
ORIGINAL ARTICLE

Context-aware and automatic configuration of mobile devices
in cloud-enabled ubiquitous computing

Tor-Morten Grønli • Gheorghita Ghinea •

Muhammad Younas

Received: 10 December 2012 / Accepted: 17 May 2013 / Published online: 28 June 2013

� Springer-Verlag London 2013

Abstract Context-sensitive (or aware) applications have,

in recent years, moved from the realm of possibilities to

that of ubiquity. One exciting research area that is still very

much in the realm of possibilities is that of cloud com-

puting, and in this paper, we present our work, which

explores the overlap of these two research areas. Accord-

ingly, this paper explores the notion of cross-source inte-

gration of cloud-based, context-aware information in

ubiquitous computing through a developed prototypical

solution. Moreover, the described solution incorporates

remote and automatic configuration of Android smart-

phones and advances the research area of context-aware

information by harvesting information from several sources

to build a rich foundation on which algorithms for context-

aware computation can be based. Evaluation results show

the viability of integrating and tailoring contextual infor-

mation to provide users with timely, relevant and adapted

application behaviour and content.

Keywords Cloud computing � Mobile computing �
Context awareness � Information tailoring � Push messaging

1 Introduction

The notion of context-aware computing is generally the

ability for the devices to adapt their behaviour to the sur-

rounding environment, and ultimately enhancing usability

[7]. In particular, context awareness is becoming an

important factor when it comes to mobile devices, as users

bring their smartphone or tablet just about everywhere,

highlighting the need for adapting the content to the user’s

current situation. In a seminal article, Dey and Abowd [7]

have remarked that if we fully understand context in a given

environment and setting, we would be better able to adapt

context-aware behaviour in our applications. The conse-

quence of this desideratum is devices that adapt content

based on the user’s context, eliminating the need for users to

manually do these tasks. Indeed, context is a major part of

our daily life and support for sharing and using contextual

information will improve user interaction [2].

Context-aware solutions have been around for some

years, and have been used in a variety of applications [1, 10,

11, 18, 19]. The issue with much of the earlier approaches is

that they have either only looked at one source of context-

aware information or, if more than one source was used,

each was utilized separately; indeed, even if multiple

sources of contextual information were pulled together,

these were not integrated with a cloud infrastructure.

Cloud computing focuses on sharing data and makes it

possible to distribute storage and computations over a

scalable network of nodes. Large IT companies like

Microsoft, Google and IBM, all have initiatives relating to

cloud computing [5, 13, 14]. One of the key features under

this paradigm is scalability on demand, where the user pays

for the amount of computation and storage that is actually

used. Moreover, this scalability is usually completely

transparent to the user. Mei et al. [13] highlighted

T.-M. Grønli � G. Ghinea

Norwegian School of IT, Oslo, Norway

e-mail: tmg@nith.no

G. Ghinea

e-mail: george.ghinea@brunel.ac.uk

G. Ghinea

Brunel University, London, UK

M. Younas (&)

Oxford Brookes University, Oxford, UK

e-mail: m.younas@brookes.ac.uk

123

Pers Ubiquit Comput (2014) 18:883–894

DOI 10.1007/s00779-013-0698-3



interesting topics for future research in the area of cloud

computing, and have drawn analogies between cloud

computing and service and pervasive computing. They

identify four main research areas: (1) pluggable computing

entities, (2) data access transparency, (3) adaptive

behaviour of cloud applications and (4) automatic dis-

covery of application quality.

Our work focuses on data access transparency, where

clients transparently will push and pull for data from the

cloud, and adaptive behaviour of cloud applications. We

adapted the behaviour of the Google App Engine server

application based on context information sent from the

users’ devices, thus integrating context and cloud on a

mobile platform. Further, as advocated by Bellavista et al.

[4], our approach provides facilities for run-time dynamic

adaptation of context data according to the given condi-

tions and situation.

