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Abstract Current emergency systems for elderly contain

at least one sensor (button or accelerometer), which has to

be worn or pressed in case of emergency. If elderly fall and

loose their consciousness, they are not able to press the

button anymore. Therefore, autonomous systems to detect

falls without wearing any devices are needed. This paper

presents three different non-invasive technologies: the use

of audio, 2D sensors (cameras) and introduces a new

technology for fall detection: the Kinect as 3D depth sen-

sor. Our fall detection algorithms using the Kinect are

evaluated on 72 video sequences, containing 40 falls

and 32 activities of daily living. The evaluation results

are compared with State-of-the-Art approaches using 2D

sensors or microphones.

Keywords Fall detection � Depth sensor � Kinect �
Autonomous system

1 Introduction

Emergency call buttons are provided by caretaker organi-

zations and have the main drawback that no information is

available about an occurred incident prior the button press.

Moreover, people suffering from dementia are not able to

react on emergency situations properly [20]. In case of an

emergency and if elderly are able to press the button, they

have to convey incident details to the operator. If the

elderly is not able to talk to the operator for any reason

(e.g., due to the lost of consciousness), there is no infor-

mation about the type of incident at all. Furthermore,

especially when dealing with dementia, it is important to

reduce the cognitive load on the user [23]. Hence, sensors

acting autonomously are needed.

In the field of smart homes autonomously acting sensors

are used to fulfill core functions [11]: system control,

emergency aid, water and energy monitoring, automatic

lighting, door surveillance, cooker use safety, etc.… Due to

various reasons summarized by Aldrich [2], smart homes

have not been established yet. One of the reasons is costs

[2]: it is both easier and less expensive to integrate smart

home technology into new than into already existing

buildings. This results in a demand for a robust system,

which can be integrated into existing buildings easily.

Furthermore, assistance means covert assistance regarding

physical or intellectual impairment for as long as possible,

being hidden from visitors, especially ones not belonging

to the family or the innermost circle of friends. A small,

unobtrusive system would fulfill that demand [24].

Approaches in the field of Ambient Assisted Living

assist elderly to enable them to stay at home independently.

These systems are dealing with the management of

chronically disease (e.g., diabetes [13]) or activities of

daily living (e.g., managing medication [16]). In contrast to

these approaches, our approach enhances the safety of

elderly. As falls are considered to be a major risk for

elderly, Willems et al. showed an overview on automatic

fall detection [36]. Not only the falls itselves, but also the

consequences of a fall are a risk, especially for elderly.

Noury et al. [25] have shown that getting help quickly after
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a fall reduces the risk of death by over 80 % and the risk of

hospitalization by 26 %.

Considering these facts, the use of computer vision and

audio is feasible as they are able to overcome the limita-

tions of other sensor types [24], but raising privacy issues.

Different attempts to detect falls using audio exist, for

example, Litvak et al. make use of sound and floor vibra-

tions to detect falls [22]. Computer Vision algorithms

detect falls by, for example, using a 3D reconstruction of

combined 2D images using multiple cameras [4] or from

the change of human shape [31]. When using vision-based

approaches, privacy aspects need to be considered, but

according to Mihailidis et al. very little research on privacy

issues has been conducted so far [24]. Furthermore, other

limitations (e.g., camera field of view, occlusions) need to

be considered.

The rest of this document is structured as followed:

Sect. 2 provides an overview of the State-of-the-Art. The

methodology is shown in Sect. 3, and an evaluation can be

found in Sect. 4. Finally, a conclusion is presented in

Sect. 5.

2 State-of-the-art

We propose to classify fall detection approaches into the

following categories, depending on the technology to be

used: (1) wearable sensors (e.g., accelerometers to analyze

acceleration for fall detection [21]), (2) robots (e.g., a

robotic dog following elderly and detecting falls [6]), (3)

audio-based approaches using microphones, (4) 2D sensors

providing pictures (cameras), (5) 3D sensors providing

depth information (e.g., Kinect). As we are only dealing

with stationary sensors, only the latter three approaches

will be discussed.

