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Abstract We present an enhancement towards adaptive

video training for PhoneGuide, a digital museum guidance

system for ordinary camera-equipped mobile phones. It

enables museum visitors to identify exhibits by capturing

photos of them. In this article, a combined solution of

object recognition and pervasive tracking is extended to a

client–server-system for improving data acquisition and for

supporting scale-invariant object recognition. A static as

well as a dynamic training technique are presented that

preprocess the collected object data differently and apply

two types of neural networks (NN) for classification. Fur-

thermore, the system enables a temporal adaptation for

ensuring a continuous data acquisition to improve the

recognition rate over time. A formal field experiment

reveals current recognition rates and indicates the practi-

cability of both methods under realistic conditions in a

museum.

1 Introduction

Camera-equipped mobile phones represent an ideal plat-

form for mobile personal computer vision (CV)

applications. In combination with integrated RF-technolo-

gies like Bluetooth or wireless LAN, this opens the

opportunity to enhance pervasive localization through CV

techniques. In this context we have developed PhoneGuide,

a personal museum guidance system for camera-equipped

mobile phones based on pervasive tracking, local object

recognition, and temporal adaptation.

In the following we want to use the term object recog-

nition to refer to the recognition of exhibits. Technically,

however, we apply image recognition. In our previous

work [1, 2] prototypes of the PhoneGuide system were

developed and evaluated that utilize a one-layer artificial

neural network (NN) for vision-based classification on

mobile devices. Global color features were extracted from

three captured images of each exhibit. Bluetooth emitters

that were distributed in a museum allowed a rough local-

ization of visitors to limit the number of objects to be

recognized—and consequently to increase the classification

rate. Depending on the particular Bluetooth-cell in which a

visitor was located, an individually adapted one-layer NN

was trained in real time directly on the mobile phone.

One limitation of this approach is its scale-variance. As

soon as visitors take pictures from different distances than

trained, the recognition rate decreases significantly.

Training the system for additional distant perspectives, or

applying more sophisticated classifiers would lead to rec-

ognition improvements, but also to an unacceptable loss of

performance required for an increased number of training

passes on the mobile phone.

We describe two different classification approaches that

ensure scale-invariant object recognition performed

directly on low performance mobile phones: The first

method configures and trains a one-layer NN on the mobile

device in real-time. The second technique pre–trains a

three-layer NN offline that is transferred to the phone for

online recognition during runtime. For both methods, a

client-server-architecture allows collecting data continu-

ously, preprocessing it, and adapting it to the user behavior

over time. Both systems are trained by capturing videos
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that show exhibits from different perspectives and

distances.

The advantage of local object recognition that is per-

formed directly on the mobile device compared with object

recognition on a remote server [3, 4] is it’s scalability: No

communication between local devices and server is

required. Instead of processing the classification requests of

multiple users on one server sequentially (which possibly

leads to long response times), classification is decentralized

to the local devices. The disadvantage is the lower recog-

nition rate of simplified classification techniques that

achieve an acceptable performance on mobile phones. To

overcome this, multiple inter-playing steps narrow the set

of possibilities successively when identifying an object (cf.

Fig. 2): First, location tracking of the phones limits the

classification set to objects within the proximity of the

visitor. The tracking information is used in addition for

displaying the visitors’ current location on a map. Second,

a vision-based object recognition identifies the selected

object from the remaining set, and arranges the recognition

results visually relative to the NNs’ excitations. From this,

the user can select manually (cf. Fig. 1). Third, the clas-

sification results and optional meta-data (e.g., time,

location, etc.) are recorded during runtime to guide a

temporal system adaptation with the goal of increasing the

robustness of the object recognition over time.

It is to emphasize that during run-time no data is

transmitted to the server: the entire object recognition

process is performed directly on the mobile phone.

For experienced users we achieve an average recogni-

tion rate of 92.6% for 139 museum objects. For the same

objects, we achieve an average recognition rate of 82%

under realistic conditions with 15 unexperienced museum

visitors during a formal field experiment.

The remainder of this article is organized as follows:

chapter 2 discusses the related work. While chapter 3

provides details on the static and the dynamic training

algorithms, chapter 4 gives an overview of the pervasive

tracking mechanism, and describes the temporal adaptation

techniques and the user interface. In chapter 5 the results of

our evaluation and field experiment are presented. Chapter

6 concludes this work and indicates possible future

improvements and extensions.

2 Related work

In this section, content-based video retrieval systems

(CBVR) that use similar keyframe extraction techniques

are introduced first. Next, adaptive machine learning sys-

tems are presented that are comparable to our temporal

adaptation approach. Finally, digital guidance systems that

address the same application space as ours are discussed.

2.1 Keyframe extraction for CBVR

Preprocessing video data for effective content representa-

tion is one of the major research fields in content-based

video retrieval. In CBVR digital video material is pro-

cessed to offer video query functionality based on a frame-,

shot-, scene- or video-level [5]. On frame-level every

image is examined to answer query requests. For the

remainder, representative frames (called keyframes) are

extracted for indexing.

Fig. 1 Identifying a museum object with PhoneGuide: the set of

potential objects is successively narrowed through device localiza-

tion, local object recognition, and manual user selection

Fig. 2 System overview: location tracking provides an initial selec-

tion of regionally located objects and provides a location map to the

user. Individual exhibits within the same region are identified through

vision-based object recognition. Classification results and optional

meta-data (such as time stamps, location, etc.) are recorded and used

for a temporal adaptation of the system
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In [6], for instance, the aim is to find videos with equal

content although possibly different sizes and resolutions. In

this case, every frame of each video is important for

comparison. In [7], as another example, every frame is

transformed to symbols based on computed features. By

doing this, videos become comparable on a character-basis.

