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Abstract We present a wearable input system which

enables interaction through 3D handwriting recognition.

Users can write text in the air as if they were using an

imaginary blackboard. The handwriting gestures are cap-

tured wirelessly by motion sensors applying accelerometers

and gyroscopes which are attached to the back of the hand.

We propose a two-stage approach for spotting and recog-

nition of handwriting gestures. The spotting stage uses a

support vector machine to identify those data segments

which contain handwriting. The recognition stage uses

hidden Markov models (HMMs) to generate a text repre-

sentation from the motion sensor data. Individual charac-

ters are modeled by HMMs and concatenated to word

models. Our system can continuously recognize arbitrary

sentences, based on a freely definable vocabulary. A sta-

tistical language model is used to enhance recognition

performance and to restrict the search space. We show that

continuous gesture recognition with inertial sensors is

feasible for gesture vocabularies that are several orders of

magnitude larger than traditional vocabularies for known

systems. In a first experiment, we evaluate the spotting

algorithm on a realistic data set including everyday activ-

ities. In a second experiment, we report the results from a

nine-user experiment on handwritten sentence recognition.

Finally, we evaluate the end-to-end system on a small but

realistic data set.

Keywords Handwriting recognition � Wearable

computing � Gesture recognition � Inertial sensors �
Hidden Markov models

1 Introduction

Gestures facilitate new forms of user interfaces, which will

be particularly suited for mobile and wearable computer

systems. Rather than forcing a user to manually operate a

device, hand gestures allow operation without the need to

focus on tiny screens and keys while leaving the hands free

for other tasks. Various sensing techniques (e.g. cameras,

inertial sensors) are traditionally used for the purpose of

gesture recognition [19]. Accelerometers are especially

appealing for mobile usage because of their small size, low

cost and robustness. Research so far mostly concentrated on

the recognition of a limited set of predefined single gestures,

which are then assigned to commands. This limits the

number of possible commands to the number of recogniz-

able gestures. However, operations like the input of text or

other complex operations require more expressive power

than a small set of isolated gestures can offer.

Our approach combines the mobility and intuitivity of

gestures with the expressiveness of handwriting. This paper

describes a wearable handwriting recognition method

based on inertial sensors that allows for spotting and con-

tinuously recognizing whole sentences written in the air,

which is a special type of gesticulation. The approach

comprises two main challenges. Firstly, in a real-world

application scenario, the system will continuously measure

hand motion, but only small portions of the signal will

actually contain handwriting. The majority of the data will

contain all sorts of everyday motions which are not rele-

vant to the text input interface. Consequently, the relevant
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segments need to be automatically spotted from the data

stream. Secondly, the text corresponding to the handwrit-

ing signal must be recognized from the sensor signals. We

implemented a two-stage approach for the spotting and

recognition task which is illustrated in Fig. 1. In the spot-

ting stage, we use a support vector machine (SVM) to

discriminate motion that contains handwriting from motion

that does not. In the recognition stage, we use hidden

Markov models (HMMs) in combination with a statistical

language model to recognize the written words. We show

that the performance of the spotting stage can be further

improved by filtering false positives in the recognition

stage.

While our current system is focused on the recognition

of text from continuous gestural handwriting, it provides a

proof-of-concept system for any sort of gesture recognition

system that needs to continuously recognize gestures which

are composed of an alphabet of primitive gestures.

The paper is organized as follows: in the remainder of

this section, we provide an overview on related work. In

Sect. 2, we briefly describe the hardware we have used to

sense hand motion. In Sect. 3, we describe our handwriting

spotting approach along with the experimental evaluation.

In Sect. 4, we describe the handwriting recognition and the

experiments performed to evaluate the recognizer. In Sect.

5, we evaluate the end-to-end system. Finally, we conclude

the paper in Sect. 6.

1.1 Related work

The question on how to interact efficiently and intuitively

with wearable and ubiquitous computer systems has led to

multifaceted approaches. Besides the widely used soft

keyboards in current smartphones, various methods have

been proposed which use only few keys to reduce size and

to allow one-handed usage [15, 16]. Recently, research

investigates alternative interaction paradigms for mobile

computing by allowing free-hand operation. Gestures are

used to develop interfaces that do not require hand-held

devices and therefore allow seamless integration into

people’s everyday activities. For example, miniature pro-

jectors display the screen on any surface in front of the user

and cameras track hands for gestural interaction [18, 28].

Other researchers propose to drop screens altogether and

show that spatial interaction is possible without visual

output. The user builds a mental representation of an

imagined screen [8]. We follow the same idea by assuming

that handwriting can be reliably produced and recognized

without any visual or haptic feedback.

The spotting of gestures requires to automatically

identify relevant signal segments in the continuous data

stream. This can either be done by first applying a binary

classifier to detect segments which likely contain a relevant

gesture and classify the gesture afterward [11, 23]. Or it

can be done by continuously trying to classify the incoming

data and reject any results that fall below a given proba-

bility threshold [14, 26]. HMMs have been used either as

the second stage [11] or directly by making use of their

implicit segmentation abilities [14].

