
ORIGINAL ARTICLE

Dangerous Wi-Fi access point: attacks to benign smartphone
applications

Min-Woo Park • Young-Hyun Choi •

Jung-Ho Eom • Tai-Myoung Chung

Received: 2 July 2013 / Accepted: 26 September 2013 / Published online: 29 October 2013

� Springer-Verlag London 2013

Abstract Personalization by means of third party appli-

cation is one of the greatest advantages of smartphones. For

example, when a user looks for a path to destination, he can

download and install a navigation application with ease

from official online market such as Google Play and

Appstore. Such applications require an access to the

Internet, and most users prefer Wi-Fi networks which are

free to use, to mobile networks which cost a fee. For this

reason, when they have no access to free Wi-Fi networks,

most smartphone users choose to try to use unknown Wi-Fi

access points (AP). However, this can be highly dangerous,

because such unknown APs are sometimes installed by an

adversary with malicious intentions such as stealing

information or session hijacking. Today, smartphones

contains all kinds of personal information of the users

including e-mail address, passwords, schedules, business

document, personal photographs, etc., making them an

easy target for malicious users. If an adversary takes

smartphone, he will get all of information of the users. For

this reason, smartphone security has become very impor-

tant today. In wireless environments, malicious users can

easily eavesdrop on and intervene in communication

between an end-user and the internet service providers,

meaning more vulnerability to man-in-the-middle attacks.

In this paper, we try to reveal the risk of using unknown

APs by presenting demonstration results. The testbed is

composed of two smartphones, two APs, and one server.

The compromised AP forwards messages of victim

smartphone to the fake server by using domain name sys-

tem spoofing. Thus, the application that is running on the

victim smartphone transfers HTTP request to the fake

server. As a result, this application displays the abnormal

pop-up advertisement, which contains malicious codes and

links. Our demonstration shows that merely connecting to

compromise APs can make a malicious behavior even the

applications are benign.

Keywords Security of smartphone application �
Wireless security � Man-in-the-middle attack �
Smartphone and ubiquitous computing

1 Introduction

The technology of mobile phones has advanced dramati-

cally over the last decade, in both hardware and software.

The performance of its hardware is now almost comparable

with portable computers. For example, the Samsung Gal-

axy S3 manufactured in 2012 contains in it a 1.5 GHz dual-

core processor and a 2-GB RAM, along with various high-

end sensor gadgets such as GPS, gyroscope, and acceler-

ometer. With these technological advancements in hard-

ware, smartphones are now able to perform numerous

intelligent functions like, for example, automatically

M.-W. Park � Y.-H. Choi

Department of Electrical and Computer Engineering,

Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu,

Suwon-si, Gyeonggi-do, Korea

e-mail: mwpark@imtl.skku.ac.kr

Y.-H. Choi

e-mail: yhchoi@imtl.skku.ac.kr

J.-H. Eom

Military Studies, Taejeon University, 62 Daehakro, Dong-Gu,

Daejeon, Korea

e-mail: eomhun@gmail.com

T.-M. Chung (&)

Department of Software, Sungkyunkwan University, 300

Cheoncheon-dong, Jangan-gu, Suwon-si, Gyeonggi-do, Korea

e-mail: tmchung@ece.skku.ac.kr

123

Pers Ubiquit Comput (2014) 18:1373–1386

DOI 10.1007/s00779-013-0739-y



adjusting the brightness of display according to illumina-

tion value. A great technological advancement was also

made in software. The main role for this was played by

major OS manufacturers such as Google, Apple, and

Symbian, which have released the open SDK and created

official markets for smartphone applications. With the

creation and subsequent growth of such application mar-

kets, many developers now spend their time and money to

invent new smartphone applications, bringing ever more

intelligent applications to smartphone users. Thanks to all

these technological advancements in hardware and soft-

ware, mobile phones have now evolved into smart phones.

However, some types of these intelligent applications

require internet connections to identify users and store their

information in web storage. Some other types of applica-

tions also need internet connections for downloading real-

time information like real-time traffic information. In

gaining such internet connections, many users avoid using

mobile networks because they cost them money, and

instead use free Wi-Fi, sometimes even if the access points

for Wi-Fi are unknown.

But, it can be very dangerous connecting their smart-

phones to unknown access points, because wireless com-

munication, which transmits information on air, is more

vulnerable to external intervention than wired communi-

cation, which transmits information through cables. This

signifies malicious users can more easily eavesdrop on

conversations or intercept messages by installing rogue

access points.

Today, a smartphone has become a necessity for many

of us: we need it to wake up in the morning, check

schedules or emails, save memos, and communicate with

colleagues through social applications. Because of these

broad uses for everyday life, many smartphone users

knowingly and unknowingly save in their phone much of

their personal information such as e-mail passwords,

schedules, business documents, and personal photographs

in their smartphones, making them an easy target for those

with malicious intentions. The security of smartphones is

now in more danger than ever before, although most people

remain unaware of the danger.