Consequently, string matching algorithms can be applied.

Keyframe extraction techniques allow reducing the

amount of data significantly. Thus, query requests can be

processed faster. It is mainly applied at shot-level where

shot-boundaries like cuts, dissolves or wipes are detected

[5]. Frames located before or after these boundaries are

marked as keyframes. Only these keyframes are used to

process queries. For finding them, different kinds of image

features (mainly global features based on color, contrast or

spatial frequencies) are extracted. Pickering et al. [8],

compute histogram features for each frame. The features of

every frame are used to compute the Manhattan–distance

between the current frame and the 16 consecutive frames.

If the distance is below a pre-defined threshold, a shot

boundary is detected. For cuts, the first frame of the

boundary is marked. This represents a single shot. For

transitions, each tenth frame is defined as a keyframe to

avoid that it is part of the transition itself. After this, new

features are computed for each detected keyframe. Con-

volution filters and different kinds of color histograms

(RGB, HMMD, etc.) are utilized for this. Three different

methods are evaluated for classification: First, the vector

space model is applied by computing the Manhattan–dis-

tance between each keyframe within the database and the

current query image. The result is the video that contains a

keyframe with the smallest distance to the query image.

The second method uses the AdaBoost-algorithm to clas-

sify query images. The third method is a variant of the

distance-weighted k-nearest neighbors approach. Note, that

this CBVR example is representative for similar approa-

ches [9–11]. They only vary in their individual feature sets

and applied classifiers.

In recent years, MPEG encoding is used for keyframe

extraction. Therefore motion vectors that are computed in

MPEG videos are examined to find keyframes [12, 13]. If a

frame (predictive or bidirectional frame) is expected to

contain backward predicted blocks but does not contain

any, the content of consecutive frames must have changed

radically. This indicates a shot boundary.

As in [8], we apply a distance function for extracting

keyframes from a video. However, instead of examining

only a short interval of consecutive images, we evaluate the

whole video to ensure that no keyframe is represented

twice. Keyframe extraction methods based on MPEG-

encoded videos is not suitable in our case, since they do not

consider the content of the video itself but only motion

vectors. These, however, carry no essential information for

object recognition because they are influenced by camera

movements.

2.2 Adaptive learning

Many adaptive machine learning approaches require data

collected from users for achieving continuous improve-

ments. Relevance feedback methods used in information

retrieval systems represent one class of techniques for

adaptive learning: Users evaluate the results after a query is

processed by indicating the relevance for each result item

relative to the query item. After this, the system adapts to

these user inputs and presents a new query result. An

overview of relevance feedback approaches can be found

in [14]. For example, MacArthur et al. [15] uses a decision

tree for an image retrieval application that is adapted,

depending on the users’ feedback. It is based on weighting

features (computed from the database images) differently

in relation to the query. The color of a car, for example, is

unimportant when searching for a particular brand.

Therefore, multiple result images are presented to the user.

These are separated into the categories of relevant and

irrelevant images with respect to the current query. The

feedback is used to build a decision tree that is then applied

for dividing the remaining images into both categories.

Finally, K relevant images with the smallest distance to the

query image are presented to the user, and are evaluated

again. This is repeated several times until the correct image

is found or the query is canceled.

Comparable to [15], we perform a query by taking a

photo of an object and compute a sorted list of possible

results. The correct object is finally selected by users to

retrieve information about it. The corresponding image is

stored and applied for adapting and retraining the system

offline. In contrast to [15], where queries are independent

from each other, our temporal adaptation approach is sus-

tainable: Previous requests influence future queries since

the query data is used to improve the classifiers after each

request. Draper et al. [16], introduces an adaptive object

recognition system called ADORE that dynamically selects

different vision procedures to accomplish object recogni-

tion tasks. These tasks are modeled as a Markov decision

process in which rules are mapping perceptual states onto

actions to approach object recognition as a supervised

learning task. In contrast to our system, [16] is not able to

collect data over time for continuous re-configuration

depending on the user behavior. On the other hand, our

system applies only one static set of features.

2.3 Mobile digital guidance systems

Mobile digital guidance systems can be separated into two

main categories: location-based and image-based
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approaches. Location-based systems usually acquire and

display position information by equipping the mobile

device with a receiver for Infrared [17], wireless LAN [18]

or GPS [17, 19]. The interested reader is referred to an

overview by Baus et al. [20]. Luley et al. [3] combine

location- and image–based techniques and present a digital

city guide for mobile phones that allows to identify

buildings in a city by taking photographs. Captured images

as well as additional GPS-information are sent to a remote

server using GPRS or UMTS. On the server’s side, images

are compared with a known data set using the SIFT–

algorithm [21], which extracts local image features. The

GPS information is used to narrow the data set in advance.

Information about the buildings is retrieved from a second

database and is sent back to the mobile device. Hare et al.

[4] introduce a digital museum guide based on a Pocket-

PC. As in [3], the captured image is sent to a remote server

for recognition. The SIFT-algorithm is used as well for

feature extraction but the classification is based on text

retrieval techniques. Two hundred images were captured

for evaluation. The database consisted of 850 paintings.

The recognition rate was specified with 80% for queries

with the match being under the top 20 positions. The

probability drops to 20% if only the top position is

considered.