The paper is structured as follows: the next section

details and differentiates our approach from existing work;

the design and development of a proof-of-concept appli-

cation which showcases our ideas is then described. This is

then evaluated and the results are presented and discussed in

the context of related work in subsequent sections. Lastly,

conclusions and possibilities for future work are described.

2 The proposed approach

There exist various models and architectures in order to

manage and process context data. Bellavista et al. [4] give

a detailed survey of such models and architectures and

propose a logical architecture in order to discuss and ana-

lyse existing approaches in terms of context data distribu-

tion. As described above, our proposed approach focuses

data access transparency, which is one of the important

aspects of context data distribution. Though the logical

architecture presented (and the related work surveyed) in

Bellavista et al. [4] has some common features with our

proposed approach, there are significant differences.

Our proposed approach utilizes web resources for

effectively tailoring the user experience in cloud-based and

context-aware mobile settings. To this end, we use the

cloud infrastructure to combine context-aware information

from several sources to customize and dynamically change

a user’s smartphone interface.

We chose a cloud-computing solution in order to have a

feature rich, scalable and service-oriented server frame-

work. Traditional REST framework services were consid-

ered [6], but they were found to be insufficiently scalable

and extensible to add and remove context-aware sources in

an ad hoc manner. The cloud-based approach also has the

advantage of being run as a platform-as-a-service instance

in the separate hosting instance of the Google App Engine.

2.1 Google App Engine

The Google App Engine makes it possible to run web

applications on the Google infrastructure. App Engine

applications are easy to build, maintain and scale [9]. The

Google App Engine is a cloud-based platform as a service

(PaaS); the platform is pre-configured by Google and

provides a much higher abstraction than an infrastructure

as a service (IaaS) platform such as the Amazon elastic

cloud. The App Engine is well integrated with Google

Apps services like docs, Gmail and authentication.

Although the platform imposes certain limitations on

developers (for example, no threading API), by enforcing

these Google is able to provide very high scalability. The

Google App Engine supports run-time environments for

Java, Python and Go. Each environment provides standard

protocols and common technologies for web application

development [9].

The Google App Engine has been used as the main

server installation for this research and has proven to be a

stable environment for deploying the Java server applica-

tions without having to consider hardware requirements

and software installations.

2.2 Meta-tagging and context computation

In our approach, users also have the added possibility to

tag their appointments and contacts information on the

Google cloud with context information, by employing

special meta-tags. To this end, by adding a type tag, for

example, $[type = work] or $[type = leisure], user would

be able to indicate whether they had a business meeting

or a leisure activity. We then filtered the contacts based

on this information. If the tag $[type = work] was added,

this lets the application know that the user is in a work

setting and it will automatically adapt the contacts based

on this input. Conversely, in a work context, only work-

related contacts would be shown. To add and edit these

tags, we used the web interface of Google contacts and

calendar.

With this information in place, in any given situation,

the user context can be expressed as the combination of the

user’s activity (a), light conditions (b), social setting (c)

and geographical location (d):

User context ¼ f a; b; c; dð Þ:

Based on this function, unique rules can be applied for each

situation, and thereby have the system act differently and

accordingly tailor the user’s smartphone interface. In this

function, user activity a is represented as an element

collected from the entries in the user’s calendar. This

activity can then be further queried to collect information

such as room, participants and agenda.

884 Pers Ubiquit Comput (2014) 18:883–894

123



a 2 ‘collected calendar information’f g

The light conditions given by b are calculated by extracting

information from the sensors of the device to measure light

lux in the surroundings of the device and matching this

with the device timestamp.

b 2 ‘screen brightness harmonizing to timestamp and light lux’f g

The user’s social setting, c, is depicted by an activity/

appointment extracted from the device or cloud calendar

application. c is represented in the form of a meta-tag

appended to appointments and contacts. The details for c
are expressed below:

c 2 $ type ¼ ‘tag name’½ �f g

The final ingredient in the algorithm for computing the user

context is the use of geographical position. The values

were extracted from the GPS unit of the device and stored

locally for use. A timestamp indicates the validity of the

stored value. This is used to be able to be offline when

obtaining a new position is impossible until a GPS fix again

can be obtained.

d 2 ‘GPS read position’f g

The running of the algorithm will provide several outputs

and trigger actions on the device. Depending on the cal-

culated result applications displayed can be changed,

device screen brightness increased/decreased and contact

repository updated.