In this paper, we seek to show the risk of using unknown

Wi-Fi access points. To this end, we demonstrate the

MITM attacks, and we show that the benign application

can import and display injected HTML documents. For

understanding, we describe briefly security model of the

smartphone. However, smartphone OSs are not the same.

So we would focus on the Android OS because we believe

it is more open and thus more vulnerable. The security

model of the Android OS has three security holes in this

model; (1) Android OS will be left a big responsibility to

ignorant user about security (2) permission-based security

model is vulnerable about privilege escalation attacks, and

(3) permission-based security model is not able to cover

application-level vulnerability.

The rest of this paper is organized as follows. Section 2

describes the role of the smartphone in ubiquitous com-

puting environment. We can easily associate the smart

devices like smartphone and tablet PC when we imagine

the vision of the ubiquitous computing. Section 3 gives the

security model of the Android OS and vulnerability of this.

And, Sect. 4 shows results of MITM attack demonstration.

Finally, Sect. 5 concludes the work.

2 Smartphone in ubiquitous computing

The smartphones have become very important devices in

ubiquitous computing. In this section, we describe defini-

tion, core requirements of ubiquitous computing, and roles

of the smartphone in ubiquitous computing.

2.1 Definition of ubiquitous computing

The word ‘‘ubiquitous’’ derives from the Latin word ubi-

que, which means ‘‘present everywhere at the same time.’’

Ubiquitous computing (UbiComp) indicates the environ-

ments where people have access at anytime and anywhere

to information and communication technology (ICT) sys-

tem. In other words, a ubiquitous system allows people to

surround themselves with computing devices that under-

stand and support their life cycles. The term ubiquitous

computing, first used in 1991 by Mark Weiser in his journal

[1], has been redefined by various researchers and institutes

[1–5]. Mark Weiser first defined UbiComp as actualization

of the ‘‘virtual reality’’ by using invisible computing.

Friedemann Mattern [2] now redefines it as comprehensive

computerization and interconnection of everyday objects.

Yvonne Rogers [3] proposes a new definition of the term:

changing roles of the users from calming people to

engaging people in UbiComp environment.

The Mark Weiser’s vision of UbiComp is composed of

three devices, as described in Table 1. The devices are

Table 1 The smart device: tab, pad, and board

Devices Functionalities

Tab Tab is a window that is extended from user’s computer

screen

It can display what is displayed on user’s computer screen

Pad Pad is interface for transmitting commands to the

UbiComp

It can handle all devices that make up the UbiComp

Board Board is the biggest device that has a yard-size display

It is used for the sharing of information between people

mainly

1374 Pers Ubiquit Comput (2014) 18:1373–1386

123



classified according to the size of their display. A tab,

which is about the size of an ID card, is the smallest device,

and a board, which is about a yard size, is the biggest one,

with the pad between them. The tab is designed for

wearable devices, and this is mainly used for personal

functions such as calendar and diary. The pad is a hand-

hold device, and it is intended to replace paper. Users can

easily read, write, and scrap information using pads. And

also the pad is a main interface for handling UbiComp.

Boards are used for playing video or sharing information

between co-workers.

Nowadays, we can easily associate the smartphone and

tablet PC when we imagine a tab and a pad. It means that

UbiComp has already been partly realized, and the rest

may be fulfilled soon.

2.2 Core requirements of ubiquitous computing

The following are core requirements of UbiComp distinct

from distributed computing: context-aware computing,

ambient and ubiquitous intelligence, and recording, track-

ing and monitoring [3, 6, 7]. The most important charac-

teristic of UbiComp is context-aware computing. Service

provider expects that UbiComp can provide suitable ser-

vices to a suitable person at a proper moment without user

intervention. For this service, computing ability to under-

stand context information about personal and environ-

mental context is required in UbiComp. In order to collect

context information, sensor devices which can collect

information and transfer collected information to base

station are deployed in UbiComp field. We call this com-

puting environment context-aware computing. Context-

aware computing is used to infer situation and decide next

operation. This process is important because if the infer-

ence result does not match up with the actual user’s

expectations, UbiComp will lose trust from the user. This is

a difficult part of research about context-aware computing.

Second core requirement is related to ambient and

ubiquitous intelligence. Sometimes, more accurate inter-

face is necessary in UbiComp. For example, when the user

wants to adjust the volume of the audio or change the TV

channel, he needs accurate interfaces for communication

with the UbiComp system. Generally, speech recognition

and gesture recognition technology are often used in this

area. However, the error rate is still high, and therefore,

technical research is needed to enhance accuracy.