The field of gesture recognition with accelerometers has

been extensively studied in the past. Usually, a number of

isolated gestures ranging from 10 to 30 are defined and

classified [6, 12]. Accelerometers integrated in watches are

used by Hein et al. [9] for the purpose of gesture recog-

nition for HCI and by Amft et al. [1] to control the watch

itself by gestures. Kim et al. [5, 13] propose a system for

single digit and character gesture recognition based on an

algorithm for reconstructing the 3D trajectory from the

acceleration sensor signal. The method is able to com-

pensate some of the problems which arise from the accu-

mulation of sensor errors but it will only give reasonable

results for short periods of time and does not scale up to

continuous recognition of handwriting.

In traditional pen-based online handwriting recognition,

HMMs are widely used based on features extracted from

pen strokes [21]. In our case, the strokes are not available

a note

a note

Motion sensing with 
inertial sensors

Write/No-write
segmentation

HMM decoding
+ language model

Final hypothesis

Sensing Spotting Recognition

Fig. 1 Overview of the data processing pipeline with the individual

stages of the system. After acquisition, the spotting stage detects parts

that likely contain handwriting motion. The spotted segments are

passed on to the recognition stage, where they are decoded by HMMs

in combination with a language model to produce the final hypothesis
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and the specialized methods developed in traditional

handwriting recognition cannot be transferred to our task.

McGuire et al. [17] use HMMs for continuous mobile

American sign language recognition with a 40-word

vocabulary, modeling each word by one HMM. Sign lan-

guage recognition entails additional challenges because

both hands and also facial expressions are used and the

underlying sign alphabet is more complex than the latin

alphabet.

2 Hardware and sensing

We developed a hardware system, which is illustrated in

Fig. 2. An Analog Devices Inertial Measurement Unit

(ADIS16364) is attached to the back of the hand using a

thin glove. A board with a microcontroller and a Bluetooth

module, as well as the power supply are mounted on a

wristlet. The sensor contains one 3D accelerometer and one

3D gyroscope, both sampled at 819.2 Hz, which is the

maximum rate of the sensor. We denote the acceleration by

a ¼ ðax; ay; azÞ and the angular rate measured by the

gyroscopes by g ¼ ðgx; gy; gzÞ: The sensor samples of the

signal time-sequence are described by

aðiÞ ¼ ðaxðiÞ; ayðiÞ; azðiÞÞ; i ¼ 1; 2; . . .;N

and

gðiÞ ¼ ðgxðiÞ; gyðiÞ; gzðiÞÞ; i ¼ 1; 2; . . .;N

where N is the total number of samples. We denote the

complete sequence by

sðiÞ ¼ ðaðiÞ; gðiÞÞ; i ¼ 1; 2; . . .;N:

While the design goals of this prototype were ease of

development and integration, further miniaturization could

be achieved by using off-the-shelf components. For

example, all components could be integrated in an unob-

trusive wristlet.

3 Spotting of handwriting

The spotting stage is used to perform a binary classification

of the data stream into segments that likely contain hand-

writing and segments that do not (Fig. 3). The segments

classified as potential handwriting motion are passed on to

the recognition stage. Ideally, the spotting algorithm

imposes a minimal processing delay and identifies all

handwriting segments without producing a high amount of

false positives. Figure 4 illustrates the challenges of this

task. It shows the acceleration and angular rate signals of a

19-min-long recording with three handwriting segments.

The objective of the spotting stage is to discriminate these

segments from the background activity. We use a binary

SVM classifier with an RBF kernel (c = 8, C = 32,768) to

discriminate non-writing signal segments from potential

writing segments. In order to allow real-time usage and

operation on continuous data streams, we use a sliding

window approach. Individual overlapping windows are

classified and the classification results of all overlapping

windows are then combined and passed on to the recog-

nition stage immediately. Figure 3 shows the architecture

of the spotting stage. Successive windows are illustrated in

the middle of the figure as horizontal bars. The color

indicates the classification result, green for segments

classified as handwriting, red for others. On every window

w the following features are computed for classification,

where Nw denotes the number of sensor samples per win-

dow and aw and gw denote the acceleration and angular rate

samples in the window:

• Average angular velocity

1

N

XN

i¼1

kgwðiÞk2

• Average mean shifted acceleration

1

N

XN

i¼1

kawðiÞ � �awk2

• Distribution of power per frequency between 0 and

8 Hz in 8 bins

Fig. 2 Prototypical wireless data glove for signal acquisition

S
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Fig. 3 Schematic illustration of the spotting stage
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We chose these features due to a visual inspection of the

signal statistics in Fig. 5. Handwriting parts have a high

frequency and amplitude compared to the non-writing parts

in both acceleration and angular rate. A frequency peak is

present at around 3 Hz, depending on the writing speed.

Therefore, we chose features representing angular rate and

acceleration amplitude as well as the frequency

distribution.

