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Abstract We present a new approach to address the

problem of large sequence mining from big data. The

particular problem of interest is the effective mining of

long sequences from large-scale location data to be prac-

tical for Reality Mining applications, which suffer from

large amounts of noise and lack of ground truth. To address

this complex data, we propose an unsupervised probabi-

listic topic model called the distant n-gram topic model

(DNTM). The DNTM is based on latent Dirichlet alloca-

tion (LDA), which is extended to integrate sequential

information. We define the generative process for the

model, derive the inference procedure, and evaluate our

model on both synthetic data and real mobile phone data.

We consider two different mobile phone datasets contain-

ing natural human mobility patterns obtained by location

sensing, the first considering GPS/wi-fi locations and the

second considering cell tower connections. The DNTM

discovers meaningful topics on the synthetic data as well as

the two mobile phone datasets. Finally, the DNTM is

compared to LDA by considering log-likelihood perfor-

mance on unseen data, showing the predictive power of the

model. The results show that the DNTM consistently out-

performs LDA as the sequence length increases.

1 Introduction

As large-scale mobile phone datasets on human behavior

become more readily available, the need for effective

methods and mathematical models for analysis becomes

crucial. Research in Reality Mining [7–10] has led to the

need for the development of models that discover patterns

over long and potentially varying durations. We address the

problem of modeling long duration activity sequences for

large-scale human routine discovery from cellphone sensor

data. Our objective is to handle sequences corresponding to

human routines based on principled procedures and to

apply them to human location data.

There are several difficulties to modeling human activ-

ities, including various types of uncertainty, lack of ground

truth, complexity due to the size of the data, and diversity

of phone users. One fundamental issue motivating this

work is that we often do not know (or cannot pre-specify)

the basic units of time for the activities in question. We do

know that human routines have multiple timescales

(hourly, daily, etc.); however, the effective modeling of

multiple unknown time durations is an open problem.

Secondly, the problem of mining location sequences

quickly results in an exponential number of possibilities,

particularly when considering the wide range of locations

visited by people and the order in which the locations

occur. The focus of our model is to address the issue of

modeling long sequences (such as those occurring in

mobility patterns) by proposing a novel approach based on

latent topics in order to avoid parameter dimension

explosion.

We focus on probabilistic topic models as the basic tool

for routine analysis for several reasons. Topic models are,

first and foremost, unsupervised in nature. Their proba-

bilistic generative nature makes them attractive over
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discriminative approaches since we are interested in min-

ing the structure of the data. Topic models are also intuitive

and provide opportunity for extensions with approximate

methods for inference. They can handle uncertainty due to

the exchangeability of the bag of words property and

process large amounts of data [24]. They can also be

extended in various ways to integrate multiple data types

[10].

The contributions of this paper are as follows: (1) We

propose the distant n-gram topic model (DNTM) for

sequence modeling; (2) we derive the inference process

using Markov Chain Monte Carlo (MCMC) sampling

[20]; (3) we generate a dataset of synthetic sequences

and apply the DNTM to test the model under a con-

trolled setting; (4) we apply the DNTM to two real large-

scale mobile phone location datasets. The model dis-

covers user location routines over several hour time

intervals, corresponding to sequences, and these results

are illustrated by differing means; (5) we also perform a

comparative analysis with latent Dirichlet allocation

(LDA) [4], showing that the DNTM performs better in

predicting unseen data based on log-likelihood values.

This paper is an extended version of the work originally

presented at [11].

This paper is structured as follows. We begin by pre-

senting the most related work in Sect. 2 We introduce the

distant n-gram topic model (DNTM) in Sect. 3, defining the

graphical model, the generative procedure, and the infer-

ence and parameter estimation details. We then evaulate

the DNTM on a synthetic dataset in Sect. 4 followed by

two real mobile phone datasets in Sect. 5. We conclude

with a discussion followed by the conclusion and future

works.

2 Related work

This section discusses related work in mobility modeling

methods for location data from cell phones and on proba-

bilistic topic models.

2.1 Mobility patterns from phone data

There have been many recent works considering large-

scale mobile phone calling occurrences to obtain location

data from cell tower connections. Such datasets are avail-

able to mobile phone operators and contain sparse location

information over a large set of users. We consider this data

to be sparse since location is only available when a phone

call takes place, otherwise the location is unknown. Based

on this data, several problems relating to activity modeling

have been addressed.

Phithakkitnukoon et al. [25] identify daily human

activity patterns of eating, shopping, entertainment, and

recreation from location estimates at the beginning and

end of calls, messages, and Internet connections over a

data collection of one million users over a few month

period. Candia et al. [5] propose an approach to discover

what they refer to as spatio-temporal anomalies, which

are anomalous events in the mean collective behavior of

individuals obtained by resolving phone call records in

time and space. Gonzalez et al. [12] find that human

trajectories show a high degree of temporal and spatial

regularity by considering a data collection of 100,000

users over a 6-month period. They find that each indi-

vidual can be characterized by a time-independent travel

distance and has a significant probability to return to a

few highly frequented locations. The most closely related

work to ours in this category is by Gornerup [13], in

which a probabilistic approach for mining common routes

from cell tower IDs is presented. This paper extends the

work by Becker et al. [3] by addressing scalability. The

approach considers two steps, the first is the locality-

sensitive hashing of the cell ID sequences, which disre-

gards the order of cell ID occurrences. The second step is

graph clustering resulting in groups of cell ID sequences.