The rest of the requirements are recording, tracking and

monitoring. These requirements are adopted to develop

human-assistive applications through sensing and alerting

[3]. UbiComp has sufficient information for tracking and

monitoring human resources because sensor devices of

context-aware computing periodically report personal and

environmental contexts to it. If UbiComp tracks and

monitors the vulnerable people such as the elderly, the

physically and mentally disabled, UbiComp can respond to

emergency situations. However, it has the following

problems. First, it is difficult to record, track, and monitor

all of the transactions that occur in UbiComp because of

the massive amounts of transactions. UbiComp is com-

posed of a lot of sensor devices that collect context infor-

mation or wait user input. Thus, the massive amounts of

transactions occur in short time. Second, recording, track-

ing, and monitoring personal information are conflicted

with the protection of personal information.

2.3 Smartphone in ubiquitous computing

Over the last decade, a mobile phone has made remarkable

advancements in both hardware and software. The mobile

phone, also called smartphone, is equipped with a high-

speed multi-core processor and enough gigabytes storage

incomparable with those of the past feature phone. Fur-

thermore, the smartphone has various built-in sensor gad-

gets such as GPS, an accelerometer, and a gyroscope. As a

result, the smartphone has become so intelligent and more

user-friendly as to support our life, just like the vision of

UbiComp envisioned. Table 2 shows the specification of

Samsung Galaxy S3.

And also, there have been great advancements in soft-

ware technology. Smartphone OS manufacturers like Go-

ogle, Apple and Symbian, release the SDK for developing

smartphone applications. And also, they create official

markets for application deployment. With the growth of

markets, many developers are now motivated to invent new

smartphone applications, producing a large number of

useful applications reactive to context by means of multiple

sensors built in the smartphone. According to the Android

official blog, the Google Play has reached 25 billion

downloads and 675,000 total apps [8].

Evolution of the smartphone has greatly changed our

lifestyle. From a morning call service to a remote control

vehicle service, the smartphone offers various services to

the user [9]. The smartphone already plays the roles similar

to the tab and the pad as envisioned by Weiser. People at

anytime and everywhere carry their smartphones like

wearable devices. And the smartphone performs most of

Table 2 The specification of Samsung Galaxy S3

Segments Specifications

Processor 1.5 GHz dual-core processor

Memory 32 gigabytes of storage and 2 gigabytes of RAM

Connectivity Bluetooth, Wi-Fi, NFC, etc.

Built-in

sensors

Accelerometer, gyroscope, proximity, compass, and

barometer

Pers Ubiquit Comput (2014) 18:1373–1386 1375

123



the personal tasks such as scheduling, checking e-mail, and

sharing files. It is similar to the tab in the vision of Weiser.

And also, the size of smartphone is similar to that of the

pad. Moreover, the user writes notes on and clips infor-

mation to his smartphone. All these technological advances

are realization of Weiser’s vision [10].

Furthermore, we expect the smartphone to become the

most important equipment in UbiComp. The smartphone

can be used for satisfying the core requirements of Ubi-

Comp. The smartphone can collect context information and

transfer collected information to the base station through

wireless communication. And also, the smartphone can be

used for human interfaces. Lastly, the smartphone can be

utilized as an identification of its owner by using universal

subscriber identity module (USIM) information.

The smartphone can play the role of deployed sensor

devices in context-aware computing. Context-aware sys-

tem needs wireless sensor networks for collecting context

information. Thus, large numbers of sensor devices are

deployed in UbiComp to continuously collect context

information such as personal and environmental context

and transfer it to the base station. However, it is highly

costly to construct these sensor networks. Moreover, these

sensor devices have energy limitation. So, sensor devices

cannot perform permanently. However, most of these

problems can be solved by using the smartphone. People

always carry their smartphone with them, which contains

various built-in sensors. And all smartphones have wireless

network interfaces. Thus, the smartphone can easily

transfer messages to the base station. Since the smartphone

is fully charged on a daily basis, so users can be free of the

fear of energy shortage. As a result, the smartphone can

play a role of deployed sensor devices in UbiComp field.

Andrew et al. [11] and Tor-Morten et al. [12] show several

examples of sensing applications for cognitive phones.

Next topic is the suitability of smartphones for Human–

Computer interfaces. The smartphone has various inter-

faces for interactive functions such as camera, touch panel,

gyroscope, and up-down buttons. Various technologies

already have been used for interaction between human and

devices in smartphone. For examples, the smartphone can

adjust the brightness of the screen automatically by rec-

ognizing the user’s eye, and the scroll of web browser is

controlled by just tilting the device. Rafael et al. [13]

and George et al. [14] suggest a possibility of smartphone

usable as an input device in UbiComp. Following them, we

expect interaction between humans and UbiComp using the

smartphone is possible.

The last core requirements of UbiComp are recording,

tracking and monitoring the people. It can reduce the cost

spent identifying and tracking the user by using the

smartphone. Generally, the smartphone has a USIM card

with unique serial numbers, which is issued by mobile

network providers for identification of the owner. Thus, if

UbiComp can read USIM information, it will be able to

easily track and monitor human resources.

