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Abstract Acoustic environments provide many valuable
cues for context-aware computing applications. From
the acoustic environment we can infer the types of
activity, communication modes and other actors in-
volved in the activity. Environmental or background
noise can be classified with a high degree of accuracy
using recordings from microphones commonly found in
PDAs and other consumer devices. We describe an
acoustic environment recognition system incorporating
an adaptive learning mechanism and its use in a noise
tracker. We show how this information is exploited in a
mobile context framework. To illustrate our approach
we describe a context-aware multimodal weather fore-
casting service, which accepts spoken or written queries
and presents forecast information in several forms,
including email, voice and sign languages.

Keywords Acoustic environment Æ Context
awareness Æ Classification Æ Machine learning Æ
Adaptive feedback Æ Mobile computing

1 Introduction

The ability of a system to use contextual cues to choose
appropriate behaviour for a situation and to adapt that
behaviour in response to changes in the user or device
context is essential to the development of adaptive
information systems. Context awareness is particularly
important for mobile computing, where a user’s situa-
tion may change rapidly and interaction is constrained

by both limited device capabilities and the user’s activ-
ity. Early context-aware applications mostly focused on
sensing and understanding absolute location, user
identity and time, but there has been an increasing
interest in identifying different user activities.

We are interested in obtaining and exploiting location
and activity information through the analysis of the
acoustic environment. The acoustic environment is a
rich information source for deriving information about a
user’s current situation, potentially enhancing the
description of both the location and the user’s activities.
It is almost always available and can be readily sampled
by a wide range of devices.

To show how the acoustic environment can be
exploited in context-aware applications we describe a
prototype context-awareweather forecasting application,
which is capable ofmodifying its users’ requests according
to their current environment and known prefer-
ences—exploiting context information to infer and ex-
pand information requests by exploiting knowledge of
their daily routines. More immediately, the acoustic
environment allows context-aware applications tomodify
their output modalities, for example giving audio infor-
mation to drivers, and visual information to participants
in a meeting. (The sources of information on user pref-
erences, routines, etc. are beyond the scope of this paper.)

In order to test the feasibility of environmental noise
recognition in mobile devices we have developed and
evaluated a Hidden Markov Model (HMM) classifier.
Our initial work, to classify the typical environments of
our daily life, such as an office, car and street, has been
reported elsewhere [1, 2]. In this paper we summarise
these and further series of experiments which address a
number of issues, including requirements for building
applications on limited capability devices, confidence
measures, adaptive learning and single-sourced sound
event classification.

The context models of environmental noise have been
integrated into our prototype context tracker applica-
tion. The tracker is able to recognise acoustic environ-
ments and adapt to new environments. It uses current
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data to reinforce existing environmental noise models.
Users are able to create and train personalised models
based on their daily routine. All recognised and
confirmed environments are recorded into a tracking file
for later retrieval and are annotated for use by other
components in multimodal systems.

Our approach using environmental noise in context-
aware applications differs from the previous work, with
its emphasis on rapid recognition, minimising compu-
tation cost, adaptive learning and easy training. We
classified 12 types of environmental noise based on a
user’s daily routine. By classifying short-duration (3 s)
samples, the application can rapidly recognise an envi-
ronment. We have found that the recognition based on
lower-quality data (8 kHz, 8 Bit PCM) provides usable
results with limited capability devices and low-band-
width communications.

The remainder of this paper is structured as follows:
Sect. 2 is a review of related work on context-aware
applications and auditory sound scene analysis. In
Sect. 3 we describe our new series of environmental
noise classification experiments for low-bandwidth
communication and analyse the results. In Sect. 4 we
describe our tracker application. The mobile infra-
structure we are using is described in Sect. 5. Section 6
contains a description of our weather forecast infor-
mation exemplar. Our conclusions are presented in
Sect. 7.

2 Related work

Context-aware computing is a pervasive or ubiquitous
computing paradigm in which the interaction with a
computer is driven by an externally derived or implicit
context. There has been a broad scope of topics in
context-aware computing, such as understanding of
context, software architecture, interface design, infra-
structure, sharing context and privacy and security of
context awareness [3]. Technologies and applications
focus on the sensing, capturing, presenting and model-
ling of context [4].

The notion of context-aware computing was first
proposed in the early 1990s. The Active Badge system
[5]—probably the first context-aware application—was
published in 1992 and Schilit [6] introduced the term
‘‘context-aware’’ in 1994. Dey’s definition and discussion
of context [7, 8] remains widely accepted today. Anhalt
et al. [9] point out that a pervasive computing environ-
ment must be context-aware. They define an activity-
attention framework for context-aware computing and
introduce a pervasive computing architecture. Brown
[10] discusses software design to make the creation of
context-aware applications easy. Other early works
defining context and the development of context-aware
applications can be found in several surveys [6, 11–13].

