The VLDB Journal 10: 270-294 (2001) / Digital Object Identifier (DOI) 10.1007/s007780100054

Answering queries using views: A survey

A.Y. Halevy

Department of Computer Science and Engineering, University of Washington, Seattle, WA, 98195; E-mail: alon@cs.washington.edu

Edited by M. Carey. Received: 1 August 1999 / Accepted: 23 March 2001
Published online: 6 September 200%-Springer-Verlag 2001

Abstract. The problem of answering queries usingviewsisto The first class of applications in which we encounter the
find efficient methods of answering a query using a set of previproblem of answering queries using views is query optimiza-
ously defined materialized views over the database, rather thaiion and database design. In the context of query optimiza-
accessing the database relations. The problem has recently rien, computing a query using previously materialized views
ceived significant attention because of its relevance to a widean speed up query processing because part of the computa-
variety of data management problems. In query optimizationtion necessary for the query may have already been done while
finding a rewriting of a query using a set of materialized views computing the views. Such savings are especially significantin
can yield a more efficient query execution plan. To support thedecision support applications when the views and queries con-
separation of the logical and physical views of data, a storagéain grouping and aggregation. Furthermore, in some cases,
schema can be described using views over the logical schemaertain indices can be modeled as precomputed views (e.g.,
As a result, finding a query execution plan that accesses th@in indices [Val87])! and deciding which indices to use re-
storage amounts to solving the problem of answering querieguires a solution to the query rewriting problem. In the context
using views. Finally, the problem arises in data integrationof database design, view definitions provide a mechanism for
systems, where data sources can be described as precompusegbporting the independence of hieysicalview of the data
views over a mediated schema. This article surveys the statend itslogical view. This independence enables us to modify
of the art on the problem of answering queries using viewsthe storage schema of the data (i.e., the physical view) with-
and synthesizes the disparate works into a coherent framesut changing its logical schema, and to model more complex
work. We describe the different applications of the problem,types of indices. Hence, several authors describe the storage
the algorithms proposed to solve it and the relevant theoreticaichema as a set of views over the logical schema[YL87,TSI96,
results. Flo96]. Given these descriptions of the storage, the problem
of computing a query execution plan (which, of course, must
Keywords: Materialized views — Data integration — Query access the physical storage) involves figuring out how to use
optimization — Survey — Date warehousing — Web-site man-the views to answer the query.
agement A second class of applications in which our problem arises
is data integration. Data integration systems provide a uniform
query interface to a multitude of autonomous data sources,
which may reside within an enterprise or on the World-Wide
Web. Data integration systems free the user from having to
1 Introduction locate sources relevant to a query, interact with each one in
isolation, and manually combine data from multiple sources.
The problem of answering queries using views (also knownusers of data integration systems do not pose queries in terms
as rewriting queries using views) has recently received sigof the schemas in which the data is stored, but rather in terms
nificant attention because of its relevance to a wide variety obf a mediated schemahe mediated schema is a set of rela-
data management problems: query optimization, maintenancgons that is designed for a specific data integration application,
of physical data independence, data integration and data warend contains the salient aspects of the domain under consid-
house design. Informally speaking, the problem is the follow-eration. The tuples of the mediated schema relations are not
ing. Suppose we are given a quépover a database schema, actually stored in the data integration system. Instead, the sys-
and a set of view definitionig;, . . ., V;,, over the same schema. tem includes a set sburce descriptionthat provide semantic

Is it possible to answer the quefyusingonlythe answersto mappings between the relations in the source schemas and the
theviewsly, ..., V,,? Alternatively, whatis the maximal setof relations in the mediated schema.

tuples in the answer @ that we can obtain from the views? If
we can access both the views and the database relations, what Strictly speaking, to model join indices we need to extend the
is the cheapest query execution plan for answetifig logical model to refer to row IDs.

A.Y. Halevy: Answering queries using views: A survey 271

The data integration systems described in [LRO96b,integration distinguished between the case in which the indi-
DG97b,KW96,LKG99] follow an approach in which the con- vidual views are complete (i.e., contain all the tuples in their
tents of the sources are described as views over the mediatel®finition) and the case where they may be incomplete (as is
schema. As aresult, the problem of reformulating a user querygommon when modeling autonomous data sources). Further-
posed over the mediated schema, into a query that refers dimore, the works on data integration distinguished the transla-
rectly to the source schemas becomes the problem of answetion problem from the more general problem of finding all the
ing queries using views. In a sense, the data integration contextnswers to a query given the data in the sources, and showed
can be viewed as an extreme case of the need to maintain phytiat the two problems differ in interesting ways.
ical data independence, where the logical and physical layout The survey is organized as follows. Section 2 presents in
of the data sources has been defined in advance. The solutionsore detail the applications motivating the study of the prob-
to the problem of answering queries using views differ in thislem and the dimensions along which we can study the prob-
context because the number of views (i.e., sources) tends tem. Section 3 defines the problem formally. As a basis for
be much larger, and the sources need not contaiodimplete the discussion of the different algorithms, Sect. 4 provides an
extensions of the views. intuitive explanation of the conditions under which a view can

In the area of data warehouse design we need to choosel® used to answer a query. Section 5 describes how materi-
set of views (and indexes on the views) to materialize in thealized views have been incorporated into query optimization.
warehouse [HRU96,TS97,YKL97,GHRU97,ACNO0O0, CGO00]. Section 6 describes algorithms for answering queries using
Similarly, in web-site design, the performance of a web siteviews that were developed in the context of data integration.
can be significantly improved by choosing a set of views toSection 7 surveys some theoretical issues concerning the prob-
materialize [FLSY99]. In both of these problems, the first steplem of answering queries using views, and Sect. 8 discusses
in determining the utility of a choice of views is to ensure that several extensions to the algorithms in Sects. 5 and 6 to ac-
the views are sufficient for answering the queries we expect teommodate queries over object-oriented databases and queries
receive over the data warehouse or the web site. This problenwith access-pattern limitations. Finally, Sect. 9 concludes, and
again, translates into the view rewriting problem. outlines some of the open problems in this area.

Finally, answering queries using views plays a key rolein ~ We note that this survey is not concerned with the closely
developing methods for semantic data caching in client-serverelated problems of incremental maintenance of material-
systems [DF196,KB96,CR94,ACPS96]. In these works, the ized views, which is surveyed in [GM99b], selection of
data cached at the client is modeled semantically as a set efhich views to maintain in a data warehouse [HRU96,TS97,
queries, rather than at the physical level as a set of data pag€&HRU97,Gup97b,YKL97,GM99¢,CG00,CHS01] or auto-
or tuples. Hence, deciding which data needs to be shippethated selection of indexes [CN98b, CN98a].
from the server in order to answer a given query requires an
analysis of which parts of the query can be answered by the o ,)
cached views. 2 Motivation and illustrative examples

The many applications of the problem of answering gefore heginning the detailed technical discussion, we moti-

queries using views has spurred a flurry of research, rangingie the problem of answering queries using views through
from theoretical foundations to algorithm design and imple-g, e of its applications. In particular, this section serves to

mentation in several commercial systems. This article surveys ;strate the wide and seemingly disparate range of applica-

the current state of the art in this area, and classifies the Workt?ons of the problem. We end the section by classifying the
into a coherent framework based on a set of dimensions alon)

different works on the topic into a taxonomy.
which the treatments of the problem differ. D y

. . , We use the following familiar university schema in our ex-
The treatments of the problem differ mainly depending 555165 throughout the paper. We assume that professors, stu-
on whether they are concerned with query optimization antyents and departments are uniquely identified by their names,
database design or with data integration. In the case of query, 4 courses are uniquely identified by their numbers. The
optimization and database design, the focus has been on pr

duci . | hat invol he vi egistered relation describes the students’ registration in
ucing a query execution plan that involves the VIews, anc)asses while thdajor relation describes in which depart-

fhenta particular student is majoring (we assume for simplicity
that every department has a single major program).

Prof(name, area)
ourse(c-number, title)

accommodate the presence of views. In this context, it is ne
essary that rewriting of the query using the views beauniv-
alent rewriting in order for the query execution plan to be
correct. Itis important to note that some of the views included_lc_: h ¢ b ; luati
in the query plan may not contribute to the logical correctnessReaq es(prof, c-number, quarter, evaluation)
. , egistered(student, c-number, quarter)

of the plan, but only to reducing the plan’s cost. Major(student, depf)

Inthe data integration context, the focus has been on tran§,-\/0rksm(Iorof ,dept)
lating queries formulated in terms of a mediated schema im%dvises(prof’ student).
queries formulated in terms of data sources. Hence, the output '
of the algorithm is a query expression, rather than a query ex-
ecution plan. Because the data sources may not entirely covey Query optimization
the domain, we sometimes need to settle foomatainedquery
rewriting, rather than an equivalent one. A contained queryThe first and most obvious motivation for considering the
rewriting provides a subset of the answer to the query, buproblem of answering queries using views is for query opti-
perhaps not the entire answer. In addition, the works on datenization. If part of the computation needed to answer a query

272 A.Y. Halevy: Answering queries using views: A survey

name

For example, suppose the relatidbsurse andRegistered
. Department “« have indexes on the-number attribute. In this case, if the

name <

. worksin . mejor view Graduate does not have any indexes, then evaluating
T Faculty - i & the query directly from the database relations may be cheaper.
T AN Hence, the challenge is not only to detect when a view is

Evaluation <—teach Stufiem logically usable for answering a query, but also to make a
Ve N : name judicious cost-based decision on when to use the available

Quarter Course VEQISter‘Ed\A views.
// \\\ Quarter
title c—number

Fig. 1. An entity/relationship diagram for the university domain. 2.2 Maintaining physical data independence

Note thatquarter is an attribute of the relationshipsgistered and

teaches Several works on answering queries using views were inspired

by the goal of maintaining physical data independence in re-
tional and object-oriented databases [YL87,TSI96,Fl096].

. . - . |a
has already been performed in computing a materialized V|evJ ne of the principles underlying modern database systems is

then we can use the view to speed up the computation of th e separation between the logical view of the data (e.g., as

query. tables with their named attributes) and the physical view of

Consider the following query, asking for students and . S ; .)
course titles for students who registered in Ph.D-level classel€ data (€., how itis laid out on disk). With the exception
f horizontal or vertical partitioning of relations into multiple

taught by professors in the Database area (in our example, unj:

versity graduate-level classes have numbers of 400 and abo Ilelségfrlggogségﬁgbsggv ?é‘:’]tfgstiirnessiﬂI,ldizrga%rafgg dofri}eas
and Ph.D-level courses numbers of 500 and above): P

in which they are stored. In object-oriented systems, main-

select Registered.student, Course.title taining the separation is necessary because the logical schema

from Teaches, Prof, Registered, Course contains significant redundancy, and does not correspond to

where Prof.name=Teaches.prof and a good physical layout. Maintaining physical data indepen-
Teaches.c-number =Registered.c-number and dence becomes more crucial in applications where the logical
Teaches.quarter=Registered.quarter and model is introduced as an intermediate level after the physi-
Registered.c-number=Course.c-number and cal representation has already been determined. This is com-
Course.c-number > 500 and Prof.area="DB". mon in applications of semi-structured data [Bun97,Abi97,

FLM98], storage of XML data in relational databases [FK99,
GT+99,DFS99, TIHWO01], and in data integration. In fact,
e STORED System [DFS99] stores XML documents in a

Suppose we have the following materialized view, con-
taining the registration records of graduate-level courses an

above. relational database, and uses views to describe the mapping
create view Graduate as from XML into relations in the database. In some sense, data
select Registered.student, Course.title, Course.c-number, integration, discussed in the next section, is an extreme case
Registered.quarter where there is a separation between the logical view of the
from Registered, Course data and its physical view.
where Registered.c-number=Course.c-number and To maintain physical data independence, several authors
Course.c-number > 400. proposed to use views as a mechanism for describing the stor-
The view Graduate can be used in the computation of the @ge of the data. In particular, [TSI96] described the storage of
above query as follows: the data using GMAP@eneralized multi-level access paths)
_ expressed over the conceptual model of the database.
select ~ Graduate.student, Graduate.itle To illustrate, consider the entity-relationship model of a
from Teaches, Prof, Graduate slightly extended university domain shown in Fig. 1. Figure 2
where Prof.name=Teaches.prof and shows GMAPs expressing the different storage structures for
Teaches.c-number=Graduate.c-number and this data.

Teaches.quarter=Graduate.quarter and

Graduate.c-number > 500 and Prof.area="DB"" A GMAP describes the physical organization and indexes

of the storage structure. The first clause of the GMAP (the

The resulting evaluation will be cheaper because the viewas clause) describes the actual data structure used to store a
Graduate has already performed the join betweRegis- set of tuples (e.g., aBtree, hash index, etc.) The remaining
tered andCourse, and has already pruned the non-graduateclauses describe the content of the structure, much like a view
courses (the courses that actually account for most of the a@efinition. Thegiven andselect clauses describe the available
tivity going on in a typical university). It is important to note attributes, where thgiven clause describes the attributes on
that the viewGraduate is useful for answering the query even which the structure isindexed. The definition of the view, given
though it does nasyntacticallymatch any of the subparts of in the where clause uses infix notation over the conceptual
the query. model.

Even if a view has already computed part of the query, In our example, the GMAP G1 stores a set of pairs con-
it is not necessarily the case that using the view will lead totaining students and the departments in which they major,
a more efficient evaluation plan, especially considering theand these pairs are indexed by a-Bee on attributeStu-
indexes available on the database relations and on the viewdent.name. The GMAP G2 stores an index from the names

A.Y. Halevy: Answering queries using views: A survey 273

def.gmap G1 as b*-tree by querying multiple sources on the World-Wide Web, and in-
given Student.name tegration of data from distributed scientific experiments. The
select Department sources in such an application may be traditional databases,
where Student major Department. legacy systems, or even structured files. The goal of a data in-

tegration system s to free the user from having to find the data
sources relevant to a query, interact with each source in isola-
tion, and manually combine data from the different sources.

To provide a uniform interface, a data integration system
exposes to the usemaediated schema mediated schema is
a set olvirtual relations, in the sense that they are not actually
given Course.c-number stored an_ywhere. The mediqted sch_ema is designed manually
select Department for a particular data integration application. To be able to an-
where Student registered Course and swer queries, the system must also contain a ssdwfce de-
Student major Department. scriptions A description of a data source specifies the contents
of the source, the attributes that can be found in the source,
and the constraints on the contents of the source.