2.1 Audio-based approaches

Audio provides information for activity and event detec-

tion, and thus, several sound classes (e.g., door sound,

human sound, baby noise, and loud noise) can be differ-

entiated [27]. A fall detection system combining audio

information together with accelerometers was proposed by

Doukas et al. [8]. The sensors are attached to the person’s

body (i.e., foot), and movement is classified into walking,

falling and running using a support vector machine. The

main drawback of this system is the need for wearing

sensors.

An approach proposed by Litvak et al. [22] detects falls

not only by sound, but also by floor vibrations and uses

non-wearable devices, thus overcoming the drawback of

Doukas et al. [8]. The accelerometer (to detect vibrations

of the floor) and the microphones are placed in one corner

of the room, and falls are detected using an energy-based

event detection algorithm. Afterward, the event is classified

to distinguish human falls and falls of objects. For evalu-

ation purposes, a human mimicking doll has been used,

resulting in a sensitivity and specificity of 95 % each.

These results are promising, although the fall of a human

mimicking doll cannot be compared to a fall of a person.

Hence, further evaluation of this approach is needed.

Popescu et al. proposed the use of one-class classifiers

[28], that is not differentiating between different classes but

focusing on only one class: the class of falls. They argue

that it is possible to specify only the class of falls, as it is

impossible to define all events that are no-falls. Therefore,

all other events that are not classified as a fall are not a fall

event. Their results are obtained by using a fuzzy logic-

based approach combined with height information obtained

by an audio array, as it has been shown that information

about the height of the sound reduces the false alarm rate

[27]. The idea of integrating the height of the sound seems

feasible, although the false alarm rate still needs to be

reduced to be used in practice.

2.2 2D sensors

The general methodology of a computer vision–based fall

detection systems using 2D sensors (cameras) is described

in Willems et al. [36]. The first step is the separation of

people from the background, which is achieved by means

of motion detection and background subtraction. Once the

person is detected within the video, different kinds of fall

detection approaches are used.

When using a 2D sensor, only pictures of the person are

available. The 2D shape of a person implies the orientation

and thus is used to distinguish whether a person is in an

upright position or not. The use of the bounding box aspect

ratio (width to height ratio) to detect falls is proposed by

Anderson et al. [3]. If people are in an upright position, the

bounding box aspect ratio is bigger than one. In case of a

fall, the ratio rapidly changes to a value smaller than one.

Another approach presented by Rougier et al. uses infor-

mation of an approximated ellipse instead of a bounding

box [31]. Falls are detected by analyzing the orientation of

the ellipse as well as the ratio of the major axis of the

ellipse. Figure 1 depicts the shape of a person during a

normal activity and during a fall. Furthermore, the corre-

sponding bounding boxes and ellipses to analyze the

bounding box aspect ratio and the orientation of the ellipse

are illustrated. The use of a bounding box and an approx-

imate ellipse for fall detection is feasible, but depends on

the quality of the background segmentation. Assuming that

the background segmentation yields in robust results, the

fall detection also yields in robust results. A fall into the

direction of the camera cannot be recognized by both
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approaches, as the change of orientation of the person

cannot be detected.

Traditional approaches (i.e., not using 3D sensors)

making use of 3D information by reconstructing humans

from silhouettes gained by different camera views [4].

Hence, the human is represented by the use of voxels

allowing to identify different states (upright, on–the–

ground and in–between). The quality of this approach also

depends on the quality of background segmentation, but

having the main drawback of needing a calibrated camera

setup. Another approach by Rougier et al. [30] uses 3D

information obtained by using one single camera to track

the head of the person and to obtain its trajectory. Not

only the head position but also the motion speed is taken

as an indicator for falls as the motion speed during a fall

is typically higher than during usual activities of daily

living.