Location-awareness has been an especially popular
research area in context-aware computing. The tech-
nologies mainly used are short-range IR and RF signals

for indoor applications and GPS outdoors. Examples
include services such as Conference Assistant [14], Office
Assistant [15] or guides, such as Cyberguide [16],
Shopping Jacket [17] and C-MAP [18] and memory aids
such as Stick-e notes [19], Memoclip [20] and Cybre-
Minder [21]. Jimminy [22] is a wearable personal note-
taking and note-archival application; the reported
experiments suggested that physical context alone was a
poor predictor for retrieving relevant notes, but that it
was useful when combined with information from any
current notes.

Recent research has explored context from a variety
of media, such as image, audio, video and a wider
variety of environmental and personal sensors.

Audio is an appropriate medium for context-aware
computing and it plays an important role in many pro-
jects. ComMotion [23] is a location-aware computing
environment using GPS, but the core set of reminder
creation and retrieval functions can be managed com-
pletely by speech in order to use it on mobile devices. The
Nomadic Radio project [24] developed interaction tech-
niques for managing voice- and text-based messages in a
nomadic environment. It employs auditory I/O, with
speech and non-speech audio, for navigating and deliv-
ering messages. Gerasimov and Bender [25] describe
using sound for device-to-device and device-to-human
communication and have explored the possibility of
using the existing audio capability in many commonplace
devices. Audio Aura [26] explored the use of background
auditory cues to provide serendipitous information
coupled with peoples’ physical location in the workplace.
Schmandt et al. [27] considered some aspects of message
delivery including minimising interruption, adaptation to
the user, location awareness, and non-intrusive user
interfaces in their EverywhereMessaging project. Hindus
and Schmandt [28] focused on ubiquitous audio for
acquiring and accessing the contents of conversations.
They described applications for capturing and structur-
ing audio from office discussions and telephone calls for
later retrieval. Huang et al. [29] used audio and video
information to detect activity in an office.

Many research approaches on audio data can be ex-
plored from the perspective of content-based audio
classification or audio information retrieval. Foote [30]
and Wold et al. [31] reviewed audio classification sys-
tems using multiple features and a variety of classifica-
tion techniques including static modelling and dynamic
modelling. Content-based audio classification and re-
trieval research has been mainly based on speech and
music, focusing on searching and indexing. Much work
has been done on speech recognition, word spotting,
speaker identification, speech interfaces and music
information retrieval.

Some research has contributed to the real world
background noise classification; following [32], Couvreur
[33] has introduced three classifiers (statistical, adaptable
and adaptive and HMM-based classifiers) to be used in
separated noise event recognition and has attempted to
develop a classifier for multiple simultaneous signals.
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Statistical classifiers have the major drawback of their
sensitivity to variations in utilisation conditions. Adapt-
able and adaptive classifiers that adapt to changes in
spectra can solve this problem, but do not take advantage
of the time-evolving structure of the spectra. HMM-
based classifiers provide a dynamic solution. Gaunard
et al. [34] have implemented an HMM-based classifier to
recognise five noise events (car, truck, moped, aircraft
and train). They observed that the frame length in noise
recognition is larger than that in speech recognition.
Their best results are from a five-state HMM using LPC-
cepstral features, which gives better results than human
listeners. We have conducted a small series of experi-
ments which show similar results. Nishiura et al. [35] have
classified 92 types of environmental sounds using an
HMM framework for robust speech recognition. Their
experimental results show how the HMM can accurately
identify and classify single-occurrence environmental
sound sources, speech and speech with sounds.

The classifiers described above recognise individual
sound events. Some classification systems have been
proposed to recognise auditory scenes. Peltonen et al.
[36] demonstrated that mel-frequency cepstral coeffi-
cients out-performed other feature representations.
Sawhney [37] classified five everyday noise types,
comparing several approaches, of which filterbank with
Nearest Neighbour (NN) clearly out-performed the
others. Their results indicate that frequency bands
generated from filterbank analysis of frame-by-frame
audio windows provide robust features. Other work
has been directed towards recognising both the scene
and sound subjects in it, focusing on exhaustively
identifying sound events and their relationships in a
continuous classifier.