Defined by the window and shift length, every single

sensor sample is part of several windows. For every win-

Fig. 4 Example recording acquired for the evaluation of the spotting stage (x, y, z axes are shown ordered from top to bottom for acceleration

and angular rate respectively). The three segments show the handwriting parts; the non-highlighted signals represent background activity
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Fig. 5 Comparison of features

extracted from recordings with
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dow wt, the SVM Classifier CSVM(wt) returns 0 (red) if no

handwriting is detected and 1 (green) otherwise. This is

illustrated by the color of the horizontal bars in Fig. 3. A

sensor sample is then classified by the classifier CCOMB

which combines the results of the individual SVM classi-

fiers. One sensor sample s(i) is classified as writing motion

if at least one window containing st is classified as hand-

writing motion according to:

CCOMBðsðiÞÞ ¼ max
k:sðiÞ2wk

CSVMðwkÞ ð1Þ

A sequence of sensor samples classified as handwriting is

called a handwriting segment. The lower bar in Fig. 3 shows

the resulting signal segmentation (one segment) after

combining the results from the individual classification

results. In contrast to other classifier combination schemes

(e.g. majority vote), our combination scheme has a bias

toward the detection of handwriting motion, i.e. some

samples not belonging to actual handwriting might be

classified as handwriting. On the one hand, this approach

guarantees to not loosing any important samples, since all

handwriting samples that are missed in the spotting stage are

never forwarded to the recognition stage and therefore lost.

Furthermore, short pauses between writing periods will not

lead to gaps in the detected handwriting segment. On the

other hand, this approach may incorrectly forward several

non-handwriting segments to the recognition stage.

However, these segments are usually very short and the

recognition stage therefore produces empty or very short

hypotheses (0–3 characters in total). Under the assumption

that hypothesis containing no or very few characters are not

valid, we implemented an additional filtering step based on

the length of the hypotheses produced in the recognition

stage. All hypotheses up to a given length are discarded. We

present the performance and show the effectiveness of

this filtering step for different length settings in 3.2.

Consequently, most of the false positives have no negative

impact on the final recognition results. A sensor sample is

passed on to the recognition stage as soon as the last window

of that sample was classified. As a result, the spotting stage

imposes a delay of only one window length on further

processing. Choosing the window length is always a trade-off

between classification accuracy and system delay.

3.1 Experiments

We collected data from 3 subjects to evaluate our proposed

spotting approach. We assume that the inter-individual

differences are not as important for the discrimination of

handwriting and non-handwriting data as the variety of

recorded activities. Therefore, we did not focus on a data

corpus including many subjects. Instead, we gave priority

to collecting realistic everyday data. Table 1 summarizes

the recorded data used for the experiments. The hand-

writing training data were taken from the corpus collected

for the recognition experiments (Sect. 4). The other data

sets (testing and non-writing data) were recorded during

typical activities at home (preparing food, eating, doing

laundry, . . .). The test data set consists of sessions con-

taining single sentences of airwriting at random points in

time. The test data set is imbalanced because of the realistic

setting. A user will only write occasionally during every-

day activities. In total, 17 sentences containing 68 words

were written. Shortly, after writing the sentence, subjects

made a paper note with the current time and the words they

just wrote in the air. This information was used to annotate

the recordings in order to generate an approximate ground

truth. We then performed a Viterbi alignment of the ref-

erence sentence with the selected segment to get a more

precise approximation of the actual start and stop time of

the handwriting motion as ground truth.

3.2 Evaluation

To evaluate the performance of the spotting algorithm, we

compute recall, precision, specificity and F-score on the

individual samples of the test data set using different

window sizes and overlaps. As already stated in Sect. 3, our

spotting approach is biased toward the recognition of

handwriting, and thus, we expect a high recall and low

precision. Since our data set contains significantly more

non-handwriting data than handwriting data, we compute

the specificity, which gives information of how many of the

non-handwriting samples were correctly classified. This

number is proportional to the fraction of time during which

no handwriting occurred and no handwriting was spotted.

Figure 6 shows that a very high recall of up to 99 % is

achievable with various combinations of window sizes and

shift widths. A small shift width between windows,

resulting in a larger overlap, yields the highest recall (see

Eq. 1), since the combined classifier CCOMB incorporates

all windows a sensor sample is part of. In contrast, preci-

sion and specificity can be optimized by choosing a rather

small window size and a large shift between windows.

Using a window size of 500 frames or 0.61 s and an overlap

of half the window size, we achieve the highest precision

and specificity of 35 and 92 %, respectively, and a recall of

97 %. The highest recall of 99.9 % at a window size of 700

Table 1 Data corpus used for the spotting experiment, the data sets

are disjoint

Data set Handwriting (min) No writing (min) Total (min)

Training 272 111 383

Testing 4 111 115
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frames or 0.85 s and a shift of 10 frames (0.012 s) goes

along with a precision of 23 % and a specificity of 85 %.

As a high recall is crucial and low precision is acceptable

due to the described further filtering in the recognition

stage, we chose a compromise biased toward recall for

further experiments. With a window size of 700 frames and

a shift of 140 frames (0.17 s), we get a recall of 99 %, i.e.

we miss very few handwriting samples. While a precision

of 26 % seems rather low, these results are still well suited

for our application. The specificity value shows that in 88

% of the time where no handwriting occurs, the spotting

stage does not forward segments to the computationally

costly recognition stage. We also evaluated the impact of

the individual feature settings to the final result. Figure 7

shows the values for recall, precision and specificity for the

individual feature settings (angular rate, frequency,

amplitude and their combination). All three features con-

tribute relevant information to the classification task.