Zambanini et al. propose a method to detect falls and

distinguish between a single camera (2D) and a multiple

camera (3D) approach [37]. If using a 2D approach, scene

analysis is performed on each camera individually. After-

ward, the individual results are combined to get an overall

decision, as shown in Fig. 2. This approach is called late

fusion, as the combination of information of different

sources applies at a late stage of the processing pipeline. If

information from multiple cameras is combined to recon-

struct the person in 3D space, the combination takes place

at an early stage. Feature extraction is done on the 3D

reconstruction of the person, and a decision whether a fall

occurred or not is made afterward. This approach is

depicted in Fig. 3 and is called early fusion approach.

Compared to other works (e.g., [1]), their system is not

vulnerable to low-quality images (e.g., high noise and low

resolution) as only basic information (i.e., silhouettes) is

extracted from the image anyway.

The approaches of Rougier et al. [30] as well as

Zambanini et al. [37] consider motion speed to detect

falls, as they assume that the velocity is higher during a

fall than during activities of daily living. From our point

of view this assumption should not be made, as falls can

also occur slowly and thus are not detected using these

approaches.

2.3 3D sensors

Stereo vision sensors to detect falls are used by Belbachir

et al. [5]. These biologically inspired sensors feature a

massively parallel pre-processing and reduce the amount of

data in comparison with stereo vision cameras dramatically

as they are not frame based, but event based. Hence, the

motion of people can be determined and the position of the

person can be extracted. A fall is detected by tracking

the position and velocity of the head, as the position of the

head changes rapidly during a fall.

Fig. 1 Analysis of the bounding box aspect ratio and the orientation

of the ellipse to detect falls

Fig. 2 Late Fusion for multicamera fall detection taken from [37]

Fig. 3 Early Fusion for multicamera fall detection taken from [37]
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Time-of-Flight cameras [26] are generating depth maps

and can be used for fall detection [7]. As a first step,

moving regions are detected within the 3D points cloud.

The person (foreground) is segmented from the back-

ground, and the distance of the person’s centroid to the

ground floor is analyzed. This results in an efficiency of

80 % and a reliability of 97.3 % when using a centroid-

ground floor distance of 0.4 m as threshold [7]. Further-

more, they propose to extract the skeleton from the depth

data to analyze the orientation of the person’s spine.

Another approach using time-of-flight cameras mentions

the higher accuracy in contrast to stereo vision [15]. Jansen

et al. propose a system for pose recognition, discriminating

the poses standing, sitting or lying by thresholding the

height of the centroid [15]. They state that their proposed

approach works in nursing homes reliably, but not in real

homes due to false alarms.

Since the introduction of the Kinect sensor in 2010, a

new 3D sensor is available. Stone et al., for example, use

the Kinect for obtaining measurements of temporal and

spatial gait parameters [10]. Using the Kinect sensor for

fall detection was proposed by Rougier et al., but they

focus on low-level vision tasks like foreground/background

segmentation and detecting the ground plane [29]. Their

proposed fall detection algorithm analyzes the distance

between the centroid of the body and the ground floor as

well as motion speed. As already stated before, motion

speed is not a suitable feature for fall detection as the

motion speed is not necessarily high during a fall.

3 Methodology

3.1 Audio-based approaches

A multistage approach is performed to recognize events

from audio data, consisting of the following steps [38]:

1. Silence elimination: first audio is checked for a process-

able signal in order to prevent further processing of audio

in case of only silence. This is achieved by comparing the

audio power against a threshold value estimated from a

long-term analysis for each microphone.

2. Feature extraction: audio signals are represented in

either time (time-amplitude representation) or fre-

quency domain (frequency-magnitude representation).

Features used in the time domain are the average

energy, zero crossing rate or silence ratio, and

bandwidth, energy distribution or harmonicity in the

frequency domain [32, 33].

