed to make

predictions for the statuses of structures. So far, there are

many classification algorithms available; here, we choose a

neural network to build a classifier in consideration of its

high performance and stability. Given a set of training

examples, sparse coding takes these data as input and

extract features ff ð1Þl ; f
ð2Þ
l ; . . .; f

ðmÞ
l g. Then, these features

along with the corresponding class labels will be used to

train a neural network. Similarly, for testing examples, we

also use sparse coding to extract features and employ

neural network to predict the class label of testing

examples.

3 Experiment

3.1 Presentation of structure

The structure considered is a three-span bridge which is

presented in Fig. 6. This bridge is constructed using the

Structural Dynamics Toolbox (SDT [39]) under Matlab

with 150 nodes and 192 elements. The surface of the bridge

is set to be 80 meters long and 8 meters wide, and it has

two lanes in opposite direction. The material of the bridge

is steel. The Young’s modulus and shear modulus of these

materials are assumed to be 210 GPa and 80 GPa,

respectively [40]. Table 1 lists some main material prop-

erties used in our experiment. However, if the bridge has

been damaged or corroded, both of these two parameters

will decline according to the degree of damage or corro-

sion. How these two material factors change will be

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

0 50 100 150 200
-1

0

1

Fig. 5 Features learned by

eight hidden units from input

data

Pers Ubiquit Comput (2014) 18:1977–1987 1981

123

explained in detail later on. The system is excited by a

uniform pressure acting on whole surface of the bridge.

The bridge’s motion is restricted to in plane vibrations. As

shown in Fig. 6, the left and right edges of the bridge

surface are fixed as well as the bottom of three piers.

3.2 Experiment setting

In order to monitor the status of the bridge in real time,

about 36 triaxial accelerometers are allocated on the upper

and bottom surfaces of the bridge, as well as joint places

between bridge surface and piers. The sample frequency of

these sensors is set to be 5 Hz. Each of the sensors records

5 acceleration data every 1 s at the sensor’s location. So

during the period of monitoring, the data record by one

sensor can be regarded as a one-dimensional vector and

data collected by total 36 sensors form a matrix. These

sensor data are our raw data and can be used in feature

extraction latter.

To quantify the damage degree of a bridge and differ-

entiate different statuses of a bridge conveniently, we

define four kinds of scenarios: a healthy scenario and three

damage scenarios. The differences between these scenarios

are Young’s modulus and shear modulus of material at

some predefine locations of the bridge, which are DL1,

DL2 and DL3 (see Fig. 6). For convenience, we also use

d1, d2 and d3 to denote three damage scenarios. In the

healthy scenario, the Young’s modulus and shear modulus

are declared in Table 1. However, when steel becomes

corrupt over time, both Young’ modulus and shear modu-

lus will decrease definitely. Tables 2 and 3 describe the

Young’s modulus and shear modulus reduction at locations

DL1, DL2 and DL3 for three damage scenarios,

respectively.

The condition of a bridge in real world can easily be

subjected to environmental factors, such as wind, humidity,

temperature and even slight disturbance. Changes in

environmental factors will lead to the changes of acceler-

ation data collected by sensors. In order to make the

experiment as realistic as possible, we simply assume all

the environmental noises obey Gaussian distribution with

zero mean and rstandard deviation. The reason for this

assumption is that we cannot list all environmental factors

and we also cannot tell which factors are dominant ones, so

the safest way to analyze is that assuming all the factors

obey Gaussian distribution. Based on this assumption, for

each sample data, environmental noise is added to the

measure data in the following form:

aiðtÞ ¼ aiðtÞ þ Nð0; rÞðtÞ ð7Þ

where aiðtÞ is the acceleration measured at sensor i and

time t and Nð0; rÞ is a Gaussian random variable with zero

mean and r standard deviation. In our simulation, we

choose two different values of r, namely 1 and 0.5, to

represent two different noise levels, respectively.

3.3 Feature extraction

The feature extraction consists of two key steps. In the first

step, the sparse coding algorithm is applied to learn high-

level features from raw acceleration data. While in the

second step, we use built-in solver function fe_eig provided

by SDT—to obtain modal frequencies as complementary

features.