Figure 1 illustrates the abstract roles of the smartphone

and its interactions with UbiComp environment. The

smartphone has resources such as privacy information

(e.g., schedule, contact, etc.), built-in sensor devices (e.g.,

GPS module, gyroscope, accelerometer, etc.), and appli-

cations for UbiComp that are optionally installed with the

permission of the user. The solid line points to interaction

between the human and the computer and the dotted line

machine-to-machine interaction. The Context-aware

Computing component demands context information of

personal and environmental context. So, this component

communicates with optional applications to receive per-

sonal context. Every component of UbiComp interacts with

built-in sensors of the smartphone to collect context

information. The Context-aware Computing component

and Ambient and Ubiquitous computing component have

direction access to sensor devices. These components

receive raw data from the smartphone and process them

according to their function. On the other hand, the

Recording, Tracking and Monitoring component commu-

nicates with optional applications because this component

requires refined data.

3 Threats of the compromised access points

In this section, we describe the security model of the

smartphone through the Android platform and critical

security threats posed by the MITM attack, which can

occur from compromised AP connections.

3.1 Security model of smartphone

The smartphone has a dual- or quad-core processor and a

gigabyte memory and storage. Whenever and wherever

users desire, they can gain connections to the Internet using

mobile networks or Wi-Fi networks. And, it can access

user information stored in the device or on the web.

Although functional aspects of the smartphone have grown

significantly, the security technology of the smartphone

still falls short of expectations of many. Smartphone OSs

are slightly different from each other, and we will focus on

the Android OS, because it is more open and thus more

vulnerable to external invasion. In this subsection, we

describe security flaws of the Android OS.

Basically, all applications run within their own sandbox,

and no application can escape this sandbox. However,

these restrictions are so strong as to cut off most of the

functionality of smartphone application. So, the Android

platform allows use of the API depending on application

1376 Pers Ubiquit Comput (2014) 18:1373–1386

123



permissions as approved by the user [15]. Every Android

application has permission information that is approved

during the install time in its own AndroidManifest.xml file.

This permission never changes until the application is re-

installed. Figure 2 shows an example code of the Adn-

roidManifest.xml file of the Test Application 1 [34]. The

permissions are defined separately for each API that has a

risk of being exploited. The permission ‘‘INTERNET,’’

that is in the Fig. 2, is necessary for connection with

Internet. Android OS verifies permission just when the user

application calls the API that has a risk of being exploited.

In other words, if some application does not call API, that

is, related socket, the Android OS will never check the

permission ‘‘INTERNET.’’

The permission-based security model of Android OS has

the following security holes. First, Android OS will be left

a big responsibility to ignorant user about security [16–19].

Most users do not understand about the risk of approving

the permission to applications. Furthermore, the user has

only the two choices giving an approval or not. As a result,

Fig. 1 The abstract roles of

Smartphone and interactions

with UbiComp environments

Fig. 2 An example code of permissions that is stored in AndroidManifest.xml file

Pers Ubiquit Comput (2014) 18:1373–1386 1377

123



the user thinks less of permission authorizing process

because of this permission policy. Second, the permission-

based security model is vulnerable to privilege escalation

attacks [20, 21]. Multiple applications share the role for

achieving their purpose. For an example, malicious appli-

cation A has permission for accessing to sensitive internal

data such as the contact, but it does not have permission for

sending message through the Internet. Malicious applica-

tion B does not have permission for accessing to sensitive

internal data, but it has permission about the Internet. In

this case, malicious application A is to transmit the contact

to malicious application B by using internal communica-

tion path and malicious application B flows out the contact

through the Internet [22]. Last, the permission base security

model is only able to cover low-level behaviors that are

related to API call. If android application has application-

level vulnerability, the Android OS will not be able to

protect itself. We focus on this security hole. In the next

section, we demonstrate the MITM attack by using this

application-level vulnerability.

3.2 Threats of the compromised access points

According to growth of wireless networks, wireless network

interface becomes the most basic parts of a portable com-

puting device. Some research predicts that wireless com-

munications will exceed wired communications by 2015.

Like this, wireless communication technology has become

the most important communication means for connecting the

smart device. The growth of wireless communication con-

tributes to realize UbiComp and popularizes smartphone.

However, security threats exist in the hidden side of the

rapidly growth of wireless communication.

We can easily see that wireless APs are installed in a

narrow area more than needs. Figure 3 shows the map that

presents the density of APs in Chicago. We obtain this map

from wireless geographic logging engine (WIGLE) project

which is a dataset for collecting the wireless hotspots

around the world [23, 24]. Wireless APs are distributed in

Chicago more difficult to read the map. According to

WIGLE project, about 5 million APs exist in California

that is a region where the AP is installed most in the United

States. Density of the wireless AP is very high considering

that the each AP can support a range of up to 150 feet

indoors and 300 feet outdoors. Table 3 shows regions and

the number of wireless APs. We are surrounded by many

wireless APs. It is look like a spider web that is configured

in a wireless network. In fact, all of the AP that is searched

by our devices is not a benign. When you indiscriminately

try to connect to unknown AP, you and your device will be

in danger.