One of the approaches for specifying source descriptions,
.) which has been adopted in several systems ([LRO96b, KW96,
of students to the numbers of the courses in which they arg\yg7, DG97b,LKG99]), is to describe the contents of a data
registered. The GMAP G3 stores an index from course numsqyrce as aiew over the mediated schema. This approach
bers to departments whose majors are enrolled in the coursgycijitates the addition of new data sources and the specifica-
As shown in [TSI96], using GMAPs itis possible to express atjon of constraints on contents of sources (see [UII97, FLM98,
large family of data structures, including secondary indexes O ev00] for a comparison of different approaches for specify-
relations, nested indexes, collection-based indexes, and strug source descriptions).
tures implementing field replication. _ In order to answer a query, a data integration system needs

Given that the data is stored in the structures describegy translate a query formulated on the mediated schema into
by the GMAPs, the question that arises is how to use thesgne that refers directly to the schemas in the data sources.
structures to answer queries. Since the logical content of thgjnce the contents of the data sources are described as views,
GMAPs are described by views, answering a query amounts tghe translation problem amounts to finding a way to answer a
finding a way of rewriting the query using these views. If'[herequery using a set of views.
are multiple ways of answering the query using the views, we e jllustrate the problem with the following example,
would like to find the cheapest one. Note that in contrast to thgyhere the mediated schema exposed to the user is our univer-
query optimization context, weustuse the views to answer sjty schema, except that the relaticfeaiches and Course

a given query, because all the data is stored in the GMAPS, haye an additional attribute identifying the university at which
Consider the following query in our domain, which asks g course is being taught:

for names of students registered for Ph.D-level courses and

the departments in which these students are majoring. Teaches(prof, C'”Umber, quarter, evaluation, univ)
Course(c-number, title, univ)

def_gmap G2 as b™-tree by
given Student.name
select Course.c-number
where Student registered Course.

def_gmap G3 as b™-tree by

Fig. 2. GMAPs for the university domain

select Student.name, Department Suppose we have the following two data sources. The first

where Student registered Course and source provides a listing of all the courses titled “Database
Student major Department and Systems” taught anywhere and their instructors. This source
Course.c-number>500. can be described by the following view definition:

The query can be answered in two ways. First, sibte create view DB-courses as
dent.name uniquely identifies a student, we can take theselect — Course.title, Teaches.prof, Course.c-number,
join of G1 and G2, and then apply a selectiGourse.c- Course.univ
number>500, and a projection ostudent.name andDe- from Teaches, Course
partment. A second solution would be to join G3 with G2 Where Teaches.c-number=Course.c-number and
and selec€ourse.c-number>500. In fact, this solution may Teaches._un|v“=Course.un|v and)
even be more efficient because G3 has an index on the course Course.title="Database Systems".

number and therefore the intermediate joins may be much The second source lists Ph.D-level courses being taught at
smaller. the University of Washington (UW), and is described by the

following view definition:

create view UW-phd-courses as

2.3 Data integration select Course.title, Teaches.prof, Course.c-number,
Course.univ

Much of the recent work on answering queries using views hagom Teaches, Course
been spurred because of its applicability to data integratioryvhere Teaches.c-number=Course.c-number and
systems. A data integration system (a.k.a. a mediator system Course.univ="UW" and Teaches.univ="UW" and
[Wie92]) provides auniform query interface to a multitude Course.c-number=>500.
of autonomous heterogeneous data sources. Prime examples If we were to ask the data integration system who teaches
of data integration applications include enterprise integrationcourses titled “Database Systems” at UW, it would be able to

274 A.Y. Halevy: Answering queries using views: A survey

answer the query by applying a selection on the soli8e is query optimization and maintenance of physical data inde-

courses: pendence. The key difference between these two classes of
works is the output of the algorithm for answering queries us-
select prof ing views. In the former case, given a que&py and a set of
from DB-courses viewsV, the goal of the algorithm is to produce an expression
where univ="UW". Q' that references the views and is either equivalent to or con-

On the other hand, suppose we ask for all the graduatet-a'ned in@. In the latter case, the algorithm must go further

level courses (notjustin databases) being offered at UW. Giveﬁmd prqduce a (h(iﬁefu_lly opt|m§|) que_t;)ll eiﬁecdut;org plan flor
that only these two sources are available, the data integratio _nswermgQ using the views (and possibly the database rela-

system cannot findll tuples in the answer to the query. In- ions). Here the rewriting must be an equivalengien order

stead, the system can attempt to find the maximal set of tuple@ e_:_wrs]ure_ th.? c_(t)rrﬁc'iness otfhthe ptl\?vn' bodi f K is that
in the answer that are available from the sources. In particu- € simifarity between these two bodies of work 1S tha

lar, the system can obtain graduatetabasecourses at UW they are concerned with the core issue of whether a rewriting

from the DB-courses source, and the Ph.D-level courses at ©f @ GUery is equivalent to or contained in the query. How-
UW from the UW-Phd-courses source. Hence. the follow- Vel While logical correctness suffices for the data integration

ing query provides the maximal set of answers that can p&ontext, it does not in the query optimi_zation context where
obtained from the two sources: we also need to find theheapesplan using the views. The

complication arises because the optimization algorithms need

select ftitle, c-number to consider views that do not contribute to thgical correct-

from DB-courses ness of the rewriting, but do reduce the cost of the resulting

where univ="UW” and c-number>400 plan. Hence, while the reasoning underlying the algorithms in
UNION the data integration context is mostly logical, in the query op-

select title, c-number timization case it is both logical and cost-based. On the other

from UW-phd-courses. hand, an aspect stressed in the data integration context is the

importance of dealing with a large number of views, which
Note that courses that are not Ph.D-level courses oggrrespond to data sources. In the context of query optimiza-
database courses will not be returned as answers. Whereasygp, it is generally assumed (not always!) that the number of
the contexts of query optimization and maintaining physicalyjews is roughly comparable to the size of the schema.
data independence the focus is on finding a query expression The works on query optimization can be classified into
thatisequivalento the original query, here we attemptto find gystem-R style optimizers and transformational optimizers.
a query expression that provides timaximal answerfrom The injtial works incorporated views into System-R style join
the views. We formalize both of these notions in Sect. 3. epnumeration, while later works that attempt to deal with amore
extended subset of SQL realized that the power of rewriting
rules is required in order to incorporate views.
Other applications: Before proceeding, we also note thatthe The main line of work on data integration attempted to
problem of answering queries using views arises in the desigdevelop algorithms for answering queries using views that
of data warehouses (e.g., [HRU96,TS97,GHRU97,YKL97]) scale up to a large number of vietvé second line of work
and in semantic data caching. In data warehouse design, wheftarted considering different properties of the data sources.
we choose a set of views to materialize in a data warehouse, Weor example, it was shown that if data sources are assumed to
need to check that we will be able to answer all the requireche complete (i.e., they include all the tuples that satisfy their
queries over the warehouse using only these views. In theefinition), then the problem of answering queries using views
context of semantic data caching (e.g., [DB8,KB96,CR94, becomes computationally harder. Intuitively, the reason for the
ACPS96]) we need to check whether the cached results of added complexity is that when sources are complete, we can
previously computed query can be used for a new query, oglso infer negative information as a result of a query to the
whether the client needs to request additional data from theource. This led to asking the following more basic question:
server. In [FLSY99,YFIVOO] it is shown that precomputing given a queng, a set of views’ and their extensions, what
views can significantly speed up the response time from wels the complexity of finding the maximal set of tuples in the
sites, which again raises the question of view selection. answer toQ from V.3 This work established an interesting
connection between the problem of answering queries using
views and query answering in conditional tables [IL84]. In
2.4 A taxonomy of the field these works, a major factor affecting the complexity of the
problem is whether the view extensions are assumed to be
As illustrated by the examples, there are several dimensioneomplete or not (when they are complete, the complexity is
along which we can classify the treatments of the problemhigher). Note that in the context of query optimization, the
of answering queries using views. In this section we describeviews are always assumed to be complete.
a taxonomy for classifying the different works on this prob-
lem, and highlight the main differences between the problem 2 strictly speaking, the motivation for the work of [YL87] was the
treatments. Figure 3 shows the taxonomy and some of theénaintenance of physical data independence, but their algorithm has
representative works belonging to each of its classes. more similarities with the data integration algorithms.
The most significant distinction between the different 2 Some authors refer to the distinction between the two problems
works is whether their goal is data integration or whether itas therewriting problem versus thguery answeringroblem.

A.Y. Halevy: Answering queries using views: A survey 275

Answering queries using views

Cost-based rewriting Logical rewriting
(query optimization and physical data independence) (data integration)
System-R style Transformational approaches Rewriting algorithms ~ Query answering algorithms
[CKPS95,TSI96,PHO1] [FRV96,BDD' 98] [YL87,LMSS95] (complete or incomplete sources)
[DPT99,ZCLT00,GL01] [Qia96,LR0O96b] [AD98, GM99a, CGLV00a]

[DG97a,PLOO]

Fig. 3.Ataxonomy of work on answering queries using views. The main distinction is between works on query optimization and maintenance of
physical dataindependence and works considering logical rewritings, mostly in the context of data integration. The works on query optimization
have considered both System-R style algorithms and transformation-based algorithms. The works on data integration considered algorithms
that scale to a large number of views, and the question of finding all the answers to the query, given the view extensions

Table 1. Extensions to query and view languages

Extension Relevant works

Grouping and aggregation [GHQ95,SDJL96,CNS99, GRT99,ZCI00,GTO0] (Sect.5.3)
Bag semantics [CKPS95,ZCLT00] (Sect.5.3)

OoQL [FRV96,DPT99] (Sect.8.1)

Multi-block queries [ZCL*00] (Sect.5.2)

Integrity constraints [DL97,Gry98,ZCL00,DPT99] (Sect. 7.2)
Access-pattern limitations [RSU95,KW96,DL97] (Sect.8.2)

Unions in the views [AGK99,Dus98] (Sect. 8.3)

Queries over semi-structured datgCGLV99, PV99] (Sect. 8.3)

Hierarchies in Description Logics [BLR97,CGL99] (Sect. 8.3)

Languages for querying schema [Mil98] (Sect. 8.3)

A separate dimension for classifying the different works is query. It is said to be materialized if its results are stored in the
the specific language used for expressing views and querieglatabase. A database instance is an assignment of an extension
Much of the early work on the problem focused on select-(i.e., a set of tuples) to each of the relations in the database.
project-join queries, but, as shown in Table 1, many extensions We assume the reader is familiar with the basic elements of
have been considered as well. The works on query optimizaSQL. We will distinguish between queries that involve arith-
tion have considered extensions of interest to SQL enginesnetic comparison predicates (e.g.,<, #) and those that do
such as grouping and aggregation and the presence of certait. Our discussion of answering queries using views in the
integrity constraints on the database relations. For obviousontext of data integration systems will require considering
reasons, these works have also considered the implicatiomgcursive datalog queries. We recall the basic concepts of dat-
of bag semantics on the rewriting problem. The data integraalog in Sect. 6.
tion works have considered extensions such as access-pattern In our discussion, we denote the result of computing the
limitation to the views, recursive queries, path expressions imuery ¢ over the databas® by Q(D). We often refer to
the queries, and integrity constraints expressed in descriptiogueries that reference named views (e.g., in query rewritings).
logics. In that case() (D) refers to the result of computing after

the views have been computed frdm

3 Problem definition 3.1 Containment and equivalence

In this section we define the basic terminology used throughThe notions of query containment and query equivalence en-
out this paper. We define the concepts of query containmerable comparison between different reformulations of queries.
and query equivalence that provide a semantic basis for comFhey will be used when we test the correctness of a rewriting
paring between queries and their rewritings, and then definef a query in terms of a set of views. In the definitions below
the problem of answering queries using views. Finally, we de-we assume the answers to queries are sets of tuples. The def-
fine the problem of extractingll the answers to a query from initions can be extended in a straightforward fashion to bag
a set of views (referred to as the set of certain answers). semantics. In the context of our discussion it is important to

The bulk of our discussion will focus on the class of select-note that the definitions below also apply to queries that may
project-join queries on relational databases. A view is a namedeference named views.

276 A.Y. Halevy: Answering queries using views: A survey

Definition 1. Query containment and equivalence: A query When a rewritingQ’ is contained in@Q but is not a
(21 is said to be contained in a que€d,, denoted by, C Q2 maximally-contained rewriting we refer to it as a contained
if for all database instance®, the set of tuples computed rewriting. Note that the above definitions are independent of
for QQ; is a subset of those computed g, i.e., Q1 (D) C the particular query language we consider. Furthermore, we
Q2(D). The two queries are said to be equivaler®if C Q> note that algorithms for query containment and equivalence
and@s C Q1. provide methods fotestingwhether a candidate rewriting of
a query is an equivalent or contained rewriting. However, by
The problems of query containment and equivalencethemselves, these algorithms do not provide a solution to the
have been studied extensively in the literature and shoulgroblem of answering queries using views.
be a topic of a specialized survey. Some of the cases A more fundamental question we can consider is how to
which are most relevant to our discussion include: con-find all the possible answers to the query, given a set of view
tainment of select-project-join queries and unions thereoidefinitions and their extensions. Finding a rewriting of the
[CM77,SY81], queries with arithmetic comparison predicatesquery using the views and then evaluating the rewriting over
[Klu88,LS93,Z093,KMT98], recursive queries [Shm93, the views is clearly one candidate algorithm. If the rewriting is
Sag88,L593,CV92,CV94], and queries with bag semanticgquivalent to the query, then we are guaranteed to find all the
[CVa3]. possible answers. However, as we see in Sect. 7, a maximally-
contained rewriting of a query using a set of views does not
always provide all the possible answers that can be obtained

3.2 Rewriting of a query using views fromthe views. Intuitively, the reason for this is that a rewriting

is maximally-contained only with respect to a specific query
Given a quenyQ and a set of view definitioni, . .., V,,, a language, and hence there may sometimes be a query ina more
rewriting of the query using the views is a query expressionéXpressive language that may provide more answers.
Q' that refersonlyto the viewsV, . . ., V;,.4 In SQL, a query The problem of finding all the answers to a query given

refers only to the views if all the relations mentioned in the @ Set of views is formalized below by the notion #rtain

from clauses are views. In practice, we may also be interestegnswersoriginally introduced in [AD98]. In the definition, we

in rewritings that can also refer to the database relations. Cor@istinguish the case in which the view extensions are assumed
ceptually, rewritings that refer to the database relations do nof© be complete (closed-world assumption) from the case in
introduce new difficulties, because we can always simulatevhich the views may be partial (open-world).

the previous case by inventing views that mirror precisely th

database tables. ®efinition 4. Certain answers: Let) be a query andV =

; e {V1,..., Vi } be a set of view definitions over the database
As we saw in Sect.2, we need to distinguish betwee”schemaR R,. Let the sets of tuples, v be ex-
two types of query rewritingsequivalent rewritingsand <o o é%ihé’vigm v respectivel,ym’ m

maximally-contained rewritingg-or query optimization and

s . .) . The tupleq is a certain answeto the queryQ under the
maintaining physical data independence we consider equivas) ysed-world assumption given vm if a € Q(D) for
lent rewritings. all database instance® such thatV;(D) = v; for everyi,

. . . 1<i<m.

Definition 2. Equivalent rewritings: Let) be a query and - = . :
= {V1,_- Vi) be_a_\ set of vi_ew de_finitions. The quepy Tr_1e tulglea is ac?.rtam answeto the qfueryQ un%erfthe
is an equivalent rewriting of) usingV if: open-world assumption given, ..., vy, if a € Q(D) for
’ all database instance® such thatV;(D) D wv; for everyi,
e ()’ refers only to the views i, and 1<i<m.

"is equivalent tay. N . . .
* Q'isequiv @ The intuition behind the definition of certain answers is

In the context of data integration, we often need to considerth"?' following. The_extensions ofa set_of views do not_define a
maximally-contained rewritings. Unlike the case of equivalentUnidue database instance. Hence, given the extensions of the
rewritings, the maximally-contained rewriting may differ de- VIEWS we have only partial information about the real state of
pending on the query language we consider for the rewriting{N€ database. A tuple is a certain answer of the qQeifyt is

Hence, the following definition depends on a particular query2n answer foany of the possible database instances that are
language: consistent with the given extensions of the views. Section 7.3

considers the complexity of finding certain answers.

Definition 3. Maximally-contained rewritings: Let) be a
query,V = {V4,...,V,,} be a set of view definitions, anti
be a query language. The quefy is a maximally-contained
rewriting of @ using)’ with respect toC if:

Example 1.As a very simple example, consider a database
schemaR (A, B) that includes a single relation with two at-
tributes. Suppose the viel; is defined to be the projection
of R on A, while V; is defined to be the projection éfon B,

e Q' is aqueryint that refers only to the views i, and suppose that our quetyis to retrieve all of the relation
e ()’ is contained inQ, and R.
e there is no rewritingQ; € £, such that)’ C Q; C Q Suppose we are given that the extensiori/pfincludes
andQ); is not equivalent ta@)’. the single tupléc;), and that the extension & includes the
single tuple(cs),
4 Note that rewritings that refer only to the views were catieth- Under the closed-world assumption, we can infer that the

plete rewritingsin [LMSS95]. tuple (c1, c2) mustbe in the relation?, and hence it is a cer-

A.Y. Halevy: Answering queries using views: A survey 277

tain answer t@). However, under the open-world assumption,
sinceV; andV; are not necessarily complete, the tufalg c»)
need not be itk. For exampleR may contain the tuplgg;, d)
and(e, co) for some constant$ ande. Hence,(cy, ¢2) is not

a certain answer tQ. O

The views shown in Fig.4 illustrate how minor modifi-
cations toV; change their usability in answering the query.
The view V; is similar to V7, except that it does not select
the attributeTeaches.prof, which is needed for the join with
the relationAdvises and in theselect clause of the query.
Hence, to uséd/ in the rewriting, we would need to joil;
with the Teaches relation again (in addition to a join with
Advises). Still, if the join of the relationRegistered and
Teaches is very selective, then employing, may actually
result in a more efficient query execution plan.