Accordingly, in our work, by taking data from sensors

and context-aware services and integrating it in a mobile

application, we reduce the user workload and cognitive

stress. Thus, in combination with a cloud-based server

application, we are able to remotely configure smartphone

interfaces independent of the device types. This creates a

new concept of context awareness and embraces the user in

ways previously unavailable.

3 Design and implementation

We have implemented an application suite, which provides

a fully functional demonstration of the system. One of the

main technical goals with the system was to make the

interaction between the cloud and the mobile device as

seamless as possible for the user.

The system was designed with three major components:

an android client, a cloud server application and the remote

Google services. Figure 1 gives an overview of the

implementation of the system (blue boxes in the diagram

represent the parts of the system we created). The white

boxes, like Google calendar and contacts, are external

systems we communicated with. The server application

was deployed remotely in the cloud on the Google App

Fig. 1 Application suite

architecture

Pers Ubiquit Comput (2014) 18:883–894 885

123



Engine, whilst data were also stored remotely in Google

cloud services. After the Android client was installed on

the mobile device, the device will register itself to the

Google services as illustrated in the code snippet of Fig. 3.

The users would start by logging into the webpage. This

webpage is part of the server application hosted on the

Google App Engine. The login process uses the Google

username/password. By leveraging the possibilities with

Open Authorization (OAuth), we facilitated for the user

sharing of their private calendar appointments and contacts

stored in their Google cloud account without having to

locally store their credentials. OAuth allowed us to use

tokens as means of authentication and made it thereby

possible for us to act as a third party granted access by the

user. After a successful authentication, the user is presented

with a webpage showing all configuration options.

Because the configuration for each user is stored in the

cloud, we avoided tying it directly to a mobile device. One

of the major benefits of this feature is that users did not

need to manually update each device; they have a ‘‘master

configuration’’ stored externally that can be directly pushed

to their phone or tablet. It is also easier to add more

advanced configuration options, enabling the user to take

advantage of the bigger screen, mouse and keyboard of a

desktop/laptop PC. This is done on the configuration

webpage, by selecting the applications the user wants to

store on the mobile device and pressing the ‘‘save config-

uration’’ button, the effect of which is to send a push

message to the client application.

3.1 Android client

The client application was implemented on an Android

device. This application utilized context-aware information

from the device in the form of time, location and sensors.

Additionally, it utilized context-aware information from

the cloud-integrated backend to acquire dynamic interface

content, contacts and calendar data. At launch, the appli-

cation would look as illustrated in Fig. 2.

This interface would change depending on the user’s

given context. The available applications would be adapted

and customized to match the current computed user context

and thereby unobtrusively alter the user experience.

3.2 Cloud-to-device messaging

The adaptation message from the cloud to the smartphone

is sent with a push feature for Android called C2DM

(cloud-to-device messaging), available from Android 2.2.

The C2DM feature requires the Android clients to query a

registration server to get an ID that represents the device.

This ID is then sent to our server application and stored in

the Google App Engine data store. When a message needs

to be sent, the ‘‘save configuration’’ button is pushed. We

composed the message according to the C2DM format and

sent it with the registration ID as the recipient. These

messages are then received by the Google C2DM servers

and finally transferred to the correct mobile device. A

snippet from this process is shown below in Fig. 3.