3. Audio pre-classification: audio data are classified into

common types of audio such as speech, sounds or

noise. This is done by either using each feature

individually in different classification steps or using a

set of features combined to a vector to calculate the

closeness of the input to the training sets.

4. Final audio classification: based on the output of the

previous step, each specific audio type is further processed

in a different way. For speech recognition, techniques

based on Hidden Markov Models [12] are applied as they

obtain high recognition performance. For sound recogni-

tion, Dynamic Time Warping and Artificial Neural

Networks have shown promising results in the past.

3.2 2D sensors

To be able to visually detect risks, the following steps are

applied [36]:

1. Motion detection: First, motion detection is performed

on the video to segment motion (e.g., the person) from

the background. For this purpose, a robust background

model has to be established, which is able to adapt to

changing conditions (e.g., lighting) as well as to reject

motion in the background (e.g., a TV). A recently

upcoming and promising concept for background

modeling is boosting [14], which permits the rejection

of recurrent motion in the background during run-time

without any presumptions. To increase the system

robustness, color information is also exploited for

shadow detection [17].

2. Feature identification: According to the different risks

that have to be detected, a collection of features is

extracted. Fall detection requires features describing the

human posture [4]. Specific actions are detected by the

use of space-time interest points [19]. Other risks such as

smoke are detected for example, by using a wavelet

transformation or dynamic texture change as feature.

3. Risk detection: Different risks (e.g., falls, fire, flood-

ing,. . .) are pre-defined to interpret the appropriate

features and relate them to the risks by using

confidence values. Zweng et al. define empirical,

semantic driven rules using features with fuzzy

boundaries introduced in [9] to analyze the scene and

make the decisions [40]. The final decision for a single

camera is made by a voting step, which combines the

individual confidences. By the use of multiple cam-

eras, the overall robustness and reliability of the

system is increased since the voting neglects individual

wrong detections. Moreover, the problem of occlu-

sions (e.g., by furniture) is solved implicitly.

3.3 3D sensors

When using the Kinect as 3D sensor, the low-level

vision tasks motion detection, foreground/background
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segmentation as well as pose estimation are preprocessed

in the Software Development Kit1 (SDK) [34]. As a result,

high-level data (i.e., coordinates of specific body junctions)

are accessed directly. Since the use of the integrated pre-

processing steps offers high-level data, no low-level vision

algorithms (e.g., foreground/background segmentation)

need to be applied any more.

As the Kinect is a 3D sensor, depth information is

available and thus having the main advantage of localizing

features in a 3D space. Our proposed algorithms use the

orientation of the person’s major axis and the height of the

spine (relative to the ground floor) as features. In contrast

to other works [29], feature analysis is not done on a low-

level using the camera picture or the depth picture, but the

proposed features are directly applied to the skeleton

information.

To determine whether the person is in an upright posi-

tion or not, the orientation of the major axis based on the

body joints position is calculated. To be able to distinguish

between similar activities, for example, falling to the

ground and lying down in the bed (in both scenarios the

orientation of the body is the same!), the height of the spine

is used as additional feature. Therefore, we propose and

analyze the following two approaches: (1) mapping the 3D

body joint coordinates to the 2D depth image and calcu-

lating the features using image coordinates; (2) analyzing

features directly in the 3D space using world coordinates.

Currently two different thresholds are used: a similarity

threshold as well as a threshold for the height of the spine.

3.3.1 3D sensor using image coordinates

This approach uses the 3D skeleton information and maps

the coordinates to a 2D image space. The orientation of the

major axis is calculated using the coordinates of the head,

shoulder, spine, hip and knee joints. Using the least squares

algorithm to fit a straight line to the data points results in

the orientation of the major axis. Afterward, the angle

between this line and the horizontal line is calculated. For

calculating the height of the spine, an estimation of the

ground plane is needed. The ground plane is estimated

using the v-disparity map [18, 39]. The basic idea of this

approach is that the depth linearly increases on the ground

floor. Hence, the depth information of all pixels is analyzed

and those pixels having a linear increase in depth are part

of the ground plane. This approach assumes that the ground

plane is visible in the depth map. After creating the ground

plane estimation (which only needs to be done once per

scene), the distance of the spine to the ground plane is

calculated.