In the wired network, the MITM attacks are very diffi-

cult attack technique [25]. It is impossible that an adversary

physically break into an end-user and the ISP. Thus, an

adversary uses domain name system (DNS) cache poi-

soning for changing the direction of traffic flows [26] in

Fig. 4a. However, in the wireless network, an adversary

can easily break into an end-user and the ISP [27–31] in

Fig. 4b because the messages are transmitted on air in

wireless network. Thus, wireless network is more vulner-

able than wired networks.

Generally, the smartphone user wants his smartphone is

always connected to the Internet because applications that

are installed in his smartphone usually requires the Internet

connection for uploading or downloading the real-time

information. Thus, the smartphone user often searches open

wireless networks. Therefore, if an adversary installs open

AP, he can easily connect to victims. The way to install the

AP for the MITM attack can be divided into two major

types. First, an adversary installs the compromised AP on

the public places such as airport, bank, and coffee shop

[31]. An adversary can easily catch victims in these places,

because the probability of using the smartphone is

increased when the people stay a long time in one place.

Second method is use rogue AP [27, 28]. Rogue AP is

installed outside range of benign AP and masquerade as

this benign AP. An end-user is easily cheated because

rogue AP use the SSID of the benign AP.

In particular, the smartphone users are required more

attention about this unknown APs because the smart-

phone has became the critical point of user’s information

security. Generally, all information is included in his

smartphone from privacy photographs to business docu-

ments. Thus, if the smartphone is compromised by an

adversary, the user will suffer socially or financially

irreparable damage.

Fig. 3 The map of wireless APs in Chicago

1378 Pers Ubiquit Comput (2014) 18:1373–1386

123



4 Demonstrations

To indicate the risk of unknown AP, we demonstrate the

MITM attack by using compromised AP. We show that an

adversary can easily intercept your message and inject

modified message into communication between your

handset and the service provider. In this section, we

describe our demonstration environments and progresses.

After then, we explain the results of our penetration test.

4.1 Testbed for the MITM attack

We use five devices for demonstration; two Samsung

Galaxy S3s are Android handsets for running applica-

tions; a laptop serves as the compromised AP; an Iptimes

N40006R is benign wireless AP; and a server for MITM

attack. The basic architecture of our testbed is shown in

Fig. 5. Two Android handsets connect to each AP through

Wireless Local Area Network based on IEEE 802.11. The

Android handset 1 is connected to the benign AP, and the

other handset is connected to compromise AP. Each AP

and the spoofing server which serves as the DNS spoofing

server and web proxy server connect to the Internet

through same gateway. We set DNS configuration of

compromised AP to the spoofing server for DNS spoof-

ing. An adversary is able to catch every packets pass

through these compromised AP and divert some packets

by using DNS spoofing.

Table 4 shows the tools and software used in our dem-

onstrations. We use top five applications that are registered

in ‘‘Top New Free Games’’ of Google Play. These appli-

cations import pop-up advertisements of event notification

and commercial advertisement from their web servers.

Wireshark and Connectify Hotspot are installed on the

laptop. Wireshark is used to analyze packets to find vul-

nerability of communication process. Connectify Hotspot

is used to set up the laptop as Wi-Fi AP. Apache2 and Bind

is installed on the desktop. Apache2 is used to reply HTTP

requests, and Bind is used to deceive Android handset 2.

4.2 Preliminaries

We obtained abstract operations of android applications by

analyzing the traffic of applications, as following Fig. 6.

Generally, applications communicate with more than one

server. First one is a data server. The data server checks

application suitability such as user authentication, appli-

cation version and integrity, and so on. If application fails

to test the suitability or access to the date server, then this

application is immediately terminated. The second server is

an advertisement server, and this server is an optional

object. The advertisement server provides html files and

image files of event notification and commercial adver-

tisement via HTTP. The connection of the advertisement

server does not affect launch of application differently

from the connection of the data server. We masquerade as

advertisement server for the MITM attack.

Figure 7 shows the MITM attack progress, which con-

sists of passive attack phase and active attack phase.

For the purpose of the passive attack phase, an adversary

confirms the existence of the advertisement server and

understands communication process between the applica-

tion and the advertisement server. An adversary monitors

the DNS query and response and intercepts the packets

between the application and the advertisement server by

using the compromised AP. He can easily figure out the IP

address and domain name of the advertisement server by

using the extracted html documentations and image files

through Wireshark. Figure 8 shows an example of the

passive attack phase. After receiving a DNS response, the

Android handset 2 immediately requests the HTML doc-

ument to androweb.cafe24.com. This HTML document

contains the URL on the pop-up advertisement.