As already stated, false positive segments are typically

very short. On our data set, the mean length of false positive

segments is 1.58 s with standard deviation of 1.64 s, for true

positives, the mean is 15.34 s with standard deviation of

4.52 s. We compare these values with the average time it

takes to write a character, which we computed on the sen-

tence data set (see Sect. 4.1). The average time per character

over all users is 0.83 s with a standard deviation of 0.17 s.

That means the false positive segments are as short as the

time a user needs to write two to three characters. To

evaluate the effectiveness of the described filtering in the

recognition stage, we passed all the false positives to the

recognition stage and discarded all hypothesis containing at

most N characters in total. Table 2 shows the number of

filtered false positives depending on the value of N. The

results show that this is a reasonable approach.

4 Handwriting recognition

In the recognition stage, a given input signal sequence is

decoded into a sequence of words. Recognition results are

output on word level, i.e. a set of words, called the vocab-

ulary, defines all words that can be recognized. Text written

in the air is defined by the spatial trajectory of the hand

movement as this is the case for 2D pen-based handwriting.

Unfortunately, the actual 3D trajectory is not available. It is

theoretically possible to reconstruct the trajectory by

applying a strapdown inertial navigation algorithm. Angular

rate is integrated once to get the orientation. When the

orientation is known, the earth acceleration can be sub-

tracted from the accelerometer measurements and a final

double integration yields the trajectory. However, sensor

drift and noise lead to errors which accumulate over time

due to the triple integration and increase rapidly over sec-

onds [29]. Consequently, we rely in our approach on the raw

sensor signals. The pattern matching problem can be for-

mulated to find the most probable word sequence given the

input acceleration and angular rate signals. This is one

major difference to traditional 2D pen-based handwriting

recognition. The other difference is the lack of the pen-up

and pen-down information, which if present, would provide

a natural segmentation of the writing into isolated strokes.

In the case of 3D-space handwriting, there is only one

continuous stroke without any segmentation information.

As a result, we cannot apply the feature extraction tech-

niques which have been developed in the field of pen-based

online handwriting recognition, since they are derived from

the 2D trajectory and make use of the pen-up and pen-down

information [21]. Figure 8 shows the characteristics of 3D-

space handwriting. In Fig. 8a, a possible trajectory is

illustrated. The segments normally not written (pen-up

movements) are shown in red. In Fig. 8b, the actual accel-

eration signals of the word ‘‘HAND’’ written in the air are

shown.
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Table 2 Percentage of filtered false positives

N 0 (%) 1 (%) 2 (%) 3 (%)

Filtered 91.3 98.2 99.3 99.5
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Figure 9 illustrates the pattern recognition problem for a

complete sentence. For a given finite input sequence, the

most likely sequence of words must be found. Words are

formed by a sequence of characters which are predefined

by a given alphabet. Neither the number of words, nor the

boundaries of words or characters are known in advance.

We constrain the problem by only allowing words from a

predefined list of vocabulary words to be recognized.

Furthermore, we make use of the inherent structure of

language and use a statistical language model to favor word

sequences which are common in the target language.

Hidden Markov models are the state-of-the-art technique to

solve such problems and are widely used in speech and

handwriting recognition. They have several properties that

make them particularly suited for the problem presented here:

• Longer models can easily be extended from existing

models by adding transitions between the end state of

one model and the start state of the other model. This

allows to construct models for arbitrary words based on

26 character models for all uppercase characters. Once

the parameters of these 26 character models are trained,

no further training of word models is necessary.

• It is not necessary to know the boundaries of the

characters in the signal in advance. By performing a

Viterbi decoding, these boundaries are found implicitly.

• Advanced and efficient decoding techniques exist to

handle large search spaces typically encountered with

large vocabularies.

• It is possible to decode the signal in almost real-time

while it is received.

4.1 Data acquisition

This section describes the data sets collected for the

handwriting recognition experiments. In total, 23 subjects

contributed handwriting data to this study. We collected

three different data sets, which are listed in Table 3. Data

set DC contains isolated characters. Nine subjects contrib-

uted 25 times the 26 characters of the alphabet each. Data

set DW contains isolated words. Five subjects contributed

99 words each. The length of the words is equally dis-

tributed between two and eleven. The words were ran-

domly chosen from a list of frequent English words

maintained by the University of Leipzig.1 Data set DS

contains individual sentences. Nine subjects contributed 80

English sentences each. The sentences were selected such

that each character of the alphabet appeared multiple times.