So far, we have defined four kinds of scenarios and two

noise levels for the bridge showed in Fig. 6. For each

scenario under certain noise level, we do a simulation for a

period of time. There are 36 sensors in total, for each

Fig. 6 Three-span bridge with different damage locations

Table 1 Material properties of steel

Symbol Value Unit Physical quantity

E 210000000000 Pa Young’s modulus

Nu 0.285 Poisson’s ratio

Rho 7800 Kg/m^3 Density

G 81712062256 Pa Shear modulus

Eta 0 Loss factor

Alpha 0 /�C Thermal expansion coef

T0 20 �C Reference temperature

Table 2 Young’s modulus reduction at locations DL1, DL2 and DL3

for three damage scenarios considered

Damage case DL1 (%) DL2 (%) DL3 (%)

d1 3 8.5 5

d2 6 15 10

d3 9 30 20

Table 3 Shear modulus reduction at locations DL1, DL2 and DL3

for three damage scenarios considered

Damage case DL1 (%) DL2 (%) DL3 (%)

d1 2.5 7.5 5

d2 5 15 10

d3 10 30 20

1982 Pers Ubiquit Comput (2014) 18:1977–1987

123

sensor, the sample frequency is 5 Hz. If time frame size is

set to 5 s, then we can obtain 900 data from 36 sensors in a

time frame. Actually, this is what we have mentioned in

data preprocessing step. According to the method in data

preprocessing, these 900 data can form into a vector

x ¼ ðp1; p2; . . .; prÞ 2 <1�900. In the experiment, the clas-

sification label is y 2 f1; 2; 3; 4g, which denotes four dif-

ferent scenarios: healthy scenario and three damage

scenario d1, d2 and d3. Here, we use ðxt
l; y

t
lÞ to represent a

labeled example in one time frame. By cutting acceleration

data from all sensors during simulation, we can obtain a set

of training and testing examples:

½Xl; Yl� ¼ fðxð1Þl ; yð1ÞÞ; ðxð2Þl ; yð2ÞÞ; . . .; ðxðtÞl ; y
ðtÞÞg ð8Þ

apart from the labeled training and testing data ½Xl; Yl�, we

also need unlabeled training data to train a sparse coding

feature extractor. In our experiment, we build several

bridges which are similar to the bridge we show in Fig. 6.

For each bridge, same scenarios and noise levels are define

as we have discussed above. But there is a slight difference

this time, we leave out all the labels Y to get a set of

unlabeled data Xu ¼ fx1
u; x

2
u; . . .; xt

ug.
The input of sparse coding model training is a set of unla-

beled data Xu, then the sparse coding training algorithm will be

performed to learn model parameters W and b (weights and

bias among neurons). Our sparse coding model consists of

three layers, with 900 neurons in the input layer, 156 neurons

in the hidden layer and 900 neurons in the output layer. Once

sparse coding has been trained, we feed it with labeled data Xl

and perform the feedforward algorithm by using W and b to

extract features. For each example xl 2 Xl, the output of hid-

den layer is the corresponding feature vector fl 2 <1�156. By

using sparse coding model, we successfully extract features

Fl 2 <m�156(suppose there a m training and testing examples)

from labeled data Xl 2 <m�900. For each dataðxl; ylÞ, we use

sparse coding to obtain a feature vector fl from xl, so the class

label for fl is yl, which is taken from the same xl. Feature matrix

Fl and class label Yl will be further used in the training and

testing phase of classification.

The second step of feature extraction is calculating

modal frequencies of the bridge. In the experiment, we

adopt built-in functions fe_eig in SDT to obtain modal

frequencies. In addition, we also need to define load and

boundary conditions, materials, section properties and

sensors before using this function. For each of four sce-

narios described above (including one healthy scenario and

three damage scenarios), we obtain 20 modal frequencies

in total. Table 4 shows modal frequencies under four dif-

ferent scenarios.

As Table 4 shows, the modal frequencies of the bridge

under different health statuses are also different. More

specifically, the differences in low frequencies are not

obvious, but there are great differences in high frequencies.

With the damage situation of the bridge getting worse, the

high modal frequencies tend to decline, as the last rows of

Table 4 shows. Thus, we add the modal frequencies to

feature vectors and get a new feature matrix F�l 2 <m�176.

