
ORIGINAL ARTICLE

Evaluating children performance with graphical and tangible
robot programming tools

Theodosios Sapounidis • Stavros Demetriadis •

Ioannis Stamelos

Received: 27 July 2013 / Accepted: 22 April 2014 / Published online: 1 May 2014

� Springer-Verlag London 2014

Abstract This paper presents a cross-age study exploring

children’s performance on robot introductory programming

activities with one tangible and one isomorphic graphical

system. Both subsystems are parts of an innovative system,

namely the PROTEAS kit. The tangible subsystem consists

of cube-shaped blocks that represent simple and more

advanced programming structures. Users may interconnect

the cubic-shaped commands and so create the robot pro-

gramming code. The graphical subsystem presents onsc-

reen an isomorphic to the tangible programming space.

Children (N = 109) of five different aged groups were let

to interact in pairs with the two operationally equivalent

programming subsystems with the scope to program a NXT

Lego robot. Three variables associated with children per-

formance upon tasks and four variables related with per-

formance during free interaction were studied. Data

analysis based on computer logs and video recordings

showed that children produced fewer errors, made more

effective debugging and younger children in particular

needed less time to accomplish the robot programming

tasks with the tangible subsystem. Moreover, during free

interaction, elder children were more engaged, created

more complicated programs and explored different com-

mands and parameters more actively in the tangible case.

Finally, interpretation of the findings is provided and the

advantages of tangible user interfaces in children’s intro-

ductory programming are discussed.

Keywords Computer science education � Educational

technology � Educational robot � Introductory

programming � Tangible programming � Tangible user

interface

1 Introduction

Since early 1960s, children programming has been a wide

field of research. Drawing on Papert’s constructionism

ideas [1], a number of programming languages for children

and novice users have been developed [2]. At the begin-

ning, the programming tools were based on text and

graphical user interfaces (GUIs) and later on tangible user

interfaces (TUIs). Using keyboard or mouse, text and GUI

systems allowed users to create programming structures

either by typing commands or by dragging and connecting

icons on a computer screen. Later, taking away keyboard

and mouse, other developers based on TUIs created lan-

guages where children could acquire programming expe-

riences by simply interacting with physical objects [3, 4].

Some of the most influential languages of this kind include

AlgoBlock by Suzuki and Kato [5], Electronic blocks by

Wyeth and Purchase [6] and finally, Quetzal–Tern by Horn

et al. [7].

Despite the various design efforts and the theoretical

frameworks [3] related to TUIs and children education,

there is a lack of (a) empirical research investigating the

possible advantages of the TUIs against graphical inter-

faces [8, 9] and (b) design guidelines and available tools

that combine tangible and graphical programming capa-

bilities [10]. Thus, this work presents a series of design

T. Sapounidis (&) � S. Demetriadis � I. Stamelos

Department of Informatics Aristotle, University of Thessaloniki,

Thessalonı́ki, Greece

e-mail: teo@auth.gr

S. Demetriadis

e-mail: sdemetri@auth.gr

I. Stamelos

e-mail: stamelos@auth.gr

123

Pers Ubiquit Comput (2015) 19:225–237

DOI 10.1007/s00779-014-0774-3



guidelines aiming to offer ideas and directions to future

designers, and in addition, comparing tangible and graph-

ical programming tools provides empirical evidence

showing the possible performance advantages and disad-

vantages of tangible against graphical programming for

children.

2 Background

TUIs in general may be considered as physical objects

whose manipulation may trigger various digital effects,

providing ways for innovative play and learning for chil-

dren or novice [11]. Developers, taking advantage of this

playfulness, created applications in fields such as quiz

representation [12], storytelling [13], home automation

[14] and introductory programming for children [4, 15].

Programming appears a quite challenging process for

beginners of all ages [2]. Users have difficulties not only in

learning a rigid syntax and commands with confusing

names, but also in using the programming environment as

well [16]. Reducing learning difficulties originating from

the programming environment is considered to be one of

the TUIs advantages, since TUI users do not have to

familiarize with keyboard or mouse, while they are natu-

rally skilled to direct manipulate physical objects, such as

cubes and puzzles [17]. Consequently, it is believed that

tangible systems reduce the required cognitive effort to

learn how the system works, and users’ attention may be

exclusively devoted on the programming itself [18].

The systems that seam to have influenced the develop-

ment of tangible programming are (a) AlgoBlocks [5] that

was the first that introduced the cubic-shaped commands,

(b) Tangible Programming Brick by McNerney [19] that

was the first that clearly introduced the use of parameters,

(c) Electronic Blocks [20] that let children build pro-

grammable robots or simple mechanisms by simply snap-

ping together the block primitives and (d) Tern [21] that

was the first that employed a scanning system in order to

identify the connected commands and so create the pro-

gram sequence through an automatic identification.

Although pioneering work has been already done in the

domain of construction of such systems, there is still a lack

of available tools [10] and design guidelines.

2.1 Comparison studies between graphical and tangible

programming languages

A number of studies attempting to compare tangible

against isomorphic graphical systems in various domains

have reported controversial results, and this strongly

emphasize the need for further research in order to examine

the circumstance under which each type of interface offers

more benefits in a real-class context [22, 23]. Particularly,

in the domain of programming, there is a notable lack of

such empirical works [3]. Comparative works on tangible

and graphical systems with analogous features (such as

similar shape, appearance, functionality) produced inter-

esting findings, focusing primarily on fun and enjoyment

[24]. Kwon et al. [10] performed a comparison between

Algorithmic Bricks with Scratch [25]; however, the sys-

tems were not isomorphic. Horn et al. [26] compared a

passive tangible against a similar graphical programming

language in informal learning setting at the Boston

Museum of science. This study revealed some advantages

of the tangible programming language against the graphi-

cal. For instance, it was found that the passive tangible

language was more attractive and supportive for active

collaboration.

Finally, Sapounidis and Demetriadis [22] explored

children’s opinions regarding tangible and graphical pro-

gramming. The results showed that the tangible interface

was considered more attractive especially for girls, more

enjoyable and finally easier to use only for younger

children.

