
ORIGINAL ARTICLE

A fuzzy expert system for the early warning of accidents
due to driver hypo-vigilance

I. G. Damousis Æ D. Tzovaras Æ M. G. Strintzis

Received: 11 July 2006 / Accepted: 15 September 2006 / Published online: 25 April 2007

� Springer-Verlag London Limited 2007

Abstract In this paper a fuzzy expert system for the

prediction of hypovigilance-related accidents is presented.

The system uses physiological modalities in order to detect

signs of extreme hypovigilance. An advantage of such a

system is its extensibility regarding the physiological

modalities and features that it can use as inputs. In that

way, even though at present only eyelid-related features are

exploited, in the future and for prototypes designed for

professionals other physiological modalities, such as EEG

can be easily integrated into the existing system in order to

make it more robust and reliable.

Keywords Fuzzy expert systems � Genetic algorithms �
Hypovigilance detection

1 Introduction

The loss or the disruptions of sleep result in sleepiness

during periods when the person should usually be fully

awake. The loss of even one night’s sleep can lead to

extreme short-term sleepiness. The effects of sleep loss are

cumulative and regularly losing one or two hours of sleep a

night can result to chronic sleepiness over time

Sleep deprivation and related phenomena of excessive

fatigue, prolonged inattention, hypovigilance and stress are

among the key causes of serious industrial accidents such

as nuclear, chemical and environmental disasters, as well

as fatal driving accidents [1].

An automated sleepiness monitoring system could

watch over people to make sure that the alertness and

attention levels are high and warn or even take predefined

measures when extreme hypovigilance is detected, in order

to prevent an accident. This kind of system could increase

the level of safety for everyone since it can be applied to a

wide range or users, from regular drivers to sensitive

equipment operators.

Several monitoring systems for the automatic hypovig-

ilance detection have been developed over the past years.

The majority of those systems focus on the diagnosis of the

physiological demonstration of sleepiness, by recording

and analyzing features that in most cases are related to the

person’s blinking behavior.

Even though blink-related features intuitively and

experimentally [2] seem to be the most suitable candidates

for hypovigilance detection, studies show that these fea-

tures are not accurate and reliable enough since they ex-

hibit strong interpersonal (between persons) and

intrapersonal (same person different times) variabilities.

Aiming to address the limitations of the current hypovigi-

lance detection and accident warning systems, we develop

a new multimodal sleep prediction algorithm, which will

be integrated into an automatic accident warning and sleep

prediction prototype for drivers within the Integrated

Project SENSATION (http://www.sensation-eu.org).

The major objective of SENSATION is the development

of new, unobtrusive sensors, capable of providing mea-
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surements that allow the online extraction of advanced

physiological features that are not currently available to the

existing warning systems. The exploitation of these fea-

tures will potentially allow more accurate hypovigilance

detection and the development of more reliable sleep pre-

diction systems (less false warnings).

In this paper we describe the framework for such a

multimodal physiological sleep prediction system, which is

based on fuzzy logic expertise and trained with the use of a

real-coded Genetic algorithm. Also some preliminary re-

sults from the analysis of the training data, concerning the

accident prediction effectiveness of blink-related features

are reported.

2 The fuzzy expert system (FES) in general

Fuzzy logic is a research area based on the principles of

approximate reasoning and computational intelligence. It

departs from classical sets, logic and strict Boolean (True

or False) decisions and assignments. Instead, it uses soft

linguistic variables (e.g., small, medium, large), and a

continuous range of truth-values in the interval [0, 1].

Fuzzy models are employed in cases where a system is

difficult to model exactly (but an inexact model is avail-

able), or ambiguity and vagueness is encountered in the

problem formulation.

A typical fuzzy system comprises the following key

parts:

• A rule base containing a number of IF-THEN rules.

• A fuzzy inference unit, which performs the inference

operations of the rules.

• The fuzzification interface which transforms crisp

inputs into fuzzy variables that are processed by the

fuzzy inference unit.

• The defuzzification interface that transforms the fuzzy

output into a crisp number.