The viewVs does not apply the necessary equi-join pred-

The common theme across all of the works on answeringeate petweerRegistered.quarter and Teaches.quarter.
queries using views is that they all have to deal with the fun-gjnce the attributes Teaches.quarter and Regis-

damental question of when a view is usable to answer aqUerYered quarter are not selected by, the join predicate
Hence, before describing the actual algorithms for answering.snnot be applied in the rewriting, and therefore there is
queries using views it is instructive to examine a few exam-jiie to gain by usingVs. The view V; considers only the
ples and gain an intuition for the conditions under which aytessors who have at least one area of research. Hence, the
view is usable for answering a query, and in what ways a vieWje\y applies an additional condition that does not exist in the
may be useful. In this section we consider select-project-joingyery, and cannot be used in an equivalent rewriting unless we
queries under set semantics. Note that in some cases a Vieyfioy union and negation in the rewriting language. However,
may be usable in maximally-contained rewritings but not inj¢ \ve have an integrity constraint stating that every professor
equivalent rewritings. _ has at least one area of research, then an optimizer should be
Informally, a view can be useful for a query if the set of gpje 9 realize that is usable. Finally, views applies a
relations it mentions overlaps with that of the query, and it S€tronger predicate than in the queRegistered.quarter >
lects some of the attributes selected by the query. Moreover, i'fwinter99"), and is therefore usable for a contained rewriting,
the query applies predicates to attributes that it has in commog,t not for an equivalent rewriting of the query.
with the view, then the view must apply either equivalentor 1, summarize, the following conditions need to hold in
logically weaker predicates in order to be part of an equivalenty,qyer for a select-project-join vieW to be usable in an equiv-
rewriting. If the view applies a Io_glically stronger predicate, it 5jant rewriting of a query). The intuitive conditions below
may be part of a contained rewriting. can be made formal in the context of a specific query lan-

Consider the following query, asking for the triplets of 4,39e and/or available integrity constraints (see e.g., [YL87,
professors, students, and teaching quarters, where the studq_r}\tﬂss%]):

is advised by the professor, and has taken a class taught by the
professor during the winter of 1998 or later. 1. There must be a mappingfrom the occurrences of tables
mentioned in thérom clause ofl” to those mentioned in

4 When is a view usable for a query?

select Advises.prof, Advises.student, Registered.quarter thefrom clause of(), mapping every table name to itself.
from Registered, Teaches, Advises In the case of bag semantigg,must be a 1-1 mapping,
where Registered.c-number=Teaches.c-number and whereas for set semantigscan be a many-to-1 mapping.

V' must either apply the join and selection predicateg in
on the attributes of the tables in the domain/gfor must
apply to them a logically weaker selection, and select the
attributes on which predicates need to still be applied.

Registered.quarter=Teaches.quarter and 2.
Advises.prof=Teaches.prof and Advises.student
=Registered.student and

Registered.quarter > "winter98".

3.

The following viewV is usable because it applies the same
join conditions to the relation®egistered and Teaches.
Hence, we can usg to answer the query by joining it with the

V' must not project out any attributes of the tables in the
domain ofy that are needed in the selection@f unless
these attributes can be recovered from another view (or
from the original table if it's available).

relationAdvises. Furthermore}/; selects the attributd?eg-
istered.student, Registered.quarter andTeaches.prof that
are needed for the join with the relatidwvises and for the
select clause ofthe query. Finally; applies a predicateeg-
istered.quarter > "winter97" which is weaker than the pred-
icate Registered.quarter > "winter98" in the query. How-
ever, sincel; selects the attributRegistered.quarter, the
stronger predicate can be applied as part of the rewriting.

Finally, we note that the introduction of bag semantics
introduces additional subtleties. In particular, we must ensure
that the multiplicity of answers required in the query are not
lost in the views (e.g., by the use dfstinct), and are not
increased (e.g., by the introduction of additional joins).

5 Incorporating materialized views

create view V; as into query optimization

select Registered.student, Teaches.prof,))] } .
Registered.quarter This section describes the different approaches to incorporat-

from Registered, Teaches ing materialized views into query optimization. The focus of

where Registered.c-number=Teaches.c-number and these algorithms is to judiciously decide when to use views to

answer a query. The output of the algorithm is an execution
plan for the query. The approaches differ depending on which

Registered.quarter=Teaches.quarter and
Registered.quarter > "winter97".

278 A.Y. Halevy: Answering queries using views: A survey

create view V; as create view Vs as

select Registered.student, Registered.quarter select Registered.student, Teaches.prof, Registered.quarter

from Registered, Teaches from Registered, Teaches

where Registered.c-number=Teaches.c-number where Registered.c-number=Teaches.c-number

and Registered.quarter=Teaches.quarter and Registered.quarter > "winter98".

and Registered.quarter > "winter98".

create view V; as create view V5 as

select Registered.student, Registered.quarter, select Registered.student, Teaches.prof, Registered.quarter
Teaches.prof

from Registered, Teaches, Advises, Area from Registered, Teaches

where Registered.c-number=Teaches.c-number where Registered.c-number=Teaches.c-number

and Registered.quarter=Teaches.quarter and Registered.quarter=Teaches.quarter

and Teaches.prof=Advises.prof and Registered.quarter > "winter99".

and Teaches.prof=Area.name

and Registered.quarter > "winter98"

Fig. 4. Examples of unusable views

phase of query optimization was modified to consider materi+elations. Hence, in addition to the meta-data that the query
alized views. Section 5.1 describes algorithms based on Sy®ptimizer has about the materialized views (e.g., statistics,
tem R-style optimization, where materialized views are con-indexes) the optimizer is also given as input the query expres-
sidered during the join enumeration phase [CKPS95,TSI96]sions defining the views. Recall that a database relation can
Section 5.2 describes works based on transformational optialways be modeled as a view as well.

mizers [ZCL"00,DPT99,PDST00,GL01]. There,thekeyidea Weillustrate the changes to the join enumeration algorithm

is that replacing a query subexpression by a view is yet anwith an example that includes the following views:

other transformation employed by the optimizer. Section 5.3.,ate view Vi as

discusses some of the issues that arise when rewriting algQgject student, dept

rithms are extended to consider grouping and aggregation;om Major.

These extensions are key to incorporating materialized views

into decision support applications. create view V5 as
select Registered.student, Registered.c-number
from Registered, Course

5.1 System-R style optimization where Registered.c-number=Course.c-number and

Course.title LIKE '%theory%’.

In this section we consider select-project-join queries and dis-
cuss the changes that need to be made to a join enumeratigreate view Vs as
algorithm to incorporate materialized views. To illustrate theselect ~ Major.dept, Registered.c-number
changes to a System R-style optimizer we first briefly recallfrom Registered, Major
the principles underlying System-R optimization [SAZD]. Where Registered.student=Major.student and
System-R takes a bottom-up approach to building query exe- Registered.c-number=>500.
cution plans. Inthe first phase, it constructs plans of size 1,i.e., Suppose the query below asks for all of the students at-
chooses the best access paths to every table mentioned in thehding Ph.D level classes with 'theory’ in their title, and the
query. In phase, the algorithm considers plans of sizeby departments in which the students are majoring.
compmmg pairs of p.Ians ob.taln.ed inthe previous phase_s (l\!otgelect Registered.student, Major.dept
that if the algorithm is considering only left-deep plans, itwill ¢ 5 Registered. Maior. C

; . . . gistered, Major, Course
try to ‘?O”?b'”e pl_ans of Size - 1 with planS.Of Sizé 1. Other-y here Registered.student=Major.student and
wise, it will consider pomblnlng plans of sizewith ple}ns of Registered.c-number=Course.c-number and
sizen — k.) The algorithm terminates after constructing plans Course.c-number>500 and
that cover all the relations in the query. Course.title LIKE "%theory%'.

Intuitively, the efficiency of System-R stems from the
fact that it partitions query execution plans irgquivalence
classesand only considers a single execution plan for ev-
ery equivalence class. Two plans are in the same equivalen
class if they: (1) cover the same set of relations in the quer
(and therefore are also of the same size); and (2) produce th
answers in the same interesting order. In the process of buil
ing plans, two plans are combined only if they cover disjoint
subsets of the relations mentioned in the query.

In our context, the query optimizer builds query executionA. In the first iteration the algorithm needs to decide which
plans by accessing a set of views, rather than a set of database views arerelevantto the query. A view is relevant if it

We now describe the additional issues that the optimizer
needs to consider in the presence of materialized views. Fig-
e 5 shows a side-by-side comparison of the steps of a tra-
itional optimizer vs. one that exploits materialized views.
e algorithm described below is a slight modification of
he GMAP algorithm [TSI96]. The algorithm described in
CKPS95] uses the same principles, but, as we explain later,
with several differences.

A.Y. Halevy: Answering queries using views: A survey 279

is usable in answering the query (illustrated by the con-consider the following combinations (in this discussion we
ditions in Sect.4). The corresponding step in a traditionalignore the choice of inner versus outer input to the join):
optimizer is trivial: a relation is relevant to the query if it

is mentioned in thérom clause. e The join ofV1 andV2 on the attributestudent: This join

produces a partial result to the query. There are two ways

to extend this join to complete execution plan. The first

is to apply an additional selection on teenumber at-
tribute and a projection ostudent anddept. The second,
which is explored in the subsequent iteration, is to join the
result withVV3. Hence, the algorithm produces one com-
plete execution plan and keep$ X V2 for the subsequent
iterations.

In principle, as explained in bullet 3 above, the algorithm

should also consider joiningl andV2 on other attributes

(e.g.,V1.student=V2.c-number), but in this case, a sim-

ple semantic analysis shows that such a join will not yield

a partial solution.

e Thejoins o1 with V3 (ondept) and ofvV2 with V3 (onc-
number): These two joins produce partial solutions to the
query, but only if set semantics are considered (otherwise,
the resulting rewriting will have multiple occurrences of
theMajor (or Registered) relation, whereas the query has
only one occurrence).

In our example, the algorithm will determine that all three
views are relevant to the query, because each of them mentions
the relations in the query and applies some of the same join
predicates as in the query. Therefore, the algorithm chooses
the best access path to each of the views, depending on the
existing index structures and selection predicates in the query.

B. Since the query execution plans involve joins over views,
rather than joins over database relations, plans can no
longer be neatly partitioned into equivalence classes which
can be explored in increasing size. This observation im-
plies several changes to the traditional algorithm:

1. Termination testing: the algorithm needs to distin-
guishpartial query execution plansf the query from
complete execution plariEhe enumeration of the pos-
sible join orders terminates when there are no more
unexplored partial plans. In contrast, in the traditional
setting the algorithm terminates after considering the
equivalence classes that include all the relations in the
query.

2. Pruning of plans: a traditional optimizer compares Inthe third iteration, the algorithm tries to join the plans for
between pairs of planwithin one equivalence class the partial solutions from the second iteration with a plan from
and saves only the cheapest one for each class. In ouhe first iteration. One of the plans the algorithm will consider
context, the query optimizer needs to compare betweeiis the one in which the result of joining2 andV3 is then
any pairof plans generated thus far. A plams pruned joined withVV1. Even though this plan may seem redundant
if there is another plagl that: (1) is cheaperthanand compared to/1 X V2, it may be cheaper depending on the
(2) has greater or equal contribution to the query thanavailable indexes on the views, because it enables pruning the
p. Informally, a planp’ contributes more to the query (possibly larger) set of students based on the selective course
than the plarmp if it covers more of the relations in the number.
query and selects more of the necessary attributes. Variations on the above principles are presented in [TS194,

3. Combining partial plans: in the traditional setting, TSI96] and [CKPS95]. The algorithm in [TSI96] attempts to
when two partial plans are combined, the join predi- reformulate a query on a logical schema to refer directly to
cates that involve both plans are explicit in the query, GMAPs storing the data (see Sect.2). They consider select-
and the enumeration algorithm need only consider theproject-join queries with set semantics. To test whether a so-
most efficient way to apply these predicates. Howeverution is complete (i.e., whether it is equivalent to the original
in our case, it may not be obvious a priori which join query) they use an efficient and sufficient query-equivalence
predicate will yield a correct rewriting of the query, condition thatalso makes use of some inclusion and functional
since we are joining views rather than database reladependencies.
tions directly. Hence, the enumeration algorithmneeds The goal of the algorithm described in [CKPS95] is to
to consider several alternative join predicates. Fortu-make use of materialized views in query evaluation. They con-
nately, in practice, the number of join predicates thatsider select-project-join queries with bag semantics and which
need to be considered can be significantly pruned usmay also include arithmetic comparison predicates. Under bag
ing meta-data about the schema. For example, thereemantics, the ways in which views may be combined to an-
is no point in trying to join a string attribute with a swer a query are more limited. This is due to the fact that two
numeric one. Furthermore, in some cases we can usgueries are equivalent if and only if there is a bi-directional
knowledge of integrity constraints and the structure of 1-1 mapping between the two queries, which maps the join
the query to reduce the number of join predicates wepredicates of one query to those of the other [CV93]. Hence,
consider. Finally, after considering all the possible join if we ignore the arithmetic comparison operators, a view is
predicates, the optimizer also needs to check whetheusable only if it is isomorphic to a subset of the query. An
the resulting plan is still a partial solution to the query. additional difference between [TSI96] and [CKPS95] is that

the latter searches the space of join orderings in a top-down

In our example, the algorithm will consider in the second fashion, compared to the bottom-up fashion in [TSI96]. How-

iteration all possible methods to join pairs of plans producedever, since the algorithms consider different semantics, their

in the first iteration. The algorithm will save the cheapest plansearch spaces are incomparable. Both [TSI96] and [CKPS95]
for each of the two-way joins, assuming the result is still apresent experimental results that examine the cost of consid-
partial or complete solution to the query. The algorithm will ering materialized views in query optimization.

280

Conventional optimizer
Iteration 1
a) find all possible access paths.

b) Compare their cost and keep the least
expensive.

c) If the query has one relation, stop.

Iteration 2

For each query join:

a) Consider joining the relevant access paths
found in the previous iteration using all
possible join methods.

b) Compare the cost of the resulting join
plans and keep the least expensive.
¢) If the query has only 2 relations, stop.

A.Y. Halevy: Answering queries using views: A survey

Optimizer using views
Iteration 1
al) Find all views thatedesantto the query.
a2) Distinguish between partial and complete solutions
to the query.
b) Compare all pairs of views. If one has neither greater
contribution nor a lower cost than the other, prune it.
c) If there are no partial solutions, stop.
Iteration 2

al) Consider joining all partial solutions found in the
previous iteration using all possible equi-join methods and
trying all possible subsets of join predicates.
a?2) Distinguish between complete and partial solutions.
b) If any newly generated solution is either not relevant
to the query, or dominated by another, prune it.
c) If there are no partial solutions, stop.

