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Abstract. Theproblemof answering queries using views is to
findefficientmethodsof answeringaqueryusingaset of previ-
ously definedmaterialized viewsover the database, rather than
accessing the database relations. The problem has recently re-
ceived significant attention because of its relevance to a wide
variety of data management problems. In query optimization,
finding a rewriting of a query using a set of materialized views
can yield amore efficient query execution plan. To support the
separation of the logical and physical views of data, a storage
schema can be described using views over the logical schema.
As a result, finding a query execution plan that accesses the
storage amounts to solving the problem of answering queries
using views. Finally, the problem arises in data integration
systems, where data sources can be described as precomputed
views over a mediated schema. This article surveys the state
of the art on the problem of answering queries using views,
and synthesizes the disparate works into a coherent frame-
work. We describe the different applications of the problem,
the algorithms proposed to solve it and the relevant theoretical
results.
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1 Introduction

The problem of answering queries using views (also known
as rewriting queries using views) has recently received sig-
nificant attention because of its relevance to a wide variety of
datamanagement problems: query optimization, maintenance
of physical data independence, data integration and data ware-
house design. Informally speaking, the problem is the follow-
ing. Suppose we are given a queryQ over a database schema,
and a set of view definitionsV1, . . . , Vn over the same schema.
Is it possible to answer the queryQ usingonly the answers to
the viewsV1, . . . , Vn?Alternatively,what is themaximal set of
tuples in the answer ofQ that we can obtain from the views? If
we can access both the views and the database relations, what
is the cheapest query execution plan for answeringQ?

The first class of applications in which we encounter the
problem of answering queries using views is query optimiza-
tion and database design. In the context of query optimiza-
tion, computing a query using previously materialized views
can speed up query processing because part of the computa-
tion necessary for the querymay have already been donewhile
computing theviews.Suchsavingsareespecially significant in
decision support applicationswhen the views and queries con-
tain grouping and aggregation. Furthermore, in some cases,
certain indices can be modeled as precomputed views (e.g.,
join indices [Val87]),1 and deciding which indices to use re-
quires a solution to the query rewriting problem. In the context
of database design, view definitions provide a mechanism for
supporting the independence of thephysicalview of the data
and itslogical view. This independence enables us to modify
the storage schema of the data (i.e., the physical view) with-
out changing its logical schema, and to model more complex
types of indices. Hence, several authors describe the storage
schemaasaset of viewsover the logical schema [YL87,TSI96,
Flo96]. Given these descriptions of the storage, the problem
of computing a query execution plan (which, of course, must
access the physical storage) involves figuring out how to use
the views to answer the query.

A second class of applications in which our problem arises
is data integration. Data integration systems provide a uniform
query interface to a multitude of autonomous data sources,
which may reside within an enterprise or on the World-Wide
Web. Data integration systems free the user from having to
locate sources relevant to a query, interact with each one in
isolation, and manually combine data from multiple sources.
Users of data integration systems do not pose queries in terms
of the schemas in which the data is stored, but rather in terms
of amediated schema. The mediated schema is a set of rela-
tions that is designed for a specificdata integrationapplication,
and contains the salient aspects of the domain under consid-
eration. The tuples of the mediated schema relations are not
actually stored in the data integration system. Instead, the sys-
tem includes a set ofsource descriptionsthat provide semantic
mappings between the relations in the source schemas and the
relations in the mediated schema.

1 Strictly speaking, to model join indices we need to extend the
logical model to refer to row IDs.
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The data integration systems described in [LRO96b,
DG97b,KW96,LKG99] follow an approach in which the con-
tents of the sources are described as views over the mediated
schema.As a result, the problemof reformulating a user query,
posed over the mediated schema, into a query that refers di-
rectly to the source schemas becomes the problem of answer-
ing queries using views. In a sense, the data integration context
can be viewed as an extreme case of the need tomaintain phys-
ical data independence, where the logical and physical layout
of the data sources has been defined in advance. The solutions
to the problem of answering queries using views differ in this
context because the number of views (i.e., sources) tends to
be much larger, and the sources need not contain thecomplete
extensions of the views.

In the area of data warehouse design we need to choose a
set of views (and indexes on the views) to materialize in the
warehouse [HRU96,TS97,YKL97,GHRU97,ACN00,CG00].
Similarly, in web-site design, the performance of a web site
can be significantly improved by choosing a set of views to
materialize [FLSY99]. In both of these problems, the first step
in determining the utility of a choice of views is to ensure that
the views are sufficient for answering the queries we expect to
receive over the data warehouse or the web site. This problem,
again, translates into the view rewriting problem.

Finally, answering queries using views plays a key role in
developingmethods for semantic data caching in client-server
systems [DFJ+96,KB96,CR94,ACPS96]. In these works, the
data cached at the client is modeled semantically as a set of
queries, rather than at the physical level as a set of data pages
or tuples. Hence, deciding which data needs to be shipped
from the server in order to answer a given query requires an
analysis of which parts of the query can be answered by the
cached views.

The many applications of the problem of answering
queries using views has spurred a flurry of research, ranging
from theoretical foundations to algorithm design and imple-
mentation in several commercial systems. This article surveys
the current state of the art in this area, and classifies the works
into a coherent framework based on a set of dimensions along
which the treatments of the problem differ.

