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Abstract The Internet of Things (IoT), which is usually

established over architectures of wireless sensor networks,

provides an actual platform for various applications of

personal and ubiquitous computing. Recently, moving

target localization and tracking in an IoT environment have

been paid more and more attention. This paper proposes a

square-root unscented Kalman filtering (SR-UKF)-based

algorithm to discover real-time location of a moving target

in an IoT environment where there exist quantities of

sensors. The data generated from wireless sensor nodes of

the IoT make contributions to localization and tracking of

the moving target. First, a least-square (LS) criterion-based

mathematical model is proposed for localization initiali-

zation in an IoT scenario. Next, we employ an SR-UKF

idea for the further localization and tracking. By using the

data coming from sensor nodes near the target, real-time

location of the moving target can be estimated by imple-

mentation of SR-UKF in an iterative fashion so as to

achieve target status tracking. Simulation results show that

the proposed algorithm achieves good performance in

estimation of both position and velocity of the target with

either uniform linear motion or variable-speed curve

motion. Compared with some existing conventional

extended Kalman filtering (EKF) or UKF-based methods,

the proposed algorithm shows lower location/velocity

estimation error under the same computational complexity,

which demonstrates its potential significance in ubiquitous

computing applications for an IoT environment.

Keywords Internet of Things (IoT) � Wireless

sensor network (WSN) � Localization � Tracking �
Square-root unscented Kalman filtering (SR-UKF)

1 Introduction

The Internet of Things (IoT) [1–8], which has gained

widespread acceptance recently, represents a technological

revolution in the field of future networks, mobile comput-

ing, and wireless communications. Future IoT may establish

over the architecture of wireless sensor network (WSN) [9–

14], which consists of hundreds of sensor nodes performing

distributed sensing and collaborative computing. By

deploying sensors on or around physical objects, the IoT

seamlessly integrates a world of networked smart objects,

makes their information be shared on a global scale, and

provides an ability of intelligent computing and information

processing, such as reporting status, position, and sur-

rounding condition of each sensor node. There are various

application domains which have already benefited from the

IoT, especially in areas of industrial production, logistics,

management, and civilian life. As a new type of Internet

application, the IoT brings a new ubiquitous computing era,

which will extremely change people’s life [15].

Localization and tracking of moving targets, which is

considered as a conventional and classical problem, have

been already studied for several years in many fields,

including wireless cellular network-based mobile user

localization [16], simultaneous localization and mapping

(SLAM) systems [17], global positioning systems (GPS)

[18], Ad Hoc network-based localization [19] and the
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ultrasonic-based object localization [20], etc. However,

solutions in the above fields may not directly suit an IoT

scenario where large quantities of sensor nodes which

perform distributed sensing and collaborative information

processing tasks are interconnected together over a wire-

less channel [21].

With the rapid development of WSN, sensor-based

localization and tracking have attracted many research

efforts in recent years [21–25], most of which transform a

localization and tracking problem into target state estima-

tion by utilizing Kalman filtering [26–28]—a prevailing

method for numerous nonlinear estimation, advanced sig-

nal processing and machine learning applications. As a

candidate of improved Kalman filtering schemes, the

extended Kalman filtering (EKF) is employed in [29], in

which the EKF has successfully combined different sensor

data to achieve suboptimal estimation of target states.

However, the EKF has two inherent flaws [30]: on one

hand, it uses only the first-order linearization to update the

mean and covariance of state variables, while ignoring

higher order terms derived from Taylor-series expansion,

which results in only the first-order accuracy; on the other

hand, the EKF needs to calculate the Jacobian matrix,

which has proven to be a complicated task. Some sub-

sequent studies [30–35] employ the unscented Kalman

filtering (UKF) as an alternative to the EKF for solving

target localization and tracking problem. By utilizing a

deterministic ‘‘sampling’’ approach to calculate mean and

covariance terms with higher accuracy, the UKF outper-

forms the EKF in terms of estimation and prediction with

no burden of calculation of Jacobian matrix [36]. Although

the UKF performance is far more promising for target

localization and tracking, there still exist some numerical

problems such as loss of positive definite of the state

covariance matrix, which derives from rounding errors and

may lead to filtering failure [37]. To solve this problem,

square-root UKF (SR-UKF) is introduced for target local-

ization and tracking [37, 38], in which the square root of

covariance matrix is used in propagating process so as to

ensure the nonnegative definite of the state covariance

matrix.

Based on the studies above, we propose an SR-UKF-

based localization and tracking algorithm to discover real-

time location of a moving target in an IoT environment

where there exist quantities of sensors. First, a least-square

(LS) criterion-based mathematical model is proposed for

localization initialization in an IoT scenario. Next, we

employ an SR-UKF idea for the further localization and

tracking. By using the data coming from neighboring

sensor nodes of the target, real-time location of the moving

target can be estimated by implementation of SR-UKF in

an iterative fashion so as to achieve target status tracking.