Iteration 3 Iteration 3

Fig. 5.A comparison of a traditional query optimizer with one that exploits materialized views

5.2 Transformational and other approaches to view rewriting that the two boxes represent equivalent queries; or (2) may
require acompensationA compensation represents a set of
In this section we describe several works that incorporate vievadditional operations that need to be performed on a box of
rewriting as transformations. The common theme in thesdhe view in order to obtain an equivalent result to a box in the
works is that replacing some part of a query with a view is con-query. The algorithm considers a pair of boxes only after the
sidered as another transformation available to the optimizemnatch algorithm has been applied to every possible pair of their
This approach is necessary when: (1) the entire optimizer ighildren. Therefore, the match (and corresponding compensa-
transformational (e.g, in [GLO1]); and (2) in the logical rewrit- tion) can be determined without looking into the subtrees of
ing phase of a System-R style optimizer that is consideringheir children. The algorithm terminates when it finds a match
more complex SQL queries (as in [Z€00)). between the root of the view and some box in the QGM of
In [GLO1] the authors describe an algorithm for rewrit- the query. The authors show that by considering rewritings at
ing queries using views that is implemented in the transforthe QGM level, they are able to extend previous algorithms
mational optimizer of Microsoft SQL Server. In the algo- to handle SQL queries and views with multiple blocks, while
rithm, view matching is added as another transformation rulggrevious algorithms considered only single block queries. As
in the optimizer. The transformation rule is invoked on select-we point out in the next section, their algorithm also extends
project-join-group-by (SPJG) expressions, and it attempts t@revious work to handle more complex types of grouping and
replace the SPJG expression by a single view. The authors deggregation.
scribe in detail the conditions under which a sub-query is re- In [DPT99]the authors use a transformational approach to
placed by a view. The key novelty in this work is tileer-tree, uniformly incorporate the use materialized views, specialized
a clever index structure that makes it possible to efficientlyindexes and semantic integrity constraints. All of these are rep-
filter the set of views that are relevant to a particular SPJG exresented as constraints. Their procedure involves two phases,
pression. The index is composed of several sub-indexes, eadach involving a different set of transformations. In the first
of which is built on a particular property of the views (e.g., phase, thehasethe query is expanded to include any other
the set of tables in the view, the set of output columns, groupstructure (e.g,. materialized view or access structure) that is
ing columns). The sub-indexes are combined in a hierarchicalelevant to the query, resulting inumiversalquery plan. In
fashion into the filter tree, where each level in the tree fur-the second phase, thmck-chasethe optimizer tries to re-
ther partitions the views according to another property. Theanove structures (and hence joins) from the universal plan, in
authors describe a set of experiments that shows that their abrder to obtain a plan of minimal cost. The chase procedure is
gorithm adds relatively little to the optimization time, even in based on a generalization of the standard chase procedure to
the presence of 1,000 views. handle path conjunctive queries [PT99], thereby enabling the
In [ZCLT00] the authors describe how view rewriting is algorithm to handle certain forms of object-oriented queries.
incorporated into the query rewrite phase of the IBM DB2 In [PDSTO0Q] the authors describe an implementation of the
UDB optimizer. Their algorithm operates on the Query Graphframework and experiments that prove its feasibility, focusing
Model (QGM) representation of a query [HFLP89], which on methods for speeding up the back-chase phase.
decomposes the query into multiple QGMxes each cor- In [BDD*98] the authors describe a limited use of trans-
responding to a select-project-join block. The algorithm at-formation rules to incorporate view rewriting algorithm into
tempts to match pairs of QGM boxes in the views with thosethe Oracle 8i DBMS. The algorithm works in two phases. In
in the query. The algorithm navigates the QGM in a bottom upthe first phase, the algorithm applies a set of rewrite rules that
fashion, starting from the leaf boxes. A match between a boxattempt to replace parts of the query with references to exist-
in the query and in the view can be either: (1) exact, meanindng materialized views. The rewrite rules consider the cases in

A.Y. Halevy: Answering queries using views: A survey 281

which views satisfy the conditions described in Sect.4, andnaximal course evaluation for that course in the given year,
also consider common integrity constraints encountered irand the number of times the course was offered.
practice, such as functional dependencies and foreign key con- _
straints. The result of the rewrite phase is a query that refer§réate viewV as .
to the views. In the second phase, the algorithm compares tH¥'€ct c-number, yee;;' Max(evaluation) as maxeval,
estimated cost of two plans: the cost of the result of the firstf om _(I_:eo;cr;]té? as oflerings
phase, and the cost of the best plan found by the optimizer tha\‘/i/here c-number > 400
doesnotconsider the use of materialized views. The optimizer , /- o < el
pBy c-number, year.

chooses to execute the cheaper of these two plans. The marn
advantage of this approach is its ease of implementation, since The following query considers only Ph.D-level courses,
the capability of using views is added to the optimizer without and asks for the maximal evaluation obtained&ny course
changing the join enumeration module. On the other hand, theuring a given year, and the number of different course offer-
algorithm considers the cost of only one possible rewriting ofings during that year.
the query using the views, and hence may miss the cheapest
use of the materialized views. select year, count(x), Max(evaluation)

Finally, in [ALUO1] the authors consider using views for from Teaches
query optimization from a different angle. They consider the"here c-number > 500
problem of finding the rewriting of the query with minimal cost groupBy year.
under three specific cost models: (1) minimizing the number ofrhe following rewriting uses the vieW to answer our query.
views in the rewriting (hence the number of joins); (2) reduc-)
ing the size of the intermediate relations computed during th&€lect year, sum(offerings), Max(maxeval)

rewriting; and (3) reducing the size of intermediate relations™™m v

while also dropping irrelevant attributes as the computation’Veré ¢-number > 500
proceeds. The techniques underlying @exeCover algo- ~ 9/OUPBY vear.
rithm described in [ALUO1] are closer in spirit to those used There are a couple of points to note about the rewriting.
in the MiniCon Algorithm [PLOO] described in Sect. 6.4. First, even though the view performed an aggregation on the
attributeevaluation, we could still use the view in the query,
because the groupings in the query y@ar) are more coarse
than those in the view (ogear and c-number). Thus, the
answer to the query can be obtained by coalescing groups
from the view. Second, since the view groups the answers by
In decision support applications, when queries contain groupe-number and thereby loses the multiplicity of each course,
ing and aggregation, there is even more of an opportunity to obwe would have ordinarily not been able to use the view to
tain significant speedups by reusing the results of materializedompute the number of course offerings per year. However,
views. However, the presence of grouping and aggregation isince the view also computed the attribatierings, there
the queries or the views introduces several new difficulties towvas still enough information in the view to recover the total
the problem of answering queries using views. The first dif-number of course offerings per year, by summing the offerings
ficulty that arises is dealing with aggregated columns. Recalper course.
that for a view to be usable by a query, it must not project Several works considered the problem of answering
out an attribute that is needed in the query (and is not othergueries using views in the presence of grouping and aggrega-
wise recoverable). When a view performs an aggregation otion. One approach considered involved a set of transforma-
an attribute, we lose some information about the attribute, andions in the query rewrite phase [GHQ95]. In this approach,
in a sensgartially projecting it out. If the query requires the the algorithm performs syntactic transformations on the query
same or a coarser grouping than performed in the view, and thentil it is possible to identify a subexpression of the query that
aggregated column is either available or can be reconstructed identical to the view, and hence substitute the view for the
from other attributes, then the view is still usable for the query.subexpression. However, as the authors point out, the purely
The second difficulty arises due to the loss of multiplicity of syntactic nature of this approach is a limiting factor in its ap-
values on attributes on which grouping is performed. Whenplicability.
we group on an attributel, we lose the multiplicity of the A more semantic approach is proposed in [SDJL96]. The
attribute in the data, thereby losing the ability to perform sub-authors describe the conditions required for a view to be us-
sequent sum, counting or averaging operations. In some casesle for answering a query in the presence of grouping and
it may be possible to recover the multiplicity using additional aggregation, and a rewriting algorithm that incorporates these
information. conditions. That paper considers the cases in which the views
The following simple example illustrates some of the sub-and/or the queries contain grouping and aggregation. It is in-
tleties that arise in the presence of grouping and aggregatiorteresting to note that when the view contains grouping and
To make this example slightly more appealing, we assume thaggregation but the query does not, then unless the query re-
quarter attribute of the relatiomeaches is replaced by gear moves duplicates in treelect clause, the view cannot be used
attribute (and hence, there are likely to be several offerings ofo answer a query. Another important point to recall about this
the same course during an academic year). Suppose we hagentext is that because of the bag semantics a view will be us-
the following view available, which considers all the graduate-able to answer a query only if there is an isomorphism between
level courses, and for every pair of course and year, gives ththe view and a subset of the query [CV93]. The work described

5.3 Queries with grouping and aggregation

282 A.Y. Halevy: Answering queries using views: A survey

in [ZCL™00] extends the treatment of grouping and aggregaminder of datalog notation and of conjunctive queries [UII89,
tion to consider multi-block queries and to multi-dimensional AHV95].
aggregation functions such as cube, roll-up, and grouping sets Conjunctive queries are able to express select-project-join
[GBLP98]. queries. A conjunctive query has the form:
Several works [CNS99,GRT99,GT00] consider the for-) (X b
mal aspects of answering queries using views in the presence () = (X)), ooy ra(X)
of grouping and aggregation. They present cases in which itvhereq, andr, ..., r, are predicate names. The predicate
can be shown that a rewriting algorithm is complete, in thenamesry, ..., r, refer to database relations. The atg(X)
sense that it will find a rewriting if one exists. Their algorithms is called théneadof the query, and refers tothe answer relation.
are based on insights into the problem of query containmenThe atoms (X;), ..., r,(X,) are thesubgoalsn the body of
for queries with grouping and aggregation. the query. The tupleX’, X1, ..., X,, contain either variables
An interesting issue that has not received attention to dater constants. We require that the querység i.e., thatX C
is extending the notion of maximally-contained rewritings to X; U...U X,, (that is, every variable that appears in the head
the presence of grouping and aggregation. In particular, onenust also appear in the body).
can imagine a notion of maximally-contained plans in which Queries may also contain subgoals whose predicates are
the answers provide the best posshiwendson the aggregated arithmetic comparisons:, <, =, #. In this case, we require
columns® that if a variableX appears in a subgoal of a comparison
predicate, thernX must also appear in an ordinary subgoal.
We refer to the subgoals of comparison predicates of a query
6 Answering queries using views for data integration Q by C(Q).
As an example of expressing an SQL query in datalog,
The previous section focused on extending query optimizers tgonsider the following SQL query asking for the students (and
accommodate the use of views. They were designed to handf&eir advisors) who took courses from their advisors after the
cases where the number of views is relatively small (i.e., comWinter of 1998:
parable to the size of the database schema), and cases Wh%rec?e ot
we require an equivalent rewriting of the query. In addition, fro
for the most part, these algorithms did not consider cases if}ere
which the resulting rewriting may contain a union over the

Advises.prof, Advises.student

Registered, Teaches, Advises
Registered.c-number=Teaches.c-number and
Registered.quarter=Teaches.quarter and

views.])] Advises.prof=Teaches.prof and Advises.student
In contrast, the context of data integration requires that we =Registered.student and
consider a large number of views, since each data source is Registered.quarter > "winter98".

being described by one or more views. In addition, the view
definitions contain many complex predicates, whose goal idn the notation of conjunctive queries, the above query would
to express fine-grained distinctions between the contents dve expressed as follows:
different data sources. As shown in Sect. 2, we will often not
be able to find an equivalent rewriting of the query using the
source views, and the best we can do is find the maximally-
contained rewriting of the query. The maximally-contained
rewriting will often involve a union of several queries overthe ~ Note that when using conjunctive queries, join predicates
sources. Furthermore, in the context of data integration it isof SQL are expressed by multiple occurrences of the same
often assumed that the views are not complete, i.e., they mayariable in different subgoals of the body (e.qg., the variables
only contain a subset of the tuples satisfying their definition. quarter, c-number, prof, andstudent above). Unions can
In this section we describe algorithms for answeringbe expressed in this notation by allowing a set of conjunctive
queries using views that were developed specifically for thequeries with the same head predicate.
context of data integration. These algorithms arebtineket al- Adatalog query is a set of rules, each having the same form
gorithmdeveloped in the context of the Information Manifold as aconjunctive query, exceptthat predicates in the body do not
system [LRO96b] and later studied in [GM99a], theerse- havetorefer to database relations. In a datalog query we distin-
rules algorithm[Qia96, DGL00] which was implemented in guish EDB (extensional database) predicates that refer to the
the InfoMaster system [DG97b], and the MiniCon algorithm database relations from the IDB (intensional database) predi-
[PLOO, PHO1]. It should be noted that unlike the algorithms de-cates that refer to intermediate computed relations. Hence, in
scribed in the previous section, the output of these algorithmé#he rules, EDB predicates appear only in the bodies, whereas
is not a query execution plan, but rather a query referring tdhe IDB predicates may appear anywhere. We assume that ev-
the view relations. ery datalog query has a distinguished IDB predicate called the
guery predicatereferring to the relation of the result.
A predicatep in a datalog program is said tiependon a

6.1 Datalog notation predicatey if ¢ appears in one of the rules whose head Ehe
datalog program is said to lbecursiveif there is a cycle in the

ependency graph of predicates. Itis important to recall that if

datalog program is not recursive, then it can be equivalently
rewritten as a union of conjunctive queries, though possibly
5 | thank an anonymous reviewer for suggesting this problem. with an exponential blowup in the size of the query. As we

q(prof, student) :-Registered(student, c-number, quarter),
Teaches(prof, c-number, quarter),
Advises(prof, student), quarter > "winter98".

For this and the next section, itis necessary to revert to datalo
notation and terminology. Hence, below we provide a brief re-

A.Y. Halevy: Answering queries using views: A survey 283

see in Sect. 7.2, certain cases may require rewritings that afable 2. Contents of the buckets. The primed variables are those that
recursive datalog queries. are not in the domain of the unifying mapping
The input to a datalog query consists of a databade

storing extensions of all EDB predicates@h Given such a Teacf'es(P’C'Q) RegiStered(,S'C’Q) Couryse(C'YT)
databaseD, the answer ta), denoted byQ(D), is the least ~ V2(S'PC.Q) VI(S.CQT) Vi(S,.C.Q.T)
fixpoint model of@Q andD, which can be computed as follows. V4(R.C,T',Q) V2(S,P’,C,Q) V4(P',C,T,.Q)

We apply the rules of the program in an arbitrary order, starting

with empty extensions for the IDB relations. An application

of a rule may derive new tuples for the relation denoted bymay unify with more than one subgoal in a viélyand in that
the predicate in the head of the rule. We apply the rules unticase the bucket gf will contain multiple occurrences df .

we cannot derive any new tuples. The out@\tD) is the set In the second step, the bucket algorithm finds a sebof

of tuples computed for the query predicate. Note that sincgunctive query rewritingseach of them being a conjunctive
the number of tuples that can be computed for each relation iguery that includes one conjunct from every bucket. Each of
finite and monotonically increasing, the evaluation is guaranthese conjunctive query rewritings represents one way of ob-
teed to terminate. Finally, we say that a datalog query refergaining part of the answer tQ from the views. The result of
only to views if instead of EDB predicates we have predicateghe bucket algorithm is defined to be the union of the con-
referring to views (but we still allow arithmetic comparison junctive query rewritings (since each of the rewritings may

predicates and IDB predicates).

6.2 The bucket algorithm

contribute different tuples). Given a conjunction, constructed
from a single element from every bucket, it is a conjunctive
query rewriting if either: (1) the conjunction is contained in
the queryQ); or (2) it is possible to add atoms of compari-
son predicates such that the resulting conjunction is contained
in

The goal of the bucket algorithm is to reformulate a user query

that is posed on a mediated (virtual) schema into a query thadexample 2.Consider the following views
refers directly to the available data sources. Both the quer)(/l(s,[udent c-number,quarter title):-

and the sources are described by conjunctive queries that mayRegistere'd(student’,c-numb’er,quarter),

include atoms of arithmetic comparison predicates (hereafter

Course(c-number,title), c-number>500, quarter>Aut98.

referred to simply as predicates). As we explain in Sect. 7, the/o(student, prof,c-number,quarter):-

number of possible rewritings of the query using the views Registered(student,c-number,quarter),

is exponential in the size of the query. Hence, the main idea Teaches(prof,c-number,quarter)

underlying the bucket algorithm is that the number of queryv3(student,c-number):-

rewritings that need to be considered can be drastically re- Registered(student,c-number,quarter), quarter < Aut94.
duced if we first consider each subgoal in the query in iso-V4(prof,c-numbertitle,quarter):-

lation, and determine which views may be relevant to each Registered(student,c-number,quarter),

subgoal.
Given a queryQ, the bucket algorithm proceeds in two

steps. In the first step, the algorithm creates a bucket for eacg

subgoal in@ that is not inC(@®), containing the views (i.e.,

Course(c-number,title), Teaches(prof,c-number,quarter),
quarter<Aut97.

uppose our query is:

data sources) that are relevant to answering the particular sulaS,C,P) :- Teaches(P,C,Q), Registered(S,C,Q), Course(C,T),

goal. More formally, to decide whether the vidwshould be
in the bucket of a subgogl we consider each of the subgoals
g1 in V and do the following:

A. Check whether there is a unifiérfor g andg, i.e.,f is
a variable mapping such théfg) = 6(g1). If there is no
unifier, we proceed to the next subgoal.