The treatments of the problem differ mainly depending
on whether they are concerned with query optimization and
database design or with data integration. In the case of query
optimization and database design, the focus has been on pro-
ducing a query execution plan that involves the views, and
hence the effort has been on extending query optimizers to
accommodate the presence of views. In this context, it is nec-
essary that rewriting of the query using the views be anequiv-
alent rewriting in order for the query execution plan to be
correct. It is important to note that some of the views included
in the query plan may not contribute to the logical correctness
of the plan, but only to reducing the plan’s cost.

In the data integration context, the focus has been on trans-
lating queries formulated in terms of a mediated schema into
queries formulated in terms of data sources. Hence, the output
of the algorithm is a query expression, rather than a query ex-
ecution plan. Because the data sources may not entirely cover
the domain, we sometimes need to settle for acontainedquery
rewriting, rather than an equivalent one. A contained query
rewriting provides a subset of the answer to the query, but
perhaps not the entire answer. In addition, the works on data

integration distinguished between the case in which the indi-
vidual views are complete (i.e., contain all the tuples in their
definition) and the case where they may be incomplete (as is
common when modeling autonomous data sources). Further-
more, the works on data integration distinguished the transla-
tion problem from the more general problem of finding all the
answers to a query given the data in the sources, and showed
that the two problems differ in interesting ways.

The survey is organized as follows. Section 2 presents in
more detail the applications motivating the study of the prob-
lem and the dimensions along which we can study the prob-
lem. Section 3 defines the problem formally. As a basis for
the discussion of the different algorithms, Sect.4 provides an
intuitive explanation of the conditions under which a view can
be used to answer a query. Section 5 describes how materi-
alized views have been incorporated into query optimization.
Section 6 describes algorithms for answering queries using
views that were developed in the context of data integration.
Section 7 surveys some theoretical issues concerning the prob-
lem of answering queries using views, and Sect.8 discusses
several extensions to the algorithms in Sects. 5 and 6 to ac-
commodatequeriesoverobject-orienteddatabasesandqueries
with access-pattern limitations. Finally, Sect.9 concludes, and
outlines some of the open problems in this area.

We note that this survey is not concerned with the closely
related problems of incremental maintenance of material-
ized views, which is surveyed in [GM99b], selection of
which views to maintain in a data warehouse [HRU96,TS97,
GHRU97,Gup97b,YKL97,GM99c,CG00,CHS01] or auto-
mated selection of indexes [CN98b,CN98a].

2 Motivation and illustrative examples

Before beginning the detailed technical discussion, we moti-
vate the problem of answering queries using views through
some of its applications. In particular, this section serves to
illustrate the wide and seemingly disparate range of applica-
tions of the problem. We end the section by classifying the
different works on the topic into a taxonomy.

We use the following familiar university schema in our ex-
amples throughout the paper. We assume that professors, stu-
dents, and departments are uniquely identified by their names,
and courses are uniquely identified by their numbers. The
Registered relation describes the students’ registration in
classes, while theMajor relation describes in which depart-
ment aparticular student ismajoring (weassume for simplicity
that every department has a single major program).

Prof(name, area)
Course(c-number, title)
Teaches(prof, c-number, quarter, evaluation)
Registered(student, c-number, quarter)
Major(student, dept)
WorksIn(prof, dept)
Advises(prof, student).

2.1 Query optimization

The first and most obvious motivation for considering the
problem of answering queries using views is for query opti-
mization. If part of the computation needed to answer a query
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Fig. 1. An entity/relationship diagram for the university domain.
Note thatquarter is an attribute of the relationshipsregistered and
teaches

has already been performed in computing amaterialized view,
then we can use the view to speed up the computation of the
query.

Consider the following query, asking for students and
course titles for students who registered in Ph.D-level classes
taught by professors in theDatabase area (in our example, uni-
versity graduate-level classes have numbers of 400 and above,
and Ph.D-level courses numbers of 500 and above):

select Registered.student, Course.title
from Teaches, Prof, Registered, Course
where Prof.name=Teaches.prof and

Teaches.c-number =Registered.c-number and
Teaches.quarter=Registered.quarter and
Registered.c-number=Course.c-number and
Course.c-number ≥ 500 and Prof.area="DB".

Suppose we have the following materialized view, con-
taining the registration records of graduate-level courses and
above.

create view Graduate as
select Registered.student, Course.title, Course.c-number,

Registered.quarter
from Registered, Course
where Registered.c-number=Course.c-number and

Course.c-number ≥ 400.

The viewGraduate can be used in the computation of the
above query as follows:

select Graduate.student, Graduate.title
from Teaches, Prof, Graduate
where Prof.name=Teaches.prof and

Teaches.c-number=Graduate.c-number and
Teaches.quarter=Graduate.quarter and
Graduate.c-number ≥ 500 and Prof.area="DB".

The resulting evaluation will be cheaper because the view
Graduate has already performed the join betweenRegis-
tered andCourse, and has already pruned the non-graduate
courses (the courses that actually account for most of the ac-
tivity going on in a typical university). It is important to note
that the viewGraduate is useful for answering the query even
though it does notsyntacticallymatch any of the subparts of
the query.

Even if a view has already computed part of the query,
it is not necessarily the case that using the view will lead to
a more efficient evaluation plan, especially considering the
indexes available on the database relations and on the views.

For example, suppose the relationsCourse andRegistered
have indexes on thec-number attribute. In this case, if the
view Graduate does not have any indexes, then evaluating
the query directly from the database relations may be cheaper.
Hence, the challenge is not only to detect when a view is
logically usable for answering a query, but also to make a
judicious cost-based decision on when to use the available
views.