Even though tangibles are believed to be more efficient

than GUIs, there is limited research that systematically

explores the cognitive and social advantages of TUIs

compared to GUIs [8, 27]. In particular, the impact of

tangible environments and the conditions under which the

handling of tangible objects can be more efficient for

children or novice, in various domains, such as program-

ming, have not been studied sufficiently and remains

mainly unexplored [2, 18].

2.2 Research motivation and questions

Taking into account the limited empirical research [9, 28]

on TUIs and particular in relation to quantitative outcomes

[29], the present work sets a twofold objective. First, to

illustrate a series of design principals in order to offer new

ideas and directions to designers of such tools; second, to

provide empirical evidence on the possible (dis-) advan-

tages of TUIs (compared to isomorphic GUIs), when used

for children introductory programming; The measurements

and data analysis aimed to address children’s performance

on predetermined tasks and during free interaction. In

detail, regarding performance upon tasks the research

questions are:

RQ1. Do children perform significantly better with one

specific interface, when task-solving time is considered?

RQ2. Do children perform significantly better with one

specific interface when number of errors is considered?

RQ3. Which interface is more appropriate for efficient

debugging when an error occurs?

226 Pers Ubiquit Comput (2015) 19:225–237

123



Regarding free interaction session, the research ques-

tions are:

RQ4. When children may freely use either a GUI or a

TUI programming interface, do they engage more with

one specific interface?

RQ5. When children may freely use either a GUI or a

TUI programming interface, do they produce longer

programs with one specific interface?

RQ6. Do children explore more commands and param-

eters when working with one specific interface?

RQ7. When children may freely use either a GUI or a

TUI programming interface, what is the complexity of

the code they develop?

Answers to the above questions would provide insight

into the possible TUIs versus GUIs (dis-)advantages in

introductory programming for children.

3 The tools implemented

3.1 Design consideration guidelines

Although TUIs is generally believed to be easier to learn

and use, it is more difficult to design and build than other

traditional interfaces [30]. In designing and constructing

our system, we took into account the suggestions, the

advantages and the deficiencies of the previous design

approaches as they appear in the related literature.

In detail the issues we addressed and took into account

were:

Both tangible and graphical interface The development

of a system that offers both tangible and graphical pro-

gramming capabilities may give the possibility of a fluid

and balanced transition between TUI and GUI, in relation

to the age and user experience [7]. Furthermore, the pos-

sibility to program with two isomorphic environments

gives a unique opportunity to study the advantages of

tangibles in relation to GUIs (e.g., [8, 31]).

Cost and portability Because of cost and complexity

issues, the construction of tangible systems for programming

is considered to be resource consuming for research purposes

[30], a fact that might explain the lack of evaluations in real

classrooms settings [10]. To reduce the cost and simulta-

neously achieve high portability, we developed an active

tangible programming language based on reliable microcon-

trollers and low cost D9 and D25 connectors. This way the

programming activity can be done in any surface allowing to

freely develop the activity in a more dynamic way [32].

Reduction in the physical and conceptual distance between

input and output To eliminate the distinction between

tangible actions and their effect, which are the results of the

implemented program, both actions and effects should be

presented in the same physical place [15, 32–35]. To

achieve a better physical coupling between performed

actions and their effects, in our approach, users program in

the real environment with real cubes and inspect the out-

come of their program in the same physical space with a

real robot [36, 37].

Collection of commands and parameters Supporting

procedural programming with an enhanced set of com-

mands and parameters makes system usage interesting and

challenging to even elder children [16]. In order to satisfy

the above, our system was designed to support a plethora of

commands beyond just the ‘‘move’’ commands and more

parameters than just numbers; moreover, it allows users to

familiarize with concepts such as procedure, repetition and

condition [2]. Furthermore, the system introduces the

functionality to save and reuse the program code which had

been created by someone else [38, 39] or exchange it with

other users [40].

Interaction with the user on the interface An increased

user–system interaction is a desirable aspect in this kind of

systems [16, 34]. For this purpose, we developed two

additional functions; the first informs the user about the

internal state of the system and second informs the user

about any possible syntax error. Both actions occur with

appropriate indications on the interface and so no external

screen or other means are needed.

Physical properties and characteristics The development

of a system that has properties and physical characteristics

which may be useful during interaction. In our approach for

the tangible subsystem, we used a combination of con-

nectors in order to set the appropriate constraints on the

users [41]. The goal is to prevent users from plugging a

parameter cube in the place of a command cube or connect

the blocks in the other way round. This physical property

may reduce the users’ cognitive load because the interface

itself ‘‘informs’’ users for what they should not do. Finally,

it seems that the inclusion of some material characteristics

in the interfaces (temperature, shape, color, texture, sound,

etc.) may bring the interfaces closer to the concepts and the

operations they depict [42, 43]. For this reason in our

tangible subsystem, cube weight has been adequately

adjusted for example the parameter 4 has two times the

weight of the parameter 2.

Availability To increase system’s availability, the whole

design was built upon common sensors and an easy to find,

in many schools, Lego NXT robot. Finally, batteries are not

required for the blocks and in general for the whole system,

so continuous operation is assured without recharging.

Pers Ubiquit Comput (2015) 19:225–237 227

123



Reliability To increase system reliability, serial protocols

were employed and consequently the number of commands

that can be connected is not limited by the I/O ports of the

microcontrollers used [3]. Furthermore, the cubes have

embedded intelligence and are able to carry out self-check

procedures concerning various issues such as quality of

power supply and connectivity with neighboring blocks. If

a problem is detected, each cube tries to deal with it on its

own. In any case, the user gets an indication of proper

operation on the blocks.

Affordability The ability to depict a wide variety of

concepts [34, 44]. To this end, by making some minor

modifications on the computer software and changing the

photos on the boxes, cognitive tasks can be implemented

with the same graphical and tangible system [45]

3.2 PROTEAS kit

PROTEAS (PROgramming TangiblE Activity System) is

an assembly including one graphical (V-ProRob) and two

tangible robot programming tools (T_Butterfly) [46] and

(T-ProRob). In the following, we present the tangible

T-ProRob and the graphical V-ProRob subsystems which

have been used in our study.