B. Given the unifierd, we check whether the view and the
query would be compatible after the unifier is applied.
Hence, we apply),(y to the query and to the view, where
On(vy is the same a8 but its domain does not include the
existential variables iy’ (since only the head variables of
V are part of a rewriting). Then we check two conditions:
(1) that the predicates i@ and inV are mutually satisfi-
able, i.e.0,(1)(C(Q)) A O (C(V)) is satisfiable; and
(2) thatd treats the head variables occurringjinorrectly,
i.e., if X is a head variable that appears in positiarf the
subgoalg, then the variable appearing in positionf g;
must be a head variable bf.

If the above conditions are satisfied, then we insert the

atomé(head(V)) into the bucket of;. Note that a subgoal

C>300, Q>Aut95.

In the first step the algorithm creates a bucket for each
of the relational subgoals in the query in turn. The resulting
contents of the buckets are shown in Table 2. The bucket of
Teaches(P,C,Q) includes view&/2 andV4, since the follow-
ing mapping unifies the subgoal in the query with the corre-
spondingTeaches subgoal in the views (thereby satisfying
condition (a) above):

{ P — prof, C — c-number, Q — quarter }.

Note that each view head in a bucket only includes vari-
ables in the domain of the mapping. Fresh variables (primed)
are used for the other head variables of the view.

The bucket of the subgo&tegistered(S,C,Q) contains
the viewsV1 andV2, since the following mapping unifies
the subgoal in the query with the correspondiegistered
subgoal in the views:

{ S — student, C — c-number, Q — quarter }.

The viewV3 is not included in the bucket dRegis-
tered(S,C,Q) because after applying the unification mapping,

284 A.Y. Halevy: Answering queries using views: A survey

the predicate® > Aut95 andQ < Aut94 are mutually incon- a query containment test for every candidate rewriting. The
sistent. The view/4 is not included in the bucket d?egis- testing problem ig7%-complete® though only in the size of
tered(S,C,Q) because the variabfudent is not in the head the query and the view definition, and hence quite efficient in
of V4, while S is in the head of the query. practice.
Next, consider the bucket of the subg@durse(C,T).
The viewsV1 andV4 will be included in the bucket because
of the mapping 6.3 The inverse-rules algorithm
{ € — c-number, T — title }. Like the bucket algorithm, the inverse-rules algorithm was also
In the second step of the algorithm, we combine elementsleveloped in the context of a data integration system [DG97b].
from the buckets. In our example, we start with a rewriting The key idea underlying the algorithm is to construct a set of
that includes the top elements of each bucket, i.e., rules thainvert the view definitions, i.e., rules that show how
, . ,) , , to compute tuples for the database relations from tuples of the
d(S.CP) - V2(SIPCQ). VIS,CQT) VIS, €, Q). views. We illustrate inverse rules with an example. Suppose
As can be checked, this rewriting can be simplified by we have the following view (we omit thguarter attribute of
equating the variableS andS’, andQ andQ’, and then re- Registered for brevity in this example):

moving the third subgoal, resulting with V3(dept, c-number) - Major(student,dept),

q'(S,C,P) :-V2(S',RC,Q), V1(S,C,Q,T). Registered(student,c-number).

Another possibility that the bucket algorithm would explore Yr\]/g Cper‘Str“Ct one inverse rule for every subgoal in the body of
. view:

is:

Major(f1(dept,X), dept) :- V3(dept,X)

Registered(f1(Y, c-number), c-number) :- V3(Y,c-number)
However, this rewriting would be dismissed because the |yitively, the inverse rules have the following meaning.

quarters given iVl are disjoint from those given 4. In A yple of the form(dept,c-number) in the extension of the

this case, the viewgl andv4 are relevant to the query when y;e\y\/3 is awitnessof tuples in the relationslajor andReg-

they are considered isolation, but, if joined, would yield the ictared. The tuple(dept,c-number) is a witness in the sense
empty answer. that it tells us two things:

Finally, the algorithm would also produce the rewriting
e The relationMajor contains a tuple of the forifz, dept),
q(S,CP) - V2AS,RCQ) VAR C. T, Q). for some value oZ.
Hence, the result of the bucket algorithm is the union of e The relationRegistered contains a tuple of the foriz,
two conjunctive queries, one obtains answers by joiNig c-number), for thesamevalue ofZ.
andV2, and the other by joining2 andV4. The reader should

note that in this example, as often happens in the dataintegrqj—f Z is the same in the two atoms, we refer to it using the

tion context, the algorithm producednaaximally-contained functional termf, (dept,c-number). Formally, f, is a Skolem
rewriting of the query using the views, and not an equivalentynotion (see [ABS99], Pg. 96) and therefore uninterpreted.
rewriting. In fact, when the query does not contain arithmeticNote that there may be’ several valueZ i the database that
comparison predicates (but the view definitions still may) cause the tuplédept,c-number) to be in the join ofViajor

the bucket algorithm is guaranteed to return the maximally-yqregistered, but all that matters is that there exists at least
contained rewriting of the query using the views. one such value.

The strength of the bucket algorithm is that it exploits the In general, we create one function symbol for every ex-
predicates in the query to prune significantly the number ofistential variable that appears in the view definitions. These
candidate conjunctive rewritings that need to be consideredunction symbols are used in the heads of the inverse rules.
Checking whether a view should belong to a bucket can be The rewriting of a query) using the set of view¥ is the
done in time polynomial in the size of the query and view def- datalog program that includes:

@nition when the predicates involveq are arithmetic compar- o Tha inverse rules fop.

isons. Hence, if the data sources (i.e., the views) are indeed, | 4 queny

distinguished by having different comparison predicates, then '

the resulting buckets will be relatively small. The bucket algo- As shown in [DG97a,DGLO00], the inverse-rules algorithm
rithm also extends naturally to cases where the query (but nateturns the maximally-contained rewriting @f usingV. In

the views) is a union of conjunctive queries, and to other formdact, the algorithm returns the maximally contained query even
of predicates in the query such as class hierarchies [LRO96ait @ is an arbitrary recursive datalog program.

Finally, the bucket algorithm also makes it possible to iden-)
tify opportunities for interleaving optimization and execution EX@mple 3.Suppose a query asks for the departments in
in a data integration system in cases where one of the bucketélich the students of the 444 course are majoring,

contains an especially large number of views [LRO96a]. ® For conjunctive queries with no comparison predicates, query

The main disadvantage of the bucket algorithm is that thecontainment is in NP because we only need to guess a containment
Cartesian product of the buckets may still be rather large. Furmapping. Here, however, we need to guess a containment mapping
thermore, in the second step the algorithm needs to perforrfor every possible ordering on the variables in containing query.

q'(S,C,P) :-V4(RP, C, T, Q), V1(S,C,Q,T"), V4(P', C, T, Q).

In order to express the information that the unknown value

A.Y. Halevy: Answering queries using views: A survey 285

g(dept) :- Major(student,dept), Registered(student, 444) turns out to be similar to (but still slightly better than) the sec-
ond phase of the bucket algorithm, where we consider the

and the view3 includes the tuples: Cartesian product of the buckets (see [PL0OO] for an experi-

{ (CS, 444), (EE, 444), (CS, 333) }. mental analysis).
The inverse rules would compute the following tuples:
Registered: { (f1(CS,444), CS), (f1(EE,444), EE), 6.4 The MiniCon algorithm
CS,333), CS . . Lo
Major: { (fl(c(sf,f44),444§, (fl()E}E,444),444), The MiniCon algorithm [PLOO,PHO1] addresses the limita-
(f,(CS,333),333) } tions of the previous algorithms. The key idea underlying

the algorithm is a change of perspective: instead of building
Applying the query to these extensions would yield the an-rewritings by combining rewritings for each of the quenb-
swersCS andEE. O goalsor the database relation, we consider how each of the
_ variablesin the query can interact with the available views.
In the above example we showed how functional termsthe result is that the second phase of the MiniCon algorithm
are generated as part of the evaluation of the inverse rulesieeds to consider drastically fewer combinations of views.
However, the resulting rewriting can actually be rewritten in The following example illustrates the key idea of MiniCon.
such a way that no functional terms appear [DG97a]. Consider the query
There are several interesting similarities and difference o Mai : ;
between the bucket and inverse rules algorithms that are wort (D) Maj-Ol’(S, D). Registered(S, 444, Q), Advises(P S)
noting. In particular, the step of computing buckets is similar@nd the views:
in spirit to that of computing the inverse rules, because both o¥1(dept) :- Major(student,dept),
them compute the views that are relevant to single atoms of the Registered(student, 444, quarter).
database relations. The difference is that the bucket algorithri{2(prof, dept, area) :- Advises(prof, student),
computes the relevant views by taking into consideration the Prof(name, area)
contextin which the atom appears in the query, while the in- V3(dept, c-number) :- Major(student,dept),
verse rules algorithm does not. Hence, if the predicates in a Registered(student, c-number, quarter),
view definition entail that the view cannot provide tuples rel- Advises(prof, student).
evant to a query (because they are mutually unsatisfiable with The bucket algorithm considers each of the subgoals in
the predicates in the query), then the view will not end up in athe query in isolation, and therefore puts the viélinto the
bucket. In contrast, the query rewriting obtained by the inversebuckets ofMajor(student, dept) and Registered(student,
rules algorithm may contain views that are not relevant to the444, quarter). However, a careful analysis reveals thdt
query. However, the inverse rules can be computed once, anthnnot possibly be useful in a rewriting of the query. The
be applicable to any query. In order to remove irrelevant viewseason is that since the varialgeident is not in the head of
from the rewriting produced by the inverse-rules algorithm wethe view, then in order fov1 to be useful, it must contain the
need to apply a subsequent constraint propagation phase (asbgoalAdvises(prof,student) as well. Otherwise, the join
in [LFS97,SR92]). on the variableS in the query cannot be applied using the
A key advantage of the inverse-rules algorithm is its con-results ofV1.
ceptual simplicity and modularity. As shown in [DGLOOQ], The MiniCon algorithm starts out like the bucket algo-
extending the algorithm to exploit functional dependenciesrithm, considering which views contain subgoals that corre-
on the database schema, recursive queries or the existencesgond to subgoals in the query. However, once the algorithm
access-pattern limitations can be done by adding another set fihds a partial variable mapping from a subgg#h the query
rules to the inverse rules. Furthermore, the algorithm produce® a subgoal; in a viewV/, it changes perspective and looks
the maximally-contained rewriting in time that is polynomial at the variables in the query. The algorithm considers the join
in the size of the query and the views. Note that the algorithnpredicates in the query (which are specified by multiple occur-
does not tell us whether the maximally-contained rewritingrences of the same variable) and finds the minimal additional
is equivalent to the original query, which would contradict set of subgoals thatustto be mapped to subgoalslfi given
the fact that the problem of finding an equivalent rewriting is thatg will be mapped tgj; . This set of subgoals and mapping
NP-complete [LMSS95] (see Sect. 7). information is called aMiniCon Description(MCD), and can
On the other hand, using the resulting rewriting producedbe viewed as a generalized bucket. Unlike buckets, MCDs are
by the algorithm for actually evaluating queries from the viewsassociated wittsetsof subgoals in the query. In the second
has a significant drawback, since it insists on recomputing thg@hase, the MCDs are combined to produce the query rewrit-
extensions of the database relations. In our example, evalungs.
ating the inverse rules computes tuples Ragistered and In the above example, the algorithm will determine that it
Major, and the query is then evaluated over these extensiongannot create an MCD f&f1 because it cannot apply the join
However, by doing that, we lose the fact that the view alreadypredicates in the query. Wh#&?2 is considered, the MCD will
computed the join that the query is requesting. Hence, mucleontain only the subgoadvises(prof, student). WhenV3
of the computational advantage of exploiting the materializeds considered, the MCD will include all of the query subgoals.
view is lost. The key advantage of the MiniCon algorithm is that the
In order to obtain a more efficient rewriting from the in- second phase of the algorithm considers many fewer combina-
verse rules, we must unfold the inverse rules and remove retions of MCDs compared to the Cartesian product of the buck-
dundant subgoals from the unfolded rules. Unfolding the rulesets or compared to the number of unfoldings of inverse rules.

286 A.Y. Halevy: Answering queries using views: A survey

The work in [PLOO] describes a detailed set of experiments thatonjunctive rewriting ofQ usingV only if there is a rewrit-
shows that the MiniCon significantly outperforms the inverseing with at mostn subgoals. An immediate corollary of the
rules algorithm, which in turn outperforms the bucket algo- bound on the size of the rewriting is that the problem of find-
rithm. The paper demonstrates exactly how these savings afag an equivalent rewriting of a query using a set of views is
obtained in the second phase of the algorithm. Furthermorén NP, because it suffices to guess a rewriting and check its
the experiments show that the algorithm scales up to hundredsorrectness.
of views with commonly occurring shapes such as chain, star, The bound on the size of the rewriting also sheds some
and complete queries (see [MGA97] for a description of thesdight on the algorithms described in the previous sections. In
query shapes). The work in [PHO1] also explains how to ex-particular, it entails that the search strategy that the GMAP
ploit the key ideas of the the MiniCon algroithm to the context algorithm [TSI96] employs is guaranteed to be complete under
of query optimization with materialized views, where the costthe conditions that (1) we use a sound and complete algorithm
of the query plan if the primary concern. for query containment for testing equivalence of rewritings;
(2) when combining two subplans, the algorithm considers
all possible join predicates on the attributes of the combined
subplans; and (3) we consider self-joins of the views. These
conditions essentially guarantee that the algorithm searches
through all rewritings whose size is bounded by the size of the
In the previous sections we discussed specific algorithms foguery. It is important to emphasize that the rewriting of the
answering queries using views. Here we consider several furhuery that produces the maafficientplan for answering the
damental issues that cut across all of the algorithms we havquery may havenore conjuncts that the original query. The
discussed thus far, and which have been studied from a mongound of [LMSS95] also guarantees that the bucket algorithm
theoretical perspective in the literature. is guaranteed to find the maximally-contained rewriting of the
The first question concerns teempletenessf the query query when the query does not contain arithmetic comparison
rewriting algorithms. That is, given a set of views and a query,predicates (but the views may), and that we consider unions
will the algorithm always find a rewriting of the query using of conjunctive queries as the language for the rewriting.
the views if one exists? A related issue is characterizing the | [LMSS95] it is also shown that the problem of find-
complexity of the query rewriting problem. We discuss theseing a rewriting is NP-hard for two independent reasons: (1)
issues in Sect. 7.1. the number of possible ways to map a single view into the
Completeness of a reWriting algorithm is CharaCteriZEdquery; and (2) the number of ways to combine the mappings
with respect to a specific query language in which the rewrit-gf different views into the query.
ings are expressed (e.g., select-project-join queries, queries |n [RSU95] the authors extend the bound on the size of the
with union, recursion). For example, there are cases in whichewriting to the case where the views contain access-pattern
if we do not allow unions in the rewriting of the query, then we |imitations (discussed in detail in Sect.8.2). In [CR97] the
will not be able to find an equivalent rewriting of a query using authors exploit the close connection between the containment
aset of views. The Ianguage that we consider for the reWritingand rewriting prob'ems] and show several polynomia|_time

is even more crucial when we consider maximally-containedcases of the rewriting problems, corresponding to analogous
rewritings, because the notion of maximal containment is decases for the problem of query containment.

fined with respect to a specific query language. As it turns
out, there are several important cases in which a maximally-
contained rewriting of a query can only be found if we con-
siderrecursivedatalog rewritings. These cases are illustrated
in Sect. 7.2. L . .

