
ORIGINAL ARTICLE

A database-based framework for gesture recognition

Vassilis Athitsos • Haijing Wang • Alexandra Stefan

Received: 31 December 2008 / Accepted: 5 October 2009 / Published online: 5 March 2010

� Springer-Verlag London Limited 2010

Abstract Gestures are an important modality for human–

machine communication. Computer vision modules per-

forming gesture recognition can be important components

of intelligent homes, assistive environments, and human–

computer interfaces. A key problem in recognizing ges-

tures is that the appearance of a gesture can vary widely

depending on variables such as the person performing the

gesture, or the position and orientation of the camera. This

paper presents a database-based approach for addressing

this problem. The large variability in appearance among

different examples of the same gesture is addressed by

creating large gesture databases, that store enough exem-

plars from each gesture to capture the variability within

that gesture. This database-based approach is applied to

two gesture recognition problems: handshape categoriza-

tion and motion-based recognition of American Sign

Language signs. A key aspect of our approach is the use of

database indexing methods, in order to address the chal-

lenge of searching large databases without violating the

time constraints of an online interactive system, where

system response times of over a few seconds are oftentimes

considered unacceptable. Our experiments demonstrate the

benefits of the proposed database-based framework, and

the feasibility of integrating large gesture databases into

online interacting systems.

Keywords Gesture recognition � Hand pose estimation �
Embeddings � American Sign Language �
Indexing methods � Image and video databases

1 Introduction

Gestures are an important modality for human–machine

communication, and robust gesture recognition can be an

important component of intelligent homes, assistive envi-

ronments, and human–computer interfaces in general. A

key problem in recognizing gestures is that the appearance

of a gesture can vary widely depending on variables such

as the person performing the gesture, or the position and

orientation of the camera. For example, the same hand-

shape can look very different in different images,

depending on the 3D orientation of the hand and the

viewpoint of the camera. Similarly, in the domain of sign

language recognition, the appearance of a sign can vary

depending on the person performing the sign and the dis-

tance from the camera. This paper presents a database-

based approach for addressing this problem of large

intraclass variability. In the proposed approach, large ges-

ture databases are used, and for each gesture class a large

number of exemplars is stored in order to capture the

variability among samples of that gesture class.

This database-based framework is applied to two

different gesture recognition domains. The first domain is

handshape categorization. Handshapes can hold important

information about the meaning of the gesture, for

example in sign languages, or about the intent of an

action, for example in manipulative gestures or in virtual

reality interfaces. In our database-based approach, a large

database of tens of thousands of images is used to rep-

resent the wide variability of handshape appearance. A

key advantage of the database approach is that it pro-

vides a very natural way to capture the nonparametric

distribution that characterizes the appearance of each

handshape class. Furthermore, databases containing tens

or hundreds of thousands of images can be easily

V. Athitsos (&) � H. Wang � A. Stefan

Computer Science and Engineering Department,

University of Texas at Arlington, Arlington, TX, USA

e-mail: athitsos@uta.edu

123

Pers Ubiquit Comput (2010) 14:511–526

DOI 10.1007/s00779-009-0276-x

generated overnight using off-the-shelf computer graph-

ics software.

The second gesture recognition domain where we apply

the proposed approach is recognition of signs in American

Sign Language (ASL). In particular, we consider the

problem of searching an ASL dictionary for the meaning of

a particular sign. In an automated sign lookup system,

when a user wants to look up a specific sign, the user can

submit a video example of that sign, and ask the system to

identify database videos that are the best matches for that

sign. Each database video can be annotated with informa-

tion about the sign shown in that video, such as meaning,

usage, or related signs. A key challenge in such a system is

designing the database search module, so that the results

returned to the user include the correct sign as often as

possible.

Designing an accurate search module is a challenging

task, that has to address the fact that the appearance of a

sign depends on the person performing the sign, as well as

the position and distance of the signer with respect to the

camera. To address this issue, we convert the original

database of 933 sign exemplars to an extended database of

about 270,000 exemplars, by creating multiple copies of

each exemplar in the original database, corresponding to

different scaling parameters. Our experiments demonstrate

that using the extended database improves retrieval accu-

racy, while still satisfying the time constraints of an online,

interactive system.

Efficient and accurate indexing methods are important in

the proposed database–based framework. In both the

handshape recognition domain and the sign recognition

domain, the system must identify, given a query image or

video, the most similar entries in the database. The best

database matches need to be identified fast enough to allow

the system to be used in an interactive environment. At the

same time, this database retrieval task can be very chal-

lenging, for the following reasons:

– The similarity measures that are most meaningful for

image and video matching are often non-Euclidean,

nonmetric, and computationally expensive. Examples

of such nonmetric distance measures are the chamfer

distance [7], shape context matching [9, 51], and

dynamic time warping (DTW) [31, 33].

– The majority of database indexing methods are

designed for Euclidean distance measures or metric

distance measures (i.e., distance measures that obey the

reflexivity, symmetry, and triangle inequality proper-

ties). Thus a relatively small number of indexing

methods are available for the nonmetric distance

measures typically used for comparing hand images.

With respect to database indexing, the focus of this

paper is not on proposing new indexing methods, but rather

on determining the feasibility of using existing off-the-

shelf indexing methods in our gesture recognition tasks.

For that purpose, we consider the recently proposed

BoostMap embedding method [3], and integrate that

method into the retrieval modules for both our handshape

recognition system and the ASL sign lookup system. A key

result of our experiments is that BoostMap indeed works

well in our domains and offers significant speedups com-

pared to the naive brute-force method of comparing the

query to every single database entry.

Overall, the experiments demonstrate the advantages of

the proposed database-based framework for gesture rec-

ognition. In both our experimental domains, a large data-

base is used to capture naturally the large variability in

appearance between examples of the same gesture. While

brute-force search in such large databases can prohibitively

slow for many applications, existing indexing methods can

be used to drastically improve efficiency, and thus make

the proposed approach suitable for interactive applications.

2 Related work

Gesture recognition has been an active area of research for

several years. Progress in automatic recognition of gestures

is useful for a diverse array of applications in areas

including human computer interfaces, surveillance sys-

tems, sign language recognition, assistive environments,

and healthcare. For example, some recent work proposes

gesture recognition interfaces that facilitate human com-

puter interaction for blind persons [50], or disabled persons

who have difficulty performing standard motions needed to

use a traditional keyboard/mouse interface [30]. As another

example, the system described in [32] uses gesture recog-

nition to facilitate the communication of hospital patients

who have difficulty speaking.

A large number of methods have been proposed in the

literature covering various aspects of gesture recognition.

In the remainder of this section we briefly review existing

methods for handshape recognition and sign recognition,

and we highlight the contrasts between those methods and

the solutions we propose in this paper.

Computer vision systems that estimate handshape

under arbitrary 3D orientations typically do it in the

context of tracking [24, 36, 42, 49, 64]. In that context,

the pose can be estimated at the current frame as long as

the system knows the pose at the previous frame. Since

such trackers rely on knowledge about the previous

frame, they need to be manually initialized, and cannot

recover when they lose the track. The handshape recog-

nition method described in this paper can be used (among

other things) to automate the initialization and error

recovery of a hand tracker.

512 Pers Ubiquit Comput (2010) 14:511–526

123

A regression system that estimates hand pose from a

single image is described in [43]. However, that method

assumes that the hand silhouette is correctly identified in

the input image, whereas such precise hand detection is

often unrealistic to assume in a real-world application.

Another regression method is presented at [16], but that

method requires that the hand be simultaneously visible

from multiple cameras. The database-based handshape

recognition approach described here has the advantage that

it only requires a single camera, and it can tolerate a certain

amount of imprecision in hand detection; we still require

the location of the hand to be given as an input to our

system, but we do not require precise separation of the

hand silhouette from the background.

Another family of methods for hand shape classification

are appearance-based methods, like [19, 63]. Such methods

are typically limited to estimating 2D hand pose from a

limited number of viewpoints. In contrast, our handshape

recognition approach can handle arbitrary viewpoints.

With respect to recognition of signs and sign languages,

a number of approaches have been proposed in the litera-

ture (see [39] for a recent review). Many approaches are

not vision-based, but instead use input from magnetic

trackers and sensor gloves, e.g., [21, 37, 45, 57, 58, 66].

Such methods achieve good recognition results on contin-

uous Chinese Sign Language with vocabularies of about

5,000 signs [21, 58, 66]. On the other hand, vision-based

methods, e.g., [8, 13, 17, 20, 29, 48, 65] use smaller

vocabularies (20–300 signs) and often rely on color

markers, e.g., [8, 17]. The approach described in this paper

is a step towards developing vision-based methods that can

handle a more comprehensive vocabulary.