T_ProRob The T_ProRob (tangible) subsystem consists

of Plexiglas command and parameter cubes. By combining

the cubes, users are able program an NXT Lego robot. An

indicative program structure is shown in Fig. 1.

In this program, the Lego’s NXT robot will do the fol-

lowing: (a) two steps backwards (b) make a sound (c) then

a nested loop will executed, the robot for three times will

make a delay and then with the inner loop will move in a

square route (d) when the nested loop has been completed,

the robot will carry out a check using the light sensor. If no

light is detected, the robot’s lamp will turn on.

Users can perform robot moving control actions such as

‘‘move one step forward/backward,’’ ‘‘turn left/right’’ and

also commands such as ‘‘turn off the light’’ and ‘‘make a

sound.’’ Furthermore, repetition and condition program-

ming structures are available, supporting more complicated

combinations like nested repetitions and conditions.

Finally, a special cube, where users can save their program

code and reuse it later, as a function in other programs,

completes the set of commands.

After the connection of the desired commands and

parameters with the ‘‘father box,’’ user may initiate the

program execution by pressing the run button located on the

top of the ‘‘father box.’’ Then, the father box ‘‘reads’’ and

forwards the program to a remote computer using an RS232

cable or Bluetooth. The computer records the program in a

database and after compilation transmits the code for exe-

cution to the Lego NXT robot using Bluetooth. She bidi-

rectional communication between robot and cubes allows

for increased user–system interaction. While the program is

executed, the robot can, for example, report to the condition

command cube that the result of a measurement was posi-

tive or negative. Then, the condition command informs the

user by turning on the appropriate LED on the cube. Fur-

thermore, users are informed, in synchronous mode, of a

potentially ‘‘wrong’’ (non-acceptable) parameter connec-

tion through a LED indication on the parameter cube.

V-ProRobL V_ProRob was designed based on T_Pro-

Rob’s functionality and offers a reliable graphical iso-

morphic equivalent. The subsystem presents onscreen the

same features and operation as T_ProRob does.

In Fig. 2, an indicative program structure with V_ProRob

is depicted. The functionality of the program is identical with

Fig. 1 Father box and an

indicative program with

T_ProRob

228 Pers Ubiquit Comput (2015) 19:225–237

123



the program previously presented with T_ProRob. With this

graphical subsystem, users can create program sequences by

arranging the available commands and parameters with a

‘drag and drop’ interaction technique. V_ProRob also sup-

ports bidirectional communication between robot and

graphical environment. The communication is achieved

using Bluetooth and allows the subsystem to provide feed-

back to the user over the icons of the commands and

parameters, much like the tangible interface does.

4 Method

4.1 Participants

The study was conducted in a public school at the area of

Thessaloniki, Greece. One hundred and nine children of

five age groups, 6–7 (N = 20), 7–8 (N = 25), 9–10

(N = 14), 10–11 (N = 25) and 11–12 (N = 25) years

participated in the study.

All children volunteered to participate as part of their

every day school activities, and they were randomly

assigned to work in pairs. All participating children were

not familiar with the systems and spoke Greek as their

native language. All children had some familiarity with the

mouse. Figure 3 shows children interacting with the tan-

gible subsystem.

4.2 Setting and procedure

Experiments were conducted in classrooms and were

appropriately arranged so that the two subsystems were

equally accessible for all children. Three subject-matter

experts, one in the front and two in the back along with

video–audio recorders and computer logs, recorded the

whole process.

Children, guided by the researcher, first filled out the

questionnaires about their age, gender, familiarity with

computers and computer programming knowledge. Then,

the NXT Lego robot was presented, and following a

simple scenario, the researcher presented to the children

how they could program the robot with both systems. To

rule out any possible sequence effect, we counterbalanced

the presentation.

Then, two missions (Task1 and Task 2) were assigned to

children, while a third mission (Task3) was assigned to the

elder children. The first mission (Task1) was a simple

sequential program up to six commands which involved

cubes such as ‘‘move forward/backward,’’ ‘‘turn on/off the

light’’ and ‘‘make a sound.’’ The second mission (Task2)

was a more advanced sequential program with parameters;

it was up to six commands and involved cubes such as

‘‘move forward/backward,’’ ‘‘turn right/left’’ ‘‘turn on/off

Fig. 2 Indicative program with

the graphical interface

Fig. 3 Children interacting with tangible subsystem

Pers Ubiquit Comput (2015) 19:225–237 229

123



the light’’ and ‘‘make a sound.’’ The third mission (Task3)

was the most complex; it was up to five commands and in

addition it involved the repetition (loop) structure.

Children were asked to accomplish the programming

missions using one interface (selected so that half of the

pairs started programming using the graphical interface and

the other half using the tangible); subsequently, children

had to accomplish missions of the same difficulty using the

other interface.

After the interaction process with the tasks, the

researcher let children free to make two more programs

using each system successively. During this free session,

children created programs with out any predetermined task

scenario or time limit.

4.3 Measurements on tasks

The data collection procedure employed video–audio

recordings and system databases logs. Video–audio

recordings were analyzed by three experts (each one was

responsible for one measured variable). By transcribing the

video–audio recordings and database logs, we measure the

three variables referring to children’s programming per-

formance for the two systems, namely (1) time to accom-

plish tasks (TAT, the time needed to accomplish the

programming tasks the soonest possible), (2) errors (ER,

the number of erroneously executed programs) and (3) the

debugging stages (DS, the debugging stages reached after

errors).

For assessing the debugging stages the Carver and Klahr

model [47] was used and a three-level ordinal variable was

created. Using the available video–audio recordings and

computer logs, we determine whether the children after a

wrong execution (a) arrived at the correction of the bug

(full debug), (b) noticed that a specific error occurred, but

they were unable to locate and correct it (partially debug),

(c) did not notice any discrepancy between the goal and the

actual outcome and no debugging took place (no debug).