The recording setup was the same for all data sets. The

subjects were sitting in a chair in front of a computer screen

showing the next text to write. None of the subjects had

used the system before. They were told to write in the air in

front of them as if they would write on an imaginary

blackboard. Instead of writing horizontally from left to

right, the subjects were asked to write in place. All subjects

were told to write with keeping the wrist fixed, using block

capital letters and an approximate height of 20 cm per

character. No further constraints on speed or quality of

writing were set. Due to the missing visual feedback and

the unusual writing, it is harder to write without errors but a

writer normally realizes if he or she makes an error. The

subjects were told to correct their writing errors themselves

by repeating the respective character, word or sentence.

The segmentation of the data was done by the participants

with a key press before and after each character, word or

sentence, i.e. participants were able to make pauses

between recordings.

4.2 Recognition system

This section describes in detail the recognition system we

used. This includes modeling, initialization, training and

decoding of the HMMs as well as the vocabulary and

language model.

4.2.1 Modeling

We use continuous density HMMs to model the signal

sequences of each character. HMMs are state-based sta-

tistical models that are used to model signal sequences. A

detailed introduction to HMMs is beyond the scope of this

paper, the classic paper by Rabiner [22] gives an overview

of theory and application. One important property of
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Fig. 8 Word ‘‘HAND’’. a Example possible trajectory, red segments

would be pen-up movements in pen-based handwriting. b Actual

acceleration signals (color figure online)

1 wortschatz.uni-leipzig.de/html/wliste.
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HMMs is the possibility to concatenate individual models

to form a new HMM. This concatenated HMM then models

the complete signal sequence of the two individual models.

We are therefore able to use a small set of primitive

character models and construct an arbitrary number of

word models by concatenation of character models. We use

26 character models for the capital letters from A to Z, one

model to represent repositioning motion that occurs

between single characters and one model to represent the

state of no motion, e.g. pauses. All character HMMs have a

left–right topology with 30 states, the repositioning model

with 10 states and the ‘‘no motion’’ model with 1 state.

Each state has a self-loop but there are no skip states, i.e.

the complete model must be traversed. Transition proba-

bilities are not trained. The observation probabilities for

each state are modeled with Gaussian mixture models with

six components each and diagonal covariance matrices.

4.2.2 Initialization

The aim of this step is to find meaningful initial parameter

values for the GMMs. This is done by a flat start procedure,

i.e. assigning each feature vector to one state of the HMM

and afterward cluster the set of collected feature vectors

into as many clusters as the number of components of this

states GMM. Given an input signal and its corresponding

HMM consisting of N states, the signal is partitioned in

N parts of the same size and all feature vectors of the nth

part are assigned to the nth state. This procedure is repeated

for all training samples and feature vectors are accumulated

for each state over all samples. Let G be the number of

GMM components per state, then, the accumulated feature

vectors are clustered into G clusters and each cluster

defines one Gaussian by its mean and variance vectors

(covariances are set to 0). The clustering is performed with

the neural gas algorithm, a more robustly converging var-

iant of k-means. The weights of the GMM components are

uniformly set to one during initialization. This method gets

more inaccurate, the more characters are encoded in the

signal sequence. Therefore, we initialize the HMMs on the

isolated character data set DC, i.e. each input signal rep-

resents only one written character.

4.2.3 Training

After initialization, the GMM parameters are optimized

with the Baum–Viterbi algorithm, a faster and more stable

variant of the Baum–Welch-based EM training [7]. We

perform the training procedure subsequently on all three

data sets. The models are first trained on isolated character

data (data set DC), second on isolated word data (data set

DW) and finally on whole sentence data (data set DS). The

training on sentence data is done together with the evalu-

ation in a cross-validation setup. We perform ten iterations

of Baum-Viterbi training on DC, one iteration on DW and

three iterations on DS which sums up to 14 training itera-

tion in total on data of growing complexity. The chosen

numbers gave the best results.

4.2.4 Decoding

All possible word combinations, including repetitions, con-

stitute the actual search space of the recognition problem,

which therefore is several orders of magnitude larger than

the size of the vocabulary. For example, the sentences in our

data corpus contained 4.5 words in average and the largest

vocabulary used contained 8,231 words. Considering the

size of our vocabulary, there exist 8,2314 = 4.5 9 105

possible sentences with 4 words. Since the number of words
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Fig. 9 Alignment of the characters of the sentence ‘‘Nice to see you again’’ to the respective accelerometer signals (angular rate signals are not

shown). The alignment was acquired by a Viterbi decoding

Table 3 Data corpus for the recognition stage

Type Sent. Words Char. Hours

DC Char. 0 0 5,850 2:25

DW Word 0 495 3,695 0:57

DS Sent. 720 3,294 16,002 3:56
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is not known in advance, the search space is even larger.

Clearly, it is not feasible to construct one HMM for each of

all the possible word combinations and perform a complete

Viterbi alignment for each to find the most likely word

sequence. We use a Viterbi beam search on a prefixtree

search graph to turn this into a computationally feasible

problem.