The work is evaluated with GPS traces collected by the

author. The main advantages of the approach are its

scalability and the resulting anonymization of personal

trajectory information. The drawbacks are that the work

was evaluated on a small dataset with a small set of

routes and base station densities. Further, the disregard of

the cell ordering information simplifies the method, par-

ticularly since time of day information is not considered.

In our work, however, the goal is not to obtain route

information from cell tower ID sequences, but to mine

dominantly occurring sequences of locations.

The problem of mobility modeling directly using

mobile location sensor data has also been studied previ-

ously. Previous work by Zheng et al. has been done to

mine locations of interest and top travel sequences in a

geospatial region [31]. The approach additionally infers

the most experienced users in a geo-related community

using GPS trajectories. The algorithm links users and

locations, where users point to many locations and loca-

tions are pointed to by many users. These weighted links

are used to mine the locations of interest and determine

the top travel sequences and the main application of the

work is location recommendation. Hightower et al. [15]

use wi-fi and GSM radio fingerprints collected by personal

mobile devices to automatically learn places and then to

detect when users will return to those places. Their

algorithm is called BeaconPrint and is compared to three

similar previous strategies [1, 18, 21]. They conclude that

BeaconPrint is 90 % accurate in learning and recognizing
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the places people visit. An unsupervised approach based

on particle filters has been developed by Patterson et al.

[23] to simultaneously learn a unified model of transpor-

tation modes as well as most likely routes. The data

considered are taken from a GPS sensor stream collected

by the authors over a period of three months. Yavas et al.

[29] present a data mining algorithm for the prediction of

user movements. The algorithm proposed is based on

mining the mobility patterns of users, forming mobility

rules from these patterns, and finally predicting users’

next movements.

Our overall goal of mining location sequences and the

latent topic modeling approach in this paper differ from

these previous works, which also considered location sen-

sor data for activity modeling.

2.2 Topic models

Probabilistic topic models were initially developed to

analyze large collections of text documents [4, 16]. They

have been used more recently for other sources of data such

as location [10] and physical proximity [2, 6]. Here, we

consider their application to large-scale mobile phone data.

Previously, we used existing topic models (Probabilistic

Latent Semantic Analysis, LDA, and the Author Topic

Model) [8, 10] for human activity discovery and prediction

using cell tower and a small collection of GPS data. This

paper extends on this initial work by defining in detail a

new model to address the limitation of long duration

activity discovery with topic models.

Bao et al. [2] address a similar problem (modeling user

mobile contexts) with unsupervised models, namely an

extension of LDA. However, the focus of [2] is on incor-

porating dependencies among context, features, and

external conditions into the model. Huynh et al. [17] use

LDA for activity recognition, but considering wearable

sensors and considering fine-grained daily activities such as

washing hands. Do and Gatica-Perez [6] introduce a topic

model for group discovery from Bluetooth interaction data.

They develop an unsupervised topic model based on LDA

which discovers dominantly co-occurring group interaction

patterns over time. Recently, Zheng and Li [30] proposed

an unsupervised approach to mine location-driven activi-

ties to enable activity discovery from cell towers. Time is

modeled explicitly, and the model can be used for location

prediction. The model can compare users’ activities as

well. However, sequential information is discarded by the

model (due to the bag of words), and the focus is prediction

and user comparison. None of these previous works focus

on the issue we address in this paper, namely to model

sequence information using topic models in a manner that

can handle long sequences, which is necessary for human

activities.

Topic models have previously been used for n-gram

discovery in the context of text and speech. The bigram

topic model [27], the LDA collocation model [28], and the

topical n-gram model [28] are all extensions of LDA to

tackle this problem. The topical n-gram model is an

extension to the LDA collocation model and is more gen-

eral than the bigram model. This approach was developed

to be applied to text modeling, and retains counts of bigram

occurrences, and thus could not easily be extended for

large n (i.e. n [ 3) due to parameter dimension explosion.

The multi-level topic model is another extension of LDA

for n-gram discovery [9], cascading a series of LDA blocks

for varying length sequence discovery. The problem of

activity discovery from mobile phone data requires n-gram

models capable of handling long sequences; we approach

this issue by modeling a simplified dependency between

labels (or words) within a sequence and adding a depen-

dency to topics; we find that this technique is promising for

location sequence discovery.

3 Distant n-gram topic model

3.1 Topic models basics

Latent Dirichlet allocation (LDA) [4] is a generative

model in which each document is modeled as a multi-

nomial distribution of topics and each topic is modeled

as a multinomial distribution of words. By defining a

Dirichlet prior on the document/topic (H) and word/topic

(U) distributions, LDA provides a statistical foundation

and a proper generative process. The main objective of

the inference process is to determine the probability

of each word given each topic, resulting in the matrix of

parameters U, as well as to determine the probability of

each topic given each document, resulting in H. Formally,

the entity termed word is the basic unit of discrete data

defined to be an item from a vocabulary. In the context of

this paper, a word, later referred to as a label w, is

analogous to a person’s location. A document is a col-

lection of words also referred to as a bag of words. In our

case, a document is a day in the life of an individual.

A corpus is a collection of M documents. In this paper, a

corpus corresponds to the collection of sensor data to be

mined. In the context of text, a topic can be thought of as

a ‘‘theme,’’ whereas in our analogy, a topic can be

interpreted as a human location routine.