Expert knowledge can be ‘‘stored’’ in a fuzzy system’s

IF-THEN rules. This transfusion of knowledge in the sys-

tem can take place either by the manual definition of the

fuzzy rules, or by the training of the system using training

cases or patterns. After the fuzzy rules are defined, the

system is capable of making inferences and its output or

decision simulates the one of an expert‘s. In that way the

system is called FES.

The fuzzy inference system suggested by Takagi,

Sugeno and Kang (TSK fuzzy model) [12] has gained a

great importance in several applications in fuzzy modelling

and control. The TSK fuzzy models consist of linguistic

fuzzy rules represented in the following form:

RðjÞ : IFðxp;1 is Aj
1ÞAND . . . AND ðxp;NPI is Aj

NPIÞ
THEN yj ¼ Fjðxc;1; xc;2; . . . ; xc;NCIÞj ¼ 1; :::;NR

ð1Þ

where NR is the number of fuzzy rules.

The ‘‘IF’’ precondition statements define the premise

part while the ‘‘THEN’’ rule functions constitute the

consequent part of the fuzzy model.

• �Xp ¼ ½xp;1; . . . ; xp;NPI�T is the input vector to the premise

part comprising NPI input variables.

• Ai
j are labels of fuzzy sets describing linguistically the

input component xp,i i = 1, ..., NPI. (e.g., ‘‘low’’,

‘‘medium’’, ‘‘high’’).

• �Xc ¼ ½xc;1; . . . ; xc;NCI�T denotes the input vector to the

consequent part of R(j) containing NCI input variables.

Finally, yj ¼ Fð �XcÞ represents the output of the j-th rule

which is a function of the consequence part input compo-

nents xc,i, i = 1,..., NCI. A special case of particular

importance is encountered when the rule functions are

linear polynomials of the consequent inputs:

yj ¼ Fð �XcÞ ¼ kj
0 þ

XNCI

i¼1

kj
i xc;i ð2Þ

where kj
i are weight coefficients and kj

0 is a bias term.

Each linguistic label Aj
i is associated with a membership

function lj
i (xp,i). These are usually unimodal functions

(triangular, Gaussian, bell shaped, etc.), taking values in

the interval [0, 1]. In this paper we employ Gaussian type

memberships described by

lj
iðxp;iÞ ¼ exp � 1

2

xp;i � mj
i

� �2

rj
i

� �2

" #
ð3Þ

where mi
j and rj

i are the mean value and the standard

deviation of the membership function, respectively

(Fig. 1a).

The firing strength of the rule R(j), representing the de-

gree to which R(j) is excited by a particular premise input

vector �Xp; is determined by

ljð �XcÞ ¼
YNPI

i¼1

lj
iðxp;iÞ: ð4Þ

The antecedent fuzzy sets pertaining to a rule R(j) define a

fuzzy region within the premise space (Fig. 1b)

AðjÞ ¼ Aj
1 � Aj

2 � � � � � Aj
NPI: ð5Þ

Essentially, A(j) represents a multidimensional fuzzy set

with a membership distribution defined by (4).
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Using the notation above, the TSK rule can be brought

in the following compact form:

RðjÞ : IF �Xp is AðjÞ THEN yj ¼ Fj
�Xcð Þ: ð6Þ

Given the input vectors �Xp and �Xc; the final output of the

fuzzy model is inferred using the weighted average

defuzzification method [12] as follows:

y ¼
PNR

j¼1 ljð �XpÞ � Fjð �XcÞ
PNR

j¼1 ljð �XpÞ
ð7Þ

From the above description, it can be seen that the basic

philosophy of the TSK model is to decompose the premise

space into fuzzy regions AðjÞ and approximate the system’s

behaviour in every region by a simple submodel Fð �XcÞ:
Thus, the overall model can be regarded as a fuzzy

blending of linear submodels with simpler structure.

3 Accident prediction fuzzy expert system

Our objective is to develop a TSK fuzzy model that

provides early warnings for accidents that are due to

driver’s hypovigilance or sleep onset, based on physio-

logical features. The fuzzy decomposition of the premise

space should allow the discrimination between different

physiological demonstrations of extreme sleepiness and

address the inter-personal variability. To detect all the

different signs by which people exhibit extreme hypo-

vigilance just before the sleep onset, we have to select the

appropriate physiological features that describe ade-

quately these ways.