A key focus of this paper is on identifying efficient

indexing methods for speeding up the task of finding, given

a query image or video, the most similar database matches.

Various methods have been employed for speeding up

nearest neighbor retrieval. Comprehensive reviews on the

subject include [10, 26, 25]. A large amount of work

focuses on efficient nearest neighbor retrieval in multidi-

mensional vector spaces using an Lp metric, e.g., [22, 34,

52, 61]. However, that family of approaches is not appli-

cable in our setting, since the chamfer distance (i.e., the

distance measure that we use for comparing hand images)

is not an Lp measure.

A number of nearest neighbor methods can be applied

for indexing arbitrary metric spaces; the reader is referred

to [25] for surveys of such methods. As an example, VP-

trees [67] and metric trees [53] hierarchically partition the

database into a tree structure by splitting, at each node, the

set of objects based on their distances to pivot objects.

However, while such methods can offer theoretical guar-

antees of performance in metric spaces, the chamfer dis-

tance and dynamic time warping distance used in our

experiments are nonmetric, and so are other measures

typically used for comparing images and video to each

other, such as shape context matching [9, 51], and distance

measures based on the Viterbi algorithm [51].

In domains with a computationally expensive distance

measure, significant speed-ups can be obtained by

embedding objects into another space with a more efficient

distance measure. Several methods have been proposed for

embedding arbitrary spaces into a Euclidean or pseudo-

Euclidean space [3, 4, 11, 18, 27, 60]. These methods are

indeed applicable to our setting. In this paper we focus on

the BoostMap embedding method [3] and we show that this

method can be successfully employed in both our experi-

mental domains, i.e., handshape recognition and sign rec-

ognition. The success of the BoostMap method in both

domains illustrates the feasibility and benefits of using off-

the-shelf, domain-independent indexing methods for ges-

ture recognition tasks.

The parts of this paper discussing our database-based

approach for handshape categorization are based on work

that we published in three conference papers [2, 6, 40]. The

parts of the paper describing our database-based approach

for automated sign lookup are novel, and have not been

published before.

3 Database-based handshape recognition

In handshape recognition, the goal is to recognize a set of

different handshapes, such as the 20 handshapes shown on

Fig. 1. In this section, we describe a system that operates

on single images, as opposed to entire video sequences, or

images obtained simultaneously for multiple cameras. We

need to specify up front that, in a real-world system, reli-

able recognition of handshapes of arbitrary 3D orientation

from a single image is beyond the current state of the art.

At the same time, a system that operates on a single image,

even if it has a relatively low classification accuracy, can

be immensely useful in identifying a relatively small set of

likely hypotheses. Such a set of hypotheses can subse-

quently be refined:

– using a hand tracker [42, 24, 36, 47, 49, 64],

– using domain-specific knowledge, such as ASL lin-

guistic constraints, or

Fig. 1 The 20 handshapes used in the ASL handshape dataset

Pers Ubiquit Comput (2010) 14:511–526 513

123

– using knowledge of a specific protocol for human–

computer communication, that can place constraints on

the current handshape based on the current communi-

cation context.

– using simultaneous views from multiple cameras.

3.1 A database of hand images

A key challenge in reliable handshape recognition in an

intelligent home setting, or an assistive environment set-

ting, is that the same handshape can look very different in

different images, depending on the 3D orientation of the

hand with respect to the camera (Fig. 2). Using a large

database of hand images is a natural way to address this

wide variability of the appearance of a single handshape.

Since handshape appearance depends on 3D orientation,

we can densely sample the space of all possible 3D ori-

entations, and include a database image for every hand-

shape in every one of the sampled 3D orientations.

In our system, we include 20 different handshapes

(Fig. 1). Those 20 handshapes are all commonly used in

American Sign Language (ASL). For each handshape, we

synthetically generate a total of 4,032 database images that

correspond to different 3D orientations of the hand. In

particular, the 3D orientation depends on the viewpoint,

i.e., the camera position on the surface of a viewing sphere

centered on the hand, and on the image plane rotation. We

sample 84 different viewpoints from the viewing sphere, so

that viewpoints are approximately spaced 22.5 degrees

apart. We also sample 48 image plane rotations, so that

rotations are spaced 7.5 degrees apart. Therefore, the total

number of images is 80,640 images, i.e., 20 handshapes

9 84 viewpoints 9 48 image plane rotations. Figure 2

displays example images of a handshape in different

viewpoints and different image plane rotations. Each image

is normalized to be of size 256 9 256 pixels, and the hand

region in the image is normalized so that the minimum

enclosing circle of the hand region is centered at pixel

(128, 128), and has radius 120. All database images are

generated using computer graphics, and in particular using

the Poser 5 software [14]. It takes less than 24 h to generate

these thousands of images. Image generation is a script-

based automated process.

3.2 The chamfer distance

Given an input image, the system has to identify the data-

base images that are the closest to the input. In our system

we measure distance between edge images, because edge

images tend to be more stable than intensity images with

respect to different lighting conditions. Examples of hand

images and corresponding edge images are shown on Fig. 3.

The chamfer distance [7] is a well-known method to

measure the distance between two edge images. Edge

images are represented as sets of points, corresponding to

edge pixel locations. Given two edge images, X and Y, the

chamfer distance D(X, Y) is:

DðX;YÞ ¼ 1

jXj
X

x2X

min
y2Y
kx� yk þ 1

jY j
X

y2Y

min
x2X
ky� xk; ð1Þ

where ka� bk denotes the Euclidean distance between two

pixel locations a and b. D(X, Y) penalizes for points in

either edge image that are far from any point in the other

edge image. Figure 4 shows an illustration of the chamfer

distance.

The chamfer distance operates on edge images. The

synthetic images generated by Poser can be rendered

directly as edge images by the software. For the test images

we simply apply the Canny edge detector [12].

On an AMD Athlon processor running at 2.0 GHz, we

can compute on average 715 chamfer distances per second.

Consequently, finding the nearest neighbors of each test

image using brute force search, which requires computing

the chamfer distances between the test image and each

database image, takes about 112 s. Taking 112 s to match

the input image with the database is clearly too long for an

interactive application. The need for efficiency motivates

our exploration of database indexing methods. In Sect. 5

we describe how to use an indexing method to speed up the

retrieval process.

Fig. 2 Examples of different appearance of a fixed 3D hand shape,

obtaining by altering camera viewpoint and image plane rotation. Top
the ASL ‘‘F’’ handshape rendered from seven different camera

viewpoints. Bottom the ASL ‘‘F’’ handshape rendered from a specific

camera viewpoint, using seven different image plane rotations

Fig. 3 Examples of real and synthetic hand images and their

corresponding edge images

514 Pers Ubiquit Comput (2010) 14:511–526

123

4 Database-based sign recognition

The long-term goal of our work on sign recognition is to

design a system that makes it easy for users and learners of

American Sign Language (ASL) to look up the meaning of

an unknown sign. In such a sign lookup system, when the

user encounters an unknown sign, the user submits to the

system a video of that sign. The user can submit a pre-

existing video, if such a video is available. Alternatively,

the user can perform the sign in front of a camera, and

generate a query video that way.

A key component of the sign lookup project is data

collection. As described in [5], we are in the process of

collecting a large video dataset containing examples of

almost all of the 3,000 signs contained in the Gallaudet

dictionary [54]. Each sign is performed by a native signer.

Due to the large number of signs, we can only collect a

small number of exemplars for each sign. The lack of a

large number of training examples for sign renders several

model-based recognition methods inapplicable, e.g., Hid-

den Markov Models [41, 56]. At the same time, exemplar-

based methods are readily applicable in cases with a small

number of examples per class. In an exemplar-based

method, processing a query involves identifying the most

similar matches of the query in a database of training

examples.

In our experiments, the database contains 933 examples

of signs, corresponding to 921 unique sign classes.

Experiments are performed in a user-independent manner,

where the people performing signs in the query videos do

not appear in the database videos. Figure 5 shows sample

frames from four videos from this dataset.

4.1 Features for sign recognition

The meaning of a sign is determined by handshape, hand

motion, and hand position with respect to the body. A key

challenge in computer vision approaches for sign recog-

nition is the current lack of reliable general-purpose mod-

ules for extracting handshape, hand motion, and articulated

body pose, that can work in unconstrained, real-world

scenes. In order to simplify the task and produce a func-

tioning end-to-end system, in this paper we only use hand

motion to discriminate between signs, leaving incorpora-

tion of hand appearance and body pose information as

future work.