2.2 Maintaining physical data independence

Several works on answering queries using viewswere inspired
by the goal of maintaining physical data independence in re-
lational and object-oriented databases [YL87,TSI96,Flo96].
One of the principles underlying modern database systems is
the separation between the logical view of the data (e.g., as
tables with their named attributes) and the physical view of
the data (i.e., how it is laid out on disk). With the exception
of horizontal or vertical partitioning of relations into multiple
files, relational database systems are still largely based on a
1-1 correspondence between relations in the schema and files
in which they are stored. In object-oriented systems, main-
taining the separation is necessary because the logical schema
contains significant redundancy, and does not correspond to
a good physical layout. Maintaining physical data indepen-
dence becomes more crucial in applications where the logical
model is introduced as an intermediate level after the physi-
cal representation has already been determined. This is com-
mon in applications of semi-structured data [Bun97,Abi97,
FLM98], storage of XML data in relational databases [FK99,
SGT+99,DFS99,TIHW01], and in data integration. In fact,
the STORED System [DFS99] stores XML documents in a
relational database, and uses views to describe the mapping
from XML into relations in the database. In some sense, data
integration, discussed in the next section, is an extreme case
where there is a separation between the logical view of the
data and its physical view.

To maintain physical data independence, several authors
proposed to use views as a mechanism for describing the stor-
age of the data. In particular, [TSI96] described the storage of
the data using GMAPs(generalized multi-level access paths),
expressed over the conceptual model of the database.

To illustrate, consider the entity-relationship model of a
slightly extended university domain shown in Fig.1. Figure 2
shows GMAPs expressing the different storage structures for
this data.

A GMAP describes the physical organization and indexes
of the storage structure. The first clause of the GMAP (the
as clause) describes the actual data structure used to store a
set of tuples (e.g., a B+-tree, hash index, etc.) The remaining
clauses describe the content of the structure, much like a view
definition.Thegivenandselect clauses describe the available
attributes, where thegiven clause describes the attributes on
which thestructure is indexed.Thedefinitionof theview,given
in thewhere clause uses infix notation over the conceptual
model.

In our example, the GMAP G1 stores a set of pairs con-
taining students and the departments in which they major,
and these pairs are indexed by a B+-tree on attributeStu-
dent.name. The GMAP G2 stores an index from the names
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def gmap G1 as b+-tree by
given Student.name
select Department
where Student major Department.

def gmap G2 as b+-tree by
given Student.name
select Course.c-number
where Student registered Course.

def gmap G3 as b+-tree by
given Course.c-number
select Department
where Student registered Course and
Student major Department.

Fig. 2.GMAPs for the university domain

of students to the numbers of the courses in which they are
registered. The GMAP G3 stores an index from course num-
bers to departments whose majors are enrolled in the course.
As shown in [TSI96], using GMAPs it is possible to express a
large family of data structures, including secondary indexes on
relations, nested indexes, collection-based indexes, and struc-
tures implementing field replication.

Given that the data is stored in the structures described
by the GMAPs, the question that arises is how to use these
structures to answer queries. Since the logical content of the
GMAPsare described by views, answering a query amounts to
finding away of rewriting the query using these views. If there
are multiple ways of answering the query using the views, we
would like to find the cheapest one. Note that in contrast to the
query optimization context, wemustuse the views to answer
a given query, because all the data is stored in the GMAPs,

Consider the following query in our domain, which asks
for names of students registered for Ph.D-level courses and
the departments in which these students are majoring.

select Student.name, Department
where Student registered Course and

Student major Department and
Course.c-number≥500.

The query can be answered in two ways. First, sinceStu-
dent.name uniquely identifies a student, we can take the
join of G1 and G2, and then apply a selectionCourse.c-
number≥500, and a projection onStudent.name andDe-
partment. A second solution would be to join G3 with G2
and selectCourse.c-number≥500. In fact, this solutionmay
even be more efficient because G3 has an index on the course
number and therefore the intermediate joins may be much
smaller.

2.3 Data integration

Much of the recent work on answering queries using views has
been spurred because of its applicability to data integration
systems. A data integration system (a.k.a. a mediator system
[Wie92]) provides auniform query interface to a multitude
of autonomous heterogeneous data sources. Prime examples
of data integration applications include enterprise integration,

querying multiple sources on the World-Wide Web, and in-
tegration of data from distributed scientific experiments. The
sources in such an application may be traditional databases,
legacy systems, or even structured files. The goal of a data in-
tegration system is to free the user from having to find the data
sources relevant to a query, interact with each source in isola-
tion, and manually combine data from the different sources.

To provide a uniform interface, a data integration system
exposes to the user amediated schema. A mediated schema is
a set ofvirtual relations, in the sense that they are not actually
stored anywhere. The mediated schema is designed manually
for a particular data integration application. To be able to an-
swer queries, the system must also contain a set ofsource de-
scriptions.Adescription of a data source specifies the contents
of the source, the attributes that can be found in the source,
and the constraints on the contents of the source.

One of the approaches for specifying source descriptions,
which has been adopted in several systems ([LRO96b,KW96,
FW97,DG97b,LKG99]), is to describe the contents of a data
source as aview over the mediated schema. This approach
facilitates the addition of new data sources and the specifica-
tion of constraints on contents of sources (see [Ull97,FLM98,
Lev00] for a comparison of different approaches for specify-
ing source descriptions).

In order to answer a query, a data integration system needs
to translate a query formulated on the mediated schema into
one that refers directly to the schemas in the data sources.
Since the contents of the data sources are described as views,
the translation problem amounts to finding a way to answer a
query using a set of views.