Simulation results show that the proposed algorithm

achieves good performance in estimation of both position

and velocity of the target with either uniform linear motion

or variable-speed curve motion. Compared with some

existing conventional EKF- or UKF-based methods, the

proposed algorithm shows lower localization error under

the same computational complexity, which demonstrates

its potential significance in ubiquitous computing applica-

tions for an IoT environment.

The rest of this paper is organized as follows: Section II

presents a localization initialization model in the IoT. The

SR-UKF-based localization and tracking algorithm are

proposed in Section III. Performance evaluations of our

proposed algorithm are presented and discussed in Section

IV. Finally, Section V presents our conclusions.

2 Localization initialization model in the IoT

In an IoT scenario, hundreds or thousands of networked

sensor nodes are located at the sensing layer of IoT, per-

forming distributed sensing and collaborative data pro-

cessing tasks. Each sensor node has an ability to sense and

report its own state and surrounding conditions. In this

work, we uniformly deploy N ‘‘location-aware’’ sensor

nodes in an IoT scenario, in which each of them has a priori

knowledge of its own location.

Assume that the sensing ability of each sensor node is

limited in a round region with a radius R. All sensors

periodically detect their own surroundings, and the detec-

tion period is usually set to be much smaller than the

velocity of moving target. Note that, there are only two

possible detection results for each sensor node at a certain

moment: 1 or 0. Here, ‘‘1’’ represents that the target has

been detected at this moment, while ‘‘0’’ denotes target

undetected. When detection result of a sensor node at one

moment is different from its result at the adjacent moment

before, this sensor node can be considered as an available

sensor node at this moment for localization initialization,

and the distance between this sensor node and moving

target approximates to R at this moment. As is shown in

Fig. 1, the sensor node is available for localization ini-

tialization at t2 and t5.

If there are three available sensor nodes for localization

initialization, we can determine initial location area of

moving target by utilizing a localization initialization

model, as shown in Fig. 2. In this figure, the shadow area

represents initial location region of the target. However, we

still expect to obtain its precise location information. Here,

we employ a least-square (LS) mathematical criterion [39]

to calculate initial location point of the moving target.

We assume that there are n (n C 3) available sensor

nodes for localization initialization, as is shown in Fig. 3.

Since each sensor node has a priori knowledge of its own
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location, we have already known location information of

these available sensor nodes, which can be represented as

(X1, Y1), (X2, Y2), …, (Xn, Yn), while the unknown initial

location information of moving target is denoted as (x, y).

Since the distance between the moving target and an

available sensor node approximates to its sensing radius

R as shown in Fig. 1, we can establish the following

equations:

X1 � xð Þ2þ Y1 � yð Þ2
X2 � xð Þ2þ Y2 � yð Þ2

..

.

Xn � xð Þ2þ Yn � yð Þ2

2
6664

3
7775 ¼

R2
1

R2
2

..

.

R2
n

2
6664

3
7775þ

w1

w2

..

.

wn

2
6664

3
7775 ð1Þ

where Ri denotes the maximum sensing radius of the i-th

(i = 1, 2, …, n) available sensor node; wi represents the i-

th measurement noise. Subtract the last row of Eq. (1) from

other rows, then we get the following equations represented

in matrix form:

U� S ¼ V ð2Þ

where U, S and V are given by:

U ¼ �2�

X1 � xnð Þ
X2 � xnð Þ

..

.

Xn�1 � xnð Þ

Y1 � ynð Þ
Y2 � ynð Þ

..

.

Yn�1 � ynð Þ

2
6664

3
7775 ð3Þ

S ¼ x

y

� �
ð4Þ

V ¼

R2
1 � R2

n

� �
þ X2

n � X2
1

� �
þ Y2

n � Y2
1

� �
þ w1 � wnð Þ

R2
2 � R2

n

� �
þ X2

n � X2
2

� �
þ Y2

n � Y2
2

� �
þ w2 � wnð Þ

..

.

R2
n�1 � R2

n

� �
þ X2

n � X2
n�1

� �
þ Y2

n � Y2
n�1

� �
þ wn�1 � wnð Þ

2
6664

3
7775

ð5Þ
Since Eq. (2) contains measurement noise components

which may affect accuracy of its solution, here we use the LS

estimator to obtain the estimate of S. The optimal solution (or

estimate) of Eq. (2) based on the LS criterion is given by:

SLS ¼ UT U
� ��1

UT V ð6Þ

From Eqs. (1–6), we obtain initial location information of

the moving target, which is given by SLS. After localization

initialization discussed above, we should implement further

localization and tracking. This gives rise to an SR-UKF-

based algorithm, as discussed in the next section.