Furthermore, in the system described here we make

the simplifying assumption that the system knows the

location of the dominant hand in every frame of every

database sequence and every query sequence. The loca-

tion of hands in all database sequences is manually

annotated. While this manual annotation is a labor-

intensive process, this process is a one-time pre-pro-

cessing cost that is transparent to the end user. Hand

detection in the query sequence can be performed in a

semi-automatic way, where the system identifies hand

locations using skin and motion information [38], and the

user reviews and corrects the results before submitting a

query. In the near future we hope to fully automate the

query process using methods that can tolerate errors and

ambiguities in hand detection, such as dynamic space-

time warping (DSTW) [1].

Fig. 4 An example of the chamfer distance. The left image shows

two sets of points: points in the first set are shown as circles, and

points in the second set are shown a squares. The middle image shows

a link between each circle and its closest square. The circle-to-square

directed chamfer distance is the average length of those links. The

right image shows a link between each square and its closest circle.

The square-to-circle chamfer distance is the average length of those

links. The chamfer distance (also known as undirected chamfer
distance) between squares and circles is the sum of the two directed

distances

Fig. 5 Examples of sign videos from the ASL lexicon video dataset

[5]. For each sign, we show, from left to right, the first frame, a
middle frame, and the last frame. First row an example of the sign

DIRTY. Second row an example of the sign EMBARRASED. Third
row an example of the sign COME-ON. Fourth row an example of the

sign DISAPPEAR

Pers Ubiquit Comput (2010) 14:511–526 515

123

4.2 The dynamic time warping distance measure

In order for the system to identify the most similar database

matches to a query video, we need to define a distance

measure between sign videos. Given the position of the

dominant hand in each frame, each sign video is naturally

represented as a 2D time series ((x1, y1),..., (xn, yn)), where

n is the number of frames in the video, and each (xi, yi)

represents the pixel coordinates of the centroid of the hand

in the ith frame. Consequently, comparing sign videos to

each other becomes a time series matching problem.

For the purpose of measuring distance between the time-

series representations of signs, we use the dynamic time

warping (DTW) distance measure [15, 31, 33]. DTW is a

popular method for matching time series, and satisfies a

key requirement for a time series distance measure: the

ability to tolerate temporal misalignments, so as to allow

for time warps, such as stretching or shrinking a portion of

a sequence along the time axis, and differences in length

between time series. We now proceed to briefly describe

DTW.

Let Q be the time series representation of a query video

with |Q| frames, and let X be the time series representation

of a database video with |X| frames. A warping path

W = ((w1,1, w1,2),..., (w|W|,1, w|W|,2)) defines an alignment

between two time series Q and X, and |W| denotes the

length of W. The i-th element of W is a pair (wi,1, wi, 2) that

specifies a correspondence between element Qwi;1
of Q and

element Xwi;2
of X. The cost C(W) of warping path W that

we use is the sum of the Euclidean distances between

corresponding elements Qwi;1
and Xwi;2

:

CðWÞ ¼
XjWj

i¼1

kQwi;1
� Xwi;2

k ð2Þ

As a reminder, in our setting, Qwi;1
and Xwi;2

denote

respectively the center of the dominant hand in frame wi,1

of the query video and frame wi,2 of the database video.

For W to be a legal warping path, W must satisfy the

following constraints:

– Boundary conditions: w1,1 = w1,2 = 1, w|W|,1 = |Q| and

w|W|,2 = |X|. This requires the warping path to start by

matching the first element of the query with the first

element of X, and end by matching the last element of

the query with the last element of X.

– Monotonicity: wi?1,1 - wi,1 C 0, wi?1,2 - wi,2 C 0.

This forces the warping path indices wi,1 and wi,2 to

increase monotonically with i.

– Continuity: wi?1,1 - wi,1 B 1, wi?1,2 - wi,2 B 1. This

restricts the warping path indices wi,1 and wi,2 to never

increase by more than 1, so that the warping path does

not skip any elements of Q, and also does not skip any

elements of X between positions Xw1;2
and XwjW j;2 .

The optimal warping path between Q and X is the

warping path with the smallest possible cost. The DTW

distance between Q and X is the cost of the optimal

warping path between Q and X. Given Q and X, the DTW

distance between Q and X and the corresponding optimal

warping path can be easily computed using dynamic pro-

gramming [31].

Computing the DTW distance takes time O(|Q| |X|), i.e.,

time proportional to the product of the lengths of the two

time series. If Q and X have comparable lengths, comput-

ing the DTW distance takes time quadratic to the length of

the Q, and thus DTW is a computationally expensive dis-

tance measure. Furthermore, DTW is non-metric, as it does

not obey the triangle inequality. On an Intel Xeon quad-

core E5405 processor, running at 2.0 GHz, and using only

a single core, we can compute on average about 1,000

DTW distances per second, when measuring DTW dis-

tances between time series corresponding to query and

database videos.

4.3 Tolerating differences in translation and scale

Since the only information we use in measuring sign

similarity is hand position, and hand position is not trans-

lation invariant or scale invariant, we need to take addi-

tional steps to ensure that the matching algorithm tolerates

differences in translation and scale between two examples

of the same sign.

We address differences in translation by normalizing all

hand position coordinates based on the location of the face

in each frame. Face detection is a relatively easy task in our

setting, since we can assume that the signer’s face is ori-

ented upright and towards the camera. Mature, publicly-

available real-time face detection systems have been

available for several years [44, 55], that work well in

detecting upright, frontal views of faces. In our experi-

ments, the face location in database sequences is manually

annotated, whereas for query sequences we use the publicly

available face detector developed by Rowley, et al. at

CMU [44].

Differences in scale can also cause problems, as a small

difference in scale can lead to large differences in hand

positions, and consequently to large DTW distances. Our

approach for tolerating differences in scale is to artificially

enlarge the database, by creating for each database sign

multiple copies, each copy corresponding to different

scaling parameters. We should note that each of these

multiple copies is not a new sign video, but simply a new

time series, and thus the storage space required for these

multiple copies is not significant.

In particular, for each time series corresponding to a

database sign video, we generate 289 scaled copies. Each

scaled copy is produced by choosing two scaling

516 Pers Ubiquit Comput (2010) 14:511–526

123

parameters Sx and Sy, that determine respectively how to

scale along the x axis and the y axis. Each Sx and Sy can

take 17 different values, spaced uniformly between 0.92

and 1.08, thus leading to a total of 172 = 289 possible

value for each (Sx, Sy) pair.

While, as mentioned earlier, the space required for

storing these multiple copies is not significant, the time

required to exhaustively compare the query to the entire

database is severely affected. Since in our current system

we can compute about 1,000 DTW distances per second,

exhaustively matching the query with the 933 entries in the

original database (i.e., without including the scaled copies)

takes on average a bit less than a second. On the other

hand, exhaustively matching the query with the 269,637

entries in the extended database (i.e., including the scaled

copies) takes on average over 4 min, which is too long for

an interactive application. Fortunately, we can use existing

database indexing methods, as described in the next sec-

tion, to significantly reduce the search time and allow

interactive use.

5 Embedding-based retrieval

In our example applications, calculating the chamfer dis-

tance or the DTW distance between the query and all

database examples takes too long (almost 2 min in the

handshape recognition system, over 4 min in the sign

lookup system) to be used in interactive applications.

However, we can obtain an efficient approximation of these

expensive distance measures by embedding query and

database objects into a vector space. Using such an

embedding we can drastically speed up retrieval time, with

relatively small losses in accuracy. In this section we dis-

cuss how such embeddings can be constructed.

5.1 Lipschitz embeddings

Embeddings of arbitrary spaces into a vector space are a

general approach for speeding up nearest neighbor retrie-

val. Let X be a set of objects, and D(X1, X2) be a distance

measure between objects X1;X2 2 X. For example, in the

handshape recognition setting, X is the set of edge images

of hands, and D is the chamfer distance. In the sign lookup

setting, X is the set of time series corresponding to sign

videos, and D is the DTW distance. An embedding F :
X! R

d is a function that maps objects from X into the d-

dimensional real vector space R
d, where distances are

typically measured using an Lp or weighted Lp measure,

denoted as D0. Such embeddings are useful when it is

computationally expensive to evaluate distances in X, and

it is more efficient to map points of X to vectors and

compute some Lp distance between those vectors.

Given an object X 2 X, a simple 1D embedding FR :

X! R can be defined as follows:

FRðXÞ ¼ DðX;RÞ: ð3Þ

The object R that is used to define FR is typically called

a reference object or a vantage object [26]. A

multidimensional embedding F : X! R
d can be

constructed by concatenating such 1D embeddings: if F1,

..., Fd are 1D embeddings, we can define a d-dimensional

embedding F as F(X) = (F1(X),..., Fd(X)).