The C2DM process is visualized in Fig. 4. This tech-

nology has a very few appealing benefits: messages can be

received by the device even if the application is not run-

ning, saves battery life by avoiding a custom polling

mechanism and takes advantage of the Google authenti-

cation process to provide security.

Our experience with C2DM was mixed. It is a great

feature when you get it to work, but the API is not very

developer friendly. This will most likely change in future

since the product is currently in an experimental stage, but

it requires the developer to work with details like device

registration and registration ID synchronization. Although

C2DM does not provide any guarantees when it comes to

the delivery or order of messages, we found the perfor-

mance to be quite good in most of the cases. It is worth

mentioning that we did see some very high spikes in

response time for a few requests, but in the majority of

cases, the clients received the responses within about half a

second. Performance measurements we recorded, whilst

doing the user experiments, were on average 663 ms of

response value. It is also important to note that issues like

network latency will affect the performance results.

The calendar and contacts integration was also an

important part of the Android application. We decided to

Fig. 2 Home screen interface at launch of application

886 Pers Ubiquit Comput (2014) 18:883–894

123



allow the Android client to directly send requests to the

Google APIs instead of going the route through the server.

The main reason for this is that we did not think the

additional cost of the extra network call was justified in this

case. The interaction is so simple and there is very little

business logic involved in this part, so we gave the clients

the responsibility for handling it directly. The implemen-

tation worked by simply querying the calendar and contacts

API and then using XML parsers to extract the content.

3.3 Using sensors as adaptation triggers

Sensors are an important source of information input in any

real-world context and several previous research

contributions look into this topic. For instance, Parviainen

et al. [15] approached this area from a meeting room sce-

nario. They found several uses for a sound localization

system, such as automatic translation to another language,

retrieval of specific topics and summarization of meetings

in a human-readable form. In their work, they find sensors

a viable source of information, but also acknowledge that

there is still work to do, like improving integration.

This is what we addressed in our work, where sensor

data from the two mobile devices employed in our study

were integrated with cloud-based services and used as

input to the proof-of-concept application. Accordingly, we

used the API available on the Android platform and,

through a base class called SensorManager, we were able

Fig. 3 Excerpt from the device

messaging process

Fig. 4 C2DM message cycle

Pers Ubiquit Comput (2014) 18:883–894 887

123



to access all of the built-in sensors on the mobile device

(the HTC Nexus One, for example, had 5 sensors available:

accelerometer, magnetic field, orientation, proximity and

light.). We ended up using two features directly in the

prototype, namely the accelerometer and the light sensor.

The accelerometer was used to register whether the device

was shaking. If the device is shaking, it probably means

that the user is on the move, for example, running or

walking fast. In these cases, we automatically change the

user interface to a much simpler view that has bigger

buttons and is easier to use when on the move.

The second sensor we used in our experiment was the

light sensor. By constantly registering the lighting levels in

the room, we adjusted the background colour of the

application (Fig. 5). We changed the background colour of

the application very carefully, as it would be very annoying

for the users if colour changes were happening often and

were drastic. Accordingly, we gradually faded the colour

when the lighting values measured from the environment

changed.

4 Evaluation results

The developed prototype was evaluated in two phases. In

the first, a pilot test was performed with a total of 12 users.

Secondly, in the main evaluation, another 40 people par-

ticipated in evaluating the application. All participants

were classified according to a computer experience clas-

sification and answered a questionnaire after performing

the instructed tasks with the application.

4.1 Participants

The first pilot test was performed with a total of 12 users.

These users were of mixed age, gender and computer

expertise. The results from this phase were fed back into

the development loop, as well as helped remove some

unclear questions in the questionnaire. In the second phase,

the main evaluation, another 40 people participated. Out of

the 40 participants in the main evaluation, two did not

complete the questionnaire afterwards and were therefore

removed making the total number of participants 38 in the

main evaluation. All 12 from the pilot test and the 38 from

the main test session were aged between 20 and 55 years

old. All participants had previous knowledge of mobile

phones and mobile communication, but had not previously

used the type of application employed in our experiment.