3.2 DNTM overview

We introduce a new probabilistic generative model for

sequence representation. The model is built on LDA, with

the extension of generating sequences instead of single
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words as LDA does. The limiting criteria is to avoid

parameter dimension explosion. We define a sequence to

be a series of N consecutive labels or words. We represent

a sequence as follows: q ¼ ðw1;w2; . . .;wNÞ, where w

denotes a label. In the context of this paper, a label w

corresponds to a user’s location obtained from a mobile

phone sensor, though in general a label can correspond to

any given feature in a series. The sequence q is then a

sequence of locations occurring over an interval of time.

The interval of time is defined by the duration over

which each label occurs times the number of elements N

in the sequence. The distant n-gram topic model (DNTM)

defines a generative process for a corpus of sequences.

The maximum length of the sequence N is predefined. In

existing n-gram models [28], a label in a sequence is

assumed to be conditionally dependent on all previous

labels in the sequence, thus making large sequences

(longer than 3 labels) infeasible to manage due to an

exponential number of dependencies as the sequence

length grows. In contrast here, we integrate latent topics

and assume a label in the sequence to be conditionally

dependent only on the first element, the distance to this

label, and the corresponding topic, removing the depen-

dency on all other labels, and thus removing the expo-

nential parameter growth rate.

The underlying concept and the novelty of our method is

to obtain a distribution of topics given the first element in a

sequence, represented by U1z
. Then, for each position j in

the sequence, where j [ 1, the distribution of topics given

the jth position in the sequence is obtained, depending on

both the first element and the topic, represented by Ujz;w1
.

With this logic, our parameter size grows linearly with the

sequence length N. Note that our approach for label

dependency on w1 is the simplest case for which a label is

always present. More advanced methods including deter-

mining the number of previous labels for dependency are

the subject of future work. We apply this model to location

data to discover activities over large durations considering

intervals of up to several hours. Next, we define the gen-

erative process and introduce the learning and inference

procedure. More derivation details can be seen in the

‘‘Appendix,’’ and the full derivation can be found in [8]

where our model was referred to with a slightly different

acronym.

3.3 The probabilistic model

The graphical model for our distant n-gram topic model is

illustrated in Fig. 1. We use a probabilistic approach where

observations are represented by random variables, high-

lighted in gray. The latent variable z corresponds to a topic

of activity sequences. The model parameters are defined in

Table 1.

The generative process is defined as follows:

Fig. 1 Graphical model of the distant n-gram topic model (DNTM).

A sequence q is defined to be N consecutive locations

q ¼ ðw1;w2; . . .;wNÞ. Latent topics, z, are inferred by the model

and can be interpreted as the different routines found to dominate the

sensor data. There are M days (or documents) in the dataset. H is a

distribution of days given the routines, and Uj is a distribution of

location sequences given routines
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In summary, in the generative process for each sequence,

the model first picks the topic z of the sequence and then

generates all the labels in the sequence. The first label in the

sequence is generated according to a multinomial distribu-

tion U1z
, specific to the topic z. The remaining labels in the

sequence, wj for 1 \ j ^ N, are generated according to a

multinomial Ujz;w1
specific to the current label position j, the

topic z as well as the first label of the sequence w1. Note j is

the jth label in the sequence, but it can also be viewed as the

distance between label j and 1.

pðz; qja; bÞ ¼ pðzjaÞpðw1jz; b1Þ
Yn

j¼2

pðwjjz;w1; bjÞ ð1Þ

¼
Z

H

pðzjHÞpðHjaÞdH �
Z

U1

pðw1jz;U1ÞpðU1jb1ÞdU1

�
Yn

j¼2

Z

Uj

pðwjjw1; z;UjÞpðUjjbjÞdUj ð2Þ

¼
YM

m¼1

Bðnm þ aÞ
BðaÞ �

YT

k¼1

Bðnk þ b1Þ
Bðb1Þ

�
Yn

j¼2

Bðnk0
j
þ bjÞ

BðbjÞ

 !
ð3Þ

We define the following notation; nk
m is the number of

occurrences of topic k in document m; nm ¼ fnk
mg

T
k¼1; nw1

k

is the number of occurrences of label w1 in topic

k; nk ¼ fnt
kg

V
w1¼1; finally, n

ðw1;w2Þj
k0

j
is the number of occur-

rences of label w2 occurring j labels after w1 in topic k and

nk0
j
¼ fnðw1;w2Þj

k0
j

gV ;V
w1¼1;w2¼1.

We assume a Dirichlet prior distribution for H and U ¼
fU1z

;U2z;w1
; . . .;Unz;w1

g with hyperparameters a and b ¼
fb1; b2; . . .; bng, respectively. We assume symmetric Dirich-

let distributions with scalar parameters a and b such that

a¼
PT

k¼1
ak

T
;b1 ¼

PV
v¼1

b1;v

V
, and bj ¼

PV
w1¼1

PV
w2¼1

bðw1 ;w2Þj
V2

for 1 \ j ^ N. Note the parameters ak;b1;v, and bðw1;w2Þj are

the components of the hyperparameters a, b1, and bj, respec-

tively, in the case of non-symmetric Dirichlet distributions.