We illustrate the problem with the following example,
where the mediated schema exposed to the user is our univer-
sity schema, except that the relationsTeaches andCourse
have an additional attribute identifying the university at which
a course is being taught:

Teaches(prof, c-number, quarter, evaluation, univ)
Course(c-number, title, univ)

Suppose we have the following two data sources. The first
source provides a listing of all the courses titled “Database
Systems” taught anywhere and their instructors. This source
can be described by the following view definition:

create view DB-courses as
select Course.title, Teaches.prof, Course.c-number,

Course.univ
from Teaches, Course
where Teaches.c-number=Course.c-number and

Teaches.univ=Course.univ and
Course.title=“Database Systems”.

The second source lists Ph.D-level courses being taught at
the University of Washington (UW), and is described by the
following view definition:

create view UW-phd-courses as
select Course.title, Teaches.prof, Course.c-number,

Course.univ
from Teaches, Course
where Teaches.c-number=Course.c-number and

Course.univ=“UW” andTeaches.univ=“UW” and
Course.c-number≥500.

If we were to ask the data integration system who teaches
courses titled “Database Systems” at UW, it would be able to
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answer the query by applying a selection on the sourceDB-
courses:

select prof
from DB-courses
where univ=“UW”.

On the other hand, suppose we ask for all the graduate-
level courses (not just indatabases)beingofferedatUW.Given
that only these two sources are available, the data integration
system cannot findall tuples in the answer to the query. In-
stead, the system can attempt to find the maximal set of tuples
in the answer that are available from the sources. In particu-
lar, the system can obtain graduatedatabasecourses at UW
from theDB-courses source, and the Ph.D-level courses at
UW from theUW-Phd-courses source. Hence, the follow-
ing query provides the maximal set of answers that can be
obtained from the two sources:

select title, c-number
from DB-courses
where univ=“UW” and c-number≥400

UNION
select title, c-number
from UW-phd-courses.

Note that courses that are not Ph.D-level courses or
database courses will not be returned as answers. Whereas in
the contexts of query optimization and maintaining physical
data independence the focus is on finding a query expression
that isequivalentto the original query, here we attempt to find
a query expression that provides themaximal answersfrom
the views. We formalize both of these notions in Sect.3.

Other applications:Before proceeding, we also note that the
problem of answering queries using views arises in the design
of data warehouses (e.g., [HRU96,TS97,GHRU97,YKL97])
and in semantic data caching. In data warehouse design, when
wechoosea set of views tomaterialize in a datawarehouse,we
need to check that we will be able to answer all the required
queries over the warehouse using only these views. In the
context of semantic data caching (e.g., [DFJ+96,KB96,CR94,
ACPS96]) we need to check whether the cached results of a
previously computed query can be used for a new query, or
whether the client needs to request additional data from the
server. In [FLSY99,YFIV00] it is shown that precomputing
views can significantly speed up the response time from web
sites, which again raises the question of view selection.

2.4 A taxonomy of the field

As illustrated by the examples, there are several dimensions
along which we can classify the treatments of the problem
of answering queries using views. In this section we describe
a taxonomy for classifying the different works on this prob-
lem, and highlight the main differences between the problem
treatments. Figure 3 shows the taxonomy and some of the
representative works belonging to each of its classes.

The most significant distinction between the different
works is whether their goal is data integration or whether it

is query optimization and maintenance of physical data inde-
pendence. The key difference between these two classes of
works is the output of the algorithm for answering queries us-
ing views. In the former case, given a queryQ, and a set of
viewsV, the goal of the algorithm is to produce an expression
Q′ that references the views and is either equivalent to or con-
tained inQ. In the latter case, the algorithm must go further
and produce a (hopefully optimal) query execution plan for
answeringQ using the views (and possibly the database rela-
tions). Here the rewriting must be an equivalent toQ in order
to ensure the correctness of the plan.

The similarity between these two bodies of work is that
they are concerned with the core issue of whether a rewriting
of a query is equivalent to or contained in the query. How-
ever, while logical correctness suffices for the data integration
context, it does not in the query optimization context where
we also need to find thecheapestplan using the views. The
complication arises because the optimization algorithms need
to consider views that do not contribute to thelogical correct-
ness of the rewriting, but do reduce the cost of the resulting
plan. Hence, while the reasoning underlying the algorithms in
the data integration context is mostly logical, in the query op-
timization case it is both logical and cost-based. On the other
hand, an aspect stressed in the data integration context is the
importance of dealing with a large number of views, which
correspond to data sources. In the context of query optimiza-
tion it is generally assumed (not always!) that the number of
views is roughly comparable to the size of the schema.

The works on query optimization can be classified into
System-R style optimizers and transformational optimizers.
The initial works incorporated views into System-R style join
enumeration,while laterworks that attempt todealwithamore
extended subset of SQL realized that the power of rewriting
rules is required in order to incorporate views.

The main line of work on data integration attempted to
develop algorithms for answering queries using views that
scale up to a large number of views2. A second line of work
started considering different properties of the data sources.
For example, it was shown that if data sources are assumed to
be complete (i.e., they include all the tuples that satisfy their
definition), then the problemof answering queries using views
becomescomputationally harder. Intuitively, the reason for the
added complexity is that when sources are complete, we can
also infer negative information as a result of a query to the
source. This led to asking the following more basic question:
given a queryQ, a set of viewsV and their extensions, what
is the complexity of finding the maximal set of tuples in the
answer toQ from V.3 This work established an interesting
connection between the problem of answering queries using
views and query answering in conditional tables [IL84]. In
these works, a major factor affecting the complexity of the
problem is whether the view extensions are assumed to be
complete or not (when they are complete, the complexity is
higher). Note that in the context of query optimization, the
views are always assumed to be complete.