The basic intuition behind such embeddings is that two

objects that are close to each other typically have similar

distances to all other objects. An everyday example that

illustrates this property is looking at distances between

cities. The distance from New York to Boston is about 240

miles, and the distance from New York to Los Angeles is

about 2,800 miles. Suppose that we did not know these two

distances. Furthermore, suppose that someone gave us, for

100 towns spread across the United States, their distances

to New York, Boston and Los Angeles. What would that

information tell us about the distances from New York to

Boston and from New York to Los Angeles?

First we would notice that the distance from each town

to New York is always within 240 miles or less of the

distance between that town and Boston. On the other hand,

there are some towns, like Lincoln, Nebraska, whose dis-

tances from Los Angeles and New York are very similar,

and some towns, like Sacramento, whose distances to Los

Angeles and New York are very different (Sacramento-Los

Angeles is 400 miles, Sacramento-New York is 2800

miles). Given these distances, we could deduce that, most

likely, New York is a lot closer to Boston than it is to Los

Angeles.

Suppose that we have chosen a set of d database objects

R1, R2, ..., Rd as reference objects. Then, we can define a

function F, mapping X to R
d as follows:

FðXÞ ¼ ðDðX;R1Þ;DðX;R2Þ; . . .;DðX;RdÞÞ: ð4Þ

The function F turns out to be a special case of Lipschitz

embeddings [11, 35]. In our handshape recognition setting,

F maps edge images to d-dimensional vectors. In our sign

recognition setting, F maps time-series representations of

sign videos to d-dimensional vectors.

We define the approximate distance D0 between two

objects X1 and X2 to be the L1 distance between F(X1) and

F(X2):

D0ðA;BÞ ¼
Xd

i¼1

jDðX1;RiÞ � DðX2;RiÞj: ð5Þ

The actual value of D0(A, B) is not necessarily similar in

scale to the value D(A, B). However, D0(A, B) is an

approximation of D(A, B) in the sense that, when D(A, B)

Pers Ubiquit Comput (2010) 14:511–526 517

123

is much smaller than D(A, G), then we also expect D0(A, B)

to be smaller than D0(A, G). The intuition is, again, that if A

and B are close to each other, then they will also have

relatively similar distances to each of the Ri’s.

In the handshape recognition domain, the time com-

plexity of computing the approximate distance D0 between

an edge image X and U database edge images is O(dn

logn ? Ud), where n is the max number of edge pixels in

any edge image and d is the dimensionality of the

embedding. In particular, it takes O(dn log n) time to

compute F(X), i.e., to compute the d chamfer distances

between the edge image and each of the d reference

objects, and it takes O(Ud) time to compute the L1 distance

between F(X) and the embeddings of all database images

(which just need to be precomputed once, off-line, and

stored in memory). On the other hand, computing the

chamfer distance C between X and all database images

takes O(Un logn) time. The complexity savings are sub-

stantial when d is much smaller than U. In our system it

takes on average 112 s to compute the chamfer distances

between the input image and all database images (for test

and database images of size 256 9 256). In contrast, for d

= 100, it takes 0.14 s to compute the corresponding

approximate distances D0, which is close to three orders of

magnitude faster. Similar speedups are obtained in our sign

recognition domain by replacing the DTW distance with

the corresponding embedding-based approximate distance.

5.2 BoostMap embeddings

A simple way to define embeddings for our purposes, i.e.,

for efficient matching of hand images and time series

representations of sign videos, is to apply Eq. 4 for some

reasonable embedding dimensionality d (values between

20 and 100 typically work well in practice), and using d

reference objects Ri chosen randomly from the database.

However, we can significantly optimize embedding quality

using tools available from the machine learning commu-

nity. In particular, embedding optimization can be casted as

the machine learning problem of optimizing a binary

classifier, and boosting methods such as AdaBoost [46] can

be employed for embedding optimization. This is the

approach taken in the BoostMap method, which is descri-

bed in [3]. In our experiments we demonstrate that the

BoostMap method works well for both our handshape

recognition system and our sign lookup system. In this

section we briefly summarize the BoostMap method, fol-

lowing the description in [3].

Suppose we have an embedding F with the following

property: for any Q;A;B 2 X (where X in our applications

is either the space of edge images of hands, or the space of

time series representations of signs), if Q is closer

(according to the chamfer distance or DTW) to A than to B,

then F(Q) is closer to F(A) than to F(B). We can easily

derive that F would also have the following property: for

every query object Q, if A is the nearest neighbor of Q in

the database, then F(A) is the nearest neighbor of F(Q)

among the embeddings of all database objects. Such an

embedding would lead to perfectly accurate nearest

neighbor retrieval.

Finding such a perfect embedding is usually impossible.

However, we can try to construct an embedding that, as

much as possible, tries to behave like a perfect embedding.

In other words, we want to construct an embedding in a

way that maximizes the fraction of triples (Q, A, B) such

that, if Q is closer to A than to B, then F(Q) is closer to

F(A) than to F(B).

More formally, using an embedding F we can define a

classifier ~F, that estimates (sometimes wrongly) for any

three objects Q, A, B if Q is closer to A or to B. ~F is defined

as follows:

~FðQ;A;BÞ ¼ kFðQÞ � FðBÞk1 � kðFðQÞ � FðAÞk1; ð6Þ

where kX; Yk1 is the L1 distance between X and Y. A

positive value of ~FðQ;A;BÞ means that F maps Q closer to

A than to B, and can be interpreted as a ‘‘prediction’’ that Q

is closer to A than to B in the original space X. If this

prediction is always correct, then F perfectly preserves the

similarity structure of X.

Simple 1D embeddings, like the one defined in Eq. 3,

are expected to behave as weak classifiers, i.e. classifiers

that may have a high error rate, but at least give answers

that are not as bad as random guesses (random guesses are

wrong 50% of the time). Given many weak classifiers, a

well-studied problem in machine learning is how to com-

bine such classifiers into a single, strong classifier, i.e., a

classifier with a low error rate. A popular choice is Ada-

Boost [46], which has been successfully applied to several

domains in recent years.

The BoostMap algorithm [3] uses AdaBoost to construct

an embedding. The input to AdaBoost is a large set of

randomly picked 1D embeddings (i.e., embeddings defined

by applying Eq. 3 using reference objects R picked ran-

domly from our database), and a large set of training triples

(Q, A, B) of objects, for which we know if Q is closer to A

or to B (closer according to the chamfer distance, or to

DTW, in our case). The output of AdaBoost is a classifier

H ¼
Pd

j¼1 aj
~Fj, where each ~Fj is the weak classifier asso-

ciated with a 1D embedding Fj, and each aj is the weight

(corresponding to importance) assigned to that 1D

embedding. If AdaBoost has been successful, then H has a

low error rate.

Using H, we can easily define a high-dimensional

embedding Fout and a distance measure D0 with the fol-

lowing property: for any triple (Q, A, B), if Q is closer to A

than to B, H misclassifies that triple if and only if,

518 Pers Ubiquit Comput (2010) 14:511–526

123

according to distance measure D0 (i.e., the L1 distance

measure in the embedding space) Fout(Q) is closer to

Fout(B) than to Fout(A). We define Fout and D0 as follows:

FoutðxÞ ¼ ðF1ðxÞ; . . .;FdðxÞÞ: ð7Þ

D0ðFoutðxÞ;FoutðyÞÞ ¼
Xd

j¼1

ðajjFjðxÞ � FjðyÞjÞ: ð8Þ

It is easy to prove that H and Fout fail on the same triples

[3]. Therefore, if AdaBoost has successfully produced a

classifier H with low error rate, then Fout inherits the low

error rate of H.

5.3 Filter-and-refine retrieval

In order to implement an end-to-end retrieval system using

BoostMap, we use the well-known filter-and-refine retrie-

val framework [26], which works as follows:

– Offline preprocessing step: Run the BoostMap algo-

rithm to construct an embedding. Then, compute and

store the embeddings of all database objects.

– Mapping step: given an input image Q, compute the

embedding of Q.

– Filter step: identify a small set of candidate nearest

neighbors, by comparing F(Q) with the embeddings of

all database objects and selecting a small number of

database objects whose embeddings are the closest to

F(Q).

– Refine step: Compute the exact distance between Q and

each of the database objects selected during the filter

step.

– Output: return the database object (among all objects

considered in the refine step) with the smallest distance

to the input image.

The filter step provides a preliminary set of candidate

nearest neighbors in an efficient manner, that avoids

computing the exact distance between the query and the

vast majority of database objects. The refine step applies

the exact distance only to those few candidates. Assuming

that the mapping step and the filter step take negligible

time (a property that is demonstrated in the experiments),

filter-and-refine retrieval is much more efficient than brute-

force retrieval.