None of the pilot test users participated in the main eval-

uation. From the user computer experience classification

(asserted based on a questionnaire employing the taxon-

omy of McMurtrey [12]), we learnt that the majority of the

users had a good level of computer expertise.

4.2 Materials

Our prototype was evaluated on two mobile devices, the HTC

Nexus One and the HTC Evo. The HTC-manufactured Nexus

One represents one of the first worldwide available commer-

cial Android phones. The Nexus One features dynamic voice

suppression and has a 3.7-inch AMOLED touch sensitive

display supporting 16 M colours with a WVGA screen reso-

lution of 800 9 480 pixels. It runs the Google Android

operating system on a Qualcomm 1-GHz Snapdragon pro-

cessor and features 512-MB standard memory, 512-MB

internal flash ROM and 4-GB internal storage.

The HTC Evo 4G is an Android phone shipped by the

Sprint operator for the American CDMA network. The HTC

Evo 4G features a 4.3-inch TFT capacitive touchscreen

display supporting 64 K colours with a screen resolution of

480 9 800 pixels. It runs the Google Android operating

system on a Qualcomm 1-GHz Scorpion processor and

features WI-FI 802.11 b/g, 512-MB standard memory,

1-GB internal flash ROM and 8-GB internal storage.

4.3 Results

The results presented here illustrate different parts of the

questionnaire: statements 1 to 3 target the user interface,

statements 4 to 6 regard sensor integration, statements 7 to

9 focus on the web application, statements 10 to 13 centre

on context awareness, whilst statements 14 to 17 are about

cloud computing. The questionnaire ends with overall

usefulness, which is in an open-ended question for

Fig. 5 Background light

adjustment

888 Pers Ubiquit Comput (2014) 18:883–894

123



comments. The statements are given below (Table 1)

together with the mean, standard deviation and the results

of applying a one-sample t test.

4.4 User interface

Statements 1 to 3 deal with the user interface (Fig. 6).

These results reveal positive facts about the interface,

highlighting that the majority of the users found it easy to

see all available functions; moreover, the vast majority (37/

38) also finds the adaptability of the application a feature

that they approve of. However, looking at statement 2, their

opinions are split in terms of whether the features are hard

to use, and the results in this respect are not statistically

significant. Overall, in this category, the results indicate

that it is easy to get an overview of the application and the

test candidates find adaptability a positive feature.

4.5 Sensor integration

Opinions are split regarding sensor integration. Users agree

that the light sensor is working as expected, but disagree

Table 1 User evaluation questionnaire and results

Statement Mean SD t test

Statements regarding user interface

Statement

1

It is easy to see the available functions 3.50 0.51 0.000

Statement

2

The features of the application are hard to use 1.89 0.73 0.378

Statement

3

The adaptability of the application is a feature I approve of 3.45 0.55 0.000

Statements regarding sensor integration

Statement

4

The background colour in the application changes when the lighting in the room changes 3.55 0.65 0.000

Statement

5

When moving around, a simplified user interface is not presented 2.11 1.06 0.544

Statement

6

I found sensor integration annoying and would disable it on my device 1.84 0.72 0.183

Statements regarding the web application

Statement

7

I was able to register my device application configuration in the web application 3.61 0.59 0.000

Statement

8

I was not able to store and push my configuration to my mobile device from the web page 1.47 0.80 0.000

Statement

9

I would like to configure my phone from a cloud service on a daily basis 3.18 0.69 0.000

Statements regarding context awareness

Statement

10

The close integration with Google services is an inconvenience 1.76 0.88 0.107

Statement

11

Calendar appointments displayed matched my current user context 3.58 0.55 0.000

Statement

12

The contacts displayed did not match my current user context 1.29 0.52 0.000

Statement

13

I would like to see integration with other online services such as online editing tools (for example, Google

Docs) and user messaging applications (like Twitter and Google?)