3.4 Training and testing

In previous section, we discuss two steps in feature

extraction. So in this section, we will talk about the training

and testing of classification. In the experiment settings, we

define four category of bridge conditions, and in each sit-

uation, we perform data preprocessing and feature extrac-

tion to get feature matrix F�l and class label Yl. By using

these data, we can train a classification model so that we

could predict which category of condition the bridge

belongs to when a new example comes. We build a three-

layer neural network for data classification, with 176 units

in input layer, 85 units in hidden layer and 4 units in output

layer. All the data are divided into two parts: 70 % for

training and 30 % for testing. We also use tenfold cross-

validation to find the optimal parameters of classification

model. Finally, to evaluate and compare the performance

of our algorithm with others, we also implement four

algorithms for comparison. They are neural network

without sparse coding, logistic regression (LR) [41], soft-

max regression (SR) [42] and decision tree (DT) [43].

Table 4 Modal frequencies under different scenarios

Health (Hz) d1 (Hz) d2 (Hz) d3 (Hz)

13.529619 13.52883 13.52796 13.52591

13.577989 13.57679 13.57553 13.57278

13.663792 13.66153 13.65922 13.65438

13.796059 13.7941 13.79204 13.78755

13.989928 13.98504 13.98007 13.9698

14.270259 14.26374 14.25718 14.24385

14.678254 14.66927 14.6602 14.64171

15.284126 15.27227 15.26038 15.23649

16.212584 16.19736 16.18205 16.15112

17.698144 17.67868 17.6592 17.62018

20.219783 20.20174 20.18364 20.14725

24.893324 24.86077 24.82812 24.7624

33.887029 33.88702 33.88702 33.88702

34.999965 34.96146 34.9227 34.8443

66.089337 66.01031 65.92995 65.7642

68.100046 68.10002 68.09999 68.09993

102.9711 102.9077 99.04077 90.67022

106.44299 102.9711 101.7434 96.53754

106.52954 104.194 102.8209 98.59637

106.67012 104.8181 102.9722 101.4132

Pers Ubiquit Comput (2014) 18:1977–1987 1983

123

3.5 Classification accuracy

Classification accuracy is a popular metric to evaluate the

performance of classification algorithms. ‘‘Accuracy’’

reflects the percentage of examples that algorithms guess

correctly in the total testing examples. In the experiment,

we select 10 different sizes of training set to testify our

approach. For each training set, we use 70 % of data for

training and the other for testing. We first run our experi-

ment under the condition that contains environmental noise

of Nð0; 1Þ. Figure 7 shows accuracy of all the algorithms

with the increase of the number of examples.

As is illustrated in Fig. 7, the test accuracy of all the

algorithms goes up as the training set size increases. The

accuracy of our algorithm increases dramatically when the

training set size below 300 and then goes up steadily as the

training set size grows, reaching an accuracy about 98 %.

Neural network without sparse coding achieves 96 % and

softmax regression approaches to 94 %. The other two

methods only achieve an accuracy below 90 %.

Figure 8 compares accuracy of our algorithm with other

ones when environmental noise Nð0; 0:5Þ is added. Because

of the impact of noise, the accuracy of neural network drops

to about 93 %. However, our algorithm still achieves a rel-

ative high accuracy, i.e., 98 %, which indicates that sparse

coding can tolerate much more noise than other algorithms.

The accuracies of the other four algorithms go down to 85 %

or less. Note that the vibration magnitude of a bridge is small;

so when the standard deviation of noise is smaller, the noise

signal will be more similar to the original signal, which may

have a strong interference on the raw data. Thus, compared

with the first scenario, traditional algorithms suffer more

performance degradation. However, sparse coding shows a

better noise tolerance performance than other algorithms.

Compared with input data which exist correlations among

them, the noise signals are always disorder or irregular,

sparse coding can capture these correlations from input data

and filter some random noises at the same time; this could

explain why sparse coding can tolerate more noises than

others methods.

3.6 Recall rate

Recall rate is another important metric to evaluate the

performance of classification algorithms. We calculate the

recall rate under two different environmental noise condi-

tions and compare our algorithm with the other four

algorithms. Figure 9 shows the recall rate with noise level

Nð0; 1Þ, while Fig. 10 shows the recall rate with noise level

Nð0; 0:5Þ.
In both of these two figures, our method has achieved

acceptable rates, compared with the other approaches. In

Fig. 9, although neural network and softmax regression

perform relatively well, the recall rate of our algorithm gets

a little bit higher. In Fig. 10, all the algorithms suffer from

the stronger noise and the corresponding recall rate drops

obviously, except our method. The comparisons between

all the approaches under two different noise conditions also

show us that the proposed algorithm can achieve a better

performance when environmental condition changes.