3.3.2 3D sensor using world coordinates

Our fall detection algorithm calculates the major orienta-

tion of the persons body in 3D space by using the skeleton

information. For calculation of the orientation, the head,

shoulder (center), spine, hip and the mean position of the

knees were taken into consideration. Furthermore, the 3D

ground floor is estimated and the spine distance to the

ground floor is calculated. If the major orientation of

the person is parallel to the ground floor and the height of

the spine is near the ground floor, a fall occurred.

Using 3D depth data and world coordinates overcomes

the limitations of 2D camera approaches, for example, the

problem of falling in the direction of the camera as the

distance to the camera is analyzed. Figure 4 depicts

the similarity of a person in an upright position and a fall in

direction of the camera. Using a 2D single-camera

approach and the orientation of the major axis as single

feature, a fall in direction of the camera cannot be recog-

nized, because the orientation of the major axis does not

change. Figure 5 illustrates the depth image with a person

and the corresponding major axis.

Fig. 4 Fall in direction of the camera

Fig. 5 Major axis calculated using data obtained by the Kinect

1 The sensor data can either be accessed with the official Microsoft

SDK or with the open source SDK OpenNI.
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4 Evaluation

This section provides an evaluation of our developed fall

detection algorithms using image and world coordinates of

skeleton points obtained by the use of a 3D sensor (Kinect).

Furthermore, the results are discussed and compared with

other approaches.

4.1 Experiments using a 3D sensor (Kinect)

To be able to evaluate the fall detection algorithm, the

video data are annotated to obtain ground truth informa-

tion. Therefore, the frame number where the fall began and

the frame number where the person is in an fully upright

position are annotated. A true positive (TP) of the algo-

rithm is obtained if it detects the fall between the first

frame where it began and the last frame, where it ends. As

the video sequences do not only include falls but also

activities similar to falls, true negatives (TN) are marked

(there is no fall, and the fall detection algorithm does not

detect a fall). Furthermore, false positives (FP) and false

negatives (FN) are analyzed by examining the results of the

algorithm. False positives mean that the person does not

fall, but the algorithm detects a fall; a false negative is

obtained if the person falls, but the algorithm does not

detect it. Each video sequence contain one fall at most, but

it is possible that the algorithm results in a TP (i.e., fall

detected correctly) and a FP (i.e., fall detected without a

person falling) within the same video sequence.

The quality of the algorithm is measured using the

standard measurements recall, precision, F-score, true

negative rate and accuracy. They are defined as follows

[35]:

Recall ¼ TP

TPþ FN
;

Precision ¼ TP

TPþ FP
;

F-score ¼ 2 � recall � precision

recallþ precision
;

True negative rate ¼ TN

TNþ FP
;

Accuracy ¼ TPþ TN

TPþ FNþ FPþ FN
:

All tests have been conducted under laboratory settings,

the room setup is shown in Fig. 6. The size of our

laboratory is approximately 7 9 6 m, whereas the camera

field of view was set to an area of approximately

5.5 9 5.3 m. The Kinect sensor was placed in the middle

of the wall at a height of 2.4 m, which is a typical position

for surveillance cameras. One frame of the room setup

using the Kinect to illustrate the camera field of view is

shown in Fig. 7.