3.1 Selection of the physiological inputs

To construct the fuzzy model structure, a number of pre-

mise inputs xp,1, ..., xp, NPI should be properly selected.

These are the decision variables that constitute the premise

space and will allow the formulation of rules (discrete

cases). Each premise variable will then be partitioned by a

certain number of fuzzy sets that cover adequately its

universe of discourse as shown in Fig. 1a.

The number of premise inputs should be as small as

possible. A reasonable choice is to select one or two inputs.

This is dictated by our requirement to keep the number of

rules to an acceptably low level. However the great inter-

personal variability of the physiological signs that cha-

racterise the phase prior to the onset of sleep may require

the use of several features that will serve as FES premise

inputs. There are several studies in the literature that aim to

determine the appropriate physiological signals that allow

hypovigilance diagnosis from a broad set of candidate in-

puts [5, 6]; however, most of them are inconclusive and

there seems to be no golden standard in feature selection

or combination of features that can lead to a fool-proof

prediction system.

The physiological features that are related to hypovigi-

lance are

• EEG features such as alpha and theta waves,

• eyelid activity features such as long blinks,

• eye activity related features such as slow eye move-

ments (SEM)

• and pupillography.

However, since EEG and SEM data can only be

acquired via electrodes, they cannot be used for online

predictions due to restrictions stemming from user

Fig. 1 a Assuming the ‘‘very long blinks duration per minute’’

feature is a premise input, xp,1, three fuzzy sets A1,1, A1,2 and A1,3

can express the linguistic propositions that the measured ‘‘very long

blinks duration per minute’’ is ‘‘Low’’, ‘‘Medium’’ or ‘‘High’’,

respectively. Thus, for a specific sample xp,1 = 4 s the memberships

for each of the fuzzy sets are 0.2, 0.62, and 0.0 respectively and the

measured ‘‘very long blinks duration’’ is linguistically described as

‘‘medium to low’’. b Three membership functions Ai,1(xp,i),

Ai,2(xp,i), and Ai,3(xp,i) are used for each premise input i = 1,2, to

express linguistic properties of the inputs, forming nine fuzzy regions

that define the boundaries of the system’s fuzzy rules.

Pers Ubiquit Comput (2009) 13:43–49 45

123



unobtrusiveness requirements. Because of this, EEG anal-

ysis is only used as a reference and we can only utilise

eyelid activity features (blinks) that can be recorded

unobtrusively with CMOS cameras.

For the proposed FES, the decision on the blink-related

features selection was taken following a two-step process:

1. Literature review study in order to pinpoint the most

promising features for the discrimination of the various

behaviours prior to sleep [5, 6] and also following the

guidelines over the use of various physiological signals

(eyelid related, eye movement related and EEG re-

lated) for hypovigilance diagnosis and sleep prediction

provided by [7, 10].

2. Experimental parametric analysis of the above-men-

tioned features using real driving data from 37 subjects

[3], in order to select the features with the highest

correlation to accidents (Fig. 2).

4 Genetic algorithm (GA) training of the FES

parameters

The objective of the FES training is to set the values of the

premise and consequence part variables in such way as to

predict as accurately as possible the accidents, based on the

eyelid-related features that are used as inputs. The training

patterns have the following structure:

�Xp

�� �Xcj YACCIDENT

� �

where �Xp and �Xc are the input vectors to the premise and

the consequent part, respectively (blink-related features)

and YACCIDENT is a binary value that indicates whether an

accident happened at that moment (‘‘1’’) or not (‘‘0’’). We

must note here that the accidents are filtered based on EEG

and EOG analysis in order to take into considerations only

those accidents that are due to hypovigilance [4].

For the training of the accident prediction FES a real-

coded GA is used. For this GA implementation the

parameters of the premise and the consequence parts are

concatenated in order to form a genotype or chromosome

which is a consolidated representation of a FES. The pre-

mise parameters are the mean values and standard devia-

tions of the membership functions that partition the

premise inputs. These variables define fully the member-

ship functions and also set the boundaries of the fuzzy rules

(the IF part of the rules).