Bay et al. [22] introduce a mobile museum guide based

on a tablet-PC. The recognition is in this case performed

on the device thus no data needs to be transferred to a

remote server. An enhancement of SIFT, called SURF

[22], is applied for object recognition. It was reported that

205 images of 20 exhibits were captured from different

perspectives to ensure scale-invariance. For evaluation,

116 pictures were taken and a maximum recognition rate

of 91.5% was achieved. In combination with their pre-

vious work [23] where Bluetooth-emitters are used to

determine the visitors’ position, this work comes close to

our approach. However, instead of using high perfor-

mance tablet-PCs, our system supports similar

classification rates on ordinary, low performance mobile

phones. This holds potential advantages for both—

museum visitors and museum operators: since the visitors

can use their own phones, the acquisition and mainte-

nance costs required for handed out devices will be

reduced or even eliminated. In addition, PhoneGuide

temporally adapts to user inputs and consequently

improves over time while [22] remains static.

Takacs et al. [24] apply SURF in combination with a

nearest neighbor matching strategy for on-device object

recognition in outdoor environments. In comparison to this

approach, our system is faster (approximately by factor 5)

and our classification run-time does not decrease with an

increasing number of sample images per object.

In [3], as well as in [4], the classification is performed on

a remote server and is therefore contrary to our approach in

which the recognition is executed directly on the mobile

phone. The advantages of a decentralized object recogni-

tion has been discussed in Sect. 1.

3 Offline data reduction, clustering and abstraction

As mentioned earlier, the main limitation of the object

recognition algorithm in [2] is its scale-variance. It is due

to the low amount of collected data for each object and the

performance restrictions of today’s mobile phones.

Therefore, two pre-processing techniques were followed to

support a fast classification of exhibits independently of the

users’ position.

Our dynamic training approach divides the image-based

representation of an object into several separated views.

For this purpose, a video of every object is taken (cf.

Fig. 3). A server extracts keyframes from these videos

based on computed global features (arranged as feature

vectors) and a distance function. These keyframes are

clustered depending on their similarity. For each resulting

cluster one perceptron is trained. In this way, multiple

quickly and ad hoc trained perceptrons are applied to

classify one object. A data abstraction technique reduces

the number of feature vectors without a loss of classifica-

tion performance by merging multiple feature vectors. The

perceptrons of multiple objects are assembled to form a NN

in real time on the mobile phone, based on the spatial

location of the user (defined by indoor location tracking

using RF signal cells, see Sect. 4.1).

Our static training approach applies the extracted

keyframes to generate three-layer NNs for all possible

location cells resulting from user tracking. It is not nec-

essary to cluster or reduce the data since the NNs are pre-

trained on a remote server. Clustering, however, is still

performed to eliminate outliers before training. After

training is succeeded, the networks’ weights are trans-

ferred and stored on the mobile device in order to select

the correct classifier depending on the users’ current

location. In the worst case, for 2N-1 NNs have to be

created for N discrete location cells. However, in practice

the number of location cells is much smaller, since

the signal emitters are widespread in the museum.

Consequently, no more than three emitter signals are

superimposed simultaneously. This reduces the number of

location cells significantly.

In the following sections, the necessary preprocessing

steps (keyframe extraction, keyframe clustering and data

abstraction) are explained in detail for both techniques.

First, however, the applied global features are introduced.
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3.1 Global features

In contrast to today’s object recognition approaches that

widely apply local features, we use global features for

describing images since they are less expensive to compute

on low performance mobile devices. We apply 40 features

composed of mean and variance values of each color

channel as well as three 10-bin histograms. In [2], we have

used only four histogram features (maximum peak in

intensity of each color channel and gray channel) and 14

features in total. It is obvious that the more histogram bins

are used the better is the description but the slower is the

training performance for a dynamic training. To find the

best trade-off between the number of bins and the training

duration, we have trained and recognized 15 similar sample

objects with different numbers of histogram bins. The

average training time on a mobile phone for each con-

stellation was measured, and is plotted in Fig. 4. Ten bins

for each color channel (3 9 10 for RGB color + 10 for

mean and variance) seems to be an appropriate compro-

mise between recognition rate and speed. To enable an

adequate evaluation (see Sect. 5), we use the same number

of histogram bins for the static training as well. An

investigation, and an evaluation of global feature sets can

be found in [1]. This global feature set is not computed for

the entire image. Instead, each frame of a captured video is

divided into 12 equal image patches as explained in [2].

Consequently, one feature vector for each patch is

computed.

3.2 Keyframe extraction

The keyframe extraction is applied for distributing image

data among each perspective equally to ensure that every

Fig. 3 Flow-chart displaying the preprocessing steps for the dynamic

and the static training in combination with temporal adaptation: after

capturing the exhibits, keyframe extraction, keyframe clustering and

data abstraction is performed. Finally, the classifiers are generated on

the server (static training) or on the mobile phone (dynamic training)

Fig. 4 Training duration versus recognition rate for different bin

sizes

Pers Ubiquit Comput (2009) 13:165–178 169

123



representative perspective is covered and weighted simi-

larly during training. Thereby, redundant information is

filtered out. For the dynamic training, the extraction of

keyframes is also important for reducing the amount of

image data, since more data obviously leads to longer

online training durations on the mobile device. As in [8],

we use a distance function (Eq. 1) to determine keyframes:

d ¼ maxN�1
i¼0

XM�1

j¼0

si;j � fj

 !
ð1Þ

where N is the number of all keyframes and M is the

dimension of the feature vector. Keyframes are identified

by computing the product between the normalized fea-

ture vector f of a new frame with the normalized feature

vector s of all already identified keyframes. If this

product is below a predefined threshold t1, the new

frame is strongly different from the existing keyframes,

and is consequently identified as a new keyframe. Ini-

tially, the first frame of each video is marked as a

keyframe.