The joint probability of observations and latent topics can be

obtained by marginalizing over the hidden parameters H and

U. These relations are then used for inference and parameter

estimation in Eqs. (1–3), where pðzjaÞ;pðw1jz;b1Þ, and

pðwjjw1;bjÞ resulting in the following. Note, derivation

details can be found in the ‘‘Appendix’’ and in [8].

pðzjaÞ ¼
YM

m¼1

Bðnm þ aÞ
BðaÞ

where nm ¼ fnk
mg

T
k¼1

ð4Þ

pðw1jz;b1Þ ¼
YT

k¼1

Bðnk þ b1Þ
Bðb1Þ

where nk ¼ fnt
kg

V
t¼1

ð5Þ

and for 1 \ j B n

pðwjjw1; z; bjÞ ¼
YT

k¼1

Bðnk0
j
þ bjÞ

BðbjÞ

where nk0
j
¼ fnðt1;t2Þj

k0
j
gV ;V

t1¼1;t2¼1

ð6Þ

3.4 Inference and parameter estimation

Like LDA, the optimal estimation of model parameters is

intractable. The model parameters are derived based on the

MCMC approach of Gibbs sampling [14]. The model

parameters can then be estimated by solving the following

relationship (Fig. 2).

pðzi ¼ kjz�i; q; a; bÞ / ðnk
m;�i þ aÞ �

nt
k;�i þ b1PV

t¼1 nt
k;�i þ b1

�
Yn

j¼2

n
ðt1;t2Þj
k;�i þ bj

PV
t1¼1

PV
t2¼1 n

ðt1;t2Þj
k;�i þ bj

ð7Þ

where n
ðyÞ
x ¼ n

ðyÞ
x;�i þ 1 if x = xi and y = yi and n

ðyÞ
x ¼ n

ðyÞ
x;�i

in other cases.

The model parameters can then be estimated by sam-

pling the dataset using the following relations:

hk
m ¼

nk
m þ a

PT
k¼1ðnk

m þ aÞ
ð8Þ

/t
1;k ¼

nt
k þ b1PV

t¼1ðnt
k þ b1Þ

ð9Þ

/
ðt1;t2Þj
j;k ¼

n
ðt1;t2Þj
k þ bj

PV
t1¼1

PV
t2¼1ðn

ðt1;t2Þj
k þ bjÞ

ð10Þ

where nk ¼ fnt
kg

V
t¼1 and nk

0
j
¼ fnðt1;t2Þj

k
0 gt1¼V ;t2¼V

t1¼1;t2¼1 .

Table 1 Symbol description

N The length of the sequence

q A sequence of N consecutive labels (w1; . . .;wN)

m An instance of a document (a day here)

Sm The total number of sequences q in document m

M The number of documents in the corpus

T The number of latent topics

z A latent topic (a location routine here)

V The vocabulary size

H The distribution of topics given documents

U The distribution of sequences given topics,

where U = {U1z
, U2z;w1

; . . .;Unz;w1
g

U1z
The distribution of w1 given topics

Ujz;w1
The distribution of wj given w1 and topics
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4 Experiments on synthetic data

First, we consider synthetic data to demonstrate the

strength of the DNTM. We consider a vocabulary of 10

possible location labels wi thus V = 10. We first create 5

topics each represented as a sequence of 6 location labels

inspired by the synthetic topics developed in [26]. We

create one document of 2,000 random sequences assuming

equi-probable topics following the generative process of

Sect. 3.3. The five topics are shown in Fig. 3, where each

topic contains a sequence of 6 location labels (x-axis).

Note, in topic 4, there is an equal probability of generating

a sequence with labels 1–9 in position 3 but not label 10.

The topics learned by the DNTM are shown in Fig. 4 for

N = 6, T = 5, and a = 0.1, b = 0.1 (we assume all bi are

equal to b). We plot the most probable location label for

each position in the sequence given the topic, (i.e. p(wj|w1,k)

for position j and topic k). The x-axis corresponds to the

sequence position and the y-axis to the possible location

labels. We reorder the topics learned by the model to cor-

respond to the topics in Fig. 3. We plot the 10 most probable

sequences discovered by the model for topic 1 (corre-

sponding to Topic 4 Fig. 3) in order to illustrate the model

correctly learned the 9 possible locations for position 3.

Next, we consider a more complex synthetic dataset of 6

topics consisting of multi-length sequences N = 6 and

N = 9. These topics are shown in Fig. 6, where topic 4

(d) and topic 5 (e) contain the sequences of length 9 and

(a)–(c) and (f) are length 6. Again, one document is gen-

erated by randomly sampling the topics (a)–(f) with equal

probability following the generative process of Sect. 3.3.

We refer to this test set as the multi-length synthetic data.

The results for the DNTM on the multi-length synthetic

data are shown in Fig. 6. The DNTM is run with N = 12,

T = 10, and a = 0.1, b = 0.1. In Fig. 6 we show the

single most probable sequence discovered by the model for

select topics, corresponding to topics in Fig. 5. We con-

sider N = 12 in order to capture all of the sequences. When

N = 9, all of the sequences of length 6 are discovered;

however, the sequences of length 9 are cut up between

topics. By setting N = 12, the sequences of length 9 are not

cut up between topics and occur within the interval of

length 12 often enough in order for the model to capture the

co-occurrences. Since Fig. 6 displays the sequences of

length 12 discovered, segments of other sequences are also

discovered which often co-occurred with the sequences; all

of the input sequences are correctly discovered by the

DNTM. Note the colorbar displays the probability of the

location element given the topic. Considering the sequence

112222 (Fig. 5 a), it appears in position 4–10 (Fig. 6a).

Similarly sequence (b) 444333 appears in position 1 to 6,

and so on. Note topic 10 (Fig. 5d) contains a small prob-

ability of possible locations for position 6 though we just

plot the single most probable sequence.

Fig. 2 Gibbs sampling

algorithm for the pairwise-

distance topic model
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5 Mobile phone location data

The DNTM could be potentially applied to any type of data

with discrete valued labels in a sequence, for example, text.

We are interested in mobile location data over time. As

stated in Sect. 2, we make an analogy with LDA where a

document is an interval of time in a person’s daily life.