3.29 0.73 0.000

Statements regarding cloud computing

Statement

14

I do not mind cloud server downtime 2.08 0.78 0.539

Statement

15

I do not like sharing my personal information (like my name and e-mail address) to a service that stores the

information in the cloud

2.16 0.79 0.225

Statement

16

Storing data in the Google Cloud and combining this with personal information on the device is a useful

feature

3.26 0.60 0.000

Statement

17

I find the cloud-to-device application useful 3.53 0.51 0.000

Open comment question

Pers Ubiquit Comput (2014) 18:883–894 889

123



whether the simpler user interface changes (Fig. 7). This

can be due to the sensitivity threshold programmed for the

sensor, and should be verified by more comprehensive

testing. The majority, 32 out of 38, would not deactivate

sensor integration and this is a useful observation, high-

lighting that sensors should be further pursued as context-

aware input.

4.6 Web application

The statements dealing with the web application at the

Google App Engine (Fig. 8) show that the web application

performed as expected, by letting participants register their

devices as well as pushing performed configurations to the

devices. Moreover, answers from statement 9 are also quite

Fig. 6 Statements regarding

user interface

Fig. 7 Statements regarding

sensor integration

890 Pers Ubiquit Comput (2014) 18:883–894

123



interesting (‘‘I would like to configure my phone from a cloud

service on a daily basis’’), highlighting a positive attitude

towards cloud-based services (32 out of 38 are positive).

4.7 Context awareness

In terms of context-aware information, the participants

were asked to take a stand in respect of four statements,

with results shown below (Fig. 9). For the first statement in

this category (‘‘The close integration with Google services

is an inconvenience’’), although a clear majority supported

this assertion (33/38), opinions are somewhat spread and

this answer is not statistically significant. For the next two

questions, a very positive bias is shown, indicating cor-

rectly computed context awareness and correct presenta-

tion to the users. Again for statement 13 (‘‘I would like to

Fig. 8 Statements regarding

web application

Fig. 9 Statement regarding

context awareness

Pers Ubiquit Comput (2014) 18:883–894 891

123



see integration with other online services…’’), users indi-

cated their eagerness to see more cloud-based services and

integration.

4.8 Cloud computing

When inspecting results from the cloud-computing section,

results are mixed and differences in opinions do occur. For

statements 14 (‘‘I do not mind Cloud server downtime’’)

and 15 (‘‘I do not like sharing my personal information …
to a service that stores the information in the cloud’’), the

results are not statistically significant, but they indicate a

mixed attitude towards cloud vulnerability and cloud data

storage. In respect of the two statements in this category

with statistically significant results (statements 16 and 17),

participants find storage of data in the cloud and using this

as part of the data foundation for the application a useful

feature and are positive towards it. Their answers also

suggest a fondness for push-based application configura-

tion (Fig. 10).

5 Related work and discussion

From the literature, we point at the ability for modern

applications to adapt to their environment as a central

feature [7]. Edwards [8] argued that such tailoring of data

and sharing of contextual information would improve user

interaction and eliminate manual tasks. Results from the

user evaluation support this. The users find it both

attractive as well as have positive attitudes towards auto-

mation of tasks such as push updates of information by

tailoring the interface. This work has further elaborated on

context-aware integration and shown how it is possible to

arrange the interplay between on device context-aware

information such as that provided by smartphone sensors,

and cloud-based context-aware information such as calen-

dar data, contacts and applications. In doing so, we build

upon suggestions for further research on adaptive cloud

behaviour as identified by Christensen [6] and Mei et al.

[13].