3 SR-UKF-based localization and tracking algorithm

in the IoT

Kalman filters (KF) and their variants are promising solu-

tions for target localization and tracking. However, the

standard linear KF methods are usually not suitable for target

tracking with a nonlinear observation equation. The exten-

ded KF (EKF) [29] methods, which apply the standard linear

KF methodology to linearization of a nonlinear system [37],

show improved filtering performance. However, the EKF

implements only the first-order approximation to a nonlinear

system and ignores higher order terms derived from Taylor-

series expansion, which degrades its performance when it is

used in a nonlinear system. Although the unscented KF

(UKF) [30–35] is an effective alternative to the EKF for a

nonlinear system, it still suffers some numerical problems

such as loss of positive definite of the state covariance matrix

which derives from rounding errors and may lead to filtering

failure [37]. Since the square-root UKF (SR-UKF) [37, 38]

outperforms standard KF, EKF and UKF in nonlinear

1t
2t

3t
4t

5t
R

Mobile Target

Sensor Node

Moving Trajectory

Fig. 1 Available sensor node (at t2 and t5)

A

B C

Available Sensor Node

x

y
Initial Location Area

Fig. 2 Localization initialization model in an IoT scenario

x

y
Initial Location Area

Fig. 3 Extended localization initialization model in an IoT scenario
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filtering, here we employ the SR-UKF to design localization

and tracking algorithm in an IoT environment.

3.1 SR-UKF Principle

For a nonlinear dynamic system, we define the following

dynamic state and observation equations for SR-UKF

implementation, which are given by:

akþ1 ¼ F akð Þ þ vk; State Equation

bk ¼ H akð Þ þ wk; Observation Equation

(
ð7Þ

where F(�) is defined as the state function, which shows the

recursive relationship of parameter a at the current moment

(k) and the next moment (k ? 1). H(�) denotes the observa-

tion function, which provides the relationship between ak and

bk. F(�) may be linear or nonlinear depending on application

scenarios, whereas H(�) is usually highly nonlinear in SR-

UKF. Here, ak and bk are the state and observation vectors at

the k-th moment (also at the k-th iteration), respectively. The

value of bk can be obtained by observation or measurement,

while the value of ak is unknown. vk and wk are state and

observation noise vectors, respectively. Usually, the aim of

SR-UKF is to estimate the value of ak at each k-the moment

(k = 1, 2, 3, 4,…) under the given value of bk.

The SR-UKF principle for state estimation (or prediction)

of ak (k = 1, 2, 3, 4,…) can be summarized as follows:

1. Initialization

â0 ¼ E a0f g; S0 ¼ chol E a0 � â0ð Þ a0 � â0ð ÞT
� �� 	

ð8Þ

where E{�} denotes the expectation operator; chol{A}

is the original Cholesky factor of A [37].

2. The k-th iterative estimation, k [ {1,2,…,?}

(a) Sigma point calculation:

vk�1 ¼ âk�1; âk�1 þ
ffiffiffiffiffiffiffiffiffiffiffi
Lþ k
p

Sk�1; âk�1 �
ffiffiffiffiffiffiffiffiffiffiffi
Lþ k
p

Sk�1

h i

ð9Þ

where L is dimension of the state vector ak; k = L(a2 - 1)

is a compound scaling parameter, in which a is a primary

scaling factor and is usually set between 10-4 and 1.

(b) Time update:

vkjk�1 ¼ F vk�1ð Þ ð10Þ

â�k ¼
X2L

i¼0

W
ðmÞ
i vi;k k�1j ð11Þ

Sa
k
¼ qr

ffiffiffiffiffiffiffiffiffi
W
ðcÞ
1

q
v1;k k�1j � â�k

� �
; . . .;

�

ffiffiffiffiffiffiffiffiffi
W
ðcÞ
2L

q
v2L;k k�1j � â�k

� �
;
ffiffiffiffiffiffi
Qv

q �� ð12Þ

Sa
k
¼ cholupdate Sa

k
; v0;k � â�k ;W

ðcÞ
0

n o
ð13Þ

where Qv denotes covariance matrix of the state noise

vector vk; {Wi} is a set of scalar weights, which is given by:

W
ðmÞ
0 ¼ k= Lþ kð Þ; W

ðcÞ
0 ¼ k= Lþ kð Þ þ 1� a2 þ b

� �

ð14Þ

W
ðmÞ
i ¼ W

ðcÞ
i ¼ 1= 2 Lþ kð Þ½ �; i ¼ 1; . . .; 2L ð15Þ

where b is a secondary scaling factor. Generally, b = 2 is

optimal for Gaussian distribution; qr{A} represents the

upper triangular part of matrix R (R results from the QR

decomposition of matrix A); cholupdate{A,B,c} is avail-

able in Matlab as ‘‘cholupdate’’. If A = chol{D} is the

original Cholesky factor of D, then cholupdate{A,B,c}

returns the Cholesky factor of D 1 cBBT.