Much work on environmental noise has been done to
separate speech from background noise for robust speech
recognition (e.g. [40]). Only a few context-aware appli-
cations have attempted to use environmental noise. The
focus of Sawhney’s [37] work is on distinguishing longer
duration (15 s) environmental sounds into pre-defined
classes (people, voices, subway, traffic and other), using
near-real-time classification techniques; the system re-
ported in [38, 39] is designed around an adaptive structure
that relied on unsupervised training for segmentation of
sound scenes. Their system detects and classifies both
events and scene using an HMM framework.

3 Experimental work

In this section we summarise the results of our experi-
mental work in environmental noise and sound event
classification and recognition. These results demonstrate
the feasibility of classifying acoustic environments using
consumer devices. In subsequent sections we show how
this classifier can be used in context-aware applications,
and how acoustic environment information is incorpo-
rated into a general context infrastructure.

The corpus of recordings and samples used in all the
experiments summarised here is available for further
research 1. This section summarises the experimental
results presented in [1, 2].

The first set of experiments used a Sony MD re-
corder/player and electret condenser microphone clip-
ped to clothing. For the second series we used an MP3
player/recorder (Samsung YP55H) attached to the strap
of a shoulder bag as the recording device to capture the
environmental noise from a typical daily routine. We
have not addressed the issues of the microphone being
obscured by, for example, being placed in a pocket, as
we have found it easy to mount the microphone in
permanently exposed locations.

3.1 Environmental noise classification

Our initial experiments were conducted with high-
quality sound recordings sampled at 22.050 kHz using
16-bit quantisation, where we achieved an overall
accuracy of 92.27% with our best model. However,
many context-aware applications are intended to run
on resource-constrained mobile devices. In order to test
the feasibility of implementing the models in mobile
devices, we conducted a further series of experiments to
test our noise classifier’s suitability for low-bandwidth
connections and for real-time processing in personal
mobile computing platforms. The acoustic environ-
ments recorded for these experiments are intended to
reflect a user’s daily routine.

Every environment has its characteristic consistent
and periodic background noise. Our focus is on mod-
elling slow-changing attributes of the environmental
noise in the audio signal, as we are concerned with the
overall acoustic environment as an indicator of the
user’s activity.

The overall accuracy of the low-bandwidth experi-
ments is 95.83% (1,150 out of 1,200 samples correctly
identified), slightly better than the initial experiments.
The recognition accuracy of individual environments
ranged from 81 to 100%, with the building site, urban
driving, office, presentation, city street and supermarket
giving 100% classification accuracy for the 100 examples
tested for each. All incorrectly classified samples were
recognised as similar environments; for instance bus
noise was confused with other forms of transport and
shopping mall samples were confused with supermarkets.

The accuracy of noise recognition depends on a
number of factors such as the amount and coverage of
the training data, the feature extraction component, the
allowable computational complexity and the model
parameters. The noise classifier designed in this system is
not capable of recognising multiple simultaneous envi-
ronmental noises. For example sitting in an office while a
car is passing by would cause a conflict.

1http://www.cmp.uea.ac.uk/research/noise_db
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3.2 Sound event classification

The environmental noise models’ flaw is the possibility
of incorrect classification when a sound event occurs
close to the microphone, for example a telephone ringing
in an office. The 3-s recording would then be full of
ringing sound rather than the general office background
sound, potentially causing an incorrect classification.
One solution to the problem of classifying multiple and
simultaneously occurring environmental noises is to
build models of those sound events to give a cue to the
environment. These sound event models could provide a
context-dependent knowledge of the environment.
Hence contextual cues could be incorporated in classi-
fication with the environment models.

The experiments using sound event models were
conducted using the data of the RWCP Sound Scene
Database in Real Acoustic Environment [35] models for
sound events can be obtained using our HMM classifier.
However there are subtle differences between recognis-
ing isolated sound events and identifying environmental
noise. Environmental noise is a complex sound made up
of a mixture of different events with no constraint on
what these sounds can be. For example, consider an
office environment, where a stationary component may
come from an air-conditioning fan, a quasi-stationary
component from key-clicks and non-stationary events
from people moving around, opening doors and talking.
In contrast, sound events are produced from single
sources and are constrained to single locations. The
sound event sample has limitations on the character of
sound and has clear states in it. A typical sound event
can be divided into five states, silence–begin–middle–
end–silence. When we add the two emit states in HTK
[41], a seven state HMM topology is considered to be the
best model of the sound event.

We obtained an overall accuracy of 84.6% for the 105
types of sound events from the 2,909 testing data sam-
ples. Results show that the HMM classification works
very well with the characteristic sounds (95% accuracy),
especially instruments, electronic and mechanical
sounds. Accuracy on the action sounds (including
clapping, rubbing, dropping) was 87% but the model
gives 70% accuracy with the collision sounds. These
apparently poor results are a consequence of the finer
subdivisions used in the collision sounds and disappear
when a coarser classification granularity of classifica-
tion—similar to that of the other groups—is used.