5.4 Retrieval complexity

Given a query object Q, the retrieval time for that object is

simply the sum of the times that it takes respectively for the

mapping step, the filter step, and the refine step. For the

mapping step, we need to compute the d-dimensional

embedding of Q, which takes O(d) time and requires d

distance measurements between the query and reference

objects. For the filter step, we need to compare the

embedding of the query Q to the embeddings of n database

objects, which takes time O(dn). For the refine step, we

need to measure p distances between the query and data-

base objects selected during the filter step, which takes

O(p) time. Consequently, the retrieval time complexity is

O(dn ? p).

Measured solely in terms of the size of the database,

retrieval takes time O(n), assuming that at the filter step we

compare the embedding of the query with the embeddings

of all database objects. It is worth noting that, in terms of

big-O notation, the complexity of brute force search using

the original computationally expensive distance measure is

also O(n). However, in terms of actual running time in our

experiments, the filter step is at least three orders of

magnitude faster than brute-force search using the original

distance measure. The factor by which the filter step is

faster than brute-force search using the original distance

measure is a constant factor, computed as the ratio of the

time it takes to measure a single distance under the original

distance measure over the time it takes to measure the

distance between two vectors in the target space of the

embedding.

We should also note that, as d increases, the filter step

also becomes more expensive, because we need to compare

vectors of increasingly high dimensionality. However, in

our experiments so far, with embeddings of up to 1,000

dimensions, the filter step always takes negligible time;

retrieval time is dominated by the few exact distance

computations we need to perform at the embedding step

and the refine step.

In cases (not encountered in our experiments) when the

filter step takes up a significant part of retrieval time, one

can apply vector indexing techniques [10, 28, 62] to

speed up filtering. We should keep in mind that in the

filter step we are finding nearest neighbors in a real vector

space, and many indexing methods are applicable in such

a setting. One of the advantages of using embeddings is

exactly the fact that we map arbitrary spaces to well-

understood real vector spaces, for which many tools are

available. Using locality sensitive hashing (LSH) [28], for

example, the complexity of the filter step can drop from

O(n) to O(logn).

6 Experiments

We evaluate the proposed database-based approach for

gesture recognition on two experimental systems: a hand-

shape recognition system, and an ASL sign lookup system.

Performance is evaluated using three measures: retrieval

time, K-percentile accuracy, and classification accuracy.

These measures are defined as follows:

Pers Ubiquit Comput (2010) 14:511–526 519

123

– Retrieval time: average time it takes to process a single

query.

– K-percentile accuracy: fraction of test queries for

which the correct class is among the top K-percentile of

classes, as ranked by the retrieval system, where K can

vary depending on the experiment.

– Classification accuracy: fraction of test queries for

which the correct class is the highest-ranked class.

In order to compute K-percentile accuracy, we look at

the rankings produced by the filter-and-refine algorithm of

Sect. 5.3, and choose for each class its highest-ranking

exemplar. We then rank classes according to the rank of the

highest-ranking exemplar for each class. For example,

suppose that the top three database matches come from

class A, the fourth and fifth match come from class B, the

sixth match comes from class C, and the seventh match

comes from class A again. Then, A is the highest-ranking

class, B is the second highest-ranking class, and C is the

third highest-ranking class.

Whether K-percentile accuracy or classification accuracy

is a more appropriate measure depends on the application.

For handshape recognition, there are only 20 classes to be

recognized, so classification accuracy is more appropriate.

On the other hand, in the sign search system, K-percentile

accuracy is a more meaningful measure. Our ASL sign

dataset contains 921 sign classes and, given a query, it is not

strictly necessary for the correct class to be the highest-

ranking class. Including the correct class in the top K% of

classes, for reasonably small values of K (e.g., K B 1%),

would allow the user to identify the correct class after a

quick visual inspection of the highest-ranking results.

6.1 Results on handshape recognition

The database of hand images used in the experiments has

been constructed as described in Sect. 3. The test set con-

sists of 710 images. All test images were obtained from

video sequences of a native ASL signer either performing

individual handshapes in isolation or signing in ASL. The

hand locations were extracted from those sequences using

the method described in [68]. The test images are obtained

from the original frames by extracting the subwindow

corresponding to the hand region, and then performing the

same normalization that we perform for database images, so

that the image size is 256 9 256 pixels, and the minimum

enclosing circle of the hand region is centered at pixel (128,

128), and has radius 120. Examples of test images and their

corresponding edge images (edge images are used for the

chamfer distance computation) are shown in Fig. 3.

For each test image, filter-and-refine retrieval is per-

formed to identify the nearest neighbor of the test image.

BoostMap is used for the filter step. The test image is

considered to have been classified correctly if the hand-

shape of the nearest neighbor is the same as the handshape

of the test image. The ground truth for the test images is

manually provided. The total number of handshapes is 20,

so our classification task consists of recognizing 20 distinct

classes.

Figure 6 illustrates the results obtained on this dataset.

An important thing to note here is that the classification

accuracy of brute force search (i.e., before we introduce

any errors caused by our indexing scheme) is only 33.1%.

This accuracy rate reflects the upper limit of how well we

can do using our indexing schemes: even if we have an

indexing scheme that gives the same results as brute force

and achieves enormous speedups, the classification accu-

racy is still going to be the same as that of brute-force

search. At the same time, it is important to note that this

accuracy rate is obtained without using any domain-spe-

cific constraints, and such constraints are oftentimes

available, and highly informative, in concrete real-world

applications, as discussed in Sect. 3.

With respect to the classification performance obtained

using BoostMap, we notice that the speedup that we obtain

over brute-force search is quite significant: we can get the

exact same accuracy rate (33.1%) as with brute-force

search, but about 800 times faster. This means that clas-

sification time is reduced from 112 s per query (using

brute-force search) to 0.14 s per query. In other words,

integrating an indexing scheme into the system drastically

improves efficiency, with no loss in accuracy.

Besides embeddings, a simple alternative way to speed

up brute-force search is to directly reduce the size of the

database, by discarding a certain percentage of database

objects. For example, if we only use 10% of the original

database objects, brute force search becomes 10 times

faster. We have run an experiment evaluating that

approach, by using smaller databases of different sizes,

8 16 32 64 128 256 512 1024 2048 4096 8192 16384

0.16

0.18

0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

speedup factor over brute force search

ha
nd

sh
ap

e
cl

as
si

fic
at

io
n

ac
cu

ra
cy

Fig. 6 Classification accuracy versus speedup attained using Boost-

Map on the handshape dataset. For each accuracy, the plot shows the

corresponding speedup factor obtained using BoostMap. Brute-force

nearest neighbor search yields a classification accuracy of 33.1% and

an average retrieval time of 112 s per query, corresponding to a

speedup factor of 1

520 Pers Ubiquit Comput (2010) 14:511–526

123

obtained by discarding different percentages of objects

from the original database. The results are shown on

Table 1. The results show that, for the hands dataset, the

efficiency gained by reducing the size of the database

comes at a significant cost in classification accuracy.

Overall, filter-and-refine retrieval using BoostMap

embeddings provides far better trade-offs between accu-

racy and efficiency compared to simply using brute force

and reducing the size of the database. For example, with

BoostMap we can obtain an accuracy rate of 33.1% with a

speedup factor of 800 over brute-force search. If we reduce

the database size by a factor of 800, we obtain the same

speedup factor of 800, but the accuracy drops drastically to

9.4%. Even if we only reduce the size of the database by a

factor of 8, the accuracy drops from 33.1 to 21.1%.

The experiments with reduced database sizes also show

that, in certain cases, a smaller database size leads to

slightly better results than a larger database size. For

example, using one eighth of the original database objects

the accuracy is 21.1%, and using one sixteenth of the ori-

ginal database objects the accuracy is 22.4%. Given that

the test size is 710 images, it is not clear whether such

small increases in accuracy are accidental artifacts or

whether some database objects actually act as distractors

and hurt classification accuracy. The condensing method

[23] could be used, in theory, to identify such distractors.

Overall, the experiments show the need for more

research, to design image matching methods that are more

accurate that the chamfer distance (some recent progress on

that topic is reported in [59]). At the same time, the

experiments also illustrate the effectiveness of BoostMap

as an indexing method. BoostMap yields a classification

time that is almost three orders of magnitude faster than

that of brute-force search, thus making it feasible to search

a large database of hand images in real time.

6.1.1 Discussion of handshape recognition results

The handshape recognition accuracy that we report in the

system is clearly not sufficiently high for deployment as a

standalone module in unconstrained real-world environ-

ments. At the same time, it is important to note that

handshape recognition in cluttered images under arbitrary

3D orientation is still a largely unsolved problem. To the

best of our knowledge, so far no competing methods have

been quantitatively evaluated on real hand images for the

task of handshape recognition under arbitrary 3D

orientation.