(c) Measurement update:

ck k�1j ¼ H vk k�1j

� �
ð16Þ

b̂
�
k ¼

X2L

i¼0

W
ðmÞ
i ci;k k�1j ð17Þ

Sbk
¼ qr

ffiffiffiffiffiffiffiffiffi
W
ðcÞ
1

q
c1;k k�1j � b̂

�
k

� �
; . . .;

�

ffiffiffiffiffiffiffiffiffi
W
ðcÞ
2L

q
c2L;k k�1j � b̂

�
k

� �
;
ffiffiffiffiffiffiffi
Qw

p �� ð18Þ

Sbk
¼ cholupdate Sbk

; c0;k � b̂
�
k ;W

ðcÞ
0

h in o
ð19Þ

Pakbk
¼
X2L

i¼0

W
ðcÞ
i vi;k k�1j � â�k

h i
ci;k k�1j � b̂

�
k

h iT

ð20Þ

jk ¼ Pakbk
Sbk

ST
bk

� ��1

ð21Þ

âk ¼ â�k þ jk bk � b̂
�
k

� �
ð22Þ

Uk ¼ jkSbk
ð23Þ

Sk ¼ cholupdate Sak
;Uk;�1f g ð24Þ

where Qw denotes covariance matrix of the observation

noise vector wk.

The SR-UKF performs the above procedure in an iter-

ative fashion so as to achieve improved performance of

state estimation of ak (k = 1, 2, 3, 4,…).

3.2 SR-UKF-based localization and tracking algorithm

Here, we employ the above SR-UKF procedure to solve

localization and tracking problems in an IoT scenario. In

order to describe movement state of a moving target in a

sensor-based IoT environment, we define the following

dynamic state and observation equations.

990 Pers Ubiquit Comput (2014) 18:987–996

123



3.2.1 State equation

akþ1 ¼ F akð Þ þ vk

¼ Uak þ vk

ð25Þ

where ak denotes location and velocity information of

moving target at the k-th moment; vk represents the state

noise vector; U is a state transition matrix. Parameters in

Eq. (25) should be defined in accordance with motion pattern

of the target, while the target may move in any fashion.

Without loss of generality, here we consider two situations:

uniform linear motion and variable-speed curve motion.

When the target moves in a uniform linear motion

(ULM), parameters in Eq. (25) are given by:

ak ¼ xk yk x0k y0k½ �T ð26Þ

UULM ¼
I2�2 TI2�2

02�2 I2�2

� �
ð27Þ

where [xk, yk] is location coordinates of target at the k-th

moment; [xk
0, y0k] represents the derivative of [xk, yk], which

also stands for the velocity in the x- and y-axis direction; I292

and 0292 denotes the 2 9 2 unit matrix and all-zero matrix,

respectively; T is time interval of sensor detection.

When the target moves in a variable-speed curve motion

(VCM), parameters in Eq. (25) are given by:

ak ¼ xk yk x0k y0k x00k y00k½ �T ð28Þ

UVCM ¼
I2�2 TI2�2

1
2

T2I2�2

02�2 I2�2 TI2�2

02�2 02�2 I2�2

2
4

3
5 ð29Þ

where xk
00 and yk

00 represents the second-order derivative of

xk and yk, which also stands for the acceleration in the x-

and y-axis direction.

3.2.2 Observation equation

bk ¼ H akð Þ þ wk

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X1 � xkð Þ2þ Y1 � ykð Þ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 � xkð Þ2þ Y2 � ykð Þ2

q

..

.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XM � xkð Þ2þ YM � ykð Þ2

q

2
666666664

3
777777775
þ wk

ð30Þ

where (X1, Y1), (X2, Y2), …, (XM, YM) represent location

coordinates of M sensor nodes, which are available for

localization and tracking at the k-th moment, respectively;

bk = [R1, R2,…, RM]T represents distances between the

target and available sensor nodes at the k-th moment,

where Ri denotes the maximum sensing radius of the i-th

(i = 1, 2,…, M) available sensor node; wk is the observa-

tion noise vector.

The SR-UKF-based localization and tracking algorithm

can be implemented as follows:

1. Initialization

At the initialization stage, we use the proposed locali-

zation initialization model proposed in Section II to obtain

initial location coordinates of target [x0, y0]. For simplicity,

the initial velocity [x’0, y’0] is given when the target moves

in a uniform linear motion, while the initial acceleration

[x0
00, y0

00] is also given for a variable-speed curve motion.