We apply a threshold close to 1 for the static training to

sort out frames that are almost identical. For the dynamic

training, the threshold is estimated empirically. However, a

subsequent data abstraction technique (see Sect. 3.4) will

automatically adjust the number of required keyframes in

addition.

3.3 Keyframe clustering

After extraction, the keyframes are clustered into groups of

similar ones. For the dynamic training, this is done to

reduce the complexity of the object data. In case of the

static training the clustering is applied to eliminate frames

that are likely to not belong to the corresponding object.

As explained earlier, the dynamic training creates and

trains multiple perceptrons for a single object to achieve a

scale and perspective invariance. The extracted and clus-

tered keyframes are used for this. We want to associate the

term virtual objects with each of these clusters. Our tech-

nique is outlined in the following algorithm:

1. Cluster all remaining keyframes of one object into v

(initially v = 1) virtual objects.

2. Train v perceptrons with the assigned keyframes.

3. Recognize each keyframe: if the excitation of a

keyframe at its corresponding perceptron is below a

predefined threshold t2, the whole cluster (and all its

keyframes) is rejected. If the excitation of all key-

frames at their corresponding perceptron are above t2,

the cluster and its keyframes are accepted and stored.

4. Go to step 1 with v = v + 1 and with all rejected

(remaining) keyframes until all keyframes are

accepted.

5. Repeat these steps m times and return the constellation

with the smallest number of clusters.

First, the extracted keyframes of one object are clustered

into two sets using the k-means algorithm. For each set,

one perceptron is trained by separating the keyframe data

into a training and a validation set. If each frame of one set

has a perceptron output higher than the empirically

estimated threshold t2 (equal for all objects), this set is

stored. Otherwise, all frames of the set are rejected. This

algorithm is performed multiple times since the k-means

algorithm can deliver different cluster constellations for the

same input data. Since the separation capabilities, and

consequently the recognition rate, degrade with a larger

number of (virtual) objects, the optimal solution is the one

with the smallest number of clusters.

If only a single perceptron for one object is trained (cf.

Fig. 5), the mean as well as the minimum of the percep-

tron’s excitation is much lower than if multiple perceptrons

are trained (cf. Fig. 6). Thus, this approach leads to higher

recognition rates. The number of required perceptrons is

automatically derived and depends on the complexity of

the object.

For the static training, there is no need to divide real

objects into multiple virtual objects since the classifiers are

trained offline on a server. However, a clustering is still

performed to eliminate frames that are captured by users

but that are likely to not contain an exhibit. As mentioned

earlier, the captured images are stored on the mobile device

for adapting and improving the system continuously (see

Sect. 4.2). But this can only be successful if the images are

correlated to the correct objects. It might happen that users

take photos of something completely different (e.g. of the

floor or a wall) and associates this with an exhibit. These

Fig. 5 Identification rate: excitation output of a one-layer neural

network (perceptron model) if one object is represented by one

perceptron that is trained through ten training passes
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images would influence the training and recognition per-

formance negatively. Therefore the following algorithm is

used for identifying these outliers through clustering:

1. Cluster all keyframes of one object into two sets.

2. If the absolute ratio between the number of elements of

the smaller set to the number of elements of the larger

set is below a threshold t3, then the smaller set contains

outliers and is deleted.

3. Execute step 1 and 2 until the ratio is equal or larger

than t3.

This algorithm is based on the assumption that outlier

images differ significantly to already captured object

images. However, it might happen that correct object

images are deleted. Yet, they represent only a small minority

and are therefore being ignored, as long as the algorithm is

executed in appropriate time intervals to ensure that

different but correct object images can accumulate. This

ensures that such sets are large enough and are not deleted.

3.4 Data abstraction

To reduce the number of keyframes for each cluster, a data

abstraction step is applied in addition. In case of the

dynamic training a compromise between the amount of

feature vectors and a sufficient object representation has to

be found. Therefore, the following algorithm is used to

further reduce the number of keyframes while keeping the

recognition rate constant (this is repeated for all clusters):

1. Initially train a perceptron with all Nc keyframes of a

cluster (virtual object). Determine the initial mean

output excitation O at the perceptron over all Nc

keyframes. The number of merged keyframes is i = 1

(cf. Fig. 7, step 1).

2. Cluster the keyframes of this virtual object in Nc - i

subsets.

3. Average these Nc - i subsets. Each subset represents

one feature vector (cf. Fig. 7, step 2).

4. Train a perceptron with the Nc - i feature vectors.

5. Determine the current mean output excitation A of the

trained perceptron over all Nc keyframes.

6. If A \ O or i = Nc - 1, exit and use the last or current

cluster configuration respectively as result. Else go to

step 2 with i = i + 1 (cf. Figs. 7, step 3–5).

7. Execute steps 1–6 m times and choose the result with

the best abstraction rate (1 - (#keyframes after

abstraction/#keyframes before abstraction) (cf. Fig. 7,

step 7).

This algorithm is based on the assumption that the feature

vectors of similar keyframes can be averaged without a loss

of necessary information. To ensure that the quality of the

representation is constant, we evaluate the mean excitation

output of the perceptron as indicator. To allow a higher

compression, O can be decreased. Executing the algorithm

m = 25 times has been proven to be sufficient in our

experiments.