Furthermore, we believe that the handshape recognition

rates we report correspond, in some sense, to a worst-case

scenario, where no prior information is available as to what

3D orientations and handshapes are most likely to be

observed. As discussed in Sect. 3, our system can be a

useful module in a larger hand tracking or gesture recog-

nition system, by identifying a relatively small number of

initial hypotheses, that can further be refined using domain-

specific knowledge, information from multiple consecutive

frames, or information from multiple cameras.

6.2 Results on ASL sign retrieval

The query and database videos for these experiments have

been obtained from the ASL Lexicon Video Dataset [5].

Our test set consists of 193 sign videos, with all signs

performed by two native ASL signers. The video database

contains 933 sign videos, corresponding to 921 unique sign

classes (we had two videos for a few of the sign classes).

The database signs were performed also by a native ASL

signer, who was different from the signers performing in

the test videos.

Each query and database video was converted to a time

series, as described in Sect. 4.1. From the original database

of 933 time series we created an extended database of

269,637 time series, by creating multiple scaled copies of

each original time series, as described in Sect. 4.3.

Figure 7 illustrates the retrieval accuracy obtained on

this dataset using brute-force search on the original data-

base of 933 time series, using brute-force search on the

extended database of 269,637 time series, and using filter-

and-refine retrieval (with BoostMap used in the filter step),

with a 100-dimensional embedding, and a refine step that

Table 1 Classification error rates obtained by using smaller

databases

Reduction factor Accuracy rate

1 33.1

2 31.7

3 32.5

4 30.0

6 27.2

8 21.1

10 22.5

16 22.4

32 19.1

64 16.8

100 14.7

128 15.4

256 14.5

512 12.1

800 9.4

The left column shows the factor by which database size is reduced

compared to the original database of 80,640 hand images. The right
column shows the obtained classification accuracy rates for that

database size. For comparison, using BoostMap we attain an accuracy

rate of 33.1% for a speedup factor of 800

Pers Ubiquit Comput (2010) 14:511–526 521

123

compares the query to the top 10,000 matches obtained

from the filter step.

In Fig. 7 we focus on K-percentile accuracy with K up to

3%. Our rationale is that if, for a query, the correct class is

not ranked in the top 3% of all classes, the retrieval result is

unlikely to be useful to the user, because it is unlikely that

the user will be willing to visually inspect that many

retrieval results in order to identify the correct match. In

our current database of 921 sign classes, the top 3% cor-

responds to 28 classes. When, as is our goal [5], the

database is extended to include almost all of the 3,000

signs included in the Gallaudet dictionary [54], the top 3%

of all classes will correspond to 90 classes, which will be

rather cumbersome for a user to visually inspect.

As Fig. 7 shows, extending the database with multiple

scaled copies of each time series improves accuracy sig-

nificantly. For example, as shown in the figure, using brute

force search in both the original and the extended database,

we obtain the following results: the fraction of test signs for

which the correct class is ranked in the top 1.1% of all

classes (i.e., in the top 10 out of 921 classes) is 24.4% using

the original database and 32.1% using the extended data-

base. Similarly, the fraction of test signs for which the

correct class is ranked in the top 2.2% of all classes (i.e., in

the top 20 out of 921 classes) is 36.3% using the original

database and 43.8% using the extended database.

At the same time, as mentioned in Sect. 4.2, our current

system can compute about 1,000 DTW distances per sec-

ond. Therefore, brute-force search on the original database

takes on average a bit less than a second per query, whereas

on the extended database it takes on average more than

4 min per query. Here is where incorporating an indexing

method can make a big difference. In Fig. 7 we include

results obtained using embedding-based indexing on the

extended database. In particular, we use a 100-dimensional

embedding, and the refine step evaluates DTW distances

between the query and the top 10,000 matches identified

using the embedding. In total, embedding-based retrieval

evaluates 100 DTW distances to compute the embedding of

the query, and 10,000 DTW distances during the refine

step, thus reducing retrieval runtime per query from over

4 min to about 10 s. We believe that a retrieval time of 10

s, while leaving room for improvement, is still within

acceptable limits for an online interactive system.

In evaluating a similarity indexing method, a key

question is how much accuracy is lost by using indexing

instead of brute-force search. Figure 7 shows that, with

respect to K-percentile accuracy, for K values ranging

between 0.4 and 1.3%, embedding-based retrieval is not

only faster but also more accurate than brute-force search.

Given that our test set size is only 193 sign videos, the

slightly improved accuracy may well be accidental, as our

method only aims to get close to the accuracy of brute-

force search, and not to surpass that accuracy. For K

ranging between 0 and 2.5%, the difference in accuracy

between embedding-based retrieval and brute force is

rather small. The difference becomes more pronounced for

K ranging between 2.5 and 3%, but those are ranges in

which the system becomes increasingly less useful to the

user; arguably, in an extended search lookup system cov-

ering the 3,000 sign classes of the the Gallaudet dictionary

[54], the most important values of K for measuring K-

percentile accuracy are in the range between 0 and 1%. In

that range, embedding-based retrieval works quite well in

our experiments.

In Fig. 8 we compare performance obtained using a 10-

dimensional BoostMap embedding versus performance

obtained using a 10-dimensional embedding where the

reference objects were selected to be the 10 medoids

(among all database objects) identified using a standard

iterative K-medoid algorithm. We see that the BoostMap

embedding, where the reference objects were selected

using AdaBoost, significantly outperforms the embedding

that uses medoids.

It is also interesting to see how performance depends on

system parameters, namely the dimensionality d of the

embedding, and the number p of distance evaluations at the

refine step of the retrieval process. Figures 9 and 10 show

how K-percentile accuracy varies versus d and versus

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

5

10

15

20

25

30

35

40

45

50

55

Percentile of rank of correct class

%
 o

f t
es

t s
ig

ns

Retrieval accuracy on ASL sign dataset

original DB, brute−force

extended DB, brute−force

extended DB + BoostMap

Fig. 7 K-percentile accuracy plot for the ASL sign dataset, for brute-

force search in the original database of 933 time series, brute-force

search in the extended database of 269,637 time series, and

embedding-based retrieval in the extended database. The x-axis

corresponds to values of K, between 0 and 3%. For each such value of

K, we show the percentage of test signs for which the correct sign

class was ranked in the highest K-percentile among all 921 classes.

For example, using embedding-based retrieval in the extended

database, for 32.6% of the queries the correct class was ranked in

the top 1.1% of all classes, i.e., in the top 10 out of all 921 classes

522 Pers Ubiquit Comput (2010) 14:511–526

123

p respectively. It is interesting to note that there are no

major differences in performance between embeddings of

dimensions 10, 30, 60, and 100. This indicates that

increasing the dimensionality above 100 is not likely to

improve performance. At the same time, as expected, we

see that varying p between 1, 000 and 10, 000 drastically

affects the obtained K-percentile accuracy, with higher

values of p leading to better accuracy, which naturally

comes at the cost of slower retrieval time.

6.2.1 Discussion of sign retrieval results

As in the handshape recognition results, we note that the

results we have obtained on the sign retrieval system are

not at a level that would make the system ready for

deployment as a standalone module. At the same time, we

believe that the results we have obtained are quite prom-

ising, especially given that we only use hand motion

information, ignoring hand appearance and position with

respect to other parts of the face and torso. Also, we have

obtained the results using dynamic time warping, a rela-

tively simple similarity measure, that considers only cor-

respondences between frames, and does not take into

account higher-level information like motion pattern over

multiple frames, or repeated patterns of motion. We believe

that extracting and using additional information from the

videos, as well as using more sophisticated similarity

measures, can significantly improve accuracy.

It is worth noting that, even with this relatively simple

system, for about 32% of the queries, the system ranks the

correct result within the top 1% of all classes. While

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

5

10

15

20

25

30

35

40

45

50

55

Percentile of rank of correct class

%
 o

f t
es

t s
ig

ns
Retrieval accuracy on ASL sign dataset

extended DB, BF
original DB, BF
d = 10 p = 10000, BoostMap
d = 10 p = 10000, medoids

Fig. 8 K-percentile accuracy plot for the ASL sign dataset, for brute-

force search in the original database of 933 time series, brute-force

search in the extended database of 269,637 time series, and

embedding-based retrieval in the extended database with two 10-

dimensional embeddings, with filter-and-refine parameter p set to

10,000. The first of the two 10-dimensional embeddings was trained

using BoostMap, and the second one was defined using as reference

objects 10 medoids, identified using an iterative K-medoid algorithm.