So the initial state vector is given by:

a0 ¼ x0 y0 x00 y00½ �T see Eq: ð26Þfor ULMð Þ ð31Þ

a0 ¼ x0 y0 x00 y00 x000 y000½ �T

see Eq: ð28Þ for VCMð Þ
ð32Þ

Based on several initialization tests, we acquire a group

of initial values of a0, and then, we can calculate â0 and S0

by using Eq. (8).

2. The k-th iterative Estimation, k [ {1, 2,…,?}

(a) Sigma point calculation

Substitute âk�1 and Sk�1 into Eq. (9), then we get vk�1.

(b) Time update

By utilizing Eqs. (10–13), we get vk k�1j , â�k and Sa
k
.

Note that, F(�) in Eq. (10) should be replaced by Eq. (25).

(c) Measurement update

According to Eqs. (16–24), we get the estimate âk and

Sk at the k-th moment. Note that, H(�) in Eq. (16) should be

replaced by Eq. (29).

Based on the above procedure which performs in an

iterative fashion, we get the estimates of location and

velocity information of the moving target at any moment,

which indicates realization of target localization and

tracking in an IoT scenario. Figure 4 shows the whole

procedure of the proposed SR-UKF-based localization and

tracking algorithm.

3.3 Computational complexity

Assume that the dimension of the state vector ak and the

observation vector bk in Eqs. (25, 29) is L and M, respec-

tively. In the whole algorithm, its computational complexity

mainly comes from two complicated operations: QR

decomposition and cholupdate, which are given by Eqs. (12,

13, 18 and 19). For simplicity and without loss of generality,

here we only consider computational complexity, which

comes from these two operations. The QR decomposition of

matrix in Eqs. (12, 18) brings the complexity of

O((3L ? 1)L2); the function of cholupdate in Eqs. (13, 19)

brings the complexity of O(2LM2). Generally, L is larger than
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M, so the complexity of SR-UKF-based localization and

tracking algorithm is O(L3), which is equal to the complexity

of both the EKF- and UKF-based methods [37].

4 Simulation results and analysis

4.1 Simulation parameters

We consider a square sensor field (1,000 m 9 1,000 m)

which has (-500, -50 m), (-500, 500 m), (500, -500 m)

and (500, 500 m) as its four corners. Fifty sensor nodes

which are used for target detection are uniformly and ran-

domly deployed in this field. We assume that the sensing

ability of each sensor node is limited in a round region whose

radius is 300 m. T = 1s is the time interval of sensor

detection. Processing requirements in terms of time for the

whole IoT architecture can be satisfied by using common

processors such as MSP430 (Mixed Signal Processor 430),

where it is used as 16 MHz clock with 16 bits CPU.

4.2 Performance assessment

4.2.1 Case 1: The target moves in a uniform linear motion

(ULM)

(a) Localization Initialization

We assume that the initial location coordinate and velocity

of the moving target are (-400, 400 m) and (x0
0 = 25 m/s,

y0
0 = -25 m/s), respectively, which is given by:

a0 ¼ x0 y0 x00 y00½ �T

¼ �400 m 400 m 25 m=s �25 m=s½ �T
ð33Þ

(b) Estimation of target trajectory

Figure 5 compares target trajectories obtained from the

three algorithms, which are the EKF [29], the UKF [30–35]

and the proposed SR-UKF-based localization and tracking

algorithms, respectively. The black line in the figure means

the real moving trajectory of the target. The lines with

marks are trajectory estimates by the three algorithms.

From this figure, we find that both the UKF and the pro-

posed algorithms show identical and better trajectory esti-

mation performance when the target moves in a uniform

linear motion. The EKF performs poorly compared with

the UKF and the proposed, which verifies the superiority of

UKF-based methods to the EKF-based methods. The rea-

son is that the linearization approach of the EKF results

only in the first-order accuracy, while approximations of

the UKF-based methods are accurate to at least the second

order [37].

(c) Estimation of location point coordinates in the X-/Y-

axis direction

Figures 6 and 7 compare location estimation errors of

the three algorithms in the X-axis and Y-axis directions,

respectively. Obviously, the EKF exhibits a worse result in

localization, and its location estimation error is limited to

about 20 m, while errors of the UKF-based and the pro-

posed algorithms are less than about 10 and 3 m, respec-

tively. Moreover, our algorithm shows slightly better

estimation performance for target position than the UKF-

based algorithm in Figs. 6 and 7, in which we find that the

positioning accuracy of the UKF-based algorithm is less

than 10 m, while that of the proposed algorithm is less than

3 m. Since the square-root (SR) filter employed in our

algorithm ensures a nonnegative definite characteristic of

the state covariance matrix, the proposed algorithm shows

its superiority.