3.7 F1-score

Precision and recall rate are two most commonly metrics to

reflect different aspects of performance of classification

algorithms. However, there is a trade-off between them. By

investigating each of them separately, we are hardly to tell

which algorithm is better. Fortunately, F1-score combines

0 200 400 600 800 1000
55

60

65

70

75

80

85

90

95

100
Classification Accuracy

Trainning set size

A
cc

ur
ac

y(
%

)

Sparse coding

Neural network

Logistic regression
Softmax regression

Decision tree

Fig. 7 Classification accuracy with noise level * N(0, 1)

0 200 400 600 800 1000
55

60

65

70

75

80

85

90

95

100
Classification Accuracy

Trainning set size

A
cc

ur
ac

y(
%

)

Sparse coding

Neural network

Logistic regression
Softmax regression

Decision tree

Fig. 8 Classification accuracy with noise level * N(0, 0.5)

1984 Pers Ubiquit Comput (2014) 18:1977–1987

123

both of them and gives us a comprehensive understanding

of the performance of algorithms. Here is the definition of

F1-score:

F1 � score ¼ 2 � precision � recall

presionþ recall
ð9Þ

As the same as accuracy and recall rate analysis, we also

calculate this metric under two environmental noise levels.

Figures 11 and 12 show the F1-score with all the five

classification algorithms.

Similar to recall rate, when the noise level is low, all

algorithms can achieve a good performance, as Fig. 11

shows. The F1-score of neural network and softmax

regression are 96 and 94 % roughly, while our method can

achieve a F1-score about 98 %. In Fig. 12, the F1-score of

neural network and softmax regression decreases to 93 and

87 %, respectively. Similarly, the F1-score of logistic

regression and decision tree is a little bit lower, about

85 %. However, our method can still hold a relatively high

F1-score, despite the effect of a stronger noise level.

Compare with the two figures, it is obvious that our method

has a better performance than others in a real situation

application.

4 Conclusion

In this paper, we apply deep learning techniques combined

with a wireless sensor network for SHM and propose a

new method using sparse coding to learn a feature

0 200 400 600 800 1000
65

70

75

80

85

90

95

100
Recall rate

Trainning set size

R
ec

al
l(%

)

Sparse coding

Neural network

Logistic regression
Softmax regression

Decision tree

Fig. 9 Recall rate with noise level *N(0, 1)

0 200 400 600 800 1000
65

70

75

80

85

90

95

100
Recall rate

Trainning set size

R
ec

al
l(%

)

Sparse coding

Neural network

Logistic regression
Softmax regression

Decision tree

Fig. 10 Recall rate with noise level *N(0, 0.5)

0 200 400 600 800 1000
55

60

65

70

75

80

85

90

95

100
F1 Score

Trainning set size

F
1

S
co

re
(%

)

Sparse coding

Neural network

Logistic regression
Softmax regression

Decision tree

Fig. 11 F1-score with noise level *N(0, 1)

0 200 400 600 800 1000
60

65

70

75

80

85

90

95

100
F1-score

Trainning set size

F
1

S
co

re
(%

)

Sparse coding

Neural network

Logistic regression
Softmax regression

Decision tree

Fig. 12 F1-score with noise level *N(0, 0.5)

Pers Ubiquit Comput (2014) 18:1977–1987 1985

123

representation to enhance classification performance. From

the simulation, the learned features from sparse coding not

only improve the performance of classification but also

make our approach more tolerant to environmental noises.

Performance comparison also demonstrates the efficiency

and robustness of our algorithm.

5 Future work

Although our method performs very well in the simulation

experiments, the actual performance still need to be testify

in a real scenario. In the feature work, we will choose a real

bridge and apply our method proposed in the paper to

check its availability. In addition, the real health monitor-

ing will be much more complicated and some unpredict-

able problems still need to be further discussed.