The above-dependent variables were examined as a

function of gender and age.

4.4 Measurements on free interaction

By transcribing the video–audio recording and computer

logs, we measure the four variables referring to children’s

free programming performance for the two systems. These

variables are (4) free interaction time-engagement (i.e., the

time children spent to freely interact with the systems in

order to create their programs), (5) program length, (6)

program vocabulary and (7) program complexity.

For assessing the program length and vocabulary, we

used the Halstead software metrics [48]. In our case,

according to Halstead, the program length is the total

number of commands and parameters, while vocabulary is

the total number of unique commands and parameters

within a program. Furthermore, in order to examine the

program complexity, the logical structure of the program

was analyzed by using the McCabe cyclomatic complexity

measure [49]. All the above metrics are independent of the

programming language itself [50]. To be fully unbiased,

during our analysis, we set the maximum length of the

programs for both interfaces to the maximum length of the

program a user can see on a computer screen.

5 Results

5.1 Task performance analysis

5.1.1 Task1

The time to accomplish Task1 (TAT1) had a negative

Pearson’s correlation with age for both interfaces, r =

-0.63, (p \ 0.001) and r = -0.68 (p \ 0.001) for the

tangible and the graphical, respectively. These relations are

also depicted in Fig. 4, which shows the mean time chil-

dren needed to accomplish Task1 with both interfaces as a

function of the group age. A decrease in TAT1 is observed

as the group age increases, and it reaches a plateau after

10–11 years age group.

Focusing on the differences in TAT1 between the two

interfaces, for the same age group, a t test and a nonpara-

metric Wilcoxon Signed Rank Test were used. Both showed

that in the case of the tangible interface, TAT1 measurements

were significantly lower for age group 6–7 years

(p = 0.049), age group 7–8 years (p = 0.030) and age group

9–10 years (p = 0.012), while no statistical differences were

observed for age groups 10–11 years and 11–12 years.

Task1 

10

15

20

25

30

35

40

45

50

55

6-7 Group 7-8 Group 9-10
Group

10-11
Group

11-12
Group

M
ea

n
 t

im
e 

to
 A

cc
o

m
p

lis
h

 (
se

c)

Tangible

Graphical

Fig. 4 The mean time children needed to accomplish Task1 as a

function of group age for both interfaces

230 Pers Ubiquit Comput (2015) 19:225–237

123



5.1.2 Task2

The time to accomplish Task2 (TAT2) had a negative

Pearson’s correlation with age for both interfaces, r =

-0.42, (p \ 0.001) and r = -0.44 (p \ 0.001) for the

tangible and the graphical, respectively.

These relations are also depicted in Fig. 5, which shows

the mean time children needed to accomplish Task2 as a

function of group age. A decrease in time is observed as the

group age increases, and it reaches a plateau after 9–10

years age group.

Focusing on the differences in TAT2 between the two

interfaces, for the same age group, both a t test and a

nonparametric Wilcoxon Signed Rank Test showed that no

statistical differences exist for all age groups.

5.1.3 Task3

In Task 3, which was the most demanding and difficult,

only age groups of 10–11 years (N = 7) and 11–12 years

(N = 17) participated.

Figure 6 shows the difference between tangible and

graphical cases for the two age groups. A t test with

bootstrap (p = 0.001) and a nonparametric Wilcoxon

Signed Rank test (p = 0.038) showed that the TAT3 in

tangible interface was statistically lower than the graphical

case for the 10–11 years age group, but not for the 11–12

years age group.

5.1.4 Errors

Figure 7 shows the percentages of erroneous tasks in each

interface. In all cases, more errors occurred with the

graphical interface. Examining the differences, we found

that only in task 2, statistical significance exists

(v2 = 3.96, p \ 0.05).

5.1.5 Debugging

Focusing on the error correction process, the debugging

variable was analyzed after an unsuccessful execution in

both interface settings. The two distributions are presented

in Fig. 8, which shows a significant difference between

them (v2 = 8,79, df = 2, p \ 0.05). Thus, for the TUI

case, it is more likely that the errors are fully corrected,

while for the GUI case, the errors are more likely to be

overlooked.

Concerning gender, non-significant effects were found

for all dependent variables.

Task2 

15

20

25

30

35

40

45

50

6-7 Group 7-8 Group 9-10
Group

10-11
Group

11-12
Group

M
ea

n
 t

im
e 

to
 A

cc
o

m
p

li
sh

 (
se

c)

Tangible

Graphical

Fig. 5 The mean time children needed to accomplish Task2 as a

function of group age for both interfaces

Task3

25

26

27

28

29

30

31

32

33

34

35

10-11 Group 11-12 Group

M
ea

n
 t

im
e 

to
 A

cc
o

m
p

lis
h

 (
se

c) Tangible

Graphical

Fig. 6 The mean time children needed to accomplish Task3 as a

function of group age for both interfaces

Executed Error Percentages

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00

45,00

Task1 Task2 Task3

P
er

ce
n

ta
g

e

Tangible

Graphical

Fig. 7 The percentages of erroneous tasks in each interface

Pers Ubiquit Comput (2015) 19:225–237 231

123



5.2 Free interaction analysis

5.2.1 Interaction time-engagement

If free interaction time-engagement is considered, no cor-

relation with age exist. To focus on the differences between

the two interfaces, a t test and a nonparametric Wilcoxon

Signed Rank Test were used.

Both showed that in the case of the graphical interface,

the free interaction time-engagement measurements were

significantly lower for age group 10–11 years (p = 0.002)

and 11–12 years (p = 0.000), while no statistical differ-

ences were observed for the other age groups. The effects

are represented in Fig. 9 and show the interaction mean

time, for free programming activities, as a function of the

age group.

5.2.2 Program length

The program length had a positive Pearson’s correlation

with age for both interfaces, r = 0.276, (p \ 0.01) and

r = 0.220 (p \ 0.05) for the tangible and the graphical

interface, respectively. Studying the program length for the

two interfaces during free interaction, no significant dif-

ference exists. The program length in accordance with age

is presented in Fig. 10.