The consequence part parameters are the ki
j, i = 0,...,

NCI, j = 1, ...,NR coefficients that define the output of each

fuzzy rule as shown in (7).

All training parameters, as well as the training patterns’

data are normalised in the [0, 1] space. An obvious

advantage of the real-coded GA over binary-coded GAs is

that with the direct encoding of floating-point numbers in

the chromosomes we achieve absolute precision, over-

coming the critical decision of the number of bits to be

used for the encoding of each FES parameter.

The training process of the FES using GA begins with

the random generation of an initial population of m geno-

types. The quality of the solution that a specific genotype

represents is measured by calculating its fitness following

the next steps:

(a) Decomposition of the chromosome into FES premise

and consequence parameters.

(b) Calculation of FES output for each training pattern.

Equation (3) provides the memberships of the training

pattern to the fuzzy sets that partition the premise inputs.

Then the pattern’s firing strength for each fuzzy rule is

calculated (4). Each rule has an output that corresponds to

the specific pattern as is shown in (2). The overall output of

Fig. 2 Parametric analysis of the ‘‘number of long blinks’’ feature.

The variables are the duration of a ‘‘long blink’’ and the number of

long blinks during a 20 s window that slides every five seconds. Even

though the sensitivity of the feature is good (e.g., when 5 detected

blinks with duration over 0.2 s around 70% of the hits are predicted

within the next 2 min), the specificity of the system is not acceptable

(more than 40% of the warnings are inaccurate)
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the FES for the specific pattern is the weighted average of

the fuzzy rules’ outputs as shown in (7). Each rule’s con-

tribution to the final solution is analogous to the degree that

the pattern triggers the specific rule.

(c) Calculation of the chromosome’s fitness.

The FES output is compared with a threshold. The

threshold is also part of the chromosome, hence trainable

as well. If the output of the FES is larger than the threshold

then the expert system produces an accident warning

(‘‘1’’). If not, the system’s output is ‘‘0’’. The outputs of

the system are compared to the actual accidents and a

measure of accuracy is calculated:

FitnessFunction ¼ 1þ shpð%Þ
1þ farð%Þ ð8Þ

where shp(%) is the successful hit prediction ratio, defined

as the percentage of hits that were predicted and far(%) is

the false alarm ratio which is defined as the percentage of

FES warnings that did not correspond to an accident up to

2 min ahead.

As it can be seen from (8) this fitness function promotes

the sensitivity (promoting accurate predictions) and the

specificity of the system (by minimising false alarms).

The GA is allowed to evolve for a number of gener-

ations. The evolution takes place using the well-known

genetic operators of selection, crossover [9] and mutation

[8]. The final FES derives from the elite solution of the

GA at the final generation. Upon termination of the

training process, the quality of the obtained model is

verified with the validation dataset. While GA training

lasts from minutes to some hours, depending on the size

of the measurements database, the on-line predictions that

are based on real time measurements are attained

instantly.

5 Experimental results

A driving simulator experiment was carried out at the VTI

simulator in Sweden in order to collect data for the

development of SENSATION physiological prediction

algorithm [3].

In order to acquire an objective accident reference,

rumble strips were used in the simulator run (Fig. 3a).

Hitting a rumble strip can indicate a critical event since it

can be attributed to either inattention or sleepiness. In the

latter case this is the event that should have been predicted

(or detected) by the FES. Forty-four shift workers partici-

pated in the pilot programme. All drove during morning

hours directly after a full night-shift with no sleep. Driving

took place on a two-lane rural road with milled rumble

strips both in connection to the centre line and the right

side line (hard shoulder). All drivers drove between 45 and

90 min. A total of over 500 rumble strip hits were re-

corded. These rumble hits were afterwards assessed offline

by a VTI expert in order to keep only the hits that were

clearly due to extreme hypovigilance. A wide range of data

was also collected: pre and post questionnaires, sleep diary

3 days prior to the test, simple reaction time test, pupill-

ometry, driving behaviour, subjective sleepiness ratings

(KSS), physiological data (EEG, EOG, EMG) and eye gaze

and eye lid opening with a video based system (SmartEye).

Furthermore, all driving sessions were recorded on a DVD

with a 4-split screen showing the road, the driver’s face,

side view of the driver and the physiological recording

(Fig. 3b).