2 Strictly speaking, the motivation for the work of [YL87] was the
maintenance of physical data independence, but their algorithm has
more similarities with the data integration algorithms.

3 Some authors refer to the distinction between the two problems
as therewriting problem versus thequery answeringproblem.
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Answering queries using views✘✘✘✘✘✘✘✘✘✘


Cost-based rewriting

(query optimization and physical data independence)

Logical rewriting

(data integration)
✘✘✘✘✘✘✘


✘✘✘✘✘✘✘


System-R style Query answering algorithms

(complete or incomplete sources)

Transformational approaches Rewriting algorithms

[YL87,LMSS95]
[Qia96,LRO96b]
[DG97a,PL00]

[AD98,GM99a,CGLV00a]

[FRV96,BDD+98]
[DPT99,ZCL+00,GL01]

[CKPS95,TSI96,PH01]

Fig. 3.A taxonomy of work on answering queries using views. Themain distinction is betweenworks on query optimization andmaintenance of
physical data independence andworks considering logical rewritings,mostly in the context of data integration. Theworks on query optimization
have considered both System-R style algorithms and transformation-based algorithms. The works on data integration considered algorithms
that scale to a large number of views, and the question of finding all the answers to the query, given the view extensions

Table 1.Extensions to query and view languages

Extension Relevant works

Grouping and aggregation [GHQ95,SDJL96,CNS99,GRT99,ZCL+00,GT00] (Sect.5.3)

Bag semantics [CKPS95,ZCL+00] (Sect.5.3)

OQL [FRV96,DPT99] (Sect.8.1)

Multi-block queries [ZCL+00] (Sect.5.2)

Integrity constraints [DL97,Gry98,ZCL+00,DPT99] (Sect.7.2)

Access-pattern limitations [RSU95,KW96,DL97] (Sect.8.2)

Unions in the views [AGK99,Dus98] (Sect.8.3)

Queries over semi-structured data[CGLV99,PV99] (Sect.8.3)

Hierarchies in Description Logics [BLR97,CGL99] (Sect.8.3)

Languages for querying schema [Mil98] (Sect.8.3)

A separate dimension for classifying the different works is
the specific language used for expressing views and queries.
Much of the early work on the problem focused on select-
project-join queries, but, as shown inTable 1,many extensions
have been considered as well. The works on query optimiza-
tion have considered extensions of interest to SQL engines,
such as grouping and aggregation and the presence of certain
integrity constraints on the database relations. For obvious
reasons, these works have also considered the implications
of bag semantics on the rewriting problem. The data integra-
tion works have considered extensions such as access-pattern
limitation to the views, recursive queries, path expressions in
the queries, and integrity constraints expressed in description
logics.

3 Problem definition

In this section we define the basic terminology used through-
out this paper. We define the concepts of query containment
and query equivalence that provide a semantic basis for com-
paring between queries and their rewritings, and then define
the problem of answering queries using views. Finally, we de-
fine the problem of extractingall the answers to a query from
a set of views (referred to as the set of certain answers).

The bulk of our discussionwill focus on the class of select-
project-join queries on relational databases.A view is a named

query. It is said to bematerialized if its results are stored in the
database.A database instance is an assignment of an extension
(i.e., a set of tuples) to each of the relations in the database.

Weassume the reader is familiar with the basic elements of
SQL. We will distinguish between queries that involve arith-
metic comparison predicates (e.g.,≤, <, �=) and those that do
not. Our discussion of answering queries using views in the
context of data integration systems will require considering
recursive datalog queries.We recall the basic concepts of dat-
alog in Sect.6.

In our discussion, we denote the result of computing the
queryQ over the databaseD by Q(D). We often refer to
queries that reference named views (e.g., in query rewritings).
In that case,Q(D) refers to the result of computingQ after
the views have been computed fromD.

3.1 Containment and equivalence

The notions of query containment and query equivalence en-
able comparison between different reformulations of queries.
They will be used when we test the correctness of a rewriting
of a query in terms of a set of views. In the definitions below
we assume the answers to queries are sets of tuples. The def-
initions can be extended in a straightforward fashion to bag
semantics. In the context of our discussion it is important to
note that the definitions below also apply to queries that may
reference named views.



276 A.Y. Halevy: Answering queries using views: A survey

Definition 1. Query containment and equivalence: A query
Q1 is said to be contained in a queryQ2, denotedbyQ1 � Q2,
if for all database instancesD, the set of tuples computed
for Q1 is a subset of those computed forQ2, i.e.,Q1(D) ⊆
Q2(D). The two queries are said to be equivalent ifQ1 � Q2
andQ2 � Q1.

The problems of query containment and equivalence
have been studied extensively in the literature and should
be a topic of a specialized survey. Some of the cases
which are most relevant to our discussion include: con-
tainment of select-project-join queries and unions thereof
[CM77,SY81], querieswith arithmetic comparison predicates
[Klu88,LS93,ZO93,KMT98], recursive queries [Shm93,
Sag88,LS93,CV92,CV94], and queries with bag semantics
[CV93].