In the active attack phase, an adversary puts the modi-

fied HTML documents on the specific path which came

Fig. 4 MITM attack patterns in (a) wired and (b) wireless commu-

nication environment

Table 3 Number of wireless AP that is located in United State in Sep 2013

Region Total California Texas Ohio New York

Count 40,919,320 5,255,380 3,941,742 2,178,988 2,076,812

Pers Ubiquit Comput (2014) 18:1373–1386 1379

123



Fig. 5 Architecture of our

testbed

Table 4 The tools and software used in our demonstrations

Device Installed software Installation purpose

Android handset 1 and Android handset 2 Test Application 1 [35] Attack demonstration

Test Application 2 [36]

Test Application 3 [37]

Test Application 4 [38]

Test Application 5 [39]

Compromised AP Wireshark Packets analysis

Connectify Hotspot Set up to wireless access point

Spoofing server Apache2 HTTP proxy server

Bind DNS spoofing attack

Fig. 6 Abstract operation

process of the application which

imports pop-up advertisement

1380 Pers Ubiquit Comput (2014) 18:1373–1386

123



from the previous phase. Then he sets up the DNS con-

figuration to divert the HTTP request messages to spoofing

server. The code in the Fig. 9 is an example of inserted

code in named.conf, that is, configuration file of named

which is a DNS server, part of the BIND9 distribution.

4.3 Man-in-the-middle attack progress

Figure 10 shows the MITM attack process. When target

applications are launched on the Android handset 2, it

checks status of connection to the Internet and tries to

request IP address of the data server. DNS query of the

Android handset 2 is delivered to the spoofing server

passing through the compromised AP. The spoofing server

returns the correct IP address of data server for normally

launching the target application. Next, the Android handset

2 communicates with the data server for application-spe-

cific launching process. Generally, these communications

are protected by SSL. If the target application is launched

successfully, it tries to request IP address of the adver-

tisement server. In this case, however, the spoofing server

returns IP address of itself in order to inject modified

messages. As a result, the target application requests

HTML documents and image files to the spoofing server

and exposes incorrect advertisements that are modified by

an adversary.

Fig. 7 Man-in-the-Middle

attack progress

Fig. 8 An example of passive attack phase

Pers Ubiquit Comput (2014) 18:1373–1386 1381

123



4.4 The results of man-in-the-middle attack

As mentioned above, we target top five applications that

are registered in ‘‘Top New Free Games’’ of Google Play.

Figure 11 presents screenshot of the target application’s

pop-up advertisement; the (a) image is a view of normal

case, the (b) image is a view of abnormal case that the target

application imports modified HTML document, and the

(c) image is a screen when the link contained in the modi-

fied HTML document has been executed of target applica-

tion. In many cases, Android applications are used as simple

objects such as WebView for pop-up advertisement. As a

result, an adversary can easily insert link of the other URLs

into modified HTML document. Figure 12 is a part of the

code of original HTML document of target application and

link-embedded HTML document that is made by us.

Figure 13 shows the results of our MITM attack dem-

onstration. We have inserted ‘‘Modified advertisement’’ to

all the images and added the link of the injected HTML

document to the original HTML document. We have suc-

ceeded in exposing modified advertisement page to user

through the all benign applications. And also, the link that

is injected by us is working properly in the all test

applications.

Figure 14 shows the partial code for generating pop-up

advertisement of the Test application 1. WebView is

Android API for simple display online content within

applications [40]. By using loadUrl method of WebView

class, developer can easily handle online content. However,

these objects, such as WebView, are in danger of being

misused as a result of our demonstration. If developer can

to block that execution of embedded link, it is possible to

significantly reduce the threat of these attacks.

A spear phishing is more effective because phishing

messages are customized for victims [34]. Customized

message, which contains trustworthy information such as

victim’s nickname, is easier to be believed. Thus, the threat

of the MITM attack is more critical when it is combined

with the social engineering for customizing injected

advertisement. Who do not click it when the phrase ‘‘Only

Fig. 9 An example of inserted code in named.conf

Fig. 10 An example of the

MITM attack process

1382 Pers Ubiquit Comput (2014) 18:1373–1386

123



one chance! Click and Receive Gift’’ is inserted in the pop-

up advertisement of well-known application?

It is necessary to mitigate the MITM attack as follows:

(1) the smartphone user avoids connecting to unknown AP,

and (2) pays attention to pop-up advertisement even if it is

pop-up message of well-known application. (3) The

application developer avoids using vulnerable API, and (4)

must use mutual authentication process and secure protocol

such as SSL [33] when an application communicates with

external devices.