4 Online localization, adaptation and employment

The computing power of today’s mobile phones is still far

too low to carry out sophisticated object recognition

algorithms. Simpler techniques that are based on global

features that can be computed quickly (such as ours), are—

by themselves—not reliable enough to distinguish between

a realistically large number of objects. Therefore, we have

extended our system with additional features (cf. Fig. 2)

like user tracking and temporal adaptation that enhances

the recognition rate and the scalability.

This chapter summarizes our pervasive tracking tech-

nique that was introduced in [2]. We explain a temporal

adaptation technique next, that adjusts to the user behavior

over time. Finally, we describe the user interface of the

guidance system that was implemented on the phone.

4.1 Localization

In [2], we introduced an indoor location tracking system for

mobile phones that determines roughly the location of

users (i.e. their phones). For this, a small number of low

cost RF-emitters (RF-emitters like RFID or wireless LAN

are possible if supported by the phone—yet we used

Bluetooth) were distributed in a museum. Single and

multiple superimposed signals partition the environment

into multiple location cells depending on signal interfer-

ences and reflections. Each cell is defined by one or more

Fig. 6 Improved identification rate for the same object as in Fig. 5,

represented with four perceptrons (also trained through ten passes)
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emitter-IDs (e.g. a Bluetooth-ID in our case). The mobile

guidance system scans continuously for new emitter-IDs

and derives the current location cell from them. Based on a

lookup-table that contains the correlations between loca-

tion cells and objects within the cells, a new NN is trained

during run-time that is optimized to recognize objects

within the users’ proximity only.

4.2 Temporal adaptation

Temporal adaptation is a technique that collects a variety

of information during run-time. This information is inter-

preted offline and applied to adjust the system’s

performance or to provide additional feedback to users. For

instance, if an exhibit has been recognized, recommenda-

tions can be offered for which objects are usually visited

next. Time stamps and durations can be recorded while

recognizing objects to adapt and optimize the computed

features. If, for instance, the recognition fails only at a

particular time of the day, the number of histogram bins

can be reduced during this time to increase the robustness

against lighting changes in future. This is only applied to

the objects within the corresponding location cell.

In practice, we have developed an approach to contin-

uously collect image data while visitors are using the

system. Therefore, we store the images’ feature vectors

when selecting the correct object from the predicted sorted

result list (SRL) (see Sect. 4.3.1). These vectors are

transmitted to a server when visitors are leaving the

museum. They are applied to retrain the three-layer NNs on

the server by adding them to the existing feature database.

The new NNs are transferred to the mobile phones of

visitors entering the museum. This procedure can be seen

as a sort of continuous user guided offline training and has

two advantages: First, providing more valid input samples

for training a NN leads to a more robust separation between

the objects’ feature vectors and consequently to higher

recognition rates. Second, the NNs are optimized over time

to recognize objects from certain, common perspectives

and distances. Initially, objects are operator-trained by

capturing videos from several positions where users are

expected to be standing when taking photographs. This is

only a rough estimation and is based on the operator’s

experiences. Furthermore, it is hardly possible to capture

an object from all perspectives. With the temporal adap-

tation, new perspectives are captured. While more common

perspectives are implicitly up-weighted by the NNs, less

common perspectives and outliers are down-weighted.

Consequently, the NNs adapt to the visitors’ behavior and

converge at weights that are highly specialized for the

individual objects.

The optimization through our temporal adaptation

technique is only used in combination with the static

training. Since the amount of feature vectors that have to be

trained is continuously growing, the optimization is not

suitable for the dynamic training. Note, that the size of the

Fig. 7 Data abstraction

example: step 1: compute mean

output excitation O of a cluster.

Step 2: average two feature

vectors of two similar

keyframes and compute output

again. Steps 3–5: increase the

number of maximally merged

keyframes until an exit

condition is reached (step 6).

Step 7 illustrates the final result
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NNs that are transmitted to, and finally used by the mobile

phone does not increase. Neither does the recognition time.

4.3 User interface

This section introduces the SRL as well as the location map

that are presented to the visitors during run-time. Further-

more, a video recognition mode is presented that allows

users to capture a short video sequence instead of a single

image to recognize an exhibit with a higher reliability.

4.3.1 Sorted result list

To ensure that the stored correspondences between the

physical objects and the feature vectors are correct in order

to apply the temporal adaptation, a graphical interface

called sorted result list (SRL) was implemented. This

enables users to browse and select the correct object from

an image list while the related feature vectors are stored on

the mobile phone. The items in the SRL are ordered based

on their generated NN’s maximum excitation that is pro-

portional to their recognition probability. By ordering the

items, the browsing time to identify the correct object

manually is kept at a minimum. Thus, the better the object

recognition, the smaller is the effort of the visitors to select

the correct exhibit. In the best case, the object is recognized

immediately and it requires only a simple click operation

for selection since the first object is pre–selected by the

system (cf. Fig. 1).

4.3.2 Location map

Since the scanning of RF-emitters introduces delays (e.g.

for Bluetooth at least 12 s), the current user location is

displayed on the phone. Only if the correct NNs are

selected for the current location cell, objects can be suc-

cessfully recognized. Based on the detected location cell,

the room within the museum in which the visitor is located

is highlighted and additional textual information is pro-

vided (cf. Fig. 8). This gives a visual indication to the users

when a location transition has been detected and an object

recognition becomes possible.