The falls were simulated and similar to the definition of

falls by Noury et al. [25], but using an extended version of

scenarios, depicted in Table 1. The additionally added

scenarios are ‘‘sitting down on a chair and fall while getting

up’’, ‘‘to lie down to a bed and fall out of the bed’’ and ‘‘fall

into camera direction’’. These scenarios are added to

enhance the quality of evaluation. Furthermore, two sce-

narios were taken out from the original definition of Noury

at al. since we do not agree with the uniqueness of the

outcome. The modification results in 18 different sequen-

ces, containing ten falls and eight no-falls. These scenarios

were simulated by two subjects, simulating each scenario

Fig. 6 Room plan showing the room setup for the evaluation

Fig. 7 One frame of the Kinect Sensor, illustrating the camera field

of view
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twice. This results in an overall set of 72 videos, containing

40 falls and 32 no-falls.

Figure 8 shows five video frames taken out of a test

sequence, showing a simulated fall according to the sce-

nario ‘‘fall backward, ending lying on the ground’’. To

prevent injuries, falls are simulated using a mat. The cor-

responding depth frames with skeleton points of the head,

shoulder, spine, hip and the average of both knees are

shown in Fig. 9.

The video frames of an activity of daily living are shown

in Fig. 10. This figure shows a person picking something

up from the floor. Due to the orientation of the body, this

scenario provoke FP, as the body may be parallel to the

ground floor. The corresponding depth data of this

sequence are depicted in Fig. 11.

Results of evaluating our proposed approaches using

the Kinect as 3D sensor on 72 sequences are depicted in

Table 2. The absolute values for TP, TN, FP and FN are

shown, and an comparison between our approach using

image coordinates and world coordinates is given. Using

the above specified measures, a comparison of the results

of our two approaches according to these measures is

shown in Table 3. This table shows that the results of both

approaches are similar at first glance. Analyzing the

evaluation results in detail shows that at least in five

sequences errors occur due to not correctly ending the

tracking process when the person leaves the frame. Thus,

improving the tracking of the skeleton will improve the

obtained results. Assuming that tracking works correctly

(i.e., filtering out the last frames of the videos where

tracking problems occurred) lead to the results depicted in

Table 4. Analog to Table 2, the absolute values for TP,

TN, FP and FN are shown. The corresponding measures

are shown in Table 5. After the elimination of the tracking

errors, a comparison of our approaches shows that the use

of the Kinect as 3D sensor with world coordinates clearly

outperforms our approach using the Kinect with image

coordinates.

4.2 Discussion and comparison of technologies

The evaluation of our proposed algorithms using the Kinect

as 3D sensor (together with image and world coordinates)

is compared to results of an audio-based algorithm [28] and

Table 1 Definition of scenarios

similar to Noury et al. [25]
Category Description Outcome

Backward fall Ending sitting Positive

Ending lying Positive

Ending in lateral position Positive

With recovery Negative

Forward fall With forward arm protection Positive

Ending lying flat Positive

With rotation, ending in lateral position (left or right) Positive

With recovery Negative

Lateral fall (to the left or right) Ending lying Positive

With recovery Negative

Neutral To sit down on a chair, then to stand up Negative

To lie down on the bed, then to stand up Negative

Walking Negative

To bend down, pick something up, then to rise up Negative

To cough or sneeze Negative

Additional sequences To sit down on a chair, then fall while getting up Positive

To lie down on the bed, then to fall out of the bed Positive

Fall into camera direction Positive

Fig. 8 RGB Video frames of a scenario containing a simulated fall
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the fall detection algorithm using a 2D sensor and a sta-

tistical model [40].

The algorithm of Popescu et al. [28] is evaluated on a

database containing ten falls and approximately 2 h of

‘‘normal’’ activities. The database for evaluating the audio-

based approach [28] results in eight TP, two FP and two

FN.