Acknowledgments This research is sponsored by National Natural

Science Foundation of China (61171014,61272475, 61371185) and

the Fundamental Research Funds for the Central Universities

(2013NT5, 2012LYB46) and by SRF for ROCS, SEM.

References

1. Li A, Ding Y, Wang H, Guo T (2012) Analysis and assessment of

bridge health monitoring mass data—progress in research/

development of ‘‘Structural Health Monitoring’’. Sci China

Technol Sci 55(8):2212–2224

2. Ye XW et al (2012) Statistical analysis of stress spectra for

fatigue life assessment of steel bridges with structural health

monitoring data. Eng Struct 45:166–176

3. Huang Y et al (2014) Robust Bayesian compressive sensing for

signals in structural health monitoring. Comput Aided Civil In-

frastruct Eng 29(3):160–179

4. McCague C et al (2014) Novel sensor design using photonic

crystal fibres for monitoring the onset of corrosion in reinforced

concrete structures. J Lightwave Technol 32(5):891–896

5. Mujica LE et al (2014) A structural damage detection indicator

based on principal component analysis and statistical hypothesis

testing. Smart Mater Struct 23(2):25014–25025

6. Ofsthun, SC, Wilmering TJ (2004) Model-driven development of

integrated health management architectures. Aerospace confer-

ence, 2004. proceedings. 2004 IEEE. vol 6. IEEE

7. Biswas G, Sankaran M (2007) A hierarchical model-based

approach to systems health management. Aerospace conference,

2007 IEEE. IEEE

8. Tian Zhigang, Zuo Ming J (2010) Health condition prediction of

gears using a recurrent neural network approach. IEEE Trans

Reliab 59(4):700–705

9. Fukushima Kunihiko (1980) Neocognitron: a self-organizing

neural network model for a mechanism of pattern recognition

unaffected by shift in position. Biol Cybern 36(4):193–202

10. Allen DW, et al (2001) Damage detection in building joints by

statistical analysis. IMAC-XIX: a conference on structural

dynamics, vol 2

11. Guidorzi R et al (2014) Structural monitoring of a tower by

means of MEMS-based sensing and enhanced autoregressive

models. Eur J Control 20(1):4–13

12. Ji S, Sun Y, Shen J (2014) A method of data recovery based on

compressive sensing in wireless structural health monitoring.

Math Probl Eng 2014:546478. doi:10.1155/2014/546478

13. Torres-Arredondo, MA et al (2014) Data-driven multivariate

algorithms for damage detection and identification: evaluation

and comparison. Struct Health Monit 13.1:19–32

14. Sung SH et al (2014) A multi-scale sensing and diagnosis system

combining accelerometers and gyroscopes for bridge health

monitoring. Smart Mater Struct 23(1):015005

15. Rahmatalla Salam et al (2014) Finite element modal analysis and

vibration-waveforms in health inspection of old bridges. Finite

Elem Anal Des 78:40–46

16. Antunes PC et al (2014) Dynamic structural health monitoring of

a civil engineering structure with a POF accelerometer. Sensor

Rev 34.1:36-41

17. Boukabache H et al (2011) Sensors/actuators network develop-

ment for aeronautics structure health monitoring. Sensors, 2011

IEEE. IEEE

18. Junqi G, Hongyang Z, Yunchuan S et al (2013) Square-root

unscented Kalman filtering based localization and tracking in the

internet of things. Personal Ubiquitous Comput. doi:10.1007/

s00779-013-0713-8

19. Deraemaeker Arnaud, Preumont André (2006) Vibration based

damage detection using large array sensors and spatial filters.

Mech Syst Signal Process 20(7):1615–1630

20. Bishop CM, Nasrabadi NM (2006) Pattern recognition and

machine learning, vol 1. Springer, New York

21. Worden Keith, Manson Graeme, Allman David (2003) Experi-

mental validation of a structural health monitoring methodology:

part I. Novelty detection on a laboratory structure. J Sound Vib

259(2):323–343

22. Manson Graeme, Worden Keith, Allman David (2003) Experi-

mental validation of a structural health monitoring methodology:

part II. Novelty detection on a Gnat aircraft. J Sound Vib

259(2):345–363

23. Sohn H et al (2001) Structural health monitoring using statistical

pattern recognition techniques. J Dyn Syst Meas Control

123(4):706–711

24. Yoon H et al (2013) Algorithm learning based neural network

integrating feature selection and classification. Expert Syst Appl

40(1):231–241

25. Xiaobo X, Junqi G, Hongyang Z et al (2013) Neural-network

based structural health monitoring with wirless sensor networks.