The x-axis corresponds to values of K, between 0 and 3%. For each

such value of K, we show the percentage of test signs for which the

correct sign class was ranked in the highest K-percentile among all

921 classes

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

5

10

15

20

25

30

35

40

45

50

55

Percentile of rank of correct class

%
 o

f t
es

t s
ig

ns

Retrieval accuracy on ASL sign dataset

extended DB, BF
original DB, BF
d = 10 p = 10000
d = 30 p = 10000
d = 60 p = 10000
d = 100 p = 10000

Fig. 9 K-percentile accuracy plot for the ASL sign dataset, for brute-

force search in the original database of 933 time series, brute-force

search in the extended database of 269,637 time series, and

embedding-based retrieval in the extended database with embeddings

of different dimensionality, with filter-and-refine parameter p set to

10,000. The x-axis corresponds to values of K, between 0 and 3%. For

each such value of K, we show the percentage of test signs for which

the correct sign class was ranked in the highest K-percentile among all

921 classes

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3
0

5

10

15

20

25

30

35

40

45

50

55

Percentile of rank of correct class

%
 o

f t
es

t s
ig

ns

Retrieval accuracy on ASL sign dataset

extended DB, BF
original DB, BF
d = 10 p = 1000
d = 10 p = 3000
d = 10 p = 6000
d = 10 p = 10000

Fig. 10 K-percentile accuracy plot for the ASL sign dataset, for

brute-force search in the original database of 933 time series, brute-

force search in the extended database of 269,637 time series, and

embedding-based retrieval in the extended database with 10-dimen-

sional embeddings, for different values of the filter-and-refine

parameter p. The x-axis corresponds to values of K, between 0 and

3%. For each such value of K, we show the percentage of test signs

for which the correct sign class was ranked in the highest K-percentile

among all 921 classes

Pers Ubiquit Comput (2010) 14:511–526 523

123

visually inspecting 1% of all signs can be somewhat

cumbersome (1% would correspond to 30 out of the 3,000

signs in the Gallaudet dictionary [54]), it would still be an

acceptable cost for many users, given the current lack of

straightforward methods for looking up the meaning of a

sign. In that sense, we believe that our current, relatively

simple system, still works reasonably well for about one

third of the queries, and we hope to make that fraction

significantly higher as we continue working towards

improving the system.

7 Discussion and conclusions

This paper has presented a database-based framework for

gesture recognition in the context of human computer

interaction in real-world applications. We have shown that

using large databases of exemplars is a feasible and

promising method for capturing the wide range of vari-

ability in the appearance of each individual gesture class.

We have described in detail how to apply the proposed

framework on two specific gesture recognition domains: a

handshape recognition system and an ASL sign retrieval

system.

A key issue that this paper has addressed is the ability to

search large gesture databases fast enough for interactive

applications, given the large number of database objects

that need to be matched with each query. We have described

how to apply BoostMap, an embedding-based indexing

method, in order to achieve efficient retrieval in both our

applications. Our experiments demonstrate that BoostMap

is an effective indexing method, that reduces retrieval time

by more than an order of magnitude in both replications,

thus allowing retrieval to be performed at interactive

speeds. Furthermore, we have shown that the drastic

improvements in running time obtained using BoostMap

incur only small decreases in recognition accuracy.

While the accuracy rates we have attained in our

experiments are still not quite satisfactory, it is important to

note that our database-based approach has produced

quantitative results based on real datasets, both for hand-

shape recognition under arbitrary 3D orientation, and for

large vocabulary sign retrieval. The ability to tackle these

hard gesture recognition problems and to produce quanti-

tative results is a key advantage of the proposed database-

based framework, where a large database can naturally

capture the wide variations of the gestures we want to

recognize. The challenge remains to build on top of our

results, so as to create gesture recognition systems that are

ready for real-world deployment, and that address real user

needs, such as the ability to look up the meaning of an

unknown ASL sign, or the ability to help disabled persons

interact with a computer or communicate with other

people. We hope to address that challenge in our ongoing

and future work.

Acknowledgments This work has been supported by National

Science Foundation grants IIS-0705749 and IIS-0812601, as well as

by a University of Texas at Arlington startup grant to Professor At-

hitsos, and University of Texas at Arlington STARS awards to Pro-

fessors Chris Ding and Fillia Makedon. We also acknowledge and

thank our collaborators at Boston University, including Carol Neidle,

Stan Sclaroff, Joan Nash, Ashwin Thangali, and Quan Yuan, for their

contributions in collecting and annotating the American Sign Lan-

guage Lexicon Video Dataset.

References

1. Alon J, Athitsos V, Yuan Q, Sclaroff S (2005) Simultaneous

localization and recognition of dynamic hand gestures. In: IEEE

motion workshop, pp 254–260

2. Athitsos V, Alon J, Sclaroff S, Kollios G (2005) Filtering

methods for similarity-based multimedia retrieval. In: Interna-

tional workshop on audio-visual content and information visu-

alization in digital libraries (AVIVDiLib)

3. Athitsos V, Alon J, Sclaroff S, Kollios G (2008) Boostmap: an

embedding method for efficient nearest neighbor retrieval. IEEE

Trans Pattern Anal Mach Intell 30(1):89–104

4. Athitsos V, Hadjieleftheriou M, Kollios G, Sclaroff S (2007)

Query-sensitive embeddings. ACM Trans Database Syst 32(2)

5. Athitsos V, Neidle C, Sclaroff S, Nash J, Stefan A, Yuan Q,

Thangali A (2008) The American sign language lexicon video

dataset. In: IEEE workshop on computer vision and pattern rec-

ognition for human communicative behavior analysis (CVPR4HB)

6. Athitsos V, Sclaroff S (2003) Estimating hand pose from a

cluttered image. In: IEEE conference on computer vision and

pattern recognition (CVPR), vol 2, pp 432–439

7. Barrow HG, Tenenbaum JM, Bolles RC, Wolf HC (1977) Para-

metric correspondence and chamfer matching: two new tech-

niques for image matching. In: International joint conference on

artificial intelligence, pp 659–663

8. Bauer B, Kraiss KF (2001) Towards an automatic sign language

recognition system using subunits. In: Camurri A, Volpe G (eds)

Gesture workshop, pp 64–75

9. Belongie S, Malik J, Puzicha J (2002) Shape matching and object

recognition using shape contexts. IEEE Trans Pattern Anal Mach

Intell 24(4):509–522

10. Böhm C, Berchtold S, Keim DA (2001) Searching in high-

dimensional spaces: index structures for improving the perfor-

mance of multimedia databases. ACM Comput Surv 33(3):322–

373

11. Bourgain J (1985) On Lipschitz embeddings of finite metric

spaces in Hilbert space. Isr J Math 52:46–52

12. Canny J (1986) A computational approach to edge detection.

IEEE Trans Pattern Anal Mach Intell 8(6):679–698

13. Cui Y, Weng J (2000) Appearance-based hand sign recognition

from intensity image sequences. Comput Vis Image Underst

78(2):157–176

14. Curious Labs, Santa Cruz, CA. Poser 5 Reference Manual,

August 2002

15. Darrell TJ, Essa IA, Pentland AP (1996) Task-specific gesture

analysis in real-time using interpolated views. IEEE Trans Pattern

Anal Mach Intell 18(12):1236–1242

16. de Campos TE, Murray DW (2006) Regression-based hand pose

estimation from multiple cameras. In: IEEE conference on

computer vision and pattern recognition (CVPR), vol 1, pp 782–

789

524 Pers Ubiquit Comput (2010) 14:511–526

123

17. Deng J, Tsui H-T (2002) A PCA/MDA scheme for hand posture

recognition. In: Automatic face and gesture recognition, pp 294–

299

18. Faloutsos C, Lin KI (1995) FastMap: a fast algorithm for

indexing, data-mining and visualization of traditional and mul-

timedia datasets. In: ACM international conference on manage-

ment of data (SIGMOD), pp 163–174

19. Freeman WT, Roth M (1996) Computer vision for computer

games. In: Automatic face and gesture recognition, pp 100–105

20. Fujimura K, Liu X (2006) Sign recognition using depth image

streams. In: Automatic face and gesture recognition, pp 381–386

21. Gao W, Fang G, Zhao D, Chen Y (2004) Transition movement

models for large vocabulary continuous sign language recogni-

tion. In: Automatic face and gesture recognition, pp 553–558

22. Gionis A, Indyk P, Motwani R (1999) Similarity search in high

dimensions via hashing. In: International conference on very

large databases, pp 518–529

23. Hart PE (1968) The condensed nearest neighbor rule. IEEE Trans

Inf Theory 14(3):515–516

24. Heap T, Hogg D (1996) Towards 3D hand tracking using a

deformable model. In: Automatic face and gesture recognition,

pp 140–145

25. Hjaltason GR, Samet H (2003) Index-driven similarity search in

metric spaces. ACM Trans Database Syst 28(4):517–580

26. Hjaltason GR, Samet H (2003) Properties of embedding methods

for similarity searching in metric spaces. IEEE Trans Pattern

Anal Mach Intell 25(5):530–549

27. Hristescu G, Farach-Colton M (1999) Cluster-preserving

embedding of proteins. Technical report 99-50, CS Department,

Rutgers University

28. Indyk P (2000) High-dimensional computational geometry. PhD

thesis, Stanford University

29. Kadir T, Bowden R, Ong E, Zisserman A (2004) Minimal

training, large lexicon, unconstrained sign language recognition.