A prefixtree search graph exploits the fact that a lot of

words in the vocabulary share the same prefixes, and

therefore, the decoding for the shared prefix needs to be

evaluated only once for all these words. The prefixtree

search graph is built by merging the character models of

common word prefixes for all words of the vocabulary

[10]. For example, the words ‘‘then’’ and ‘‘that’’ share the

prefix ‘‘th’’, so the sub-HMM for these two characters

needs to be evaluated only once. Figure 10 shows an

example prefixtree for the three words ‘‘THEN’’, ‘‘THAT’’

and ‘‘TEA’’. Each of the nodes in the shown graph repre-

sents one-character HMM. Due to the number of characters

in the alphabet, the number of root nodes of the search

graph is 26. All leaf nodes represent word endings, and

from each leaf node, there is a path to all root nodes to

allow the recognition of arbitrary sequences of words.

Instead of a complete Viterbi search, a time synchronous

Viterbi beam search is performed. The sequence of feature

vectors is processed sequentially by propagating hypothe-

ses through the graph according to the Viterbi criterion.

Every hypothesis corresponds to one possible path. With-

out restricting the number and probability values of the

hypotheses, this equals a complete Viterbi decoding. To

speed up the process of decoding a beam search is used, in

which only hypotheses are kept whose probability value

falls within a fixed beam. Therefore, only the most likely

paths are followed at the expense of the possibility to loose

paths that temporarily have a low probability [20].

A statistical language model, which models the proba-

bilities of word sequences, is used to further restrict the

search space to word sequences that occur in real-world

text data. We use the Janus Recognition Toolkit (JRTk)

[25], originally developed for speech recognition, to per-

form our experiments.

4.2.5 Vocabulary

The vocabulary defines all possibly recognizable words.

We use two vocabularies of different sizes in our experi-

ments to evaluate the impact of vocabulary size on the

scalability. If the vocabulary increases, the recognition task

gets harder, since the search space grows. The small

vocabulary (V1k) contains 986 words and the large

vocabulary (V8k) contains 8,231 words. Both vocabularies

are taken from a list of frequent English words which is

obtained by webcrawling and is freely available.2 We

applied additional cleaning steps on the list because it

contains non-word entries. All entries consisting of only

one character were deleted, except ‘‘i’’ and ‘‘a’’ (valid

English one-character words). All entries consisting of two

or three letters which either are not correct words (e.g.

‘‘gl’’) or describe abbreviations (e.g. ‘‘os’’) were deleted.

All words longer or equal than four characters remained

unchanged. Finally, all words contained in the sentences

written by the subjects during the data collection were

added to the vocabularies.

4.2.6 Language model

A statistical n-gram language model is used to model the

dependencies between successive words in order to

improve the recognition performance. Statistical language

models provide information on the probability of a

sequence of words and are normally generated data-driven

from large text corpora. We use a trigram language model,

which contains the probabilities of word sequences up to a

length of three. Given a sequence of three words w1w2w3,

the language model returns the conditional probability

P(w3|w1w2) of w3, given the words w1w2 were recognized

so far.

This probability is multiplied with the probability of the

signal sequence given by the HMM whenever a complete

word was recognized. The language model we use contains

60,000 words. It was generated for a speech recognition

system by crawling English internet sites [24]. The n-gram

coverage of the language model is given in Table 4. The

unigram coverage for both vocabularies used in the

experiments is 100 %, i.e. the language model contains all

words in the vocabularies. The bi- and trigram coverage is

lower, but if, for example, a trigram cannot be found, the

language model falls back to bi- or uni-grams. We took the

language model as is, i.e. we did not change it to optimize

it toward the specific task described in this paper, like

giving the word sequences occurring in our chosen sen-

tences higher probabilities. This is reflected in the reported

perplexity, which is given in Table 4. The perplexity is an

Fig. 10 Example prefixtree for three words. Every node in the graph

represents one-character HMM 2 wortschatz.uni-leizpig.de/html/wliste.
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information theoretic measure to evaluate the predictive

quality of a language model on a given set of word

sequences. It can be interpreted as the average number of

possibilities for the next word if the model had to choose

uniformly and independently among all possibilities. The

perplexity was computed using the SRI Language model

toolkit [27]. We reported higher perplexities for the same

language model in [3] because we formerly used a nor-

malization method which was not appropriate for the task.

4.3 Experimental results

4.3.1 Performance metric

We measure the system performance by calculating the

word error rate, which is the metric commonly used to

evaluate the performance of speech and handwriting rec-

ognition systems. The hypothesis of the recognizer is

aligned with the true reference sentence by computing the

minimal edit distance (Levenshtein distance) on word

level. This gives the number of substitution (S), insertion

(I) and deletion (D) errors that occur by aligning hypothesis

and reference. For a set of sentences S ¼ fs1; . . .; skg the

word error rate is computed by

WERS ¼
Pk

i¼1 Ssi
þ Isi

þ DsiPk
i¼1 Nsi

� 100;

where Nsi
is the total number of words in the reference

sentence si. The following example illustrates WER com-

putation for one single sentence:

The word error rate in the above example is WER ¼
ð2þ 1þ 1Þ=6 � 100 ¼ 66 %: One should notice that the

WER can be larger than 100 % because the hypothesis can

be longer than the reference.

4.3.2 Feature extraction

We use the normalized acceleration and angular rate as

input features (observations) for the HMM. The normali-

zation includes the compensation of orientation depen-

dency caused by gravity and the compensation of variance

in speed and size of the performed motion.