5.2.3 Program vocabulary

The program vocabulary had a positive Pearson’s corre-

lation with age for both interfaces, r = 0.417, (p \ 0.001)

and r = 0.402 (p \ 0.001) for the tangible and the graph-

ical interface, respectively.

Focusing on the differences in program vocabulary

between the two interfaces, for the same age group, a t test

and a nonparametric Wilcoxon Signed Rank Test were

implemented. Both showed that in the case of the tangible

interface, the program vocabulary measurements were

significantly higher for age groups 6–7 years (p = 0.041),

10–11 years (p = 0.036) and 11–12 years (p = 0.007),

while no statistical differences were observed for age

groups 7–8 years and 9–10 years. The program vocabulary

variable in relation with age is depicted graphically in

Fig. 11.

Debugging stages

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Tangible Graphical

No Debug

Partial Debug

Full Debug

Fig. 8 Distributions of errors for both interface settings

Free Interaction Time

10

20

30

40

50

60

70

80

90

100

110

6-7 Group 7-8 Group 9-10
Group

10-11
Group

11-12
Group

Age

In
te

ra
ct

io
n

 T
im

e 
(s

ec
)

Tangible

Graphical

Fig. 9 The mean free interaction time–engagement as a function of

age

Program Length

3

5

7

9

11

13

15

6-7 Group 7-8 Group 9-10
Group

10-11
Group

11-12
Group

Age

C
o

m
m

an
d

s 
an

d
 P

ar
am

et
er

s

Tangible

Graphical

Fig. 10 The mean program length during free interaction

232 Pers Ubiquit Comput (2015) 19:225–237

123



5.2.4 Program complexity

Analyzing the internal complexity of the program created

during the free interaction, a positive Pearson’s correlation

with age for both interfaces, r = 0.673, (p \ 0.001) and

r = 0.595 (p \ 0.001) for the tangible and the graphical

subsystem, respectively, exists.

Focusing on the differences in program complexity

between the two interfaces, for the same age group, a t test

and a nonparametric Wilcoxon Signed Rank Test were

implemented. Both showed that in the case of the tangible

interface, the complexity measurements were significantly

higher for age groups 10–11 years (p = 0.017) and 11–12

years (p = 0.001), while no statistical differences were

observed for the other age groups. Figure 12 represents the

complexity of the free program as a function of age.

6 Discussion

In this paper, we presented a series of design guidelines for

tangible programming tools to inform design, and using

PROTEAS kit, we carried out a comparative study between

two isomorphic interfaces. The first assigned group of tasks

(Task1) was chosen on purpose to be easily accomplished

by the children. The second group of tasks (Task2) was

more challenging, and for this reason, a number of pro-

gramming errors occurred. The third group of tasks, the

most difficult one (Task3), was assigned only to some elder

children, and thus, we managed to further focus our study

on these particular age groups. Finally, children were let

freely to interact with both systems in order to create one to

three programs with each condition. Accumulated pro-

grams of this free interaction session were analyzed using

simple software quality metrics.

6.1 Time to accomplish the tasks

Regarding the time to accomplish the tasks, TAT decreases

with the age in all tasks for both the tangible and graphical

interface. This effect is anticipated considering the devel-

oped skills and intelligence of elder children. Focusing on

the comparison between the two interfaces, TAT1 for the

tangible subsystem was significantly lower especially for

younger children. This might be interpreted by considering

the differences in children’s familiarity with similar tan-

gible games such as LEGO bricks and puzzles, and com-

puter use. In elder children case, the experience with

computers is increased and thus the TAT1 differences

between the two interfaces are expected to be diminished.

Finally, with no statistical significance, the TAT1 for

graphical interface becomes even lower at the age of

11–12. This trend is evident in all tasks and might show

that this particular age is the threshold where children reach

the crucial computer skills that make them to further

reduce their TAT with the GUI. To further investigate this

effect, we implemented Task3 engaging the two elder age

groups. Although the differences, as we expected, became

clearer, significance was reached only for the 10–11 years

age group and not for the 11–12 years group.

In general, the present findings based on time to com-

plete a task are consistent with the results reported in [22]

and simultaneously extent the results by Xie et al. [8] who

reported based on children’s (aged 7–9 years old) self-

report that it was easier for them to interact with physical

Program Vocabulary

5

5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

6-7 Group 7-8 Group 9-10
Group

10-11
Group

11-12
Group

Age

U
n

iq
u

e 
co

m
m

an
d

s 
an

d
 p

ar
am

et
er

s Tangible

Graphical

Fig. 11 Program vocabulary as a function of age

McCabe Complexity

0

0.5

1

1.5

2

2.5

6-7 Group 7-8 Group 9-10
Group

10-11
Group

11-12
Group

Age

G
ra

p
h

 c
o

m
p

le
xi

ty

Tangible

Graphical

Fig. 12 The percentages of erroneous tasks in each interface

Pers Ubiquit Comput (2015) 19:225–237 233

123



pieces than with the mouse. Summarizing, one may say

that the familiarity with tangibles, and on the other hand,

the accumulated experiences with computers are most

probably the factors explaining our findings [22].

6.2 Errors

Regarding programming errors, children made more mis-

takes with the graphical interface in all tasks. However, in

Task2, which was of moderate difficulty, the number of

errors occurred in tangible interface was significantly

lower. This significant difference was not observed in the

other two cases. In the easiest Task1, a negligible number

of errors occurred, while in the most difficult Task3, the

statistically insignificant difference might be due the small

number of children engaged.

The decreased number of errors while programming the

robot with the tangible subsystem might be due to active

participation and motivation. It is reported that children

more actively participate in programming activities with

tangibles than with graphical interfaces [7]. Several studies

have shown that working together on specific collaborative

tasks may increase children’ enjoyment, engagement and

motivation (e.g., [51, 52] ). In the case of tangibles, since

both participants can be simultaneously active, motivation

is increased, contrary to the graphical case, where the one

child is more likely to be a passive and maybe less moti-

vated spectator [53].