3.2 Rewriting of a query using views

Given a queryQ and a set of view definitionsV1, . . . , Vm, a
rewriting of the query using the views is a query expression
Q′ that refersonly to the viewsV1, . . . , Vm.4 In SQL, a query
refers only to the views if all the relations mentioned in the
from clauses are views. In practice, we may also be interested
in rewritings that can also refer to the database relations. Con-
ceptually, rewritings that refer to the database relations do not
introduce new difficulties, because we can always simulate
the previous case by inventing views that mirror precisely the
database tables.

As we saw in Sect.2, we need to distinguish between
two types of query rewritings:equivalent rewritingsand
maximally-contained rewritings.For query optimization and
maintaining physical data independence we consider equiva-
lent rewritings.

Definition 2. Equivalent rewritings: LetQ be a query and
V = {V1, . . . , Vm} be a set of view definitions. The queryQ′
is an equivalent rewriting ofQ usingV if:
• Q′ refers only to the views inV, and
• Q′ is equivalent toQ.

In the context of data integration, we often need to consider
maximally-contained rewritings. Unlike the case of equivalent
rewritings, the maximally-contained rewriting may differ de-
pending on the query language we consider for the rewriting.
Hence, the following definition depends on a particular query
language:

Definition 3. Maximally-contained rewritings: LetQ be a
query,V = {V1, . . . , Vm} be a set of view definitions, andL
be a query language. The queryQ′ is a maximally-contained
rewriting ofQ usingV with respect toL if:
• Q′ is a query inL that refers only to the views inV,
• Q′ is contained inQ, and
• there is no rewritingQ1 ∈ L, such thatQ′ � Q1 � Q
andQ1 is not equivalent toQ′.

4 Note that rewritings that refer only to the views were calledcom-
plete rewritingsin [LMSS95].

When a rewritingQ′ is contained inQ but is not a
maximally-contained rewriting we refer to it as a contained
rewriting. Note that the above definitions are independent of
the particular query language we consider. Furthermore, we
note that algorithms for query containment and equivalence
provide methods fortestingwhether a candidate rewriting of
a query is an equivalent or contained rewriting. However, by
themselves, these algorithms do not provide a solution to the
problem of answering queries using views.

A more fundamental question we can consider is how to
find all the possible answers to the query, given a set of view
definitions and their extensions. Finding a rewriting of the
query using the views and then evaluating the rewriting over
the views is clearly one candidate algorithm. If the rewriting is
equivalent to the query, then we are guaranteed to find all the
possible answers. However, as we see in Sect.7, a maximally-
contained rewriting of a query using a set of views does not
always provide all the possible answers that can be obtained
from theviews. Intuitively, the reason for this is that a rewriting
is maximally-contained only with respect to a specific query
language, and hence theremay sometimes beaquery in amore
expressive language that may provide more answers.

The problem of finding all the answers to a query given
a set of views is formalized below by the notion ofcertain
answers, originally introduced in [AD98]. In the definition,we
distinguish the case in which the view extensions are assumed
to be complete (closed-world assumption) from the case in
which the views may be partial (open-world).

Definition 4. Certain answers: LetQ be a query andV =
{V1, . . . , Vm} be a set of view definitions over the database
schemaR1, . . . , Rn. Let the sets of tuplesv1, . . . , vm be ex-
tensions of the viewsV1, . . . , Vm, respectively.

The tuplea is a certain answerto the queryQ under the
closed-world assumption givenv1, . . . , vm if a ∈ Q(D) for
all database instancesD such thatVi(D) = vi for everyi,
1 ≤ i ≤ m.

The tuplea is a certain answerto the queryQ under the
open-world assumption givenv1, . . . , vm if a ∈ Q(D) for
all database instancesD such thatVi(D) ⊇ vi for everyi,
1 ≤ i ≤ m.

The intuition behind the definition of certain answers is
the following. The extensions of a set of views do not define a
unique database instance. Hence, given the extensions of the
views we have only partial information about the real state of
the database. A tuple is a certain answer of the queryQ if it is
an answer foranyof the possible database instances that are
consistent with the given extensions of the views. Section 7.3
considers the complexity of finding certain answers.

Example 1.As a very simple example, consider a database
schemaR(A,B) that includes a single relation with two at-
tributes. Suppose the viewV1 is defined to be the projection
of R onA, whileV2 is defined to be the projection ofR onB,
and suppose that our queryQ is to retrieve all of the relation
R.

Suppose we are given that the extension ofV1 includes
the single tuple(c1), and that the extension ofV2 includes the
single tuple(c2),

Under the closed-world assumption, we can infer that the
tuple(c1, c2) mustbe in the relationR, and hence it is a cer-
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tain answer toQ. However, under the open-world assumption,
sinceV1 andV2 are not necessarily complete, the tuple(c1, c2)
neednot be inR. For example,Rmaycontain the tuples(c1, d)
and(e, c2) for some constantsd ande. Hence,(c1, c2) is not
a certain answer toQ. 
�

4 When is a view usable for a query?

The common theme across all of the works on answering
queries using views is that they all have to deal with the fun-
damental question of when a view is usable to answer a query.
Hence, before describing the actual algorithms for answering
queries using views it is instructive to examine a few exam-
ples and gain an intuition for the conditions under which a
view is usable for answering a query, and in what ways a view
may be useful. In this section we consider select-project-join
queries under set semantics. Note that in some cases a view
may be usable in maximally-contained rewritings but not in
equivalent rewritings.