(d) Estimation of velocity in the X-/Y-axis direction

Figure 8 and 9 compare velocity estimation errors of the

three algorithms in the X- and Y-axis directions, respec-

tively. From the figure, we find that velocity estimates of

all the three algorithms achieve convergence only after

several seconds. However, the proposed algorithm shows

the best velocity tracking since its velocity estimation error

limits to less than about 0.2 m/s in both X- and Y-axis

directions.

Initialization

0â S0
T

he k-th iterative estim
ation

Sigma point calculation

Time update

Measurement update

1k −χ

1k k −χ ˆ
k
−a

ka
S

kS

ˆ
ka

ˆ
ka

(k=1,2,3,4,…)

Fig. 4 Flow chart of the proposed SR-UKF-based algorithm
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4.2.2 Case 2: The target moves in a variable-speed curve

motion (VCM)

(a) Localization Initialization

According to the basic physical laws of the movement of

objects, difference of acceleration values between the X-

and Y-axis directions results in a variable-speed curve

motion. Here, we assume that the initial location coordi-

nate, velocity and acceleration of the moving target are

(–400, 400 m), (x0
0 = 25, y0

0 = -25 m/s) and (x0
00 = 0,

y0
00 = -1 m/s2), respectively. Note that, acceleration val-

ues here (x0
00 and y0

00) are different in the X- and Y-axis

directions, so that the target moves in a variable-speed

curve motion. The initial location information is summa-

rized by:

a0 ¼ x0 y0 x00 y00 x000 y000½ �T

¼ �400 m 400 m 25 m/s 0 m/s 0m/s2 �1 m=s2
� �T

ð34Þ

(b) Estimation of target trajectory

Figure 10 compares target trajectories recovered from

the three algorithms. Obviously, all the three recovered

curves presented with marks are close to the real trajectory

curve, which means all the three algorithms perform well

in target localization and tracking when the target moves in

a variable-speed curve motion. However, both the UKF and

the proposed algorithms show identical and superior tra-

jectory estimation performance compared with the EKF-
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Fig. 8 Comparison of velocity estimation errors in the X-axis

direction
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based algorithm, which is similar to the previous conclu-

sion in a uniform linear motion. This demonstrates that the

proposed algorithm can be applied for various occasions

where the target moves in different motions.

(c) Estimation of location point coordinates in the X-/Y-

axis direction

Figures 11 and 12 compare positioning errors of dif-

ferent algorithms in the X- and Y-axis directions, respec-

tively. From the two figures, we may find that the proposed

algorithm keeps on the best positioning performance

among the three. Its positioning errors remain the same as

those in Figs. 6 and 7 (that is: less than 3 m), which also

demonstrates movement states of objects have little influ-

ence on positioning estimation performance of the pro-

posed algorithm.

(d) Estimation of velocity in the X-/Y-axis direction

Figures 13 and 14 compare velocity estimation errors of

the three algorithms in the X-axis and Y-axis directions,

respectively. From the figures, we find that both the

velocity estimation convergence and estimation errors of

the proposed algorithm in a variable-speed curve motion

case are similar to those in a uniform linear motion case,

which demonstrates velocity states of objects have little

influence on tracking performance of the proposed algo-

rithm. Although there exist acceleration in the X- and

Y-axis directions for the variable-speed motion, velocity

estimation accuracy of the proposed algorithm still remain

the best among three algorithms, which is less than about

0.2 m/s.
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Fig. 11 Comparison of location estimation errors in the X-axis

direction

0 5 10 15 20 25 30 35
-20

-15

-10

-5

0

5

10

15

20

t (s)

Lo
ca

tio
n 

er
ro

r 
in

 th
e 

Y
-a

xi
s 

di
re

ct
io

n 
(m

) EKF-based

UKF-based
The proposed

Fig. 12 Comparison of location estimation errors in the Y-axis

direction

994 Pers Ubiquit Comput (2014) 18:987–996

123



5 Conclusions

In order to achieve real-time localization and tracking of a

moving target, we have proposed a square-root unscented

Kalman filtering (SR-UKF)-based algorithm, which is

suitable for an IoT environment where hundreds or thou-

sands of networked sensor nodes are located at the sensing

layer for distributed sensing and collaborative data pro-

cessing. The data generated from wireless sensor nodes of

the IoT make contributions to localization and tracking of

the moving target. Based on the architecture of wireless

sensor network (WSN), we first present a least-square (LS)

criterion-based mathematical model for localization ini-

tialization in the IoT scenario. Then, we employ an SR-

UKF idea for the further localization and tracking. By

using the data coming from neighboring sensor nodes near

the target, real-time location and velocity of the moving

target can be estimated by implementation of SR-UKF in

an iterative fashion so as to achieve target status tracking.