6.3 Debugging

Children’s interaction with tangibles appeared to facilitate

debugging after an error occurrence. Using the tangible

interface makes it more likely for a full debugging process

and correction of the error to take place, whereas with the

graphical one, it is more likely to be neglected. This finding

might be attributed again to the active involvement of both

group members in the case of tangibles, while in the case of

graphical interface, one member uses the mouse and pro-

grams, as active participant, whereas the other is more

likely to be a passive observer. Working with tangibles

both users are equally participating [54, 55], so maybe they

feel equally responsible to inspect the executed program.

Furthermore, with tangibles, members can increase their

visibility of the working plane [13, 56], and consequently

both members can more easily detect the possible

inconsistencies.

6.4 Free interaction time-engagement

Free interaction time, with a system, appears to be well

correlated and so is usually interpreted as an indication of

engagement [8, 26]. This measure in our case does not

appear to be correlated with age, for both interfaces.

Interestingly, focusing on the differences between the two

interfaces, the elder groups (aged 10–11, 11–12 years)

showed higher engagement with the tangible subsystem.

Our results may support the results of our previous research

[22] which showed, based on qualitative and quantitative

analysis, that especially elder children were highly moti-

vated and enjoyed tangible programming the most. The

result of this measurement is raising questions related to

the nature of the programming code that the children pro-

duced during their free interaction time, especially in the

tangible case when children spent more time.

6.5 Program length

In the literature, one measurement of the programming

quality appears to be the program length. This particular

measurement in our case shows that, while growing, chil-

dren create bigger programs. This is expected due to the

higher mental skills developed by the elder children. If the

program length is examined in relation to the tangible and

graphical subsystems, no differences between the two cases

appear to exist. This effect is fully in accordance with the

results reported by Horn [26] who measured and compared

the number of commands in programs created with a pas-

sive tangible and a graphical programming language in

informal learning environment.

6.6 Program vocabulary

In terms of the different commands and parameters used

within a program, the results interestingly denote that

children in general preferred to explore the different

capabilities available mostly in the tangible case. This

particular trend is statistically significant for the very

young and elder children (6–7, 10–11, 11–12 years of age).

The results for this dependant variable may partially

give an answer to the question ‘‘what children did during

their free interaction time?’’ Elder children (aged 10–11,

11–12 years) spent more time in the tangible case (Fig. 9),

and it seems that they explored more alternative commands

and parameters. On the contrary, younger children spent

almost the same time in both cases, but the outcome

appears to be different for the two cases. A possible

explanation for the younger children can be found with a

closer look at the TAT1 variable (time to accomplish

task1). Younger children are able to manipulate tangibles

in less time in order to produce the same program with the

graphical. Consequently, spending the same time for both

the tangible and the graphical interfaces means that they

have more time to explore the possible alternatives with the

tangible subsystem. This particular result is in accordance

with the results reported by Schneider et al. [29] who

234 Pers Ubiquit Comput (2015) 19:225–237

123



reported that pairs using tangible interface were more

explorative on alternative logic designs.

6.7 Program complexity

By measuring the number of linearly independent paths of

the program source code, we measure the McCabe pro-

gram complexity metric. This particular software metric is

sensitive on the repetition and conditional programming

structures. Examining the results depicted on Fig. 12, we

may assume that younger children did not used enough

repetition and conditional structures in their programs with

both tangible and graphical subsystem. Maybe children of

this age preferred to use simple structures or maybe they

were not ready to use appropriately repetition and condi-

tional structures. On the contrary, elder children (aged

10–11, 11–12 years) were able to use these complicated

structures with both interfaces, but the programming out-

come was significantly more complicated in the tangible

case. This particular outcome may provide an additional

answer to the question of what kind of programming code

the children produced during this free interaction time.

Elder Children not only spent more time in the tangible

case (Fig. 9), but were more explorative, as explained

before, and this exploration together with the extra time

spent with the tangible subsystem lead them to produce

more complicated programs. Our results are coherent with

the results reported by Schneider et al. [29] who reported

that tangibility trends to increase exploration and conse-

quently enhance performance in simple logic tasks.

7 Conclusion and future research

In this paper, we carried out and presented a comparison

study of children’s performance using the two isomorphic

subsystems (TUI vs. GUI).

Data analysis upon task measurements showed that

younger children needed less time to accomplish the pro-

gramming tasks when using the tangible interface. On the

contrary, elder children, who were more experienced

computer users, needed almost the same time to accom-

plish the tasks with both interfaces. Furthermore, fewer

programming errors occurred and better debugging was

achieved in the tangible case.

Moreover, data analysis on free interaction showed that

elder children were more engaged, explored more alter-

native commands and parameters and created more com-

plicated programs with the tangible subsystem. On the

contrary, younger children spent almost the same time in

both cases, but it seems that they were more explorative

with the tangibles.

The above findings could be explained by considering

both children’s familiarity with games that resemble tan-

gibles and prior computer experience. Moreover, we have

proposed that additional factors, such as the ability to better

see, collaborate and actively participate have also implic-

itly affected our research results.

Regarding our initial design guidelines to have both TUI

and GUI interfaces, our findings also support that a bal-

anced transaction between the two alternative interfaces in

relation to user experience and weather children interact

upon tasks or freely may be beneficial for certain users. Our

initial goal regarding portability and availability was

proved also crucial to implement our experimentation,

which took place in many classrooms and surface for a

long continuous time. Additionally, our finding regarding

complexity program length and program vocabulary high-

lighted the need to have a plethora and adequate collection

of commands and parameters. In any case, more effort and

focused research is needed to evaluate how the findings

impact design.

In conclusion, the results supporting TUIs in intro-

ductory programming encourage further investigations on

learning and performance and possible training applica-

tions, such as with adult novices or individuals with

special needs. In addition, advanced modern program-

ming techniques, such as pair programming or object-

oriented programming, may be combined with tangibility

and researched to provide additional insight to early

programming.