At the limit, we would like to be able to extract all the AS noted earlier, in cases where we cannot find an equiva-

certainanswers for a query given a set of views, whether we!€nt réwriting of the query using a set of views, we consider
do it by applying a query rewriting to the extensions of the the problem of finding maximally-contained rewritings. Our

views or via an arbitrary algorithm. In Sect. 7.3 we considerNOP€ i that when we apply the maximally-contained rewrit-
the complexity of finding all the certain answers, and show!"9 to the extensions of the views, we will obtain the set of

that even in some simple cases the problem is surprising| Il certain answers to the query (Definition 4). Ir)teresti.ngly,
co-NP-hard in the size of the extensions of the views. here are several contexts where in order to achieve this goal

we need to consider recursive datalog rewritings of the query

[DGLOQ]. We recall that a datalog rewriting is a datalog pro-
ram in which the base (EDB) predicates are the view re-
ations, and there are additional intermediate IDB relations.

) Except for the obvious case in which the query is recursive
The first question one can ask about an algorithm for rewrit- P query

. : . . i< whether the algorithm i let [DG97a], other cases include: when we exploit the presence
Ing QUErIes using VIews IS whethertne aigoritnm 1S COMPIEte:q¢ ¢y ctional dependencies on the database relations or when
given a quen and a set of view®, will the algorithm find

" . - . there are access-pattern limitations on the extensions of the
a rewriting of @ using) when one exists. The first answer P

to this question was given for the class of queries and views 7 Note that checking the correctness of a rewriting is NP-complete;

expressed as conjunctive queries [LMSS95]. In that paper ihowever, the guess of a rewriting can be extended to a guess for
was shown that when the query does not contain comparisotontainment mappings showing the equivalence of the rewriting and
predicates and hassubgoals, then there exists an equivalentof the query.

7 Theory of answering queries using views

7.2 The need for recursive rewritings

7.1 Completeness and complexity of finding query rewriting

A.Y. Halevy: Answering queries using views: A survey 287

views [DL97] (see Sect. 8.2 for a more detailed discussion), In the program above, the relatioelevantPilot will in-
when views contain unions [Afr00] (though even recursion clude the set of pilots who work for the same airline as Mike,
does not always suffice here), and the case where additionaind the relatiorrelevantAirCraft will include the aircraft
semantic information about class hierarchies on objects is exlown by relevant pilots. Note that the fourth rule is mutually
pressed using description logics [BLR97]. We illustrate therecursive with the definition afelevantAirCraft. O

case of functional dependencies below. In[DL97,DGLOQ]itis shown how to augment the inverse-

Example 4.To illustrate the need for recursive rewritings in rules algorithm to incorporate functional dependencies. The
the presence of functional dependencies, we temporarily verkey element of that algorithm is to add a set of rules that

ture into the domain of airline flights. Suppose we have theSimulate the application of a Chase algorithm [MMS79] on
following database relation the atoms of the database relations.

schedule(Airline,Flight_no,Date,Pilot,Aircraft)

which stores tuples describing the pilot that is scheduled for7'3 Finding the certain answers

Assume we have the following functional dependencies onsing views is the following. Given a set of materialized views

the relations in the mediated schema and the corresponding view definitions, we obtain sdme
Pilot — Airline and completenformation about the contents of the database. More
Aircraft — Airline specifically, the views define a set pbssibleunderlying

database®. Given a queryy over the database and a tuple
expressing the constraints that pilots work for only one air-there are a few possibilities: (Lyvould be an answer @ for
line, and that there is no joint ownership of aircrafts betweenevery database iR; (2) t is an answer t@) for some database
airlines. Suppose we have the following view available, whichin D; or (3) ¢ is not an answer t@ for any database i®. The
projectsthe date, pilot, and aircraft attributes from the databasgotion of certain answers, (see Definition 4) formalizes case
relation: (1).
V(D,P.C) :- schedule(A.N,D,P.C) If Q_’ is an equi\{ale'nt rewritingof a query@ using the
set of views), then it will always produce the same result as
The viewv records on which date which pilot flies which (@, independent of the state of the database or of the views.
aircraft. Now consider a query asking for pilots that work for In particular, this means th&’ will always produce all the
the same airline as Mike (expressed as the following self joincertain answers tQ for any possible database.
on the attributéirline of theschedule relation): When @’ is amaximally-contained rewritingf Q using
o Y o D the viewsY it may produce only a subset of the answers of
A(P) - schedule(A,N,D,'mike",C), schedule(AN',D’,PC) Q for a given sta%/epof the datagase. The maximalityois
The viewv doesn'’t record the airlines that pilots work for, and defined only with respect to the other possible rewritings in a
therefore, deriving answers to the above query requires usingarticular query languagg that we consider fo)’. Hence,
the functional dependencies in subtle ways. For example, ithe question that remains is how to find all the certain answers,
both Mike and Ann are known to have flown aircraft #111, whetherwe doit by app|y|ng some rewritten queryto the views
then, since each aircraft belongs to a single airline, and everyy by some other algorithm.
pilot flies for only one airline, Ann must work for the same The question of finding all the certain answers is consid-
airline as Mike. Moreover, if, in addmon,Ar_m isknowntohave greq in detail in [AD98, GM99a]. In their analysis they distin-
flown aircraft #222, and John has flown aircraft #222 then they ,ish the case of thepen-world assumptiofiom that of the
\?V%Tkeflcgrr]?hoef ;%ﬁgnéﬂﬁrﬁaﬂ? ;Z;gfa?ngggi;h\?élﬁggﬁﬁg Jo osed-world assumptiofith the closed-world assumption,
following conjunctive rewriting is a contained rewriting: the extensions of the views are gssumed_ to cora_iﬂi_rt_hle -
ples that would result from applying the view definition to the
qn(P) : — v(D1, mike, C1), v(D2, P2, C1), database. Under the open-world assumption, the extensions
V(D3, P2,C2), v(D4, P5,C5), ..., of the views may be missing tuples. The open-world assump-
V(D2n—2, Pn,Cn-1), V(D2n—1, Pn,Crn), V(Dan, P,Cr) tion is especially appropriate in data integration applications,
Moreover, for eachs, g, (P) may provide answers that the\r/S tgeLwews gescn?bef sources thatma;y be mT:ompIete (see
were not given by; for i < n, because one can always build [GW97, ‘.3V96’ 1_159] for treatments of complete Sources
an extension of the view that requires: steps of chaining In the data_ Integration context). The closgd—_vvor_ld assumption
s appropriate for the context of query optimization and main-

in order to find answers to the query. The conclusion is that> .”" : . ;
we cannot find a maximally-contained rewriting of this query %gg':%gf{%ﬂf:é??;;'Zi?sriﬁ%dggtca%aﬁgerr;;iivfshave actually

using the views if we only consider non-recursive rewritings. : .
Instead, the maximally-contained rewriting is the following Under the open-world assumption, [AD98] show that in
many practical cases, finding all the certain answers can be

datalog program: . o
g prog done in polynomial time. However, the problem becomes co-

relevantPilot(“mike”). NP-hard (in the size of the view extensions!) as soon as we
relevantAirCraft(C) :- v(D, “mike”, C). allow union in the language for defining the views, or allow
relevantAirCraft(C) :- v(D,P,C), relevantPilot(P). the predicate in the language defining the query.
relevantPilot(P) - relevantPilot(P1), relevantAirCraft(C), Under the closed-world assumption the situation is even

v(D1, P1, C), v(D2, P, C). worse. Even when both the views and the query are defined by

288 A.Y. Halevy: Answering queries using views: A survey

conjunctive queries without comparison predicates, the prob8 Extensions to the query language

lem of finding all certain answers is already co-NP-hard. The _) _)

following example is the crux of the proof of the co-NP- In this section we survey the algorithms for answering queries

hardness result [AD98]. using views in the context of several important extensions
_ _ to the query languages considered thus far. We consider ex-

Example 5.The following example shows a reduction of the tansjons for Object Query Language (OQL) [FRV96, Flo96,

problem of graph 3-colorability to the problem of finding all pbpTgg) and views with access pattern limitations [RSU95,
the certain answers. Suppose the relatidge(X,Y) encodes | \n/gg DL97].

the edges of a graph, and the relaticmor(X,Z) encodes
which colorZ is attached to the nodes of the graph. Consider

the following three views: 8.1 Object query language

V1(X) :- color(X,Y) .

V2(Y) - color(X.Y) In [FRV96, Flo96] the authors studied the problem of answer-
V3(X,Y) :- edge(X,Y) ing queries using views in the context of querying object-

oriented databases, and have incorporated their algorithm into
the Flora OQL optimizer. In object-oriented databases the cor-
respondence between thagical model of the data and the
physicalmodel is even less direct than in relational systems.

where the extension &f1 is the set of nodes in a graph, the
extension o¥/2 is the sef{red, green, blug and the extension
of V3 is the set of edges in the graph. Consider the following

query: : g : ;
Hence, as argued in [Fl096], it is imperative for a query opti-
q(c) :- edge(X,Y), color(X,Z), color(Y,Z) mizer for object-oriented database be based on the notion of
In [AD98] it is shown thatc is a certain answer tq if ~ Physical data independence. _
and only if the graph encoded legige is not three-colorable. ~Answering queries using views in the context of object-
Hence, they show that the problem of finding all certain an-oriented systems introduces two key difficulties. First, finding
swers is co-NP-hard rewritings often requires that we exploit some semantic in-

formation about the class hierarchy and about the attributes
The hardness of finding all the certain answers provides apf classes. Second, OQL does not make a clean distinction
tuitively, the result entails that when we use views to deSCiibBSe|ect clauses may contain arbitrary expressionS, and the
the contents of data sources, even if we only use conjunctiv@yhere clauses also allow path navigation.
queries to describe the sources, the complexity of finding all The algorithm for answering queries using views described
the answers to a query from the set of sources is co-NP-hargh [Flo96] operates in two phases. In the first phase the algo-
In Contrast, USing aformalism in which the relations of the me'rithm rewrites the query into a canonical fc)rrr']7 thereby ad-
diated schema are described by views over the source relationfessing the lack of distinction between tect , from
(as in [GMPQ 97]), the complexity of finding all the answers angwhere clauses. As an example, in this phase, navigational
iS a.iWayS pOlynomial. Hence, thIS resuit hintS that the formerexpressions are removed from mbere C|ause by introduc-
formalism has a greater expressive power as a formalism forng new variables and terms in th®em clause.
data integration. In the second phase, the algorithm exploits semantic
It iS a|SO interesting to note the ConneCtion established irknow|edge about the C|ass hierarchy in Order to find a Subex_
[AD98] between the problem of finding all certain answers pression of the query that is matched by one of the views.
and computation with conditional tables [IL84]. As the au- when such a match is found, the subexpression in the query is
thors show, the partial information about the database that igeplaced by a reference to the view and appropriate conditions
available from a set of views can be encoded as a conditionadre added in order to conserve the equivalence to the query.
table using the formalism studied in [IL84], providing a for- e illustrate the main novelties of the algorithm with the
malization to the intuition Stal’tlng Out this section. fo”owing examp|e from [F|096]' using a French version of
~ The work in [GM992] also considers the case where thegyr university domain. Here we have the clabsversities,
views may either be incomplete, complete, or contain tuplesyith subclassFrance.Universities and the clas<ity. The
that don't satisfy the view definition (referred toiasorrect first two classes have the attributstsidents, PhDstudents
tuples). It is shown that without Compal’ison predicates in thqa sub-attribute Oétudents), professors andadjuncts_
views or the query, when either all the views are complete or) ,)
all of them may contain incorrect tuples, finding all certain Example 6.Suppose we have the following view asking for
answers can be done in polynomial time in the size of theStudents who are at least as old as their professors, and who
view extensions. In other cases, the problem is co-NP-hardstudy in universities in small cities. Below we use the notation
The work in [MMO1] considers the query answering problem of OQL. Note that theselect clagse of OQL defines the record
in cases where we may have bounds on the soundness and&Fucture of the result._ In addition, note the use of path expres-
completeness of the views. sions — for exampley in x.students means that the varlablg
Finally, [MLFOO] considers the problem of relative query Y W!ii be bound to each of the students of the object to which
containment, i.e., whether the set of certain answers of a query Will be bound.
@, is always contained in the set of certain answers of a queryreate view V1 as

Q2. The paper shows that for the conjunctive queries and viewse|ect distinct [A:=x.name, B:=y.identifier, C:=z]
with no comparison predicates the problenfi§-complete, from x in Universities, y in x.students,
and that the problem is still decidable in the presence of access z in union(x.professors, x.adjuncts)

pattern limitations. where x.city.kind="small" and y.age > z.age.

A.Y. Halevy: Answering queries using views: A survey 289

Suppose a query asks for Ph.D students in French universities We can model limited access paths by attaching a set of
who have the same age as their professors, and study in smaltiornments to every data source. If a source is modeled by a
town universities: view with . attributes, then an adornment consists of a string
of lengthn, composed of the lettetsand f. The meaning of
from u in France.Universities, v in u.PhDstudents, the letterb in an adornm_ent is that _the soummstbe_given
tin u.professors values _for the attribute in that position. The meaning of the
where u.city.kind="small" and v.age=t.age. letter f in an adornment is that the source doesn’t have to be
given a value for the attribute in that position. For example,
In the first step, the algorithm will transform the query and gn adornmenkf for a viewV (A, B) means that tuples df
the view into their normal form. The resulting expression for can be obtained only by providing values for the attributes

select distinct [D:=u.name, E:=v.name, F:=t.name]

the query would be: (note that the variablewas added to Several works have considered the problem of answering
the query in order to eliminate the navigation term from thequeries using views when the views are also associated with
where clause) adornments describing limited access patterns. In [RSU95] it

is shown that the bound given in [LMSS95] on the length of a
possible rewriting does not hold anymore. To illustrate, con-
sider the following example, where the binary relatt@ites
stores pairs of paper¥,Y, whereX citesY. Suppose we
have the following views with their associated adornments:

select distinct [D:=u.name, E:=v.name, F:=t.name]
from u in France.Universities, w in City,

v in u.PhDstudents, t in u.professors
where w.kind="small" and v.age=t.age and u.city=w.

In the next step, the algorithm will note the following prop-

i . . bf . .
erties of the schema: CitationDB”/ (X,Y) :- Cites(X,Y)

CitingPapers? (X) :- Cites(X,Y)
1. The collectiorFrance.Universities is included in the col-
lection Universities, and suppose we have the following query asking for all the
2. The collection denoted by the expressioRhDstudents ~ Papers citing paper #001:
is included in the collection denoted lystudents. This Q(X) :- Cites(X,001)
inclusion follows from the first inclusion and the fact that
PhD students are a subset of students.
3. The collectioru.professors is included in the collection
union(x.professors, x.adjuncts).