4.3.3 Video recognition

Beside an object recognition from one photograph only, we

have developed a video recognition that evaluates multiple

images to increase the recognition rate. This enables the

system to recognize an exhibit more precisely since more

information about the object is collected. Thus, in the video

recognition mode, the system executes multiple recognition

passes for different video frames. The more frames are

processed, the more reliable is the result—but the longer is

the duration the users have to wait until it is displayed. The

following algorithm represents an acceptable trade-off

between these two factors:

1. Recognize the first video frame.

2. Test if the next frame is a keyframe and perform a

recognition.

3. After 3 processed keyframes: if all frames are associ-

ated with the same object, present the result and exit.

Else, go to step 2.

4. After 4 processed keyframes: if 3 out of 4 frames are

associated with the same object, present the result and

exit. Else, go to step 2.

5. After 5 processed keyframes: the algorithm is can-

celed. The most frequent result is displayed.

This algorithm ensures that only a minimum number of

frames are processed for recognizing an object, while an

upper bound is not exceeded. In practice, users have to

move the mobile device during the video recognition mode

to capture the object from different perspectives and

distances (the images are not cached). To ensure that the

processed frames are different from each other, keyframes

have to be extracted. Therefore, the keyframe extraction

approach that is described in Sect. 3.2 is carried out

directly on the mobile phone during run-time. If turned on,

the video recognition mode is visually indicated on the

GUI.

5 Evaluation

Our system was tested and evaluated under realistic con-

ditions in the City Museum of Weimar. We carried out

experiments with one experienced user (a user who also

trained the system) and with 15 unexperienced subjects.

We have trained the system to recognize 139 exhibits that

Fig. 8 Object recognition with PhoneGuide: Elements of the user

interface are annotated
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were distributed over two floors. Among them were small

(e.g. coins or medals) and larger (e.g. statues or models)

exhibits that were placed in front of mirrors, in showcases

and next to windows. We asked each subject to fill out a

questionnaire to investigate the usability and the accep-

tance of the system.

For training every object, we have captured individual

videos of approx. Twenty-six seconds with about 4 fps in a

resolution of 160 9 120 pixels. They were transferred to a

PC (Intel Centrino 1,5 GHz, 512 MB RAM.) for prepro-

cessing (see Sect. 3). We have distributed nine Bluetooth

emitters in the museum that spanned 16 different location

cells. The smallest cell contained two objects, the largest 46.

To compare the dynamic and the static training, we applied

both methods for recognizing each object from six different

perspectives and recorded the resulting recognition rates.

Furthermore, we evaluated our previous work [2] again

under identical conditions to investigate the improvements.

In the following, we want to compare the characteristics

and recognition performance of the static and the dynamic

training first. Our temporal adaptation approach is evalu-

ated next. Finally, we highlight the results of the field

experiment.

5.1 Dynamic versus static training

For preprocessing, the server application1 on the PC pro-

cessed 14155 frames in the context of our experiments

(details can be found in Table 1). The duration for training

the NNs on our mobile phone (Nokia 6630, ARM-926

220 MHz, ca. 3.3 MB RAM, Symbian 8.0a) as part of the

dynamic training was strongly dependent on the number of

objects, clusters and keyframes. Roughly 10 s–3 min are

needed to generate and configure the NNs based on the

current location cell during run–time, using a maximum

iteration number of ten passes.

It turns out that the amount of computed clusters for the

objects can vary a lot. The main reasons for this are shadow

casts or self-reflections on showcases of the operator: in

these cases, multiple keyframes are extracted and therefore

more clusters are generated.

Table 2 illustrates the recognition rates for both

approaches achieved by an experienced user who used the

system before.

In [2], we reported a recognition rate of over 95%

without supporting scale-invariance, and by using 14 glo-

bal features. This, however, was achieved by recognizing

each object once and by keeping the distance to each object

the same at all times. Thus, the images taken for recogni-

tion were similar to the three captured images that were

used for training. Yet, as soon as visitors took a photo from

a different perspective or scale, the recognition rate

decreases significantly. We experimentally found a recog-

nition rate of 52.6% when enforcing different scales (i.e. by

taking photos from 6 different perspectives at two different

distances) for our previous system. Our new techniques

achieve 61.2% (static) and 70.3% (dynamic) under the

same conditions (for 88 recognized objects). This shows

that the new classifiers and the preprocessing do improve

the recognition rate but they can not compensate for an

insufficient object description. When using 40 features (see

Sect. 3.1), and consequently provide a better object rep-

resentation, we encounter a recognition rate of 92.6% for

the static training. This is comparable to the recognition

rate pointed out in [2]—but this time, the recognition is

independent of the users’ location and distance. With the

dynamic training, we achieved a recognition rate of 85.6%.

This indicates that simple linear classifiers in combination

with an appropriate preprocessing (keyframe extraction,

clustering and data abstraction) can be almost as successful

as non-linear classifiers.

The video recognition mode (see Sect. 4.3.3) achieved a

recognition rate of 95.7%.

Figure 9 presents the development of the recognition

time on the mobile phone based on the number of objects

that are currently trained. With an increasing number of

objects, the recognition time of the dynamic training

increases much faster than the recognition time that is

required for the static training. On average, two percep-

trons are added for each new object when using the

dynamic training. Consequently, the more objects are

trained the more perceptrons have to be iterated. In con-

trast, the static training adds—for each new object—

exactly one new neuron to the output layer of the three-

layer-NN.

Figure 10 displays the number of failed objects for

different numbers of failed perspectives. It illustrates that it

is more likely that objects are not recognized from only one

single perspective rather than from multiple perspectives:

only one object for the static approach and five for the

dynamic approach were not recognized at all.