References

1. Papert S (1980) Mindstorms: children, computers, and powerful

ideas. Basic Books Inc., New York

2. Kelleher C, Pausch R (2005) Lowering the barriers to program-

ming: a taxonomy of programming environments and languages

for novice programmers. ACM Comput Surv 37(2):83–137

3. Orit S, Eva H (2009) Tangible user interfaces: past, present, and

future directions foundations and Trends�. Hum–Comput Interact

3(1–2):1–137

4. Sapounidis T, Demetriadis S (2009) Tangible programming

interfaces: a literature review. In: Proceedings of the 4th Balkan

conference in informatics, Thessaloniki, Greece, pp 70–75

5. Suzuki H, Kato H (1993) AlgoBlock: a tangible programming

language, a tool for collaborative learning. In: Proceedings of the

4th European logo conference, pp 297–303

6. Wyeth P, Purchase H (2002) Designing technology for children:

moving from the computer into the physical world with electronic

blocks. Inform Technol Child Educ Ann 2002(1):219–244

7. Horn M, Crouser R, Bers M (2011) Tangible interaction and

learning: the case for a hybrid approach. Pers Ubiquit Comput

16(4):379–389

8. Xie L, Antle AN, Motamedi N (2008) Are tangibles more fun?

Comparing children’s enjoyment and engagement using physical,

graphical and tangible user interfaces. In: Proceedings of the 2nd

Pers Ubiquit Comput (2015) 19:225–237 235

123



international conference on tangible and embedded interaction,

Bonn, pp 191–198

9. Zaman B, Vanden Abeele V, Markopoulos P, Marshall P (2012)

Editorial: the evolving field of tangible interaction for children:

the challenge of empirical validation. Pers Ubiquit Comput

16(4):367–378

10. Kwon D, Kim H, Shim J, Lee W (2012) Algorithmic bricks: a

tangible robot programming tool for elementary school students.

IEEE Trans Educ 55(4):474–479

11. Price S, Rogers Y, Scaife M, Stanton D, Neale H (2003) Using

‘tangibles’ to promote novel forms of playful learning. Interact

Comput 15(2):169–185

12. Terrenghi L, Kranz M, Holleis P, Schmidt A (2006) A cube to

learn: a tangible user interface for the design of a learning

appliance. Pers Ubiquit Comput 10(2):153–158

13. Stanton D, Bayon V, Neale H, Ghali A, Benford S, Cobb S,

Ingram R, O’Malley C, Wilson J, Pridmore T (2001) Classroom

collaboration in the design of tangible interfaces for storytelling.