In: British machine vision conference (BMVC), vol 2, pp 939–

948

30. Kavakli M (2008) Gesture recognition in virtual reality. Int J Arts

Technol 1(2):215–229

31. Keogh E (2002) Exact indexing of dynamic time warping. In:

International conference on very large data bases, pp 406–417

32. Keskin C, Balci K, Aran O, Sankur B, Akarun L (2007) A

multimodal 3d healthcare communication system. In: 3DTV

conference: the true vision—capture, transmission and display of

3D video, pp 1–4

33. Kruskal JB, Liberman M (1983) The symmetric time warping

algorithm: from continuous to discrete. In: Sankoff D, Kruskal JB

(eds) Time warps. Addison-Wesley

34. Li C, Chang E, Garcia-Molina H, Wiederhold G (2002) Clus-

tering for approximate similarity search in high-dimensional

spaces. IEEE Trans Knowl Data Eng 14(4):792–808

35. Linial N, London E, Rabinovich Y (1994) The geometry of

graphs and some of its algorithmic applications. In: IEEE sym-

posium on foundations of computer science, pp 577–591

36. Lu S, Metaxas D, Samaras D, Oliensis J (2003) Using multiple

cues for hand tracking and model refinement. In: IEEE confer-

ence on computer vision and pattern recognition (CVPR), vol 2,

pp 443–450

37. Ma J, Gao W, Wu J, Wang C (2000) A continuous Chinese Sign

Language recognition system. In: Automatic face and gesture

recognition, pp 428–433

38. Martin J, Devin V, Crowley JL (1998) Active hand tracking. In:

Automatic face and gesture recognition, pp 573–578

39. Ong SCW, Ranganath S (2005) Automatic sign language analy-

sis: a survey and the future beyond lexical meaning. IEEE Trans

Knowl Data Eng 27(6):873–891

40. Potamias M, Athitsos V (2008) Nearest neighbor search methods

for handshape recognition. In: Makedon F, Baillie L (eds) con-

ference on pervasive technologies related to assistive environ-

ments (PETRA)

41. Rabiner LR (1989) A tutorial on hidden markov models and

selected applications in speech recognition. In: Proceedings of the

IEEE, vol 77, p 2

42. Rehg JM (1995) Visual analysis of high DOF articulated objects

with application to hand tracking. PhD thesis, Electrical and

Computer Engineering, Carnegie Mellon University

43. Rosales R, Athitsos V, Sigal L, Sclaroff S (2001) 3D hand pose

reconstruction using specialized mappings. In: IEEE international

conference on computer vision (ICCV), vol 1, pp 378–385

44. Rowley HA, Baluja S, Kanade T (1998) Rotation invariant neural

network-based face detection. In: IEEE conference on computer

vision and pattern recognition (CVPR), pp 38–44

45. Sagawa H, Takeuchi M (2000) A method for recognizing a

sequence of sign language words represented in a Japanese Sign

Language sentence. In: Automatic face and gesture recognition,

pp 434–439

46. Schapire RE, Singer Y (1999) Improved boosting algorithms

using confidence-rated predictions. Mach Learn 37(3):297–336

47. Shimada N, Kimura K, Shirai Y (2001) Real-time 3-D hand

posture estimation based on 2-D appearance retrieval using

monocular camera. In: Recognition, analysis and tracking of

faces and gestures in realtime systems, pp 23–30

48. Starner T, Pentland A (1998) Real-time American Sign Language

recognition using desk and wearable computer based video. IEEE

Trans Pattern Anal Mach Intell 20(12):1371–1375

49. Stenger B, Thayananthan A, Torr PHS, Cipolla R (2006) Model-

based hand tracking using a hierarchical bayesian filter. IEEE

Trans Pattern Anal Mach Intell 28(9):1372–1384

50. Sturm I, Schiewe M, Köhlmann W, Jürgensen H (2009) Com-

municating through gestures without visual feedback. In: Con-

ference on pervasive technologies related to assistive

environments (PETRA)

51. Thayananthan A, Stenger B, Torr PHS, Cipolla R (2003) Shape

context and chamfer matching in cluttered scenes. In: IEEE

conference on computer vision and pattern recognition (CVPR),

pp 127–133

52. Tuncel E, Ferhatosmanoglu H, Rose K (2002) VQ-index: an

index structure for similarity searching in multimedia databases.

In: Proceedings of ACM multimedia, pp 543–552

53. Uhlman J (1991) Satisfying general proximity/similarity queries

with metric trees. Infor Process Lett 40(4):175–179

54. Valli C (eds) (2006) The Gallaudet dictionary of American Sign

Language. Gallaudet U. Press, Washington DC

55. Viola P, Jones M (2001) Rapid object detection using a boosted

cascade of simple features. In: IEEE conference on computer

vision and pattern recognition, vol 1, pp 511–518

56. Vogler C, Metaxas DN (1999) Parallel hidden markov models for

american sign language recognition. In: IEEE international con-

ference on computer vision (ICCV), pp 116–122

57. Vogler C, Metaxas DN (2003) Handshapes and movements:

multiple-channel American sign language recognition. In: Cam-

urri A, Volpe G (eds) Gesture workshop, pp 247–258

58. Wang C, Shan S, Gao W (2002) An approach based on phonemes

to large vocabulary Chinese Sign Language recognition. In:

Automatic face and gesture recognition, pp 411–416

59. Wang J, Athitsos V, Sclaroff S, Betke M (2008) Detecting objects

of variable shape structure with hidden state shape models. IEEE

Trans Pattern Anal Mach Intell 30(3):477–492

60. Wang X, Wang JTL, Lin KI, Shasha D, Shapiro BA, Zhang K

(2000) An index structure for data mining and clustering. Knowl

Inf Syst 2(2):161–184

Pers Ubiquit Comput (2010) 14:511–526 525

123

61. Weber R, Böhm K (2000) Trading quality for time with nearest-

neighbor search. In: International conference on extending

database technology: advances in database technology, pp 21–

35

62. White DA, Jain R (1996) Similarity indexing: algorithms and

performance. In: storage and retrieval for image and video dat-

abases (SPIE), pp 62–73

63. Wu Y, Huang TS (2000) View-independent recognition of hand

postures. In: IEEE conference on computer vision and pattern

recognition (CVPR), vol 2, pp 88–94

64. Wu Y, Lin JY, Huang TS (2001) Capturing natural hand articu-

lation. In: IEEE international conference on computer vision

(ICCV), vol 2, pp 426–432

65. Yang M, Ahuja N (1999) Recognizing hand gesture using motion

trajectories. In: IEEE conference on computer vision and pattern

recognition, vol 1, pp 466–472

66. Yao G, Yao H, Liu X, Jiang F (2006) Real time large vocabulary

continuous sign language recognition based on OP/Viterbi algo-

rithm. In: International conference on pattern recognition, vol 3,

pp 312–315

67. Yianilos PN (1993) Data structures and algorithms for nearest

neighbor search in general metric spaces. In: ACM-SIAM sym-

posium on discrete algorithms, pp 311–321

68. Yuan Q, Sclaroff S, Athitsos V (2005) Automatic 2D hand

tracking in video sequences. In: IEEE workshop on applications

of computer vision, pp 250–256

526 Pers Ubiquit Comput (2010) 14:511–526

123

	A database-based framework for gesture recognition
	Abstract
	Introduction
	Related work
	Database-based handshape recognition
	A database of hand images
	The chamfer distance

	Database-based sign recognition
	Features for sign recognition
	The dynamic time warping distance measure
	Tolerating differences in translation and scale

	Embedding-based retrieval
	Lipschitz embeddings
	BoostMap embeddings
	Filter-and-refine retrieval
	Retrieval complexity

	Experiments
	Results on handshape recognition
	Discussion of handshape recognition results

	Results on ASL sign retrieval
	Discussion of sign retrieval results

	Discussion and conclusions
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