Here, we always consider a document to be a day in the life

of a user. A label w = (t, l) is composed of a location

l 2 L, where L is the discrete set of possible locations

which occurred over a 30-min interval and a time coordi-

nate of the day t 2 Z ¼ f1; 2; 3; . . .; ttg. We consider two

different datasets for experiments. The representations for

each are detailed below.

5.1 Nokia smartphone data

We use real life data from 25 users using a Nokia N95

smartphone from 10 01, 2009, to 07 01, 2010, corre-

sponding to a nine-month period of the Lausanne Data

Collection Campaign [19]. The phone has an application

that collects location data on a quasi-continuous basis using

a combination of GPS and wi-fi sensing, along with a

method to reduce battery consumption. Place extraction

was performed using the algorithm proposed in [22] that

reported good performance on similar data. The place

extraction algorithm is described in more detail in the next

subsection (Sect. 5.1.1). In Sect. 6.1, we create w where

tt = 8, (i.e., the day is divided into 8 equivalent time
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2 4 6
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Topic 3
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6
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10
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2 4 6

2
4
6
8
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Fig. 3 Synthetic sequences to test the distant n-gram topic model. Each topic contains one sequence of length 6 (x-axis). There are 10 possible

location labels (y-axis). Note position 3 in topic 4
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Fig. 4 DNTM results for N ¼ 6;T ¼ 5; a ¼ 0:1;b ¼ 0:1. All of the

sequences discovered by the DNTM correspond to the correct

synthesized topics presented in Fig. 3. The colorbar displays the

probability of the sequence elements given the topics. Note the

correct discovery of locations 1–9 but not 10 in topic 1 position 3

(color figure online)
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Fig. 5 Synthetic sequences of length 6 and 9 for testing the DNTM
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Fig. 6 DNTM results for N ¼ 12;T ¼ 10; a ¼ 0:1; b ¼ b2 ¼ 0:1. We plot the single most probable sequence output per topic. The colorbar

indicates the location label probability for the topic (color figure online)
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intervals), L ¼ fl0; l1; l2; . . . lMAXg, where MAX is the

number of detected places determined by [22], and li is the

user-specific index of the place. In Sect. 6.2, we study a

second case in which we disregard tt. If li = 0, there is no

detected place, either due to no location being sensed, or

due to the user moving or not staying at the location for

very long. All places li [ 0 are indexed according to their

frequency of occurrence. Note that each user has a differ-

ing set of places and for this data collection, topics are

discovered on an individual basis. We show the histogram

of lMAX over the 25 users in Fig. 7. One user has a much

larger number of stay regions than the majority. The

average number of stay regions for this group of users is

117.5.

5.1.1 Place extraction algorithm

Place extraction was performed on the location data using

the algorithm in [22] in order to obtain a manageable

number of regions of interest frequented by users from the

large number of location points sensed. The algorithm has

two levels of clustering. The location coordinates are first

clustered into stay points, where stay points are clusters of

coordinates from the same day, representing geographic

regions in which a user stayed for a while. Stay points are

then clustered into stay regions, where stay regions are

places of interest from several days of data with the same

semantic meaning. The purpose of this step is to reduce the

large number of locations sensed for each user into a more

manageable set of regions for which the user stayed in for a

minimum duration of time and to disregard the regions

which were not frequently visited in order to maintain a

reasonable vocabulary size for the model.

In Fig. 8, we plot the stay regions discovered over one

user’s data. White intervals indicate that no place was

observed during that time interval. This user had 101

unique stay regions found by the place extraction algo-

rithm. In Fig. 9, we show 2 of the same user’s stay regions

in geographic terms that correspond to public places. We

only display the satellite view for anonymity reasons.

5.2 MIT reality mining (RM) data

The MIT RM data collected by Eagle and Pentland [7]

contain the data of 97 users over 16 months in 2004–2005.

This data contain no detailed location information, but we

define four possible location categories for a user collected

via cell tower connections. The towers are labeled as

‘‘home,’’ ‘‘work,’’ ‘‘out,’’ or ‘‘no reception,’’ making the

labels consistent over all the users. This corresponds to

L = {H, W, O, N}. For this, we set tt = 48.

0 100 200 300
0

2

4

6

Number of Stay Regions

Fig. 7 Histogram of the number of stay regions per user

Fig. 8 One user’s data after place extraction. Each row (y-axis)

corresponds to a day quantized into intervals of 10 min (x-axis). There

are 101 unique places (stay regions) found by the place extraction

algorithm. Each place is numbered according to the frequency of

occurrence and assigned a unique color. Here, pink corresponds to

region 1 (home) and green corresponds to region 2 (work). Note that

the regions extracted are specific to a particular user for the Nokia

dataset (color figure online)
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6 Experiments and results

We present the DNTM results on two real mobile phone

data collections. First on the Nokia Smartphone data con-

sidering a scenario with a time coordinate of the day t in

the label definition w. Then, we consider the modified

scenario without a time coordinate in the vocabulary.

Finally, results are presented on the MIT RM dataset.

6.1 Nokia smartphone data

For experiments with the smartphone data, we remove days

that do not have at least one place detected. The results

shown here are for T = 25, bj = 0.1, 1 ^ j ^ N, and

a = 0.1 selected heuristically. We consider N = 12 cor-

responding to 6-h sequences for the topics displayed here.

Note that a range of values of T give similar results, the

difference being that when T is small, the overall most

occurring topics are discovered, and when T is larger, more

specific items are found. The constraints on the hyperpa-

rameters bj, and a are that they be smaller than the order of

label/topic and document/topic counts.