Simulation results show that the proposed algorithm

achieves good performance in estimation of both position

and velocity of the target with either uniform linear motion

or variable-speed curve motion. Compared with some

conventional extended Kalman filtering (EKF) or UKF-

based methods, the proposed algorithm shows lower loca-

tion/velocity estimation error under the same computa-

tional complexity. Take our simulation for example, it

achieves more precise localization and tracking. Under our

simulation parameter setting, the errors of its location and

velocity estimation can be limited to less than about 3 m

and 0.2 m/s, respectively, which has already satisfied the

demands for conventional and daily localization in campus,

buildings and other public regions. In summary, this work

is of significance for sensor-based localization and tracking

applications.

Acknowledgments This work is supported by National Natural

Science Foundation of China (61171014) and the Fundamental

Research Funds for the Central Universities.

References

1. Iera A, Floerkemeier C, Mitsugi J, Morabito G (2010) The

internet of things [Guest Editorial]. IEEE Wirel Commun

17(6):8–9

2. Guinard D, Trifa V, Karnouskos S, Spiess P, Savio D (2010)

Interacting with the SOA-based internet of things: discovery,

query, selection, and on-demand provisioning of web services.

IEEE Trans Serv Comput 3(3):223–235

3. Zheng J, Simplot-Ryl D, Bisdikian C, Mouftah HT (2011) The

internet of things [Guest Editorial]. IEEE Commun Mag

49(11):30–31

4. Florian M, Stephan K, Albrecht S (2010) What can the internet

of things do for the citizen? IEEE Pervasive Comput 9(4):

102–104

5. Welbourne E, Battle L, Cole G, Gould K, Rector K, Raymer S,

Balazinska M, Borriello G (2009) Building the internet of things

using RFID: the RFID ecosystem experience. IEEE Internet

Comput 13(3):48–55

6. Ning HS, Wang ZO (2011) Future internet of things architecture:

like mankind neural system or social organization framework?

IEEE Commun Lett 15(4):461–463

7. Zorzi M, Gluhak A, Lange S, Bassi A (2010) From today’s IN-

TRAnet of things to a future INTERnet of things: a wireless- and

mobility-related view. IEEE Wirel Commun 17(6):44–51

8. Kranz M, Holleis P, Schmidt A (2010) Embedded interaction:

interacting with the internet of things. IEEE Internet Comput

14(2):46–53

9. Choi S-H, Kim B-K, Park J, Kang C-H, Eom D-S (2004) An

implementation of wireless sensor network. IEEE Trans Consum

Electron 50(1):236–244

10. Li M, Li M, Koutsopoulos I, Poovendran R (2010) Optimal

jamming attack strategies and network defense policies in wire-

less sensor networks. IEEE Trans Mob Comput 9(8):1119–1133

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

2

2.5

3

3.5

t (s)

V
el

oc
ity

 e
rr

or
 in

 t
he

 X
-a

xi
s 

di
re

ct
io

n 
(m

/s
)

EKF-based

UKF-based
The proposed

Fig. 13 Comparison of velocity estimation errors in the X-axis

direction

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

1.5

2

2.5

t (s)

V
el

oc
ity

 e
rr

or
 in

 th
e 

Y
-a

xi
s 

di
re

ct
io

n 
(m

/s
) EKF-based

UKF-based
The proposed

Fig. 14 Comparison of velocity estimation errors in the Y-axis

direction

Pers Ubiquit Comput (2014) 18:987–996 995

123



11. Hong S, Kim D, Ha M, Bae S, Park SJ, Jung W, Kim J-E (2010)

SNAIL: an IP-based wireless sensor network approach to the

internet of things. IEEE Wirel Commun 17(6):34–42

12. Wang C, Ma HD, He Y, Xiong SG (2012) Adaptive approximate

data collection for wireless sensor networks. IEEE Trans Parallel

Distrib Syst 23(6):1004–1016

13. Luo RC, Chen O (2012) Mobile sensor node deployment and

asynchronous power management for wireless sensor networks.