3.3 Adaptive learning

In order to be practically useful in context tracking, a
classifier must be adaptable to new environments, and
applications that use the tracking information typically
need confidence estimates on the classification.

The recogniser features a confidence scoring mecha-
nism using a simple method of N-best likelihoods of
these environmental noise HMMs. Let L1 be the log

likelihood of the best matching model, and L2 be the log
likelihood of the second best matching model. The
confidence measure for the recognition is then computed
as:

conf ¼ L1 � L2

L1
� ð�1Þ:

The acoustic environment is dynamic, in that the
characteristics of a location or activity may change (e.g.
moving from a quiet individual office to a large air-
conditioned office), and we encounter new environ-
ments. Most environments also change incrementally
(e.g. through different bus models being used on a reg-
ularly used route). Therefore, adapting to changes of
environment and continuously learning new environ-
ments are important requirements for acoustic envi-
ronment trackers.

Such changes require continuously updating existing
models with new training data and adaptively building
more robust models. However, if the training set size
increases continuously, the models become more
ambiguous and diverse. To avoid these problems we
remove old samples from the training set as new ‘good’
samples are added; this approach is similar to [42]. We
believe this strategy improves the recognition accuracy
for environments where the initial performance is poor
and allows us to learn new environments with minimal
initial training data.

3.4 Hierarchical noise model

The classification granularity of acoustic environments
and sound events is largely determined by the purposes
for which the classifications are designed. Similarly,
suitable sampling strategies are determined by the
applications using the context information. The focus of
the work described here is on meeting information needs
of people in their daily environments and routines.

In this initial hierarchical noise model there are just
two levels, environments (office, supermarket, street,
etc.) and sound events (telephone ring, hand clap, etc.).
The classifier first compares the unknown sample against
the set of environment models. If an uncertain envi-
ronment is detected (measured by confidence score), the
sample is compared against the set of sound events to
find a cue. If confusion still exists, other contextual
information might aid in reducing ambiguities.

The noise model also supports hierarchies of envi-
ronments, for example allowing bus, train and car to be
grouped under a more general transport label. The
model allows user-defined hierarchies to be created.
The use of suitable acoustic environment hierarchies
allows us to assign samples with poor confidence scores
to a more general class. In this case the model chooses
the lowest class in the hierarchy that subsumes the first
and second matches (i.e. those used in the confidence
score).
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4 Acoustic environment tracker

Context-aware applications gain substantially from
environmental noise classification because the typical
auditory environment of a mobile user is dynamic and
structured. Our HMM classifier has high accuracy and
negligible computational cost and so can easily run on
limited capacity devices. We have investigated the fea-
sibility of this approach through a prototype context-
aware application using the built-in microphone in the
mobile device with periodic audio buffering of environ-
mental noise.

We have developed an application for a context-
aware weather information service. The focus of this
application is on rapidly recognising a user’s current
environment by short duration sound recordings, using
the trained models, together with contextual informa-
tion from other sources. This application also adapts to
changes in the environment and to new environments
which are not pre-classified by the initial models. Besides
a set of general models, personalised models can be
trained to satisfy individual needs, requiring only initial
human input to identify and name the new environment.
Context tracking and transitions are recorded in a log
file. The logical architecture is shown in Fig. 1.

4.1 Client

The client prototype consists of five modules: environ-
mental noise capture and recognition, training, context
tracking, model update and browser. Some components
are developed using the Java sound API [43]. Figure 2
shows the user interface of the capture/recognition
module.

The application senses two contexts: environmental
noise and time. The microphone is a sensor for envi-
ronmental noise and the built-in clock is the time sensor.
The application periodically invokes an audio recorder
to sample the environmental noise. Timestamps are
automatically added to each captured noise sample.

The sample duration and the sampling interval are
user-controllable. By default, the duration is 3 s and
interval is 60 s. The user can also control the quality of
the samples depending on the device capability; the de-
fault audio format is PCM 8.000 kHz, 8 Bit, Mono.

The recorded sample is sent to the noise recogniser
and the result is shown on the screen together with
confidence and captured time (see middle part the
interface). If the confidence is below the threshold,
samples are taken continuously, regardless of the inter-
val setting, until it reaches the threshold. If an envi-
ronment change is detected, samples are taken more

Fig. 1 Tracker logical
architecture
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frequently until the change is confirmed. When low
confidence results continue for a long period, the
application prompts the user for information about the
environment. If the user is unable to respond immedi-
ately, for example they are driving or in a meeting,
training starts automatically and the user is prompted to
input the environment name at a later time.