Informally, a view can be useful for a query if the set of
relations it mentions overlaps with that of the query, and it se-
lects some of the attributes selected by the query. Moreover, if
the query applies predicates to attributes that it has in common
with the view, then the view must apply either equivalent or
logically weaker predicates in order to be part of an equivalent
rewriting. If the view applies a logically stronger predicate, it
may be part of a contained rewriting.

Consider the following query, asking for the triplets of
professors, students, and teaching quarters, where the student
is advised by the professor, and has taken a class taught by the
professor during the winter of 1998 or later.

select Advises.prof, Advises.student, Registered.quarter
from Registered, Teaches, Advises
where Registered.c-number=Teaches.c-number and

Registered.quarter=Teaches.quarter and
Advises.prof=Teaches.prof and Advises.student
=Registered.student and
Registered.quarter ≥ "winter98".

The followingviewV1 is usablebecause it applies thesame
join conditions to the relationsRegistered andTeaches.
Hence,we can useV1 to answer the query by joining it with the
relationAdvises. Furthermore,V1 selects the attributesReg-
istered.student, Registered.quarter andTeaches.prof that
are needed for the join with the relationAdvises and for the
select clauseof the query. Finally,V1 applies apredicateReg-
istered.quarter > "winter97"which is weaker than the pred-
icateRegistered.quarter ≥ "winter98" in the query. How-
ever, sinceV1 selects the attributeRegistered.quarter, the
stronger predicate can be applied as part of the rewriting.

create view V1 as
select Registered.student, Teaches.prof,

Registered.quarter
from Registered, Teaches
where Registered.c-number=Teaches.c-number and

Registered.quarter=Teaches.quarter and
Registered.quarter > "winter97".

The views shown in Fig.4 illustrate how minor modifi-
cations toV1 change their usability in answering the query.
The viewV2 is similar toV1, except that it does not select
the attributeTeaches.prof, which is needed for the join with
the relationAdvises and in theselect clause of the query.
Hence, to useV2 in the rewriting, we would need to joinV2
with theTeaches relation again (in addition to a join with
Advises). Still, if the join of the relationsRegistered and
Teaches is very selective, then employingV2 may actually
result in a more efficient query execution plan.

The viewV3 does not apply the necessary equi-join pred-
icate betweenRegistered.quarter and Teaches.quarter.
Since the attributes Teaches.quarter and Regis-
tered.quarter are not selected byV3, the join predicate
cannot be applied in the rewriting, and therefore there is
little to gain by usingV3. The viewV4 considers only the
professors who have at least one area of research. Hence, the
view applies an additional condition that does not exist in the
query, and cannot be used in an equivalent rewriting unless we
allow union and negation in the rewriting language. However,
if we have an integrity constraint stating that every professor
has at least one area of research, then an optimizer should be
able to realize thatV4 is usable. Finally, viewV5 applies a
stronger predicate than in the query (Registered.quarter >
"winter99"), and is therefore usable for a contained rewriting,
but not for an equivalent rewriting of the query.

To summarize, the following conditions need to hold in
order for a select-project-join viewV to be usable in an equiv-
alent rewriting of a queryQ. The intuitive conditions below
can be made formal in the context of a specific query lan-
guage and/or available integrity constraints (see e.g., [YL87,
LMSS95]):

1. Theremust be amappingψ from the occurrences of tables
mentioned in thefrom clause ofV to those mentioned in
thefrom clause ofQ, mapping every table name to itself.
In the case of bag semantics,ψ must be a 1-1 mapping,
whereas for set semantics,ψ can be amany-to-1 mapping.

2. V must either apply the join and selection predicates inQ
on the attributes of the tables in the domain ofψ, or must
apply to them a logically weaker selection, and select the
attributes on which predicates need to still be applied.

3. V must not project out any attributes of the tables in the
domain ofψ that are needed in the selection ofQ, unless
these attributes can be recovered from another view (or
from the original table if it’s available).

Finally, we note that the introduction of bag semantics
introduces additional subtleties. In particular, we must ensure
that the multiplicity of answers required in the query are not
lost in the views (e.g., by the use ofdistinct), and are not
increased (e.g., by the introduction of additional joins).

5 Incorporating materialized views
into query optimization

This section describes the different approaches to incorporat-
ing materialized views into query optimization. The focus of
these algorithms is to judiciously decide when to use views to
answer a query. The output of the algorithm is an execution
plan for the query. The approaches differ depending on which
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create view V2 as create view V3 as
select Registered.student, Registered.quarter select Registered.student, Teaches.prof, Registered.quarter
from Registered, Teaches from Registered, Teaches
where Registered.c-number=Teaches.c-number where Registered.c-number=Teaches.c-number
and Registered.quarter=Teaches.quarter and Registered.quarter ≥ "winter98".
and Registered.quarter ≥ "winter98".

create view V4 as create view V5 as
select Registered.student, Registered.quarter, select Registered.student, Teaches.prof, Registered.quarter

Teaches.prof
from Registered, Teaches, Advises, Area from Registered, Teaches
where Registered.c-number=Teaches.c-number where Registered.c-number=Teaches.c-number
and Registered.quarter=Teaches.quarter and Registered.quarter=Teaches.quarter
and Teaches.prof=Advises.prof and Registered.quarter > "winter99".
and Teaches.prof=Area.name
and Registered.quarter ≥ "winter98"

Fig. 4.Examples of unusable views

phase of query optimization was modified to consider materi-
alized views. Section 5.1 describes algorithms based on Sys-
tem R-style optimization, where materialized views are con-
sidered during the join enumeration phase [CKPS95,TSI96].
Section 5.2 describes works based on transformational opti-
mizers [ZCL+00,DPT99,PDST00,GL01].There, thekey idea
is that replacing a query subexpression by a view is yet an-
other transformation employed by the optimizer. Section 5.3
discusses some of the issues that arise when rewriting algo-
rithms are extended to consider grouping and aggregation.
These extensions are key to incorporating materialized views
into decision support applications.