IEEE Trans Industr Electron 59(5):2377–2385

14. Tsai C-H, Tseng Y-C (2012) A path-connected-cluster wireless

sensor network and its formation, addressing, and routing pro-

tocols. IEEE Sens J 12(6):2135–2144

15. Koshizuka N, Sakamura K (2010) Ubiquitous ID: standards for

ubiquitous computing and the Internet of Things. IEEE Pervasive

Comput 9(4):98–101

16. Mayorga CLF et al (2007) Cooperative positioning techniques for

mobile localization in 4G cellular networks. IEEE international

conference on pervasive services, pp 39–44

17. Gutmann JS et al (2012) Vector field SLAM: localization by

learning the spatial variation of continuous signals. IEEE Trans

Rob 99:1–18

18. Ouyang RW et al (2010) GPS localization accuracy improvement

by fusing terrestrial TOA measurements. 2010 IEEE International

conference on communications (ICC), pp 1–5

19. Huang R, Zaruba GV (2007) Incorporating data from multiple

sensors for localizing nodes in mobile Ad Hoc networks. IEEE

Trans Mob Comput 6(9):1090–1104

20. Guo B, Imai M (2007) Home-explorer: search, localize and

manage the physical artifacts indoors. 21st International confer-

ence on advanced information networking and applications

(AINA), pp 378–385

21. Zhang LQ et al (2008) A novel distributed sensor positioning

system using the dual of target tracking. IEEE Trans Comput

57(2):246–260

22. Wang LJ et al (208) Location estimation of mobile user in

wireless sensor network based on unscented Kalman filter.

International conference on microwave and millimeter wave

technology (ICMMT), vol 1, pp 96–99

23. Sun CJ et al (2010) A sensor based indoor mobile localization

and navigation using unscented Kalman filter. 2010 IEEE on

Position Location and Navigation Symposium (PLANS),

pp 327–331

24. Ji X, Zha HY (2004) Sensor positioning in wireless ad-hoc sensor

networks using multidimensional scaling. INFOCOM 2004, 23rd

Annual joint conference of the IEEE computer and communica-

tion societies, vol 4, pp 2652–2661

25. Patwari N et al (2003) Relative location estimation in wireless

sensor networks. IEEE Transactions on signal processing, special

issue on signal processing in networking, vol 51, No. 8,

pp 2137–2148

26. Kalman RE (1960) A new approach to linear filtering and pre-

diction theory. Trans ASME J Basic Eng 82(1):35–45

27. Sinopoli B, Schenato L, Franceschetti M, Poolla K, Jordan MI,

Sastry SS (2004) Kalman filtering with intermittent observations.

IEEE Trans Autom Control 49(9):1453–1464

28. Gandhi MA, Mili L (2010) Robust Kalman filter based on a

generalized maximum-likelihood-type estimator. IEEE Trans

Signal Process 58(5):2509–2520

29. Chatterjee A, Matsuno F (2007) A neuro-fuzzy assisted extended

Kalman filter-based approach for simultaneous localization and

mapping (SLAM) problems. IEEE Trans Fuzzy Syst 15(5):

984–997

30. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear

estimation. Proc IEEE 92(3):401–422

31. Zhan RH, Wan J (2006) Neural network-aided adaptive unscen-

ted Kalman filter for nonlinear state estimation. IEEE Signal

Process Lett 13(7):445–448

32. Angrisani L, Baccigalupi A, Schiano Lo Moriello R (2006)

Ultrasonic time-of-flight estimation through unscented Kalman

filter. IEEE Trans Instrum Meas 55(4):1077–1084

33. Zhan R, Wan J (2007) Iterated unscented Kalman filter for pas-

sive target tracking. IEEE Trans Aerosp Electron Syst 43(3):

1155–1163

34. Dini DH, Mandic DP, Julier SJ (2011) A widely linear complex

unscented Kalman filter. IEEE Signal Process Lett 18(11):

623–626

35. Valverde G, Terzija V (2011) Unscented kalman filter for power

system dynamic state estimation. IET generation, transmission &

distribution, pp 29–37

36. Gustafsson F, Hendeby G (2012) Some relations between

extended and unscented Kalman filters. IEEE Trans Signal Pro-

cess 60(2):545–555

37. Van der Merwe R, Wan EA (2001) The square-root unscented

Kalman filter for state and parameter-estimation. 2001 IEEE

International conference on acoustics, speech, and signal pro-

cessing (ICASSP), vol 6, pp 3461–3464

38. Holmes SA et al (2009) A O(N2) square root unscented Kalman

filter for visual simultaneous localization and mapping. IEEE

Trans Pattern Anal Mach Intell 31(7):1251–1263

39. Cattivelli FS, Lopes CG, Sayed AH (2008) Diffusion recursive

least-squares for distributed estimation over adaptive networks.

IEEE Trans Signal Process 56(5):1865–1877

996 Pers Ubiquit Comput (2014) 18:987–996

123


	Square-root unscented Kalman filtering-based localization and tracking in the Internet of Things
	Abstract
	Introduction
	Localization initialization model in the IoT
	SR-UKF-based localization and tracking algorithm in the IoT
	SR-UKF Principle
	SR-UKF-based localization and tracking algorithm
	State equation
	Observation equation

	Computational complexity

	Simulation results and analysis
	Simulation parameters
	Performance assessment
	Case 1: The target moves in a uniform linear motion (ULM)
	Case 2: The target moves in a variable-speed curve motion (VCM)


	Conclusions
	Acknowledgments
	References