Every new user gets a set of general models as the
starting point. The general models may not work well
due to differences between the real environments and
those used to train the model. For instance, the office
used for training was a small, quiet, air-conditioned
office. A user with a large office without air-conditioning
and with windows opening over a busy street, might
expect a poor initial match. Once the personalised
models are trained, users can switch between the general
models and the personal models.

The default sampling regime is to take a 3-s sample
every 60 s. If the confidence in the sample is low, or if
the recognised environment has changed, the system
takes continuous samples until a sequence of samples is
recognised with high confidence as coming from a
known environment or the system invokes the training
module. This dynamic sampling behaviour allows the

system to react rapidly to changes in the users’ acoustic
environments (and, by inference, changes in their
activities). A topic for future work will be to investigate
different adaptive sampling strategies.

Training is a core module of this application for
adaptive learning. Training can be performed manually
by the user to train the personalised model or started
automatically when an uncertain environment is found.

Figure 3 shows the training interface of the applica-
tion. The user needs to specify a name of the new
environment and record a sample for a few minutes.
They may control the recording quality and length. If it
is a new environment, the user can input a name for it,
for example ‘My Lab’. Alternatively, they may select a
name from a list if it is an existing environment.
Selecting a name from the list can also avoid multiple
definitions of similar environments, for example ‘bar’
and ‘pub’. When an automatic training session starts, it
uses the default setting, which is PCM 8.000 kHz, 8 Bit,
Mono, 5 min length. The recorded sample is then sent to
the server to perform training.

The server periodically (e.g. daily) gathers new sam-
ples and trains models. It updates models and infor-
mation once the new models have been trained and are

Fig. 2 Environmental noise
capture/recognition

Fig. 3 Training
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ready to be downloaded to the client. Users are then able
to update the general models, personal models and
configuration files (Fig. 4).

4.2 Application for PDA

We have also developed a version of the tracker appli-
cation which runs on a PDA. It has a substantially
simplified interface, and the recogniser can be moved to
the server side to further reduce the tracker’s footprint
on the PDA (Fig. 5).

4.3 Server

The server comprises the environmental noise database,
training tool, web application server, a set of environ-
mental noise models and a service module. There are
two parts to the environmental noise database; the ori-
ginal manually recorded samples and the new samples
automatically uploaded by the user. The original sam-
ples were used to train a set of environmental noise
models which were delivered to the client application as
the initial general models. The service application con-
tinues to accept and save new samples which are up-
loaded from client applications into the new sample
database. These new samples include samples of new
environmental noise models and samples of existing
environmental noise models. These are then used to
build new models or improve existing models. Training
is performed on a daily basis or depending on the
number of new samples.

5 A context-aware infrastructure

In order to use the results produced by the environmental
noise classifier as contextual input to context-aware
programs, we have adapted the classifier to work as a

Tracker component of the Kent MobiComp infrastruc-
ture [44]. Built on earlier work in context-aware field
recording tools [45], MobiComp was originally devel-
oped to support context sharing in a range of mobile
applications [46, 47]. The current version provides a
simple API for building distributed ubiquitous comput-
ing and context-aware applications.

The core element of the infrastructure is the Con-
textService (Fig. 6), a simple interface to a tuplespace
[48, 49], extended with event notification. This acts as a
store for context elements and enables coordination
between the components of context-aware applications.
The approach here is similar to that employed in several
other ubiquitous computing support infrastructures, for
example the Stanford Event Heap [50].

The storage components behind the ContextService
interface may be configured to support different scales of
context-aware applications: for simple, stand-alone,
applications, for multiple applications on a single device
or for distributed storage. In the latter case, servers at
well-known addresses can be employed as proxies for

Fig. 4 Updating

Fig. 5 Interface on PDA
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mobile devices where their network connections (e.g. via
GSM/GPRS) prevent direct requests from the Internet
to the device.

The ContextService interface provides ‘put’, ‘get’ and
‘remove’ methods to support the tuplespace model,
registration and notification methods to support an
event-based model and avoid the need for continuous
polling for interesting events. In addition, a general
query interface is being developed to enable clients to
enquire about the content of the store, retrieve element
schemas and to extent the simple ‘get’ interface with
general-purpose XQuery [51] requests.