In: Proceedings of the CHI01 SIGCHI conference on human

factors in computing systems, Seattle, WA, pp 482–489

14. Blackwell A, Hague R (2001) AutoHAN: an architecture for

programming the home. In: IEEE symposia on human–centric

computing languages and environments, pp 150–157

15. McNerney TS (2004) From turtles to tangible programming

bricks: explorations in physical language design. Pers Ubiquit

Comput 8(5):326–337

16. Cockburn A, Bryant A (1997) A Leogo: an equal opportunity

user interface for programming. J Visual Lang Comput

8(5–6):601–619

17. Smith A (2007) Using magnets in physical blocks that behave as

programming objects. In: Proceedings of the 1st international

conference on tangible and embedded interaction, New York,

NY, USA, pp 147–150

18. Marshall P (2007) Do tangible interfaces enhance learning? In:

Proceedings of the 1st international conference on tangible and

embedded interaction, Baton Rouge, Louisiana, pp 163–170

19. McNerney T (2001) Tangible computation bricks: building-

blocks for physical microworlds. In: Proceedings of the CHI01,

ACM Press

20. Wyeth P, Purchase H (2003) Using developmental theories to

inform the design of technology for children. In: Conference on

interaction design and children, New York, NY, USA,

pp 93–100

21. Horn M, Jacob RJK (2007) Tangible programming in the class-

room with tern. In: CHI ‘07 extended abstracts on human factors

in computing, San Jose, CA, USA, pp 1965–1970

22. Sapounidis T, Demetriadis S (2013) Tangible versus graphical

user interfaces for robot programming: exploring cross-age

children’s preferences. Pers Ubiquit Comput. doi:10.1007/

s00779-013-0641-7

23. Zuckerman O, Gal-Oz A (2013) To TUI or not to TUI: evaluating

performance and preference in tangible vs graphical user inter-

faces. Int J Hum–Comput St 71(7–8):803–820

24. Sapounidis T, Demetriadis S (2012) Exploring children prefer-

ences regarding tangible and graphical tools for introductory

programming: evaluating the PROTEAS kit. In: 12th Interna-

tional conference on advanced learning technologies (ICALT),

Rome, Italy, pp 316–320

25. Maloney J, Resnick M, Rusk N, Silverman B, Eastmond E (2010)

The scratch programming language and environment. Trans

Comput Educ 10(4):1–15

26. Horn MS, Solovey ET, Crouser RJ, Jacob RJK (2009) Comparing

the use of tangible and graphical programming languages for

informal science education. In: Proceedings of the 27th interna-

tional conference on human factors in computing systems, Bos-

ton, pp 975–984

27. Antle AN (2007) Designing tangibles for children: what design-

ers need to know. In: Proceedings of the CHI’07 extended

abstracts on human factors in computing systems, San Jose, CA,

USA, pp 2243–2248

28. Zaman B, Abeele Vanden V, Markopoulos P, Marshall P (2009)

Tangibles for children: the challenges. In: 27th International

conference extended abstracts on human factors in computing

systems, Boston, USA, pp 4729–4732

29. Schneider B, Jermann P, Zufferey G, Dillenbourg P (2011)

Benefits of a tangible interface for collaborative learning and

interaction. IEEE Trans Learn Technol 4(3):222–232

30. Shaer O, Jacob RJK (2009) A specification paradigm for the

design and implementation of tangible user interfaces. ACM

Trans Comput–Hum Interact 16(4)20:1–20:39

31. Sylla C, Branco P, Coutinho C, Coquet E (2012) TUIs vs GUIs:

comparing the learning potential with preschoolers. Pers Ubiquit

Comput 16(4):421–432

32. Fernaeus Y, Tholander J (2006) Finding design qualities in a

tangible programming space. In: CHI ‘06 Proceedings of the

SIGCHI conference on human factors in computing systems,

Montreal, Canada, pp 447–456

33. Kitamura Y, Itoh Y, Masaki T, Kishino F (2000) ActiveCube: a

bi-directional user interface using cubes. In: Proceedings of the

fourth international conference on knowledge-based intelligent

engineering systems and allied technologies, Brighton, UK,

pp 99–102

34. Zuckerman O, Arida S, Resnick M (2005) Extending tangible

interfaces for education: digital montessori-inspired manipula-

tives. In: Proceedings of the SIGCHI conference on human fac-

tors in computing systems, Portland, OR, USA, pp 859–868

35. Rekimoto J, Ullmer B, Oba H (2001) DataTiles: a modular

platform for mixed physical and graphical interactions. In: CHI

‘01 Proceedings of the SIGCHI conference on human factors in

computing systems, Seattle, WA, USA, pp 269–276

36. Patten J, Griffith L, Ishii H (2000) A tangible interface for con-

trolling robotic toys. In: CHI’00 conference on human factors in

computing systems, Hague, The Netherlands, pp 277–278

37. Cockburn A, Bryant A (1996) Do it this way: equal opportunity

programming for kids. In: Proceedings of the sixth australian

conference on computer–human interaction, Hamilton, New

Zealand, pp 246–251

38. Kahn K (1996) Drawings on napkins, video-game animation, and

other ways to program computers. Com ACM 39(8):49–59

39. Wyeth P, Purchase H (2002) Tangible programming elements for

young children. In: CHI’02 extended abstracts on human factors

in computing systems, Minneapolis, MN, USA, pp 774–775

40. Frei P, Su V, Mikhak B, Ishii H (2000) Curlybot: designing a new

class of computational toys. In: Proceedings of the SIGCHI

conference on human factors in computing systems, Hague, The

Netherlands, pp 129–136

41. Ullmer B, Ishii H, Jacob RJK (2005) Token constraint systems

for tangible interaction with digital information. ACM T Com-

put–Hum Int (TOCHI) 12(1):81–118

42. Blackwell A (2003) Cognitive dimensions of tangible program-

ming languages. In: Proceedings of the first joint conference of

the empirical assessment in software engineering and psychology

of programming interest groups, Keele, UK, pp 391–405

43. Fishkin KP (2004) A taxonomy for and analysis of tangible

interfaces. Pers Ubiquitous Comput 8(5):347–358

44. Zuckerman O, Resnick M (2003) A physical interface for system

dynamics simulation. In: CHI ‘03 extended abstracts on human

factors in computing systems, FL, USA, pp 810–811

45. Sharlin E, Itoh Y, Watson B, Kitamura Y, Sutphen S, Liu L,

Kishino F (2004) Spatial tangible user interfaces for cognitive

assessment and training. Biol Inspir Approaches Adv Inf Technol

3141:137–152

236 Pers Ubiquit Comput (2015) 19:225–237

123

http://dx.doi.org/10.1007/s00779-013-0641-7
http://dx.doi.org/10.1007/s00779-013-0641-7


46. Sapounidis T, Demetriadis S (2011) Touch your program with

hands: qualities in tangible programming tools for novice. In:

Proceedings of the 15th Panhellenic conference on informatics

(PCI), Kastoria, Greece, pp 363–367

47. Carver S, Klahr D (1986) Assessing children’s LOGO debugging

skills with a formal model. J Educ Comput Res 2(4):487–525

48. Halstead M (1977) Elements of software science (operating and

programming systems series). Elsevier, New York

49. McCabe T (1976) A complexity measure. IEEE Trans Softw Eng

2(4):308–320

50. Sheng Y, Shijie Z (2010) A survey on metric of software com-

plexity. In: Proceedings of the 2nd IEEE international conference

information management and engineering (ICIME), Chengdu,

China, pp 352–356

51. Scott SD, Mandryk RL, Inkpen KM (2003) Understanding chil-

dren’s collaborative interactions in shared environments. J Com-

put Assist Learn 19(2):220–228

52. Inkpen K, Booth K S, Gribble S D, Klawe M (1995) Give and

take: children collaborating on one computer. In: CHI ‘95

conference companion on human factors in computing systems,

Denver, CO, USA, pp 258–259

53. Stamovlasis D, Dimos A, Tsaparlis G (2006) A study of group

interaction processes in learning lower secondary physics. J Res

Sci Teach 43(6):556–576

54. Rogers Y, Lim Y, Hazlewood R, Marshall P (2009) Equal

opportunities: do shareable interfaces promote more group par-

ticipation than single user displays? Hum–Comput Int 24(1–2):

79–116

55. Falcão TP, Price S (2009) What have you done! The role of

interference in tangible environments for supporting collaborative

learning. In: Proceedings of the 9th international conference on

computer supported collaborative learning, Rhodes, Greece,

pp 325–334

56. Klemmer SR, Hartmann B, Takayama L (2006) How bodies

matter: five themes for interaction design. In: Proceedings of the

6th conference on designing interactive systems, University Park,

PA, USA, pp 140–149

Pers Ubiquit Comput (2015) 19:225–237 237

123


	Evaluating children performance with graphical and tangible robot programming tools
	Abstract
	Introduction
	Background
	Comparison studies between graphical and tangible programming languages
	Research motivation and questions

	The tools implemented
	Design consideration guidelines
	PROTEAS kit

	Method
	Participants
	Setting and procedure
	Measurements on tasks
	Measurements on free interaction

	Results
	Task performance analysis
	Task1
	Task2
	Task3
	Errors
	Debugging

	Free interaction analysis
	Interaction time-engagement
	Program length
	Program vocabulary
	Program complexity


	Discussion
	Time to accomplish the tasks
	Errors
	Debugging
	Free interaction time-engagement
	Program length
	Program vocabulary
	Program complexity

	Conclusion and future research
	References