In early work, Barkhuus and Dey [3] conducted a study

to examine the effects of context on user’s control over

mobile applications. The study defined three level of

interactivity between users and mobile devices including

personalization, passive context awareness and active

context awareness. User preferences were then studied

according to these three levels. The study showed that in

the case of passive and active context-awareness scenarios,

users felt less in control of their mobile applications. But

the overall conclusion was that users were willing to

compromise on losing some control if they could get some

useful reward in return. Our results show that things have

not changed in this respect recently—users who evaluated

the developed prototype appreciated the adaptation features

that cloud-based data push enables.

Wei and Chan [17] incorporated a decade of work on

context awareness and investigated the matter further. They

presented three characteristics of context-aware

applications:

Fig. 10 Statement regarding

cloud computing

892 Pers Ubiquit Comput (2014) 18:883–894

123



• Context is application specific

• Context is external to applications

• Context can be used to change behaviour, data or

structures

These characteristics are suggested to be adopted in

future research. This is indeed what we have done; we have

used application-specific context information (sensor data,

calendar and contacts data), together with external context

information stored in the cloud in order to change appli-

cation structure, behaviour and interface. Wei and Chan

[17] also make the point that the more fundamental the

adaptation is (e.g. changing structures), and the later it

occurs (e.g. at run-time), the harder it would be to be

implemented. However, our work has taken up this chal-

lenge and shown how run-time structures and application

adaptation can be achieved by using modern cloud archi-

tecture, all showcased through an implemented proof-of-

concept prototype.

Satyanarayanan [16] exemplified context-aware attri-

butes as: physical factors (location, body heat and heart

rate), personal records and behavioural patterns. He stated

that the real issue was how to exploit this information and

how to deal with all the different representations of con-

text. Whilst we have pursued, in our work, the ideas of

different representations of context, further research is

needed to further integrate other dimensions of context

(e.g. physical factors, behavioural patterns).

To register the user tags, the standard Google Calendar

and Contacts web interface were used. Such a tight inte-

gration with the Google services and exposure of private

information was not regarded as a negative issue. As shown

in the evaluation results of our developed prototype, most

of the users surveyed disagreed that this was an inconve-

nience. This perception makes room for further integration

with Google services in future research, where, amongst

them, the Google ? platform will be particularly interest-

ing as this may bring opportunities for integrating the

social aspect and possibly merge context awareness with

social networks.

Sensors are an important source of information input in

any real-world context and several previous research con-

tributions look into this topic. The work presented in this

paper follows in the footsteps of research such as that of

Parviainen et al. [15], and extends sensor integration to a

new level. By taking advantage of the rich hardware

available on modern smartphones, the developed applica-

tion is able to have tighter and more comprehensively

integrated sensors in the solution. We have shown that it is

feasible to implement sensors and extend their context-

aware influence by having them cooperate with cloud-

based services. However, from the user evaluation, one

learns that although sensor integration as a source for

context awareness is well received, there is still research to

do. In particular, this should establish thresholds for sensor

activation and deactivation.

6 Conclusions

This paper proposes the novel idea of using cloud-based

software architecture to enable remote, context-aware

adaptation. This, we argue, creates a new user experience

and a new way to invoke control over a user’s smartphone.

Through a developed proof-of-concept application, we

have shown the feasibility of such an approach; moreover,

this has been reinforced by a generally positive user eval-

uation. Future research should continue to innovate and

expand the notion of context awareness, enabling further

automatic application adaptation and behaviour altering in

accordance with implicit user needs.

References

1. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-

aware systems. Int J Ad Hoc Ubiquit Comput 2(4):263–277

2. Baltrunas L, Ludwig B, Peer S, Ricci F (2012) Context relevance

assessment and exploitation in mobile recommender systems.