The bound given in [LMSS95] would require that if there
exists a rewriting, then there is one with at most one atom, the
size of the query. However, the only possible rewriting in this
case is:

Putting these three inclusions together, the algorithm de- .=~ . i
termines that the view can be used to answer the query, b&l(X) == CitingPapers(X), CitationDB(X,001).
cause the selections in the view are less restrictive than those [RSU95] shows that in the presence of access-pattern lim-

in the query. The rewriting of the query using the view is the jtations it is sufficient to consider a slightly larger bound on

following: the size of the rewritingn + v, wheren is the number of

select distinct [D:=a.A, E:=a.B.name, F:=t.name] subgoals in the query andis the number of variables in the

from ain V1, u in France.Universities, query. Hence, the problem of finding an equivalent rewriting
v in u.PhDstudents, t in u.professors of the query using a set of views is still NP-complete.

where u.city.kind="small" and v.age=t.age and The situation becomes more complicated when we con-
u.name=a.A and v.name=a.B and t=a.C. sider maximally-contained rewritings. As the following ex-

L . ._ample given in [KW96] shows, there may Ibe@ bound on
Note thatthe role of the view is only to restrict the possible y,¢ sj7¢ of 4 rewriting. In the following example, the relation
bindings of the variables used in the query. In particular, theDBpapers denotes the set of papers in the database field, and
query still has to restrict the universities to only the Frenchy, relationAwardPapers stores papers that have received

ones, the students to only the Ph.Ds, and the range of thg, a.qs (in databases or any other field). The following views
variablet to cover only professors. In this case, the evaluation

of the query using the view is likely to be more efficient than are available:
computing the query only from the class extents. DBSource’ (X) :- DBpapers(X)
_ .)) CitationDB®f (X,Y) :- Cites(X,Y)
As noted in Sect. 5.2, the algorithm described in [DPT99, pyardpB?(X) :- AwardPaper(X)
PDSTO0O] also considers certain types of queries over object-
oriented data. The first source provides all the papers in databases, and has
no access-pattern limitations. The second source, when given
a paper, will return all the papers that are cited by it. The third
8.2 Access pattern limitations source, when given a paper, returns whether the paper is an
award winner or not.
In the context of data integration, where data sources are mod- The query asks for all the papers that won awards:
eled as views, we may have limitations on the possible acces (X) - AwardPaper(X)
paths to the data. For example, when querying the Interne ' P :
Movie Database, we cannot simply ask for all the tuplesinthe Since the viewAwardDB requires its input to be bound,
database. Instead, we must supply one of several inputs, (e.gve cannot query it directly. One way to get solutions to the
actor name or director), and obtain the set of movies in whichquery is to obtain the set of all database papers from the
they are involved. view DBSource, and perform a dependent join with the view

290 A.Y. Halevy: Answering queries using views: A survey

AwardDB. Another way would be to begin by retrieving the are inherentin XML data. Several languages have been devel-
papers irDBSource, join the result with the viewCitationDB oped for querying semi-structured data and XML [AQ®T,
to obtain all papers cited by paper&dBSource, andthenjoin ~ FFLS97,BDHS96,DFF99, CRF0Q].
the result with the viewAwardDB. As the rewritings below Several works have started considering the problem of an-
show, we can follow any length of citation chains beginning swering queries using views when the views and queries are
with papers irDBSource and obtain answers to the query that expressed in a language for querying semi-structured data.
were possibly not obtained by shorter chains. Hence, there iShere are two main difficulties that arise in this context. First,
no bound on the length of a rewriting of the query using thesuch query languages enable usiagular path expressions
views. in the query, to express navigational queries over data whose
structure is not well known a priori. Regular path expressions
war essentially provide a very limited kind of recursion in the query
Q'(X) - DBSource(V), CitationDB(V,X1), ..., language. In [CGLV99] the authors consider the problem of
CitationDB(X,X), AwardDB(X). rewriting a regular path query using a set of regular path views,

Fortunately, as shown in [DL97,DGLO0Q], we can still find and show that the prpblem is_in ZEXPTIME (and checking
afinite rewriting of the query using the views, albeit a recursive!VNether the rewriting is an equivalent one is in 2EXPSPACE).
one. The following datalog rewriting will obtain all the pos- In [CGLV_OOa] the authors cons_lder the p_roblem of finding all
sible answers from the above views. The key in constructin he certain answers When queries and views are expressed us-
the program is to define a new intermediate relapapers "9 regular path expressions, and show that the problem is
whose extension is the set of all papers reachable by citatiofo-NP-complete when data complexity (i.e., size of the view

; ; : : - extensions) is considered. In [CGLV0O0b] the authors extend
chains from papers in databases, and is defined by a transiti .
closure over the viewCitationDB. the results of [CGLV99,CGLV00a] to path expressions that

include the inverse operator, allowing both forward and back-

Q'(X) :- DBSource(X), AwardDB(X)

papers(X) :- DBsource(X) ward traversals in a graph.
papers(X) :- papers(Y), CitationDB(Y,X) The second problem that arises in the context of semi-
Q'(X) :- papers(X), AwardDB(X). structured data stems from the rich restructuring capabilities

-) _ _which enable the creation of arbitrary graphs in the output.
In[DL97]itis shown thata maximally-contained rewriting The output graphs can also include nodes that did not exist
of the query using the views can always be obtained within the input data. In [PV99] the authors consider the rewrit-
a recursive rewriting. In [FW97] and [LKG99] the authors jng problem in the case where the query can creamwver
describe additional optimizations to this basic algorithm. {rees and queries that do not involve regular path expressions
with recursion. For the most part, considering queries with

) restructuring remains an open research problem.
8.3 Other extensions

Several authors have considered additional extensions of th@finite number of viewsTwo works have considered the
query rewriting problems in various contexts. We mention problem of answering queries using views in the presence of
some of them here. aninfinite number of views [LRU96,VP97]. The motivation
for this seemingly curious problem is that when a data source
has the capability to perfortocal processing, it can be mod-
Extensions to the query and schema languaje][AGK99, eled by the (possibly infinite) set of views it can supply, rather
Dus98] the authors consider the rewriting problem when thethan a single one. As a simple example, consider a data source
views may contain unions. The consideration of inclusion de-+that stores a set of documents, and can answer queries of the
pendencies on the database relations introduces several subfm:
tleties to the query rewriting problem, which are considered in
[Gry98]. In [Mil98], the author considers the query rewriting
problem for a language that enables querying the schema and
data uniformly, and hence, names of attributes in the data maywhere we can have any number of occurrences afdhnéains
become constants in the extensions of the views. In [MRP99%ubgoal, each with a different word.
the authors show that when the schema contains a single uni- To answer queries using such sources, one need not only
versal relation, answering queries using views and several reshoose which sources to query, but we must also choose which
lated operations can be done more efficiently. query to send to it out of the set of possible queries it can
answer. In [LRU96,VP97] itis shown that in certain important
cases the problem of answering a query using an infinite set
Semi-structured dataThe emergence of XML as a standard of views is decidable. Of particular note is the case in which
for sharing data on the WWW has spurred significant interesthe set of views that a source can answer is described by the
in building systems for integrating XML data from multiple finite unfoldings of a datalog program.
sources. The emerging formalisms for modeling XML data are
variations on labeled directed graphs, which have also been
used to model semi-structured data [Abi97,Bun97,ABS99].Description logics: Description logics are a family of logics
The model of labeled directed graphs is especially well suitedor modeling complex hierarchical structures. A description
for modeling the irregularity and the lack of schema which logic makes it possible to define sets of objects by specifying

g(doc) :- document(doc), contains(doc, wl), ...,
contains(doc,wn)

A.Y. Halevy: Answering queries using views: A survey 291

their properties, and then to reason about the relationship bexnother challenge. The data warehouse design problem is often
tween these sets (e.g., subsumption, disjointness). A descrifpreated as a problem afearchthrough a set of warehouse
tion logic also enables reasoning about individual objects, and@onfigurations. In each configuration, we need to determine
their membership in different sets. One of the reasons that devhether the workload queries anticipated on the warehouse
scription logics are useful in data management is their abilitycan be answered using the selected views, and estimate the
to describe complex models of a domain and reason aboutost of the configuration. In this context it is important to be
inter-schema relationships [CL93]. For that reason, descripable to reuse the results of the computation from the previous
tion logics have been used in several data integration systensate in the search space. In particular, this raises the challenge
[AKS96,LR0O96a]. Borgida [Bor95] surveys the use of de- of developingincrementalalgorithms for answering queries
scription logics in data management. using views, which can compute rewritings more efficiently
Several works have considered the problem of answeringvhen only minor changes are made to the set of available
queries using views when description logics are used to modeliews.
the domain. In [BLR97] it is shown that in general, answer- In this survey we considered the problem of using ma-
ing queries using views in this context may be NP-hard, anderialized views when they are available. | believe that
presents cases in which we can obtain a maximally-containethe next challenge iselectingwhich views to material-
rewriting of a query inrecursive datalog. The complexity of an-ize in the first place. The problem of view selection also
swering queries using views for an expressive descriptionlogitias a surprising humber of potential applications, such as
(which also includes n-ary relations) is studied in [CGL99]. query optimization, data warehousing, web-site design, con-
tent distribution networks, peer-to-peer computing and ubig-
uitous computing. Even though there has been work on
9 Conclusions this problem (e.g., [CHS01,ACNOO,Gup97a,CG00,GM99c,
TS97,YKL97,BPT97,GHRU97,HRU96,GHD1]), the re-
As this survey has shown, the problem of answering queriesearch is still in its infancy. The wealth of techniques devel-
using views raises a multitude of challenges, ranging from theoped for answering queries using views will be very useful in
oretical foundations to considerations of a more practical nathis realm.
ture. While algorithms for answering queries using views are

already being incorpfrated into Comm?rCial da_tabase SySterT}?cknowIedgementsJ. would like to thank Phil Bernstein, Mike

(e.g., ,[BDD+98'ZC,:L OO])', these glgorlthms will have even Carey, Anhai Doan, Todd Millstein, Rachel Pottinger, Arnie Rosen-
more importance in data integration systems and data Warep;| |gor Tatarinov and the anonymous reviewers for valuable com-
house design. Furthermore, answering queries using Views i§ents on earlier drafts of this paper. | would like to acknowledge
a key technique to give database systems the ability of mainge support of a Sloan Fellowship, NSF Grants #11S-9978567 and

taining physical data independence. o #11S-9985114, and gifts from Microsoft Corporation and from NEC,
There are many issues that remain open in this realm. Algapan.

though we have touched upon several query languages and ex-

tensions thereof, many cases remain to be investigated. Of par-

ticular note are studying rewriting algorithms in the presenceReferences

of a wider class of integrity constraints on both the database

and view relations, and studying the effect of restructuring[abio7] Abiteboul S. Querying semi-structured data. In: Proc.

capabilities of query languages (as in OQL or languages for of ICDT. pp 1-18, Delphi, Greece, 1997
guerying semistructured data [BDHS96,AQNI7,FFLS97, [ABS99] Abiteboul S., Buneman P., Suciu D. Data on the Web.
DFFt99,CRF00]). Morgan Kaufmann, San Francisco, 1999

As described in the article, different motivations have led[ACNOO] Agrawal S., Chaudhuri S., Narasayya V. Automated se-
to two strands of work on answering queries using views, one lection of materialized views and indexes in Microsoft
in the context of optimization and the other in the context of SQL Server. In: Proc. of VLDB. pp 496-505, Cairo,
data integration. In part, these differences are due to the fact Egypt, 2000
that in the data integration context the algorithms search for #\CPS96] Adali S., Candan K., Papakonstantinou Y., Subrahma-
maximally-contained rewriting of the query and assume that nianV.S. Query caching and optimizationin distributed

mediator systems. In: Proc. of SIGMOD. pp 137-148,

the number of views is relatively large. However, as we illus-
Montreal, Canada, 1996

trated, the principles underlying the two strands are similar. : . .
Furthermore, interesting challenges arise as we try to bridg&*P€! Aggfizguds?r;’ 2:’;‘;?@226 ngsplel):%gcag?v;%gg
the gaps between these bodies of work. The first challenge is g 254 26395 le. Wash USA 1998 ' '
to extend the work on query optimization to handle a much PP 254-263, Seatfle, Wash., USA,

. Afr00] Afrati F. Personal communication, 2000
larger number of more complex views. The second challeng

. . . lqorith h - I AGK99] Afrati F., Gergatsoulis M., Kavalieros T. Answering
is to extend data integration algorithms to choose judicious queries using materialized views with disjunctions. In:

the best rewritings of the query. This can be done by either Proc. of ICDT. pp 435-452, 1999

trying to order the access to the data sources (as in [FKL97jaHvg5] Abiteboul S., Hull R., Vianu V. Foundations of

DL99,NLF99]), or to combine the choice of reWritingS with databases. Addison Wes|ey, Reading’ Mass., USA,

other adaptive aspects of query processing explored in data 1995

integration systems (e.g., [UFA98, IEB9]). [AKS96] ArensY., Knoblock C.A., Shen W.M. Query reformula-
The context of data warehouse design, when one tries to tion for dynamic information integration. Int. J. Intell.

select a set of views to materialize in the warehouse, raises Coop. Inf. Syst. (6)2/3:99-130, 1996

292

[ALUO1]

[AQM T97]

[BDD 98]

[BDHS96]

[BLR97]

[Bor95]

[BPTI7]

[Bun97]

[CGOO]

[CGL99]

[CGLV99]

[CGLV00a]

[CGLVOOb]

[CHSO1]

[CKPS95]

[CLO3]

[CM77]

[CN98a]

[CN98b]

[CNS99]

[CRY4]

Afrati F., Li C., Ullman J. Generating efficient plans for
gueries using views. In: Proc. of SIGMOD. pp 319-
330, 2001

Abiteboul S., Quass D., McHugh J., Widom J., Wiener [CRF00]
J. The Lorel query language for semistructured data.

Int. J. Digital Libr. 1(1):68-88, 1997

Bello R., Dias K., Downing A., Feenan J., Finnerty J., [CV92]
Norcott W., Sun H., Witkowski A., Ziauddin M. Materi-
alized views in Oracle. In: Proc. of VLDB. pp 659-664,
1998

Buneman P., Davidson S., Hillebrand G., Suciu D. A
query language and optimization techniques for un-
structured data. In: Proc. of SIGMOD. pp 505-516, [Cvo4]
Montreal, Canada, 1996

Beeri C., Levy A.Y., Rousset M.C. Rewriting queries
using views in description logics. In: Proc. of PODS.

[CR97]

[CVo3]

+
pp 99-108, Tucson, Ariz., USA, 1997 [DFFT99]
Borgida A. Description logics in data management.

IEEE Trans. Knowl. Data Eng. 7(5):671-682, 1995 [DFJ"96]

Baralis E., Paraboschi S., Teniente E. Materialized
views selection in a multidimensional database. In:
Proc. of VLDB. pp 156-165, 1997 [DFS99]
Buneman P. Semistructured data. In: Proc. of PODS.

pp 117-121, Tucson, Ariz., USA, 1997

Chirkova R., Genesereth M. Linearly bounded refor- [pG97a]
mulations of conjunctive databases. In: Proc. of DOOD.

pp 987-1001, 2000

Calvanese D., De Giacomo G., Lenzerini M. Answering [DG97b]
queries using views in description logics. In: Working

notes of the KRDB Workshop. 1999

Calvanese D., De Giacomo G., Lenzerini M., Vardi [DGLO0O0]
M. Rewriting of regular expressions and regular path

queries. In: Proc. of PODS. pp 194-204, 1999

Calvanese D., De Giacomo G., Lenzerini M., Vardi M.
Answering regular path queries using views. In: Proc. [DL97]
of ICDE. pp 389-398, 2000

Calvanese D., De Giacomo G., Lenzerini M., Vardi M.
View-based query processing for regular path queries[DL99]
with inverse. In: Proc. of PODS. pp 58-66, 2000

Chirkova R., Halevy A., Suciu D. A formal perspective

on the view selection problem. In: Proc. of VLDB. 2001 [DPT99]
Chaudhuri S., Krishnamurthy R., Potamianos S., Shim
K. Optimizing queries with materialized views. In:
Proc. of ICDE. pp 190-200, Taipei, Taiwan, 1995
Catarci T., Lenzerini M. Representing and using inter-
schema knowledge in cooperative information systems.
J. Intell. Coop. Inf. Syst.. pp 55-62, 1993

Chandra A.K., Merlin P.M. Optimal implementation
of conjunctive queries in relational databases. In: Proc.[EGW97]
Ninth Annual ACM Symposium on Theory of Comput-

ing. pp 77-90, 1977

Chaudhuri S., Narasayya V.R. Autoadmin 'what-if’ in- [FFLS97]
dex analysis utility. In: Proc. of SIGMOD. pp 367-378,

1998

Chaudhuri S., Narasayya V.R. Microsoft index tuning [FK99]
wizard forSQL Server 7.0. In: Proc. of SIGMOD. pp

553-554, 1998

Cohen V.R., Nutt W., Serebrenik A. Rewriting aggre- [FKL97]
gate queries using views. In: Proc. of PODS. pp 155—

166, 1999

Chen C., Roussopoulos N. Implementation and perfor-[FLM98]
mance evaluation of the ADMS query optimizer. In:

Proc. of EDBT. pp 323—-336, March 1994

[Dus97]

[Dus98]