9th international conference on natural computation and 10th

international conference on fuzzy systems and knowledge dis-

covery (ICNC’13-FSKD’13)

26. Malhi Arnaz, Yan Ruqiang, Gao Robert X (2011) Prognosis of

defect propagation based on recurrent neural networks. IEEE

Trans Instrum Meas 60(3):703–711

27. Na S, Lee HK (2013) Neural network approach for damaged area

location prediction of a composite plate using electromechanical

impedance technique. Compos Sci Technol 88:62–68

28. Dackermann U et al (2013) Identification of member connectivity

and mass changes on a two-storey framed structure using fre-

quency response functions and artificial neural networks. J Sound

Vib 332(16):3636–3653

29. Yan LJ et al (2013) Substructure vibration NARX neural network

approach for statistical damage inference. J Eng Mech Asce

139(6):737–747

30. Kao CY, Loh CH (2013) Monitoring of long-term static defor-

mation data of Fei-Tsui arch dam using artificial neural network-

based approaches. Struct Control Health Monit 20(3):282–303

31. Hinton Geoffrey E, Salakhutdinov Ruslan R (2006) Reducing the

dimensionality of data with neural networks. Science 313(5786):

504–507

1986 Pers Ubiquit Comput (2014) 18:1977–1987

123

http://dx.doi.org/10.1155/2014/546478
http://dx.doi.org/10.1007/s00779-013-0713-8
http://dx.doi.org/10.1007/s00779-013-0713-8

32. Hinton G et al (2012) Deep neural networks for acoustic mod-

eling in speech recognition: the shared views of four research

groups. Signal Process Mag IEEE 29(6):82–97

33. Le QV (2013) Building high-level features using large scale

unsupervised learning. acoustics, speech and signal processing

(ICASSP), 2013 IEEE international conference on. IEEE

34. Turian J, Lev R, Yoshua B (2010) Word representations: a simple

and general method for semi-supervised learning. Proceedings of

the 48th annual meeting of the association for computational

linguistics. Association for Computational Linguistics

35. Socher R et al (2011) Dynamic pooling and unfolding recursive

autoencoders for paraphrase detection. NIPS 24

36. Socher R et al (2011) Parsing natural scenes and natural language

with recursive neural networks. In: Proceedings of the 28th

international conference on machine learning (ICML-11)

37. Lee H et al (2007) Efficient sparse coding algorithms. Adv Neural

Inf Process Syst 19:801

38. Olshausen Bruno A (1996) Emergence of simple-cell receptive

field properties by learning a sparse code for natural images.

Nature 381(6583):607–609

39. SDTools, Structural Dynamics Toolbox. http://www.sdtools.com

40. Young’s modulus, Wikipedia. http://en.wikipedia.org/wiki/Young’s_

modulus

41. Hosmer Jr, DW, Lemeshow S, Sturdivant RX (2013) Applied

logistic regression. Wiley. com

42. Dunne RA, Campbell NA (1997) On the pairing of the softmax

activation and cross-entropy penalty functions and the derivation

of the softmax activation function. In: Proceedings of the 8th

Australian conference on the neural networks, Melbourne, 181,

vol 185

43. Magerman DM (1995) Statistical decision-tree models for pars-

ing. In: Proceedings of the 33rd annual meeting on association for

computational linguistics. Association for Computational

Linguistics

Pers Ubiquit Comput (2014) 18:1977–1987 1987

123

http://www.sdtools.com
http://en.wikipedia.org/wiki/Young%e2%80%99s_modulus
http://en.wikipedia.org/wiki/Young%e2%80%99s_modulus

	Structural health monitoring by using a sparse coding-based deep learning algorithm with wireless sensor networks
	Abstract
	Introduction
	System design
	Data collection
	Data preprocessing
	Modal analysis
	Sparse coding

	Experiment
	Presentation of structure
	Experiment setting
	Feature extraction
	Training and testing
	Classification accuracy
	Recall rate
	F1-score

	Conclusion
	Future work
	Acknowledgments
	References