The gravitational acceleration is always present in the

sensor signals as a constant vector approximately orthog-

onal to the earth surface with the absolute value of 1 g.

Since we do not know the orientation of the sensor in the

global earth reference frame, we cannot simply subtract the

gravitational acceleration from the signals. We therefore

assume that the sensor orientation does only change very

little while writing. Under this assumption, the gravita-

tional acceleration leads to a constant offset in all three

acceleration sensor channels. We can then subtract the

mean from the signal for each sentence to remove this

offset. Clearly, this is a very rough approximation but our

experiments show that it is a reasonable choice for our

application, where the performed motion is primarily

defined by its 3D trajectory and not by its change of ori-

entation. In [6], a method to compute the actual orientation

is used to delete gravity from the acceleration signal more

accurately. The features normalized with the estimated

orientation perform well on the proposed gesture recogni-

tion task but this comes at the cost of a calibration gesture

which must be performed in regular intervals.

The scale and speed of the writing motion are not rel-

evant to the actual handwriting information. Thus, the

features should be independent of speed and scale. Both

speed and scale of the handwriting are reflected in the

amplitude and duration of the acceleration signals. To

compensate the effects of different amplitudes, we nor-

malize the variance of the signals by dividing the signal by

its standard deviation. The effects of variance in duration

are implicitly compensated by the self-transitions in the

HMM states.

For real-time operation, the running mean and standard

deviation can be computed. To compute the actual feature

vector, the normalized signal is then segmented into windows

of length 10 ms, and on every window, the average ampli-

tude is computed for each channel. The resulting values are

the features we use. For each window, we get a six-dimen-

sional feature vector containing the averaged 3D acceleration

ð�ax; �ay; �azÞ and the averaged 3D angular rate ð�gx; �gy; �gzÞ:

4.3.3 Experiment 1: person-independent

To evaluate person-independent performance a per-person

cross-validation was performed. The data of one person

were chosen as test set and the data of all other persons

were taken as training set. As stated in Sect. 4.2, we took

the initialized models from former experiments and per-

formed three iterations of EM training. Table 5 shows the

summary of cross-validation results. The average word

error rate is 9 % for the small vocabulary and 11 % for the

large one.

The comparison of the two vocabularies is promising.

Vocabulary V8k is approximately eight times larger than

Table 4 Language model statistics

Coverage (1/2/3-gram) 100.00/97.98/64.13

Out-of-vocabulary rate 0.0

Perplexity 112

200 Pers Ubiquit Comput (2014) 18:191–203

123



V1k; however, the error rate on the large vocabulary is

only by a factor of 1.2 higher than for the small vocabulary.

Therefore, we assume our approach scales well to even

larger vocabularies.

If we compare the results acquired by using the language

model to the results without any language model, we see a

significant boost in recognition performance. As explained in

Sect. 4.2, the search space is very large, and if no language

model is used, ambiguities between words cannot be resolved

on the language level. Therefore, results are expected to be

worse. Nevertheless, still more than 50 % of all words are

correctly recognized. Considering the size of the search

space, this is still a notable result and shows the discrimi-

native quality of our HMM-based recognition system.

Figure 11 shows the breakdown of results for each subject

individually. On the data of subjects D and I, the performance

is very low compared to the average. From observation

during the experiments, it is known that subject D did not

keep the wrist fixed all the time while writing, i.e. there was

more rotational motion in the wristjoint. As a result, the

fraction of gravitational force in the sensor signals cannot be

assumed constant during writing and the mean normalization

of the signals does not remove the gravitational acceleration.

This might account for the high word error rate.

For subject I, there is no obvious reason why the per-

formance is so low. However, we showed in our past

experiments that even for the case of block capital letters,

people do write characters very differently. In the data set

DC, five different variants of writing an ‘‘E’’ were

observed, mainly distinguished in the order and direction of

strokes [2]. If one writer has a very different writing style

compared to the majority, we would expect the system to

have a much lower performance. This could be a possible

reason for the performance drop for subject I. On average,

the system achieves very promising accuracies. For some

subjects, a word error rate of 2 % on the large vocabulary is

achieved, which means that approximately 191 of 195

words were recognized correctly.

4.3.4 Experiment 2: person-dependent

Although our aim is to build a system that works inde-

pendent of its user, we evaluated the person-dependent

performance. Firstly, this gives an upper bound to which

the user-independent system can be compared to since we

generally expect a higher performance if the system is

specifically trained on a users own data. Secondly, the

results give insight into what could be expected from

runtime adaptation methods. Runtime adaptation was not

used for the experiments described in this paper but might

be a future option. Thirdly, the person-dependent case

might be the standard usage scenario for personalized

digital devices. The person-independent models from the

experiments described in the former section were taken as

initialization. The person-dependent performance of the

system was evaluated on each subject data with a tenfold

cross-validation on the 80 sentences of each user with one

iteration of EM training. The large vocabulary (V8k) and

the trigram language model were used for the evaluation.