A.Y. Halevy: Answering queries using views: A survey

Chekuri C., Rajaraman A. Conjunctive query contain-
ment revisited. In: Proc. of ICDT. pp 56-70, Delphi,
Greece, 1997

Chamberlin D.D., Robie J., Florescu D. Quilt: an XML
query language for heterogeneous data sources. In:
WebDB (Informal Proceedings) 2000. pp 53-62, 2000
Chaudhuri S., Vardi M. On the equivalence of recursive
and nonrecursive datalog programs. In: Proc. of PODS.
pp 55-66, San Diego, Calif., USA, 1992

Chaudhuri S., Vardi M. Optimizing real conjunctive
queries. In: Proc. of PODS. pp 59-70, Washington
D.C., USA, 1993

Chaudhuri S., Vardi M. On the complexity of equiva-
lence between recursive and nonrecursive datalog pro-
grams. In: Proc. of PODS. pp 55-66, Minneapolis,
Minn., USA, 1994

Deutsch A., Fernandez M., Florescu D., Levy A., Suciu
D. A query language for XML. In: Proc. World-Wide
Web 8 Conference. pp 1155-1169, 1999

Dar S., Franklin M.J., Jonsson B., Srivastava D., Tan
M. Semantic data caching and replacement. In: Proc.
of VLDB. pp 330-341, 1996

Deutsch A., Fernandez M., Suciu D. Storing semi-
structured data with STORED. In: Proc. of SIGMOD.
pp 431-442, 1999

Duschka O.M., Genesereth M.R. Answering recursive
queries using views. In: Proc. of PODS. pp 109-116,
Tucson, Ariz., USA, 1997

Duschka O.M., Genesereth M.R. Query planning inin-
fomaster. In: Proc. ACM Symposium on Applied Com-
puting. pp 109-111, San Jose, Calif., USA, 1997
Duschka O., Genesereth M., Levy A. Recursive query
plans for data integration. In: Special issue on Logic
Based Heterogeneous Information Systems. J. Logic
Program. 43(1):49-73, 2000

Duschka O.M. Levy A.Y. Recursive plans for informa-
tion gathering. In: Proc. 15th International Joint Con-
ference on Atrtificial Intelligence. pp 778-784, 1997
Doan A., Levy A. Efficiently ordering query plans for
data integration. In: IJCAl Workshop on Intelligent
Data Integration. Stockholm, Sweden, August 1999
Deutsch A., Popa L., Tannen V. Physical data inde-
pendence, constraints and optimization with universal
plans. In: Proc. of VLDB. pp 459-470, 1999

Duschka O. Query optimization using local complete-
ness. In: Proc. AAAI 14th National Conference on Ar-
tificial Intelligence. pp 249-255, 1997

Duschka O.M. Query planning and optimization in in-
formation integration. PhD thesis, Stanford University,
Stanford, Calif., USA, 1998

Etzioni O., Golden K., Weld D.S. Sound and efficient
closed-world reasoning for planning. Artif. Intell. 89(1-
2):113-148, 1997

Fernandez M., Florescu D., Levy A., Suciu D. A query
language for a web-site management system. SIGMOD
Record 26(3):4-11, 1997

Florescu D., Kossmann D. Storing and querying XML
data using an rdbms. IEEE Data Eng. Bull. 22(3):27—
34,1999

Florescu D., Koller D., Levy A. Using probabilistic
information in data integration. In: Proc. of VLDB. pp
216-225, Athens, Greece, 1997

Florescu D., Levy A., Mendelzon A. Database tech-
niques for the world-wide web: a survey. SIGMOD
Record 27(3):59-74, 1998

A.Y. Halevy: Answering queries using views: A survey

[Flo96]

[FLSY99]

[FRV96]

[FW97]

[GBLP98]

[GHIT01]

[GHQO5]

[GHRU97]

[GLO1]

[GM993]

[GM99b]

[GM99c]

Florescu D.D. Search spaces for object-oriented quern|KB96]
optimization. PhD thesis, Univerisity of Paris VI.

France, 1996

Florescu D., Levy A., Suciu D., Yagoub K. Optimiza- [Klu88]
tion of run-time management of data intensive web
sites. In: Proc. of VLDB. pp 627-638, 1999
FlorescuD., Raschid L., Valduriez P. Answering queries
using OQL view expressions. In: Workshop on Mate-
rialized Views, in cooperation with ACM SIGMOD.
Montreal, Canada, 1996

Friedman M., Weld D. Efficient execution of infor-
mation gathering plans. In: Proc. International Joint
Conference on Atrtificial Intelligence, Nagoya, Japan. [Lev96]
pp 785-791, 1997

Gray J., Bosworth A., Layman A., Pirahesh H. Data

cube: a relational aggregation operator generalizing[Lev00]
group-by, cross-tab and sub-totals. In: Proc. of ICDE.
pp 152-159, 1998

Gribble S., Halevy A., Ives Z., Rodrig M., Suciu D.
What can databases do for peer-to-peer? In: ACM SIG-
MOD WebDB Workshop 2001. 2001

Gupta A., Harinarayan V., Quass D. Aggregate-query [LKG99]
processing in data warehousing environments. In: Proc.

of VLDB. pp 358-369, 1995

Gupta H., Harinarayan V., Rajaraman A., Ullman J.D.

Index selection for OLAP. In: Proc. of ICDE. pp 208— [LMSS95]
219, 1997

Goldstein J., Larson P.A. Optimizing queries using ma-

terialized views: a practical, scalable solution. In: Proc. [LRO96a]
of SIGMOD. pp 331-342, 2001

Grahne G., Mendelzon A.O. Tableau techniques for

querying information sources through global schemas.[LRO96b]
In: Proc. of ICDT. pp 332—-347, 1999

Gupta A., Mumick I., (eds.) Materialized views: tech-

nigues, implementations and applications. MIT, Cam- [LRU96]
bridge, Mass., USA, 1999

GuptaH., Mumickl.S. Selection of views to materialize

under a maintenance cost constraint. In: Proc. of ICDT. [LS93]

pp 453-470, 1999

[KMT98]

[KW96]

[LFS97]

[GMPQ'97] Garcia-Molina H., Papakonstantinou., Quass D., Ra-[MGA97]

[GRT99]
[Gry98]
[GTO0]
[Gup97a]

[Gup97b]

[HFLP89]

[HRU96]

[IFFt99]

[IL84]

jaraman A., Sagiv Y., Ullman J., Widom J. The TSIM-
MIS project: Integration of heterogeneous information
sources. J. Intell. Inf. Syst. 8(2):117-132, 1997
Grumbach S., Rafanelli M., Tininini L. Querying ag-
gregate data. In: Proc. of PODS. pp 174-184, 1999
Gryz J. Query folding with inclusion dependencies. In: [MLFOQ]
Proc. of ICDE. pp 126-133, Orlando, Fla., USA, 1998
Grumbach S., Tininini L. On the content of materialzed
aggregate views. In: Proc. of PODS. 2000

Gupta H. Selection of views to materialize in a data
warehouse. In: Proc. of ICDT. pp 98-112, 1997
Gupta H. Selection of views to materialize in a data [MMS79]
warehouse. In: Proc. of ICDT. pp 98-112, Delphi,

Greece, 1997

Haas L., Freytag J., Lohman G., Pirahesh H. ExtensiblefMRP99]
query processing in Starburst. In: Proc. of SIGMOD.

pp 377-388, 1989

HarinarayanV., RajaramanA., Ullman J.D. Implement-

ing data cubes efficiently. In: Proc. of SIGMOD. pp

[Milog]

[MMO1]

205-216, 1996 [NLF99]
Ives Z., Florescu D., Friedman M., Levy A., Weld D.

An adaptive query execution engine for data integration.

In: Proc. of SIGMOD. pp 299-310, 1999

Imielinski T., Lipski W. Incomplete informationinre- [PDSTO00]

lational databases. J. ACM. 31(4):761-791, 1984

293

Keller A.M., Basu J. A predicate-based caching scheme
for client-server database architectures. VLDB J.
5(1):35-47, 1996

KlugA. On conjunctive queries containing inequalities.
J. ACM. pp 35(1):146-160, 1988

Kolaitis P., Martin D., Thakur M. On the complexity of
the containment problem for conjunctive queries with
built-in predicates. In: Proc. of PODS. pp 197-204,
Seattle, Wash., USA, 1998

Kwok C.T., Weld D.S. Planning to gather information.
In: Proc. AAAI 13th National Conference on Atrtificial
Intelligence. pp 32-39, 1996

Levy A.Y. Obtaining complete answers from incom-
plete databases. In: Proc. of VLDB. pp 402—-412, Bom-
bay, India, 1996

Levy A.Y. Logic-based techniques in data integration.
In: MinkerJ (ed.) Logic-based artificial intelligence.
Kluwer Academic, Dordrecht, 2000, pp 575-595
LevyA.Y., Fikes R.E., Sagiv S. Speeding up inferences
using relevance reasoning: a formalism and algorithms.
Artif. Intell. 97(1-2), 1997

Lambrecht E., Kambhampati S., Gnanaprakasam S.
Optimizing recursive information gathering plans. In:
Proc. 16th International Joint Conference on Artificial
Intelligence. pp 1204-1211, 1999

Levy A.Y., Mendelzon A.O., Sagiv Y., Srivastava D.
Answering queries using views. In: Proc. of PODS. pp
95-104, San Jose, Calif, USA, 1995

Levy AY., RajaramanA., Ordille J.J. Query answering
algorithms for information agents. In: Proc. National
Conference on Atrtificial Intelligence. pp 40-47, 1996
Levy AY., Rajaraman A., Ordille J.J. Querying hetero-
geneous information sources using source descriptions.
In: Proc. of VLDB. pp 251-262, Bombay, India, 1996
Levy A.Y., Rajaraman A., Ullman J.D. Answering
queries using limited external processors. In: Proc. of
PODS. pp 227-237, Montreal, Canada, 1996

Levy A.Y., Sagiv Y. Queries independent of updates.
In: Proc. of VLDB. pp 171-181, Dublin, Ireland, 1993
Steinbrunn M., Moerkotte G., Kemper A. Heuristic
and randomized optimization for the join. VLDB J.
6(3):191-208, 1997

Miller R.J. Using schematically heterogeneous struc-
tures. In: Proc. of SIGMOD. pp 189-200, Seattle,
Wash., USA, 1998

Millstein T., Levy A., Friedman M. Query containment
for data integration systems. In: Proc. of PODS. pp
67-75, Dallas, Tex., USA, 2000

Mendelzon A., Mihaila G. Querying partially sound
and complete data sources. In: Proc. of PODS. pp 162—
170, 2001

Maier D., Mendelzon A., Sagiv Y. Testing implica-
tions of data dependencies. ACM Trans. Database Syst.
4(4):455-469, 1979

Minock M., Rusinkiewicz M., Perry B. The identi-
fication of missing information resources through the
query difference operator. In: Proc. 4th IFCIS Interna-
tional Conference on Cooperative Information Systems
(CooplS 99). September 1999

NaumannF., Leser U., Freytag J.C. Quality-driven inte-
gration of heterogeneous information systems. In: 25th
Conference on Very Large Database Systems (VLDB).
pp 447-458, 1999

Popa L., Deutsch A., Sahuguet A., Tannen V. A chase
too far? In: Proc. of SIGMOD. pp 273-284, 2000

294

[PHO1]

[PLOO]

[PT99]

[PV99]

[Qia96]

[RSU95]

[SACT79]

[Sag88]

[SDJL96]

[SGT99]

[Shmo3]

[SR92]

[SY81]

[TIHWO1]

Pottinger R., Halevy A. Minicon: a scalable algorithm [TS97]
for answering queries using views. VLDB J. 10(2):
182-198, 2001

Pottinger R., Levy A. A scalable algorithm for answer- [TSI94]
ing queries using views. In: Proc. of VLDB. pp 484—

495, Cairo, Egypt, 2000

Popa L., Tannen V. An equational chase for path con-[TSI96]
junctive queries, constraints and views. In: Proc. of

ICDT. 1999

Papakonstantinou Y., Vassalos V. Query rewriting for [UFA98]
semi-structured data. In: Proc. of SIGMOD. pp 455—-
466, 1999

Qian X. Query folding. In: Proc. of ICDE. pp 48-55,
New Orleans, La., USA, 1996

RajaramanA., SagivY., Ullman J.D. Answering queries
using templates with binding patterns. In: Proc. of [UII97]
PODS. pp 105-112, San Jose, Calif., USA, 1995

Selinger P., Astrahan M., Chamberlin D., Lorie R., Price

T. Access path selection in relational database systems|Val87]
In: Proc. of SIGMOD. pp 23—-34, Boston, Mass., USA,
1979

Sagiv Y. Optimizing datalog programs. In: Minker J
(ed) Foundations of deductive databases and logic pro-
gramming. pp 659—-698. Morgan Kaufmann, Los Altos, [Wie92]
Calif., USA, 1988

SrivastavaD., Dar S., JagadishH.V., LevyA.Y. Answer- [YFIVOO]
ing SQL queries using materialized views. In: Proc. of

VLDB. Bombay, India, 1996

Shanmugasundaram J., Gang H., Tufte K., Zhang C.[YKL97]
DeWitt D.J., Naughton J. Relational databases for
querying XML documents: limitations and opportuni-
ties. In: Proc. of VLDB. pp 302-314, 1999

Shmueli O. Equivalence of datalog queries is undecid-
able. J. Logic Program. 15:231-241, 1993

Srivastava D., Ramakrishnan R. Pushing constraint sefZCL"00]
lections. In: Proc. of PODS. pp 301-315, San Diego,

Calif., USA, 1992

Sagiv'Y., Yannakakis M. Equivalence among relational
expressions with the union and difference operators. J[Z0O93]
ACM. 27(4):633—-655, 1981

Tatarinov 1., Ives Z., Halevy A., Weld D. Updating

XML. In: Proc. of SIGMOD. pp 413-424, 2001

[UII89]

[VP97]

[YL87]

A.Y. Halevy: Answering queries using views: A survey

Theodoratos D., Sellis T. Data warehouse configura-
tion. In: Proc. of VLDB. pp 126-135, Athens, Greece,
1997

Tsatalos O.G., Solomon M.H., loannidis Y.E. The
GMAP: a versatile tool for physical data independence.
In: Proc. of VLDB. pp 367-378, Santiago, Chile, 1994
Tsatalos O.G., Solomon M.H., loannidis Y.E. The
GMAP: aversatile tool for physical dataindependence.
VLDB J. 5(2):101-118, 1996

Urhan T., Franklin M.J., Amsaleg L. Cost-based query
scrambling for initial delays. In: Proc. of SIGMOD. pp
130-141, Seattle, Wash., USA, 1998

Ullman J.D. Principles of database and knowledge-base

systems, vols. |, Il. Computer Science, Rockville, Md.,
USA, 1989
Ullman J.D. Information integration using logical

views. In: Proc. of ICDT. pp 19-40, Delphi, Greece,
1997

Valduriez P. Join indices. ACM Trans. Database Syst.
12(2):218-246, 1987

Vassalos V., Papakonstantinou Y. Describing and using
query capabilities of heterogeneous sources. In: Proc.
of VLDB. pp 256-265, Athens, Greece, 1997
Wiederhold G. Mediators in the architecture of future
information systems. IEEE Comput. pp 38—49, 1992
Yagoub K., Florescu D., Issarny V., Valduriez P.
Caching strategies for data-intensive web sites. In:
Proc. of VLDB. pp 188-199, Cairo, Egypt, 2000

Yang J., Karlapalem K., Li Q. Algorithms for material-
ized view design in data warehousing environment. In:
Proc. of VLDB. pp 136-145, Athens, Greece, 1997
Yang H.Z., Larson P.A. Query transformation for PSJ-
queries. In: Proc. of VLDB. pp 245-254, Brighton, UK,
1987

Zaharioudakis M., Cochrane R., Lapis G., Pirahesh H.,
Urata M. Answering complex SQL queries using au-
tomatic summary tables. In: Proc. of SIGMOD. pp
105-116, 2000

Zhang X., Ozsoyoglu M.Z. On efficient reasoning with
implication constraints. In: Proc. of DOOD. pp 236—
252, 1993