Context producers (trackers) register their avail-
ability and capabilities by putting appropriate elements
into the tuplespace. Their purpose is to collect raw
context data from sensors such as GPS receivers, other
dynamic sources such as the noise classifier described
above, or static sources such as configuration files for
device capabilities and user preferences. Trackers
transform their input into context elements which are
then put into the tuplespace. The noise classifier client
described in Sect. 4.1 above has been modified to act as
a tracker, logging its output to the ContextService
shown in Fig. 6.

Context elements take the form of a subject–predi-
cate–object triple, relating an entity identifier to a, pos-
sibly complex, named context value. Additionally,
elements carry a production timestamp, a default
validity period, and a privacy level indicating how they
may be disseminated through the ContextService. The
object part of a context element may be arbitrarily
complex, and different trackers might produce elements
with similar names but different semantics. Equally,
similar information may be packaged in different forms.
As a first step towards wider interoperability, trackers
are required to supply XML Schema fragments for each
element they may produce as part of their initial regis-
tration with the ContextService.

Element communication between infrastructure
components takes the form of XML documents based
on the ConteXtML schema which has been developed to
support the infrastructure. Typical location, velocity and
noise classification elements are shown in Fig. 7.

ContextListener components consume context ele-
ments. They typically register an interest in one or more
entities and/or particular elements and receive event
notifications whenever a corresponding element is put
into or removed from the tuplespace. On receiving a
notification, the listener may get the element from the
tuplespace and use it as required. Context aggregators
may be constructed by combining tracker and listener
functions. Here, the tracker monitors events from the
ContextService, rather than a sensor device, and applies
a transformation before returning a new element to the
tuplespace. Aggregators can combine several low-level
sensor elements to produce an element at a higher level

Fig. 6 The Kent MobiComp infrastructure

Fig. 7 ConteXtML representation of MobiComp context elements
for location, velocity and noise classification (Fig. 9). ContextEl-
ement example
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of abstraction. For example, information from temper-
ature, door, window and light sensors might be used to
determine room occupancy. Other aggregators may
perform simple transformation services, such as con-
verting latitude and longitude coordinates from a GPS
sensor to coordinates on an appropriate local or na-
tional grid.

Many non-trivial context-aware applications take the
form of complex context aggregators, for example, the
FieldMap application described in [45]. In Sect. 6 we
describe a context agent that uses location, activity,
device capabilities and user preferences to refine queries
before passing them to a target web application. When
the result is returned to the ContextAgent it is modified
according to user preferences, device capabilities and
other constraints.

6 Exemplar: weather forecast information

The information on user contexts which links output
modalities, devices and request domains provided by the
ContextService makes it possible to add context-aware
capabilities to conventional information services.Herewe
describe this in relation toweather information provision.
We present the logical architecture of our prototype
weather forecast information system. It uses contexts
obtained from the ContextService to modify both queries
and responses to meet constraints of location, environ-
ment, device capabilities and user preferences.

The following scenario motivates the weather infor-
mation application, showing how different environments
can modify requests (input modalities) and responses
(output modalities). A crane operator, while at work, is
normally only interested in wind speed and prefers to

receive this as an SMS message on his mobile phone; he
may simply submit the query ‘weather’, from a building
site environment, which is expanded to be the wind
forecast at his current location for the rest of the day.
His preferences may state that the same query issued
from a heavy vehicle environment is expanded to be the
general forecast between his current location and his
depot. In this instance, the application recognises that
the context is a vehicle and delivers the information as a
voice message. (It is safer to assume that the request is
made by the driver—a passenger can override this
assumption through further interaction.) The same re-
quest—‘weather’—issued from his PDA at the weekend
in a coastal environment will give him the detailed
coastal forecast as in text format on his screen. The
remainder of this section describes the architecture and
functionality of the application.

6.1 Logical architecture overview

The range of context information that may be used in
modifying the original query is dependent on what
sources are available (as elements in the ContextService
tuplespace) and whether the application can exploit that
information. In this example we are looking at acoustic
environment and input modality, combined with static
information on the user, device and output format
preferences.

The overall logical architecture of the system is
shown in Fig. 8. The core of the system is the Context-
Agent which includes the language model agent, data
source agent and modality agent. The ContextAgent
interacts with the ContextService, input modality, re-
quired application and output modality agents. The goal

Fig. 8 Logical architecture for
context-aware weather
forecasting application

249



of the ContextAgent is to use contexts to respond to
users in the most appropriate way.

First, user contexts are sensed by context trackers and
stored in the ContextService. When a user asks a query,
the language agent extracts structured values and
unstructured text from it in order to understand the
query category (e.g. weather forecast, hotel booking or
flight information) and send the query to the question
extractor. The question extractor extracts useful infor-
mation from the raw query and passes it to the query
builder, which enhances it with relevant user preferences,
e.g. individual, group or default.