Figure 11 shows the results of the person-dependent eval-

uation for each subject together with the word error rate for

the person-independent case. Subject-specific retraining of

the models greatly improves recognition performance. The

average word error rate drops from 11 to 3 %. Subjects D

and I, for which the person-independent performance is

rather low, also achieve very good performance after

retraining.

4.3.5 Qualitative feedback

Although we did not explicitly collect user feedback on the

system, we want to share our experience based on feedback

we received during the collection of the data corpus.

Generally, the data recording sessions were perceived to

create fatigue. Almost all participants suffered from the

‘‘gorilla arm’’, an effect observed in interaction systems,

e.g. vertical touchscreens, where users have to hold and

move their arm horizontally for a longer period of time.

This was expected, since our experimental setup forces the

user into the exact same situation. In a real-life scenario,

this situation will be different. Firstly, the user will not

write for long periods of time since the system is not meant

to write longer texts but for small notes, messages or

commands. Secondly, it is not a requirement to hold the

A B C D E F G H I
0

10

20

30

W
E

R
 (

%
)

Subject

PI
PD

Fig. 11 Per-subject results for the person-independent (PI) and

person-dependent (PD) case

Table 5 Results of the person-independent evaluation with and

without language model

No LM 3-gram LM

V1k V8k V1k V8k

Average WER (%) 37 49 9 11

SD WER (%) 17 19 8 9
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arm horizontally during writing. Rather, the system works

well with the arm hanging on the side of the body. It also

still works well if the writing gets relatively small (below

10 cm) which makes it less fatiguing and less noticeable

for others. Another possibility to reduce the motion

amplitudes would be to allow the movement of the wrist,

enabling a user to write solely with his hand without having

to move his whole arm. However, this would obstruct the

possible integration of the sensor in a wristlet because this

is only possible if the relevant motion is performed by the

forearm and not only the hand.

5 Combined evaluation

The main evaluation of the spotting and recognition

approach was performed independently due to the lack of a

large combined data corpus. A combined data corpus should

include a high number of sentences of different subjects

written in a realistic everyday life scenario with background

activities that actually incorporate hand motion. Such a data

corpus is currently not available. However, we performed a

preliminary evaluation of the end-to-end system based on

the data collected for the spotting experiments. The data

corpus includes large parts of non-trivial background

activity with occasional handwriting activity, only the

number of subjects that contributed sentences and the total

number of words is relatively small. We used a recognizer

trained on all data sets, DC, DW and DS, to evaluate the

performance. This means the evaluation is not person-

independent, since all of the three subjects that contributed

to the spotting data also contributed data to the handwriting

recognition data. The spotting data contain 68 words written

in 17 sentences. To evaluate the performance, we feed all

handwriting segments found by the spotting stage into the

recognizer. According to the proposed filtering technique,

we dismiss all hypotheses that contain 3 or less characters.

A total of 19 handwriting segments remained. On these

segments, we reach a WER of 17 %.

To validate that the recognizer itself works well, we

manually removed the two false positive segments. On the

remaining 17 segments, a word error rate of 7 % is reached.

Thus, the recognizer works in the expected range on the

segments output by the spotting stage, although the rec-

ognition task is slightly harder. We noticed that the motion

to bring the hand in writing position and back cannot be

discriminated from the actual handwriting and is likely part

of the signal. Additionally, the data were recorded in daily

life situations and not under as restricted conditions as for

the handwriting recognition experiments.

The results of this preliminary evaluation demonstrate

the functionality of the end-to-end system but do not allow

for an in-depth analysis. We plan to record a large data

corpus to evaluate the performance of the end-to-end sys-

tem and assess the impact of the spotting stage on the

overall recognition result. In addition to the proposed two-

stage approach, we plan to use a garbage model, which is

commonly used in speech recognition to tackle the seg-

mentation problem.

6 Conclusion

We show that spotting and continuous recognition of text

written in the air based on inertial sensors is possible. The

proposed system can serve as an input device for wearable

computers, allowing the input of text in an intuitive way

and without the need to operate any handheld devices. The

proposed spotting algorithm works with high recall and low

precision but we show that additional filtering based on the

results acquired from the recognition stage can filter out up

to 99 % of the false positives.

We performed experiments on continuous recognition of

sentences written in the air with underlying vocabularies up

to more than 8,000 words. To our knowledge, a gesture

vocabulary of more than 8,000 continuously recognizable

gestures is significantly larger than those in any previously

reported findings. For the person-independent case, an

average word error rate of 11 % was achieved, and for the

person-dependent case, this improves to even 3 %. We

deem these error rates as low enough to allow practical

usage. Although we have only a small data corpus to test

the end-to-end system, the achieved results show that the

recognition works as expected and only few false positive

segments pass the filtering step.

We consequently apply methods developed in speech

recognition to the domain of gesture recognition and show

their applicability. The results can be transferred to other

domains of gesture recognition tasks where specific ges-

tures are built from a smaller set of primitives. None of the

used techniques is tailored to the problem of handwriting

recognition. The proposed architecture and methods allow

the implementation of a system operating in realtime on

continuous data [4].
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