Fig. 3 a The typical driving simulation environment. The rumble

strips are located in the middle and at the edges of the road [3]. b
DVD recording layout SmartEye display (top left), physiological

signals from the VITAPORT 2 system (right top), driver front

view—figures at top show subject number, driven distance, speed and

type of rumble strip design [3]
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A FES was developed and trained as described in Sects.

2, 3 and 4 using 28 driving sessions and it was tested using

seven new driving sessions. The other nine sessions were

discarded due to technical problems during the recordings.

Since a high-speed camera was not available at that time

only blink data from the SmartEyes system (60 Hz cam-

eras) were available, namely blink start, peak, end time-

stamps and the blink duration (Fig. 4).

From this data only conventional blinking features could

be extracted for use with the FES such as:

• Long blinks duration: the blinks in the 20 s window

are filtered and only the ones lasting more than 0,3 s are

kept. If the number of long blinks is larger than 2 the

sum of their durations is the long blink duration feature.

Else the LBD = 0.

• Maximum closing duration: closing duration is cal-

culated from the data as the interval between the peak

and the end of the blink. The maximum closing interval

registered within the 20 s window is the MCD feature.

• Maximum interval between blinks is defined as the

interval between the end of the current blink and the

beginning of the next.

The parameters of the features e.g., the duration that

characterises a blink as ‘‘long’’ were selected based on the

parametric analysis described in Sect. 3 using the sensi-

tivity/specificity ratio as criterion. Preliminary tests re-

sulted in 92% accuracy in hit prediction accompanied by

30% false alarms (alarms fired more than 5 minutes prior

to the ‘‘accident’’) and as Table 1 indicates the fusion of

the features results in better prediction accuracy compared

to predictions that are based only on one feature.

Even thought these results are very encouraging, there is

a consideration whether using all the hits is correct for the

practical application of the system. This is based on two

reasons. The first is that some drivers exhibit a very large

number of hits compared to other drivers that hit the rumble

strips only once or twice and this results in the domination

of the training and validation sets by the individuals with a

lot of hits. The second reason is that the algorithm’s primary

objective should be the prediction of the first hit that would

result in an accident in real driving conditions.

The results for the prediction of only the first hit per

driver using the same features and method are shown in

Table 2.

It is obvious from Table 2 that the accuracy of the first

hit prediction is much lower than the one achieved when

taking into account all of the hits. This is because the

drivers are not as hypovigilant when the first hit occurs as

they are during the hits that follow and also because at this

case all drivers have equal weight in the training and

testing sets.

6 Future work

In future, work will focus on improving the accuracy of the

first hit prediction and in order to achieve this,the following

directions will be explored:

• Study and integration of new more advanced eyelid-

activity related features when they are available, in

order to develop a more reliable accident prediction

system. These features include amplitude, peak closing

velocity as well as lid closure and opening speed [6].

Fig. 4 Blink induced waveform in the EOG-signal and a concurrent

signal shift due to vertical eye movements. ‘‘T’’ is the blink duration,

and ‘‘1/2’’ indicates half the amplitude of the waveform within the

rise-part and the drop-part

Table 1 Prediction up to 5 min ahead (Accuracy/False alarms rate)

using all hits

Feature Long blinks

duration

(%)

Maximum

closing

duration (%)

Maximum

interval

between

blinks (%)

Long blinks duration 46–19 55–20 93–39

Maximum closing

duration

55–20 100–69 92–38

Maximum interval

between blinks

93–39 92–38 92–39

All three features combined: 92–30%

Table 2 Prediction up to 5 min ahead (Accuracy/False alarms rate)

using only the first hit per driver

Feature Long blinks

duration

(%)

Maximum

closing

duration

(%)

Maximum

interval

between

blinks (%)

Long blinks duration 73.07–49.88 30.76–0 88.46–48.29

Maximum closing

duration

30.76–0 100–86.91 19.23–4.34

Maximum interval

between blinks

88.46–48.29 19.23–4.34 100–84.79

All three features combined: 88.46–41.6%
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• In addition to the eyelid-related features, the eye-gaze

parameter that is already recorded by the SmartEyes

system may also be utilised in order to extract features

related with the gaze distribution over time. Such

features are the GAZEDIS and PERSAC [11] that

potentially allow the detection of eye fixations which is

a sign of extreme hypovigilance and microsleeps. This

measurement should also allow the detection of sleep

episodes for people that fall asleep while driving,

keeping their eyes open.