Table 1 Preprocessing details for both techniques

Property Dynamic training Static training

Extr. keyframes 1,225 7,464

Clusters 254 (min: 8 max: 1) –

Abstraction rate 14.1% –

Frames/object 7.3 (min:1 max: 8) 51.8 (15, 80)

Memory ca. 1 MB ca. 0.35 MB

Duration preproc. ca. 10 min ca. 120 min

1 Implemented in Matlab with Java interface for Bluetooth

connections.
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5.2 Temporal adaptation

As pointed out in Sect. 4.2, the basic idea behind a tem-

poral adaptation is to continuously collect data to retrain

and improve the recognition rate of the NNs over time.

For investigating the efficiency of temporal adaptation,

we performed the following experiment: ten objects were

trained via static training. Afterwards, these objects were

recognized from 6 different perspectives. As soon as the

recognition of one perspective failed, the next object was

identified. Furthermore, the last image of every exhibit that

has been captured was stored on the mobile phone. After

all objects have been approached once, the stored data was

transferred from the phone to the server and new classifiers

were trained. With these new classifiers all objects were

approached again. This was repeated until all objects have

finally been recognized from all perspectives. The temporal

improvement of the recognition rate throughout 12 training

rounds is shown in Fig. 11. Occasionally, the system nee-

ded multiple training rounds until an improvement was

achieved (e.g. round 5–7). In this case, the NNs required

more temporal data to be influenced.

Figure 12 shows the temporal development of computed

keyframes and clusters for the same experiment. As

expected, the number of keyframes and clusters converge

over time since the number of different perspectives and

scales is limited. This validates our initial assumption that a

temporal adaptation improves the recognition rate while

the sizes of the required NNs converge (instead of keeping

on increasing continuously).

5.3 Field experiment

While the section above summarizes experiments that were

carried out by an experienced user, this section presents the

Table 2 Recognition rates of our previous system (without preprocessing), the new approaches with preprocessing (static and dynamic), and of

the video recognition based on the static training

Number of features Without preprocessing (%) Dynamic training (%) Static training (%) Video recognition (%)

14 featuresa 52.6 61.2 70.3 –

40 features – 85.6 92.6 95.7

a For 88 objects

Fig. 9 Duration of recognition versus the number of trained objects

for the static and the dynamic training

Fig. 10 Number of failed objects versus number of failed perspec-

tives for the static and the dynamic training

Fig. 11 Number of failed objects after each iteration of the temporal

adaptation
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results of a field experiment with unexperienced museum

visitors. We want to discuss the user behavior during

applying the system first. Next, the recognition rates that

were achieved in this experiment are discussed. Finally, we

evaluate the feedback provided in handed out questionnaires.

5.3.1 User behavior

A temporal adaptation can only converge if the number of

perspectives and scales of an object is truly limited. Thus, we

assume that most visitors will approach the same objects

from similar perspectives and distances. To prove this, an

experiment was carried out to identify the visitors’ locations

when they photograph exhibits for recognition. Therefore,

two different objects (a globe and an oven, see Figs. 13 and

14) where chosen. They differ in their dimension as well as

in the size of their surrounding area in which visitors were

able to stand. Fifteen subjects2 were asked to take a photo of

both exhibits separately. They were not informed about our

experiment by any means. The subjects’ locations were

registered and are plotted in Figs. 13 and 14. Although the

users could move in a 90 degree radius around the globe (cf.

Fig. 13), they all chose the same perspective. The distance,

however, varied in a range of 70 cm. For the oven (cf.

Fig. 14) the subjects could choose a position within an area

of about 5 square meters. However, they all chose a position

within a common area of approx. 1 square meter. This

strengthens our assumption that different visitors will

behave similar and are likely to choose only a small subset of

all possible positions and scales. Thus, these common per-

spectives and scales will be up-weighted temporally over

time, while less common outliers will be down-weighted.

This behavior is essential for our temporal adaptation.

5.3.2 Recognition rate

For evaluating our system under truly realistic conditions,

we carried out an extended field experiment with the same

15 subjects, recognizing 139 different objects in the

museum. We chose the same object set that was selected

for the field experiment described in [2]. This allows

comparing the results of both approaches. Our aim was to

evaluate the handling and the acceptance of the system, as

well as its recognition rate for completely unexperienced

users. The static training was applied for this experiment

since it achieved the highest recognition rate in our pre-

vious experiments.

Each subject was asked to recognize ten different

objects with the photo recognition mode and five objects

with the video recognition mode (see Sect. 4.3.3). In total,

all of the 139 were approached at least once. The results of

the experiment are displayed in Table 3.

Although the number of subjects is too low to be rep-

resentative, it gives indications of a first trend with respect

to the quality of handling, and it is sufficient to determine

the recognition rate.

We achieved a recognition rate of 82% for unexperi-

enced users. This is approx. 10% less than for the

experienced user. One reason for this is that the museum

visitors tried to recognize objects from perspectives that

were initially not trained. However, this can be compen-

sated by the temporal adaptation, and is confirmed by the

fact that 40% of the failed objects were still ranked at

positions 2 or 3 in the SRL (see Sect. 4.3.1). By gathering

more data over time, the classifiers are specialized more

efficiently. Another reason for the lower recognition rate of

the unexperienced users was a wrong usage of the system.

Sometimes subjects did not capture an object entirely. This

was only observed for one (older) person that experienced

difficulties while using the mobile phone in general.