Fig. 9 Depth frames of a scenario containing a simulated fall

Fig. 10 RGB Video frames of a scenario where the subject picks something up from the ground

Fig. 11 Depth frames of a scenario where the subject picks something up from the ground

Table 2 Results for evaluating our fall detection approaches

3D sensor using image

coordinates

3D sensor using world

coordinates

TP TN FP FN TP TN FP FN

Person 1 a 4 8 0 6 10 8 0 0

Person 1 b 10 7 1 0 10 6 4 0

Person 2 a 9 8 0 1 9 8 1 1

Person 2 b 8 8 0 2 8 8 0 2

31 31 1 9 37 30 5 3

Table 3 Measures for evaluating our fall detection approaches

3D sensor using

image coordinates

3D sensor using

world coordinates

Recall 0.775 0.925

Precision 0.969 0.881

F-score 0.861 0.902

True negative rate 0.969 0.857

Accuracy 0.861 0.893

Table 4 Results obtained after eliminating tracking errors

3D sensor using image

coordinates

3D sensor using world

coordinates

TP TN FP FN TP TN FP FN

Person 1 a 4 8 0 6 10 8 0 0

Person 1 b 10 8 0 0 10 8 0 0

Person 2 a 9 8 0 1 9 8 0 1

Person 2 b 8 8 0 2 8 8 0 2

31 32 0 9 37 32 0 3

Table 5 Measures obtained after eliminating tracking errors

3D sensor using

image coordinates

3D sensor using

world coordinates

Recall 0.775 0.925

Precision 1 1

F-score 0.873 0.961

True negative rate 1 1

Accuracy 0.875 0.958
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The database used by Zweng et al. [40] consists of 73

video sequences containing 49 falls and 24 video sequen-

ces with activities of daily living (e.g., sneezing, picking

something up,. . .). They tested a single as well as a mul-

tiple camera approach under laboratory conditions, result-

ing in the precision specified in Table 6.

The comparison of results is shown in Table 6. This

comparison shows that the audio-based and 2D sensor

approaches perform similar and are outperformed by our

algorithm using depth information. Our algorithm is

implemented in C/C?? and is able to detect falls in real-

time, that is, 30 fps on a Intel Core i7-2620M Quad Core

CPU @2.7 GHz and 8 GB RAM.

Evaluation has shown that it is not feasible to detect the

fall event itself. Therefore, we propose to detect situations

where help is needed rather than focusing on the fall event.

These situations are detected by the information that a

person is in an upright position, is on the floor afterward

and does not get up to an upright position within an

specified amount of time. Especially for real-world appli-

cations, it does not make any difference, why the person is

not able to get up from the floor. Hence, it is not of interest

whether a fall occurred or whether the person intentionally

lay down on the ground—if the person is not able to get up

any more, help is needed in any case!

When using autonomous systems within the homes of

elderly, privacy and the protection of data becomes an

essential aspect to be considered. To ensure the dignity of

elderly, the anonymization of data is required. Therefore,

the video stream from the Kinect sensor is not analyzed at

any time, and only depth data are processed. Hence, people

and objects cannot be identified any more. Figure 12

depicts the depth images and thus automatically anony-

mized snapshots of the 3D Kinect sensor containing major

body joints and the major orientation of the person. In

contrast, Fig. 13 shows anonymized snapshots of the

camera based on Zambanini et al. [37]. They anonymize

the camera pictures by applying edge detection algorithms

to ensure the dignity of elderly.

5 Conclusion

This article shows an overview of different non-invasive

fall detection approaches and introduces a fall detection

approach using Microsoft’s Kinect as a 3D sensor. A

comparison of methods for fall detection using 2D sensors,

microphones and Kinect as a 3D sensor is shown. Our

proposed algorithms for the Kinect make use of the ori-

entation of the body and the height information of the

spine, using either image or world coordinates. While

having two parameters (threshold for similarity to the

ground and the height), evaluation has shown that our

algorithms outperform other computer vision algorithms as

well as algorithms based on audio information. Further-

more, it is shown that our algorithm using world coordi-

nates outperformed our approach using image coordinates.

Future work will deal with the tracking problems and a

combination of different approaches discussed in the

evaluation to enhance the robustness of our approach.
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