5 Conclusions

We describe the roles and potentiality of smartphone in

the UbiComp environments. The smartphone has done a

remarkable development enough to satisfy core require-

ments of UbiComp: context-aware computing, ambient

and ubiquitous intelligence, and recording, tracking and

monitoring environments. However, the growth of the

smartphones is sufficient to attract the attention of

adversaries. Moreover, the security model of the Android

Fig. 11 Captured images of the target application’s pop-up advertisement

Fig. 12 An example code of the (a) original HTML document and (b) link-embedded HTML document

Pers Ubiquit Comput (2014) 18:1373–1386 1383

123



Fig. 13 The results of demonstration of the test application 1–4

Fig. 14 The partial code for generating pop-up advertisement by using WebView class

1384 Pers Ubiquit Comput (2014) 18:1373–1386

123



platform has security vulnerabilities such as the follow-

ing: (1) Android OS will be left a big responsibility to

ignorant user about security, (2) permission-based secu-

rity model is vulnerable about privilege escalation

attacks, and (3) permission-based security model is not

able to cover application-level vulnerability. In this

paper, we reveal the risk of the using unknown APs by

using demonstration. The testbed is composed to five

devices: two android handsets, one laptop, one desktop,

and one wireless AP. The android handsets are used for

running application. The laptop plays the role of com-

promised AP; we change its DNS information. The

desktop is used for DNS spoofing and web server. We

can intercept and inject packets of passes through the

laptop. We divert some packets to the desktop by using

DNS spoofing. As a result, test applications that are

launched on the handset 2 display abnormal advertise-

ments. We shows that benign application, which is

running on uncompromised devices, can be exploited just

connecting to the compromised AP. To mitigate this

MITM attack, developer must use mutual authentication

process when an application communicates with external

devices.

In future work, we will continue to research about the

MITM attack for attack-protected sessions such as SSL/

TLS. Many user applications depute security function to

SSL APIs. However, vulnerabilities about these applica-

tions have been reported in research of Georgiev et al. [32].

For the development of smartphone security, we continu-

ously study for finding out the vulnerability of smartphone

platform and resolving these threats.

References

1. Weiser M (1991) The computer for the 21st century. Sci Am

265(3):94–104

2. Mattern F (2001) The vision and technical foundations of ubiq-

uitous computing. Upgrade 2(5):3–6

3. Rogers Y (2005) Moving on from Weiser’s vision of calm

computing: engaging UbiComp experiences. In: proceedings of

UbiComp 2005. Springer, NY, pp 404–421

4. Leem CS, Jeon NJ, Choi JH, Shin HG (2005) A business model

(BM) development methodology in ubiquitous computing envi-

ronments. In: proceeding of ICCSA 2005. LNCS 3483:86–95

5. Kang BH (2007) Ubiquitous computing environment threats and

defensive measures. IJMUE 2(1):47–60

6. Poslad S (2009) Ubiquitous computing: smart devices, environ-

ments and interactions. Wiley, New York, pp 3–73

7. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-

aware system. Int J Ad Hoc Ubiquit Comput 2(4):263–277

8. Android Official Blog. Google play hits 25 billion downloads.

http://officialandroid.blogspot.kr/2012/09/google-play-hits-25-

billion-downloads.html

9. Barkuus L, Polichar VE (2011) Empowerment through seam-

fulness: smart phones in everyday life. Pers Ubiquit Comput

15(6):629–639

10. Bell G, Dourish P (2007) Yesterday’s tomorrows: notes on

ubiquitous computing’s dominant vision. Pers Ubiquit Comput

11(2):133–143

11. Campbell A, Choudhury T (2012) From smart to cognitive

phones. IEEE Pervasive Comput 11(3):7–11

12. Grønli T, Chinea G, Younas M (2013) Context-aware and auto-

matic configuration of mobile devices in cloud-enabled ubiqui-

tous computing. Pers Ubiquit Comput

13. Ballagas R, Borchers J, Rohs M, Sheridan JG (2006) The smart

phone: a ubiquitous input device. IEEE Pervasive Comput 5(1):

70–77

14. Roussos G, Marsh AJ, Maglavera S (2005) Enabling pervasive

computing with smart phones. IEEE Pervasive Comput 4(2):

20–27

15. Orthacker C, Teufl P, Kraxberger S, Lackner G, Gissing M,

Marsalek A, Leibetseder J, Prevenhueber O (2012) Android

security permissions—can we trust them? In: proceeding of

MOBISEC 2011. LNICST 94:40–51

16. Felt AP, Chin E, Hanna S, Song D, Wagner D (2011) Android

permissions demystified. In: proceeding of CCS’11, pp 627–638

17. Felt AP, Ha E, Egelman S, Haney A, Chin E, Wagner D (2012)

Android permissions: user attention, comprehension, and behav-

ior. In: proceeding of SOUPS 2012

18. Nauman M, Khan S, Zhang X (2010) Apex: extending android

permission model and enforcement with user-defined runtime

constraints. In: proceeding of ASIACCS’10, pp 328–332

19. Barrera D, Kayacik H (2010) A methodology for empirical

analysis of permission-based security models and its application

to android. In: proceeding of CCS’10, pp 73–84

20. Zhongyang Y, Xin Z, Mao B, Xie L (2013) DroidAlarm: an all-

sided static analysis tool for android privilege-escalation mal-

ware. In: proceeding of ASIACCS’13, pp 353–358

21. Bugiel S, Davi L, Dmitrienko A, Fischer T, Sadeghi A, Shastry B

(2012) Towards taming privilege-escalation attacks on android.