The query builder passes the query to the data source
agent, which sends it to the relevant application agent.
The application agent formats the query in a form
suitable for its sources (e.g. SQL, XQuery), dispatches it,
receives the response(s) and returns the result to the
ContextAgent. Once the ContextAgent has the result
and context information, the result builder refines the
result (e.g. by removing unwanted information), formats
it and delivers it to the user with the modality best suited
to the user’s preferences, modified by current constraints
such as device availability. In a fully developed appli-
cation we would anticipate using additional context
sources covering spatial and temporal location, and
users’ activity patterns.

6.2 Context retrieval

We have described the acoustic environment tracker and
ContextService in detail in Sects. 4 and 5. Our approach
here is to plug the acoustic environment tracker into the
context infrastructure and use the acoustic environment
as a constraint in a modality agent.

The acoustic environment tracker periodically ob-
tains environmental noise and adds an element in the
ContextService. This may take the form of a detailed
noise classification element as in Fig. 7, or a simple
location classification as shown in Fig. 9. The modality
agent retrieves the user’s current contexts from the
ContextService and creates a user-context description.

6.3 Input modalities and query processing

We provide both voice and HTML interfaces in the
system to allow the user to submit queries. For the
HTML interface, a user can open a browser and type in
the query. For the voice interface, user may speak nat-

urally to the system. We use VoiceXML, implemented
on the IBM voice server SDK [52], to deal with voice
queries. In our weather forecast exemplar, the applica-
tion can accept questions about general weather fore-
casts, as well as information on temperature, rain, wind,
humidity, sunrise, etc.

We attempt to understand all in-domain queries and
do not constrain the user at any point in the dialogue.
We currently use a JSGF [53] which accepts general
weather queries like: ‘‘What will the weather be in
Chichester on Sunday?’’, or more specific queries like:
‘‘What’s the chance of hail tonight in Wellingborough?’’,
or shorter phases, such as ‘‘weather in London tomor-
row?’’, or ‘‘weekend Nottingham fog?’’. The vocabulary
currently used by the system contains 474 words, which
include 350 city and locality names in UK; 21 time terms
e.g. ‘‘tomorrow’’, ‘‘Friday’’, ‘‘weekend’’; 37 weather
terms, e.g. ‘‘rain’’, ‘‘snow’’, ‘‘temperature’’; 66 general
terms, e.g. ‘‘please’’, ‘‘chance’’, ‘‘what’’, ‘‘how’’ etc. The
weather terms in this model are based on a set of terms
arrived at following discussions with local weather
forecasters.

Further development of the language model requires
a suitable corpus of real user queries in various modal-
ities. In the absence of such a corpus one of the best
available sources is the Excite 2001 query corpus of one
million queries (described in [54, 55]). It contains 1,307
distinct queries containing weather terms from our lan-
guage model, of which 28% are of the form <weather
term, place>, 21% are looking for a service (e.g. CNN
Weather Channel), and 43% are queries implicitly re-
questing local weather forecasts; the remainder are
mostly searches for weather records.

The place, time and weather terms are extracted from
the query by the question extractor. The current version
can deal with a variety of variant names and misspell-
ings. It has a comprehensive list of weather terms and
their mapping into standard forecasting terminology,
and a default which is used if no specific weather types
are contained in the request. The recognition of tem-
poral phrases is limited to those covered by the scope of
the WeatherQuest database, defaulting to ‘‘today’’ if
nothing else is recognised. These are subsequently con-
verted into dates. Place names are recognised by, first,
trying to match the place exactly in the list of known
places, second, trying to match elements of multiple
word place names, and finally to look for a close match
(using minimum edit distance) between target words and
known places. If no good match is found, a default of
‘‘here’’ is used. ‘‘Here’’ is the user’s current location
determined by GPS, or their home city if no other
location information is available. This information can
be obtained from the ContextService. The city or other
location information is mapped into a forecast locality
to query the forecast database.

The location coordinates, forecast period and
weather terms then go into the query builder to generate
a SQL statement for querying the forecast database or
other statements for querying Internet sources.Fig. 9 ContextElement example
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6.4 Modality agent

In order to select the best output modality, the
modality agent requests a set of user contexts which is
related to the query. The current version of the agent
uses a simple rule-based strategy for matching the
different constraints in order to find the best output
modality. The rules serve as a model that provides a
detailed description for different contexts. The rules
identify four high-level categories of contexts: the user
preferences, the input modality, the device and the
user’s activity. Activity is inferred from the acoustic
environment, location and other context information,
particularly location.