Several of the topics discovered by the DNTM for the

smartphone data displayed in Fig. 8 are shown in Figs. 10

and 11. The first parameter the model returns is H, con-

taining a probability distribution of each day in the corpus

for each topic. We rank these probabilities for each topic

and visualize the 10 most probable days, illustrating which

days in the data had the highest probability of the location

sequences for the given topic. In Fig. 10, the three figures

illustrate the 10 most probable days (i.e., max(hm
k ) for a

given topic k). The x-axis corresponds to the time of day,

the y-axis corresponds to days, and each unique color

corresponds to a unique place. We can see that sequences

of places occurring over particular intervals of the day are

discovered by the model. For example, topic 8 for user 1

corresponds to place 1 (home in magenta) occurring over

most of the day.

Using data from a different user, in Fig. 11a, we show

topic 19 discovered for user 2. We also visualize the

Fig. 9 Satellite view of 2 places extracted for a user. Each color

represents a given user’s visited place and is used consistently across

the results for the given user (color figure online)

(a) User 1, Topic 8

(b) User 1, Topic 16

(c) User 2, Topic 4

Fig. 10 Selected topics discovered for N = 12 a, b user 1, c user 2.

The x-axis is the time of day, the y-axis are the 10 most probable days

for the topic ranked from top to bottom (output as H by the DNTM).

Each unique color represents a unique place. Our model discovers

sequences of locations which dominantly occur in a user’s mobility

patterns. For example, topic 8 for user 1 corresponds to being at home

(pink) throughout the day. Topic 16 for user 1 corresponds to being at

work (green) for several hours in the afternoon (color figure online)

(a) Satellite view of place 1
(Satellite view displayed for anonymity)

(b) Mobility of User 2 on 2010.02.07,

Fig. 11 Topics and location details for user 2. a The satellite view of

place 1 is displayed, which corresponds to work for user 2. b The

mobility for day 02.07.2010, is displayed. The colors of the places

displayed on the map correspond to those displayed in the topic. Note

that 02.07.2010, is one of the 10 most probable days for user 2

discovered in topic 2 and involved transitions between 3 places
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coordinates of the place as displayed below the topic. The

circle indicates the location of place 1 on a satellite map

view. In Fig. 11b, we show topic 2 for user 2. Below the

topic, we display the mobility traces for the day 07 02,

2010, which is one of the 10 most probable days for topic

2. On the satellite view, each color corresponds to a unique

location, coordinated with the color scheme of the topic

displayed.

6.2 Nokia smartphone data: modified scenario

We now consider a slightly different input feature format

considering the Nokia data collection. A label l is simply a

location occurring over a 10-min period without time

information. Previously in Sect. 6.1, a stay region was

considered every 30 min and tt = 8. The input sequences

are the non-overlapping location stay regions in sequence

of length N for a given user. We illustrate in Figs. 13, 14,

15, 16 that the DNTM successfully discovers location

routines of large sequence lengths N.

First, we run the DNTM with T = 10, N = 6 for each of

the 25 users and plot the probability distribution over the

topics in Fig. 12. Since each location label corresponds to a

10-min interval and N = 6, we are modeling 1-h sequences

here. We can see that most of the probability mass is over a

few topics indicating T can be smaller; however, there is no

harm in setting T larger.

We plot several of the most probable topics for users by

displaying the most probable days given topics, H (Fig. 13)

and the most probable sequence given topics, U (Fig. 14).

In Fig. 13, the five most probable days are plot for each

topic, where the y-axis corresponds to days, the x-axis to

the time of day, and the colorbar to the locations. In

Fig. 14, the single most probable sequence is plot for given

topics, where the y-axis corresponds to the locations, and

the colorbar represents the probability of the location (or

label) given the sequence position (x-axis), the first location

label and the topic. The probability of each sequence

component (indicated by the colorbar) differs and is an

indication of the amount of ‘‘noise’’ or variation in this

label occurring at this position given the topic. A wide

range of mobility routines are apparent, particularly by

viewing the most probable days given topics (Fig. 13) for

all users, where co-occuring sequential patterns of stay

regions are found by the model.

Next, we consider a longer sequence length, N = 18

considering 3-h sequences, with the same model parame-

ters and again display several topics in terms of most

probable days given topics, H (Fig. 15) and most probable

sequence given topics, U (Fig. 16). We can see that when

several hour sequences are discovered, there are often

changes in location captured. For example Fig. 16c, topic

6’s most probable sequence is 441111111444444444 with

a much higher probability of the last labels (stay region 4’s)

occurring in the sequence. Note for all users, activity

sequences were discovered by the DNTM and we visualize

a small set of the most probable topics.

6.3 MIT RM data

For experiments with the MIT dataset, we remove days

which contain entirely no reception (N) labels. We exper-

imented with many values of T and plot selected results for

T = 20. We plot results for the same values of a and b as in

Sect. 6.1 We consider up to N = 14 corresponding to 7-h

sequences.

We first visualize a set of 6 topics corresponding to

activity sequences for various N. Note the colorbar indi-

cates the locations. Figure 17 corresponds to dominant

sequences discovered for N = 3 (Fig. 17a–c), and N = 13

(Fig. 17d–f). We plot the results in terms of the 20 most

probable days given topics, hk
m. The x-axis of the figures

corresponds to the time of the day, the y-axis are days, and

the legend of the colors are shown to the right of the plots.