In: proceeding of NDSS 2012

22. Chin E, Felt AP, Greenwood K, Wanger D (2011) Analyzing

inter-application communication in android. In: proceeding of

MobiSys’11, pp 239–252

23. Wireless Geographic Logging Engine. http://wigle.net/gpsopen/

gps/GPSDB/, Sep 2013

24. Gruteser M, Grunwald D (2004) A methodological assessment of

location privacy risks in wireless hotspot network. In: proceeding

of SPC 2003. LNCS 2802:10–24

25. Callegati F, Cerroni W, Ramilli M (2009) Man-in-the-middle

attack to the HTTPS protocol. IEEE Secur Priv 7(1):78–81

26. Ariyapperuma S, Mitchell CJ (2007) Security vulnerabilities in

DNS and DNSSEC. In: proceeding of ARES’07

27. Zafft A, Agu E (2012) Malicious WiFi networks: a first look. In:

proceeding of SICK 2012 pp 1038–1043

28. Aime MD, Calandriello G, Lioy A, Torino PD (2012) Depend-

ability in wireless networks: can we rely on WiFi? IEEE Secur

Priv 5(1):23–29

29. Godber A, Dasgupta P (2003) Countering rogues in wireless

networks. In: proceeding of ICPPW’03

30. Nikbakhsh S, Manaf ABA, Zamani M, Jangeglou M (2012) A

nobel approach for rogue access point detection on the client-

side. In: proceeding of WAINA’12, pp 684–687

31. Hwang H, Jung G, Sohn K, Park S (2008) A study on MITM

(Man in the Middle) vulnerability in wireless network using

802.1X and EAP. In: proceeding of ICISS’08, pp 164–170

32. Georgiev M, Lyengar S, Jana S (2012) The most dangerous code

in the world: validating SSL certificates in non-browser software.

In: proceeding of CCS’12

33. Lee DH, Kim JG (2013) IKEv2 authentication exchange model

and performance analysis in mobile IPv6 networks. Pers Ubiquit

Comput

Pers Ubiquit Comput (2014) 18:1373–1386 1385

123

http://officialandroid.blogspot.kr/2012/09/google-play-hits-25-billion-downloads.html
http://officialandroid.blogspot.kr/2012/09/google-play-hits-25-billion-downloads.html
http://wigle.net/gpsopen/gps/GPSDB/
http://wigle.net/gpsopen/gps/GPSDB/


34. Wang J, Herath T, Chen R, Vishwanath A, Rao HR (2012)

Phishing susceptibility: an investigation into the processing of a

targeted spear phishing Email. IEEE Tran Prof Commun

55(4):345–362

35. Test application 1, https://play.google.com/store/apps/details?id=

com.andromedagames.schoolrun

36. Test application 2. https://play.google.com/store/apps/details?id=

air.com.cjenm.mpang.gp

37. Test application 3. https://play.google.com/store/apps/details?id=

com.marvel.runjumpsmashforkakaotalk_goo

38. Test application 4. https://play.google.com/store/apps/details?id=

com.pnixgames.sports

39. Test application 5. https://play.google.com/store/apps/details?id=

com.cjenm.monster

40. WebView. http://developer.android.com/reference/android/

webkit/WebView.html

1386 Pers Ubiquit Comput (2014) 18:1373–1386

123

https://play.google.com/store/apps/details?id=com.andromedagames.schoolrun
https://play.google.com/store/apps/details?id=com.andromedagames.schoolrun
https://play.google.com/store/apps/details?id=air.com.cjenm.mpang.gp
https://play.google.com/store/apps/details?id=air.com.cjenm.mpang.gp
https://play.google.com/store/apps/details?id=com.marvel.runjumpsmashforkakaotalk_goo
https://play.google.com/store/apps/details?id=com.marvel.runjumpsmashforkakaotalk_goo
https://play.google.com/store/apps/details?id=com.pnixgames.sports
https://play.google.com/store/apps/details?id=com.pnixgames.sports
https://play.google.com/store/apps/details?id=com.cjenm.monster
https://play.google.com/store/apps/details?id=com.cjenm.monster
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html

	Dangerous Wi-Fi access point: attacks to benign smartphone applications
	Abstract
	Introduction
	Smartphone in ubiquitous computing
	Definition of ubiquitous computing
	Core requirements of ubiquitous computing
	Smartphone in ubiquitous computing

	Threats of the compromised access points
	Security model of smartphone
	Threats of the compromised access points

	Demonstrations
	Testbed for the MITM attack
	Preliminaries
	Man-in-the-middle attack progress
	The results of man-in-the-middle attack

	Conclusions
	References