The user-preference rule defines the possible output
modality according to user preference, for instance, a
deaf user who requires sign language as output. In this
case the only allowed output is sign language. If a user’s
preference is for graphic output, we give graphic the first
priority, and also allow text and voice.

In many situations, the static user preference cannot
satisfy the user’s current needs. For example, a user’s
preference is text but he/she is driving, or the preference
is voice but he/she is in a conversation. In such cases,
other constraints need to be applied.

The input modality indicates whether the query
modality is voice or text. If it is voice, that is given the
first priority, we also allow graphic and text. If it is text,
we give the output order as: graphic, text, voice.

The device also gives constraints for the output for-
mat. At a high level, we classify devices as either a PC or
PDA. Then lower-level device attributes such as screen
resolution can be retrieved as necessary from the Con-
textStore.

The user’s current activity is an important constraint
which can override user preferences and input modality.
A user’s current activity, as inferred from the acoustic
environment is subject to frequent changes. Focus is
given on taking into account some pre-defined con-
straints and working to optimise output. For instance, if
the user’s environment is a car, we assume the user is
driving, so the only allowed output modality is voice. If
the user’s environment is in a lecture we allow graphic or
text output modalities, but not voice.

The modality agent selects the best output format
depending on user’s preference, input modality, device
and current activity. The selection is applied on the
available output modalities and their priorities based on
the rules.

6.5 Data source agent

The data source agent is a mediator which directs the
generated query to specific information sources—in
this example weather forecasts. There are many public
and commercial sources of weather forecast informa-
tion available at granularities from national synoptic
forecasts to specialised local forecasts of particular

facets of the weather, covering periods from a few
hours to seasons. We are working with WeatherQuest
to explore a range of novel service prototypes.
WeatherQuest is a startup company from the Univer-
sity of East Anglia School of Environmental Sciences
which provides specialist forecasting services in the
UK, but does not currently offer comprehensive cov-
erage of the country. For places not covered by
WeatherQuest forecasts we supply a general synopsis
from the publicly available UK Meteorological Office
forecast. The WeatherQuest database can provide
weather forecasts for much of the UK for up to
6 days, and can provide a wide range of weather
properties such as temperature, wind speed, humidity,
rain type, sunrise, etc. Currently, if the locality is not
covered by WeatherQuest, the national synoptic fore-
cast is provided as a default response.

Fig. 10 XML output for example query

Fig. 11 SiGML fragment for example query
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6.6 Output modalities

The query result is directly fed into an XML weather
forecast generator, which outputs just the information
that the user requested (Fig. 10) along with an XML
schema to document it. A set of XSLT scripts provides
multiple interfaces to the weather forecast report; cur-
rently we support HTML, plain text (which can be sent
via email), VoiceXML, WML and British Sign Lan-
guage (BSL), using a SiGML prototype. The signing
system also supports output in Dutch and German sign
languages.

HTML pages are available in a format which uses an
avatar to display the weather information as sign lan-
guage and text. These pages are produced using a tem-
plate which is supplied with the appropriate text and a
list of motion capture files or SiGML content (Fig. 11).
This is implemented through an XML template to fetch
the motion capture files we need; this requires the client
side to have installed the signing avatar and relevant
motion files (Fig. 12). The avatar extends previous
work, described elsewhere [56, 57]. Planned develop-
ments will provide the motions as XML inside an
HTML page, avoiding the need to download the motion
capture files to a client machine.

7 Conclusions

In this paper we have summarised the results of our
experimental work in environmental noise and sound
event classification and recognition. We have described a
model and implementation of a mobile context-aware
framework and have shown how we can use this to
capture a variety of context information. We have
illustrated this with an experimental implementation of a
multimodal weather forecast information system. Our
initial experiences indicate that there are a number of
open issues concerning user behaviour capture and
representation, inference from context information to
query and output modification, and learning from
feedback to modify the future behaviour of the system.

The contribution of this work is to demonstrate the
feasibility and desirability of using a general framework
for reporting and maintaining a wide variety of context
information that can be exploited to improve both the
questions and responses from conventional systems. Our
experimental results show the feasibility of capturing
environmental noise using current PDAs, although there
are several implementation issues that need to be ad-
dressed before integrated systems can be deployed.

Fig. 12 Example output:
a HTML, b WML, c SiGML
(weather forecast data supplied
by WeatherQuest)
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The work described above shows that the acoustic
environment is a rich source of context information
which can be recognised with a high degree of accuracy
and can be used as a good indicator of current activity.
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