In general, we can see emerging location patterns dis-

covered for specific subsets of days in the corpus. For

example, in Fig. 17a, there is ‘N’ (no reception) in the

morning. In (b) there is ‘‘W’’ (work) after roughly 10 am,

with ‘‘O’’ (out) several hours later, followed by ‘‘W’’

again. These results resemble the type of results that

standard LDA would extract; however, we are able to

obtain precise sequence information in our output and

‘‘push’’ the model to output sequences by searching for

results at distance d from the first label in the sequence. As

N increases, we generally discover longer duration loca-

tion patterns, which are defined in the output parameters of

the DNTM model as shown in Tables 2 and 3. Note these

tables show the sequences that defined the topics displayed

in Fig. 17.
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Fig. 12 DNTM results over 25 users (y-axis) for 10 topics (x-axis)

for N = 6. The user-specific topics are reordered according to their

most to least probable topics. For most users, a few topics formulate

the probability mass
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In Table 2, we display the DNTM results in terms of the

most probable sequence components given topics. The table

shows the model output for N = 3, where the sequence is as

follows q ¼ ðw1;w2;w3Þ. The top ranked sequence com-

ponents given topics k are displayed as follows: w2|w1

obtained by /ðw1;w2Þ2
2;k and w3|w1 obtained by /ðw1;w2Þ3

3;k along

with their probabilities. We do not display w1 obtained by

/w1

1;k since it is inherent in the previous two parameters. We

can see the sequence O-O-O starting at 8 pm is discovered

in (a) for topic 3 (N = 3). The notation ‘*’ represents any

possible location, that is, O-*-H indicates that w1 ¼ O;

w3 ¼ H, with any possible location label for w2.

In Table 3, we show the two most probable sequences

for the topics displayed in Fig. 17d–f. Here, due to the

larger value of N = 13, the actual sequences q are dis-

played. For large N, we can observe that some of the

sequences output are separated in time, for example,

sequence 2 in (a) N = 13 topic 2. Since we do not force the

output to always be a sequence of length N, there may be

more than one sequence of duration less than N output by

the model where the sum of the durations of the sequences

output results in N. Constraints could be imposed to always

force length N sequence as output, though the relaxation of

this dependency in our model can be viewed as an

advantage. We may in fact be discovering the durations of

the dominantly co-occurring sequences. This characteristic

is further discussed in the limitations section of the paper.

We can see the output obtained by our model contains

sequence information, since we obtain probabilities for the

labels j up to distance N, whereas LDA would simply

output a probability for each individual label, without any

sequence information.
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Fig. 13 The five most probable days given topics for various users. The corresponding sequences learned by the model are in Fig. 14. Note that

even though we remove the time information from the input sequences, the sequences discovered mostly occur at particular intervals of the day
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Fig. 14 DNTM results for N = 6. The most probable sequence for

the given user and topic is visualized. The model outputs a

distribution of labels given each position in the sequence, which is

visualized along the x-axis where the colorbar shows the probability.

Note in b, the sequence is not visible due to a large range between

sequence labels (and low probability of the sequence occurring over

the entire dataset). However, the most probable days given topics

show the location routine learned (color figure online)
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In Fig. 18, we plot the perplexity of the DNTM over

varying number of topics computed on 20 % unseen test

data. Note that perplexity is a measure in text modeling of

the ability of a model to generalize to unseen data; it is

defined as the reciprocal geometric mean of the likelihood

of a test corpus given a model. The experiments are
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Fig. 15 The five most probable days given topics for N = 18. The corresponding sequences learned by the model are in Fig. 16. Note that even

though we are considering a very long sequence length, the model successfully discovers location behavior patterns
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Fig. 16 The most probable sequence discovered by the DNTM for N = 18. Note often the first few most probable sequences discovered by the

topic are of interest, but we plot the single most probable sequence for visual clarity
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conducted for a sequence length of N = 8. We can see that

the perplexity drops to a minimum at around T = 50 top-

ics. We therefore use T = 50 topics in order to compare the

performance of our model to LDA. The perplexity results

illustrate that for a large number of topics, T, the model

does not seem to overfit the data, since the perplexity does

not increase.

In order to compare our DNTM to LDA, we adapt the

vocabulary used for LDA to have a comparable format to

that used in the DNTM. The vocabulary we use for LDA

consists of a pair of locations, a timeslot, as well as the

distance between the locations. This results in a competi-

tive comparison since the key attributes of the DNTM are

taken into the vocabulary for LDA. The log-likelihood

results on 20 % unseen test data are plotted in Fig. 19. We

plot the log-likelihood averaged over all the test docu-

ments. The log-likelihood results reveal that for small N,

LDA performs slightly better. However, as N increases, the

DNTM consistently has better generalization performance.

6.4 Discussion

Though only selected results are presented for the discus-

sion here, many extracted topics correspond to human

routines. There are topics corresponding to noise, though

they do not dominate the extracted routines.

One evaluation criteria in determining the quality of a

model is its predictive power. In Sect. 6.3, we considered

the average loglikelihood of the model on previously

unseen data. This is a very general measure giving insight

into the predictive capabilities of the model for data that

was not previously seen by the model, and the results from

Fig. 19 are promising for the DNTM.