• A future plan is to integrate EEG features into the

expert system when the online extraction of EEG

features, such as alpha and theta waves becomes

available. EEG is one of the primary indicators used

by human experts to diagnose the level of alertness of a

person. At this point and within SENSATION EEG

measurements cannot be included in driver applications

due to user requirements restrictions; however, there is

the intention to test EEG in pilots that are related to

professional drivers or crane operators, where the

requirements for sensor unobtrusiveness are more

relaxed while the safety requirements are stricter.

• Finally a control set of alert drivers will be created in

order to estimate the real false alarms ratio of the final

system.

7 Conclusions

In this paper a FES for the prediction of accidents due to

extreme hypovigilance was presented. Even though at this

stage it fuses a limited number of blinking features, the

architecture of such a system allows the easy integration of

other physiological modalities such as EEG, gaze and more

advanced eyelid activity features. At the moment the pre-

diction results for the first hypovigilance-related hits are

not satisfactory; however, it is clearly demonstrated that

the fuzzy fusion of features outperforms the prediction

accuracy of individual features and addresses more effi-

ciently the interpersonal and intrapersonal differences that

characterise the physiological manifestation of extreme

hypovigilance.

Acknowledgments This work was partially supported by the EC

under contract FP6-507231 SENSATION.

References

1. Akerstedt et al (2002) Work organisation and unintentional sleep:

results from the WOLF study. Occup Environ Med 59:595–600

2. Dinges DF, Mallis MM et al (1998) Evaluation of techniques for

ocular measurement as an index of fatigue and the basis for

alertness management. Final report for the USDOT, NHTSA,

104pp, Report No. DOT HS 808 762

3. Peters B, Anund A, Östlund J, Hjälmdahl M (2005) Results of

Sensation Pilot 2.5–WP1.7 (Alertness Monitoring Database),

SENSATION internal deliverable

4. Rechtschaffen A, Kales A (1968) A manual of standardised ter-

minology, techniques and scoring system for sleep stages of

human subjects. US Department of Health, Education and Wel-

fare, Public Health Service, Bethesda

5. Galley N, Schleicher R, Galley L ‘‘Blink parameter for sleepiness

detection’’ and other works by the same authors

6. Caffier PP, Erdmann U, Ullsperger P (2003) Experimental eval-

uation of eye-blink parameters as a drowsiness measure. Eur J

Appl Physiol 89:319–325

7. Damousis Y, Tzovaras D (2004) Correlation between SP1 data

and parameters and WP 4.4.2 algorithms, Sensation Internal

Report (Draft Nov 2004)

8. Michalewicz Z (1996) Genetic Algorithms + Data Structures =

Evolution Programs, New York/USA. Springer-Verlag, Heidel-

berg

9. Herrera F, Lozano M, Verdegay JL (1995) Tuning fuzzy con-

trollers by genetic algorithms. Int J Approx Reasoning 12:299–

315

10. Alex H. Bullinger et al (2004) Criteria and algorithms for

physiological states and their transitions, SENSATION_Del_1_

1_1.doc. SENSATION Deliverable 1.1.1, August 2004

11. Ji Q, Zhu Z, Lan P (2004) Real-time nonintrusive monitoring and

prediction of driver fatigue. IEEE Trans Vehicular Technol 53(4)

12. Takagi T, Sugeno M (1985) Fuzzy identification of systems and

its applications to modeling and control. IEEE Trans Syst Man

Cybern 15:116–132

Pers Ubiquit Comput (2009) 13:43–49 49

123


	A fuzzy expert system for the early warning of accidents �due to driver hypo-vigilance
	Abstract
	Introduction
	The fuzzy expert system (FES) in general
	Accident prediction fuzzy expert system
	Selection of the physiological inputs

	Genetic algorithm (GA) training of the FES parameters
	Experimental results
	Future work
	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