Pers Ubiquit Comput 16(5):507–526

3. Barkhuus M, Dey AK (2003) Is context-aware computing taking

control away from the user? Three levels of interactivity exam-

ined. In: Proceedings of the 5th international conference on

ubiquitous computing (UbiComp), Seattle, WA, 12–15 Oct 2003,

LNCS 2864 Springer, ISBN:3-540-20301-X, 149-156

4. Bellavista P, Corradi A, Fanelli M, Foschini L (2012) A survey of

context data distribution for mobile ubiquitous systems. ACM

Comput Surv 44(4):24–45

5. Binnig C, Kossmann D, Kraska T, Loesing S (2009) How is the

weather tomorrow?: towards a benchmark for the cloud. In:

Proceedings of the second international workshop on testing

database systems, ACM, Providence, Rhode Island

6. Christensen JH (2009) Using RESTful web-services and cloud

computing to create next generation mobile applications. In:

Proceedings of the 24th ACM SIGPLAN conference companion

on object oriented programming systems languages and appli-

cations, ACM, Orlando, FL

7. Dey A, Abowd GD (1999) Towards a better understanding of

context and context-awareness. In: 1st international symposium

on handheld and ubiquitous computing

8. Edwards WK (2005) Putting computing in context: an infra-

structure to support extensible context-enhanced collaborative

applications. ACM Trans Comput Hum Interact 12:446–474

9. Google (2013) What is Google App Engine? [Online]. Available:

http://code.google.com/appengine/docs/whatisgoogleappengine.

html

10. Kapitsaki GM, Prezerakos GN, Tselikas ND, Venieris IS (2009)

Context-aware service engineering: a survey. J Syst Softw 82(8):

1285–1297

11. Malandrino D, Mazzoni F, Riboni D, Bettini C, Colajanni M,

Scarano V (2010) MIMOSA: context-aware adaptation for

ubiquitous web access. Pers Ubiquit Comput 14(4):301–320

Pers Ubiquit Comput (2014) 18:883–894 893

123

http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://code.google.com/appengine/docs/whatisgoogleappengine.html


12. Mcmurtrey K (2001) Defining the Out-of-the-Box experience: a case

study. In: Annual conference society for technical communication

13. Mei L, Chan WK, Tse TH (2008) A tale of clouds: paradigm

comparisons and some thoughts on research issues. In: Pro-

ceedings of the 2008 IEEE Asia-Pacific services computing

conference (APSCC 2008), IEEE Computer Society Press, Los

Alamitos, pp 464–469

14. Mell P, Grance T (2011) The NIST definition of cloud comput-

ing. National Institute of Standards and Technology, Special

Publication 800-145

15. Parviainen M, Pirinen T, Pertilä P (2006) A speaker localization

system for lecture room environment. In: Machine learning for

multimodal interaction, Springer, Berlin, pp 225–235

16. Satyanarayanan M (2011) Mobile computing: the next decade.

SIGMOBILE Mob Comput Commun Rev 15:2–10

17. Wei E, Chan A (2007) Towards context-awareness in ubiquitous

computing. In: International conference on embedded and ubiq-

uitous computing (EUC 2007), Taipei, Taiwan, vol 4808, Dec

2007, LNCS Springer, Berlin, pp 706–717

18. Younas M, Awan I (2013) Mobility management scheme for

context-aware transactions in pervasive and mobile cyberspace.

IEEE Trans Ind Electron 60(3):1108–1115

19. Zhou J, Gilman E, Palola J, Riekki J, Ylianttila M, Sun J (2011)

Context-aware pervasive service composition and its implemen-

tation. Pers Ubiquit Comput 15(3):291–303

894 Pers Ubiquit Comput (2014) 18:883–894

123


	Context-aware and automatic configuration of mobile devices in cloud-enabled ubiquitous computing
	Abstract
	Introduction
	The proposed approach
	Google App Engine
	Meta-tagging and context computation

	Design and implementation
	Android client
	Cloud-to-device messaging
	Using sensors as adaptation triggers

	Evaluation results
	Participants
	Materials
	Results
	User interface
	Sensor integration
	Web application
	Context awareness
	Cloud computing

	Related work and discussion
	Conclusions
	References