There are two main limitations of our model. The first

one is that there is no constraint forcing the output
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Fig. 17 Topics discovered using our model with N = 3, N = 13. We

plot the results in terms of the 20 most probable days given topics. In

general, we can see emerging location patterns discovered within

subsets of days in the corpus

Table 2 Topics discovered using the DNTM corresponding to those

displayed in Fig. 17, expressed in terms of the most probable

sequence components for topics

w2|w1 p(w2|w1) w3|w1 p(w3|w1)

(a) N = 3, Topic 3

8 pm O-O 0.25 8 pm O-*-O 0.23

5 am N-N 0.21 5 am N-*-N 0.21

(b) N = 3, Topic 5

3:30 pm W-W 0.15 3:30 pm W-*-W 0.14

1:30 pm W-W 0.13 1:30 pm W-*-W 0.12

(c) N = 3, Topic 11

12:30 pm W-W 0.16 12:30 pm W-*-W 0.15

5:30 am N-N 0.14 5:30 am N-*-N 0.14

We show the top ranked sequence components given topics with the

probabilities

Table 3 Continuation of Table 2

(a) N = 13, Topic 2

Sequence 1 9 am H-H-H-H-H-H-H-W-W-W

Sequence 2 5 pm N-N-N-N-N

Sequence 2 9 am H-*-*-*-*-W-W-W-W-W

(b) N = 13, Topic 3

Sequence 1 3 pm W-W-W-W-W-W-W

Sequence 1 1:30 pm W-*-*-*-*-*-*-W-W-W-W-W

Sequence 1 4:30 am O-*-*-*-*-*-*-*-*-*-*-*-O

Sequence 2 1:30 pm W-W-W-W-W-W-*-*-*-*-*-W

Sequence 2 3 pm W-*-*-*-*-*-W-W-W-W

Sequence 2 4:30 am O-*-*-*-*-*-*-*-*-*-O-O

(c) N = 13, Topic 10

Sequence 1 4 pm W-W-W-W-W-W

Sequence 1 4 am O-*-*-*-*-*-O-O-O-O-O-O-O

Sequence 2 4 am O-O-O-O-O-O

Sequence 2 4 pm W-*-*-*-*-*-W

Sequence 2 5 am O-*-*-*-*-*-*-O-O-O-O-O-O

The results in this table are for N = 13 displayed as the sequence q

Fig. 18 Perplexity of the DNTM over the number of topics on 20 %

unseen days (documents)
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components to be in sequence. More specifically, a valid

output could be w2|w1, z and w3|w10, z where w1 = w10. In

our experiments, we found that this effect did not occur

often in the output. This can also be an advantage in that

the output generates varying length sequences and deter-

mines the actual sequence lengths of the activities since

they may not necessarily be N. We would have to add some

constraints to the model in order to always force the output

to be sequences of length N. Another limitation is that the

output can contain overlapping components. For example,

using the data from Sect. 6.3, a valid sequence output for a

topic may be 3:30 pm H-H and 3 pm H-*-H. Here, the

sequence output is not of length 3. To address this problem,

again, some constraints should be imposed regarding the

time component in the feature construction.

7 Conclusions

In this paper, we proposed the distant n-gram topic model

as an alternative to model long sequences for activity

modeling and apply it in the context of human location

sequences. Considering two real life human datasets col-

lected via mobile phone location logs, we tested our

model firstly on locations obtained by smartphones based

on GPS and wi-fi and secondly by cell tower location

features. The patterns extracted by our model are mean-

ingful and are further validated by considering a synthetic

dataset. We evaluated our model against LDA considering

log-likelihood performance on unseen data and found that

the DNTM outperforms LDA for most of the studied

cases.

There are several future directions for this work. The

first direction is to explore extensions of the proposed

model. One could extend the DNTM by taking into account

the limitations mentioned and imposing application-spe-

cific constraints. One can also further investigate the

dependence problem and consider methods to model

dependence among labels as opposed to always having the

label dependent on the first element, though this could

quickly lead to parameter size explosion. For example,

there may be effective hierarchical methods for determin-

ing the number of previous labels that a given label in a

sequence should depend on. The second direction of

extensions would be to consider other types of data, for

example, in the context of other wearable data and activi-

ties. Finally, one other relevant line of work future work is

a comparison of our method with hidden Markov models

learned in an unsupervised setting, imposing structure to

learn long-term sequential patterns.
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Appendix: Derivation of the distant n-gram topic model

From the graphical model in Fig. 1, we can determine the

following relationship:

pðz; qja; bÞ ¼ pðz;w1; . . .;wNja; bÞ
¼ pðw1; . . .;wnjz; a;bÞ � pðzja; bÞ
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The joint probability of observations and latent topics

can be obtained by marginalizing over the hidden

parameters H and U. These relations are then used

for inference and parameter estimation where pðzjaÞ;
pðw1jz; b1Þ, and pðwjjw1; bjÞ are derived in [8] resulting

in the following.

Fig. 19 Average loglikelihood of the DNTM versus LDA on 20 %

unseen days (documents)
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pðzjaÞ ¼
YM

m¼1

Bðnm þ aÞ
BðaÞ ð11Þ

pðw1jz; b1Þ ¼
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Bðb1Þ

ð12Þ

pðwjjw1; z; bjÞ ¼
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j
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BðbjÞ
; 1\j5 n ð13Þ

We then derive the model parameters based on the MCMC

approach of Gibbs sampling [14].

pðzi ¼ kjz�i; q; a; bÞ ¼
pðz; qja; bÞ

pðz�i; qja; bÞ
ð14Þ

using the knowledge z-i, or wx�i
indicate that token i is

excluded from the topic or label wx
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Note the proportionality stems from the terms w1i
and wji
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x ¼ n

ðyÞ
x;�i þ 1 if x = xi and y = yi and n
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The model parameters can then be estimated as follows:
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