The video recognition rate of 77.1% was below our

expectations. We have two explanations for this: First, the

Fig. 12 Number of computed clusters and keyframes during tempo-

ral adaptation

Fig. 13 Subjects’ registered locations in front of the globe

2 Seven of these 15 subjects were female. Their average age was

27.4 years. The oldest person was 55, the youngest 22-year-old.
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subjects captured perspectives that were not trained. Again,

this can be compensated temporally over time. Second, while

capturing a video, the application executes multiple pro-

cessing tasks. This causes short delays in the video stream.

Therefore, subjects had difficulties in centering the objects

all the time. This could be overcome by faster devices. In

general, the video recognition took approx. 12–21 s.

5.3.3 Acceptance

The subjects were asked to fill out questionnaires to pro-

vide answers on two central questions: how well is the

handling of the system components? How high is the

acceptance of using such a system in practice? Overall, 20

different questions had to be answered by each subject.

Answers could be provided through a ranking between 1

(worst) and 7 (best).

In the following, we want to summarize the results: The

handling as well as the user interface was easy to under-

stand and to learn. Almost all subjects were satisfied in this

point. The recognition quality was rated on average with

5.8 (out of 7). The most critical point was judged to be the

location tracking via Bluetooth. Varying signal ranges due

to interferences and reflections sometimes forced the sub-

jects to wait up to one minute until they could proceed with

the correct location being determined. Loading the images

for the SRL required max. 8 s. after entering a new location

cell. This delay was also criticized by the subjects. It

seemed that a non-perfect recognition is more tolerated by

users than long waiting times. This is also confirmed in

[25], in which a location–based as well as an image–based

tour guidance system was evaluated. Although the error

rate of the image-based system was much higher than the

error-rate of the location-based system, the subjects did not

favour one of the approaches over the other.

Thirteen (out of 15) subjects favored the image-based

recognition over the video recognition mode, although

most subjects confirmed that the handling of the video

recognition is sufficient. Two subjects explicitly stated that

the latency for recognizing an object (Nokia 6630: feature

calculation: 2.4 s; classification: 0.2 s; capturing and

loading user interface: 1.2 s) is too long. However, on

newer phones (e.g. Nokia N95) the feature calculation and

classification take 0.5s on average.

Furthermore, most subjects thought (average ranking:

5.73 out of 7) that this kind of museum guide is an ade-

quate alternative for today’s audio-guides.

6 Conclusion and future work

In this article we have presented techniques and algorithms

that enable scale-invariant and adaptive object recognition.

A client–server architecture was developed to continu-

ously collect and preprocess object data for improving the

internal representation of exhibits. Two general approaches

were introduced for training different classifiers from this

data: a static training technique trains three-layer NNs on a

remote server and transfers the final weight sets to the

mobile phones for recognition. A dynamic training tech-

nique achieve similar recognition rates with weak

classifiers (one-layer NNs) by configuring and training

them during run-time on the mobile phone after clustering

the collected object data on a server.

Under equal conditions, we have achieved a maximum

recognition improvement of 40% compared to our previ-

ous, scale–variant algorithm [2]. Using a temporal

adaptation, our system is able to collect object data con-

tinuously and to increase its classification rate over time.

A field experiment in a museum has shown that our

prototype can, in principle, pass a practical acceptance test.

Although the static training achieved a higher recogni-

tion rate (92.6%) and is more applicable since the NNs have

not to be configured and re-trained on the mobile phone

(which would require additional time), the dynamic training

(recognition rate: 85.6%) is still an appropriate solution for

selected tasks: If, for instance, objects have very diverse

shapes and colors from different perspectives the dynamic

training can compensate for this much better than the static

training since every exhibit is separated into multiple virtual

objects. Consequently, each view can be trained individu-

ally. Furthermore, the dynamic technique trains NNs during

run-time. This offers the opportunity to apply the system in

environments where many RF-emitters change their

Fig. 14 Subjects’ registered locations in front of the oven

Table 3 Recognition rates for experienced and unexperienced users

Recognition mode Experienced (%) Unexperienced (%)

Photo recognition 92.6 82.0

Video recognition 95.7 77.1a

a For 15 9 5 = 75 objects
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position dynamically (e.g. in a bookstore where all books

are tagged with RFID-chips). Comparable to the museum

scenario, the mobile phone trains a NN online, based on the

received RF-signals. The static training would not be

applicable in this case, since the number of different NNs to

be trained in advance would be too large since they have to

be transferred to the mobile phone. Furthermore, the NNs

would have to be adapted manually for every modification

in the objects’ arrangements. Our field experiment has

demonstrated that a location tracking with Bluetooth-

emitters is not satisfying. Because of dynamic interferences,

the signal range can vary much and the location tracking is

not reliable. This can lead to lower recognition rates.

Alternative tracking techniques (such as via wireless LAN

or RFID) have to be investigated in future. Yet, they have to

be supported by off-the-shelf devices. In some cases, only

transitions of visitors from one room to another have to be

detected. Short range emitters attached at door frames

would allow detecting these transitions.

Although the temporal adaptation can also compensate

small changes in daytime illumination, our system is still

light-variant. The better color features describe an image,

the more sensitive the recognition becomes with respect to

illumination changes. Therefore, new image features have

to be investigated to achieve a full lighting invariant state.

An additional adaptive feature selection (as part of the

temporal adaptation) can determine the development and

effectiveness of particular features over time. Based on this

development, optimal feature sets can be chosen from a

global pool of features for each individual location cell.

The behavior at the temporal adaptation over a long

application period has to be investigated and evaluated.
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