5.1 System-R style optimization

In this section we consider select-project-join queries and dis-
cuss the changes that need to be made to a join enumeration
algorithm to incorporate materialized views. To illustrate the
changes to a System R-style optimizer we first briefly recall
the principles underlying System-R optimization [SAC+79].
System-R takes a bottom-up approach to building query exe-
cution plans. In the first phase, it constructs plans of size 1, i.e.,
chooses the best access paths to every table mentioned in the
query. In phasen, the algorithm considers plans of sizen, by
combiningpairs of plansobtained in thepreviousphases (Note
that if the algorithm is considering only left-deep plans, it will
try to combine plans of sizen − 1 with plans of size 1. Other-
wise, it will consider combining plans of sizek with plans of
sizen− k.) The algorithm terminates after constructing plans
that cover all the relations in the query.

Intuitively, the efficiency of System-R stems from the
fact that it partitions query execution plans intoequivalence
classes, and only considers a single execution plan for ev-
ery equivalence class. Two plans are in the same equivalence
class if they: (1) cover the same set of relations in the query
(and therefore are also of the same size); and (2) produce the
answers in the same interesting order. In the process of build-
ing plans, two plans are combined only if they cover disjoint
subsets of the relations mentioned in the query.

In our context, the query optimizer builds query execution
plans by accessing a set of views, rather than a set of database

relations. Hence, in addition to the meta-data that the query
optimizer has about the materialized views (e.g., statistics,
indexes) the optimizer is also given as input the query expres-
sions defining the views. Recall that a database relation can
always be modeled as a view as well.

We illustrate the changes to the join enumerationalgorithm
with an example that includes the following views:

create view V1 as
select student, dept
from Major.

create view V2 as
select Registered.student, Registered.c-number
from Registered, Course
where Registered.c-number=Course.c-number and

Course.title LIKE ’%theory%’.

create view V3 as
select Major.dept, Registered.c-number
from Registered, Major
where Registered.student=Major.student and

Registered.c-number≥500.

Suppose the query below asks for all of the students at-
tending Ph.D level classes with ’theory’ in their title, and the
departments in which the students are majoring.

select Registered.student, Major.dept
from Registered, Major, Course
where Registered.student=Major.student and

Registered.c-number=Course.c-number and
Course.c-number≥500 and
Course.title LIKE ’%theory%’.

We now describe the additional issues that the optimizer
needs to consider in the presence of materialized views. Fig-
ure 5 shows a side-by-side comparison of the steps of a tra-
ditional optimizer vs. one that exploits materialized views.
The algorithm described below is a slight modification of
the GMAP algorithm [TSI96]. The algorithm described in
[CKPS95] uses the same principles, but, as we explain later,
with several differences.

A. In the first iteration the algorithm needs to decide which
views arerelevant to the query. A view is relevant if it
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is usable in answering the query (illustrated by the con-
ditions in Sect.4). The corresponding step in a traditional
optimizer is trivial: a relation is relevant to the query if it
is mentioned in thefrom clause.

In our example, the algorithm will determine that all three
views are relevant to the query, because each of themmentions
the relations in the query and applies some of the same join
predicates as in the query. Therefore, the algorithm chooses
the best access path to each of the views, depending on the
existing index structures and selection predicates in the query.

B. Since the query execution plans involve joins over views,
rather than joins over database relations, plans can no
longer be neatly partitioned into equivalence classeswhich
can be explored in increasing size. This observation im-
plies several changes to the traditional algorithm:
1. Termination testing: the algorithm needs to distin-

guishpartial query execution plansof the query from
complete execution plans. The enumeration of the pos-
sible join orders terminates when there are no more
unexplored partial plans. In contrast, in the traditional
setting the algorithm terminates after considering the
equivalence classes that include all the relations in the
query.

2. Pruning of plans: a traditional optimizer compares
between pairs of planswithin one equivalence class
and saves only the cheapest one for each class. In our
context, the query optimizer needs to compare between
any pairof plans generated thus far.A planp is pruned
if there is another planp′ that: (1) is cheaper thanp; and
(2) has greater or equal contribution to the query than
p. Informally, a planp′ contributes more to the query
than the planp if it covers more of the relations in the
query and selects more of the necessary attributes.

3. Combining partial plans: in the traditional setting,
when two partial plans are combined, the join predi-
cates that involve both plans are explicit in the query,
and the enumeration algorithm need only consider the
most efficient way to apply these predicates. However,
in our case, it may not be obvious a priori which join
predicate will yield a correct rewriting of the query,
since we are joining views rather than database rela-
tions directly. Hence, the enumeration algorithm needs
to consider several alternative join predicates. Fortu-
nately, in practice, the number of join predicates that
need to be considered can be significantly pruned us-
ing meta-data about the schema. For example, there
is no point in trying to join a string attribute with a
numeric one. Furthermore, in some cases we can use
knowledge of integrity constraints and the structure of
the query to reduce the number of join predicates we
consider. Finally, after considering all the possible join
predicates, the optimizer also needs to check whether
the resulting plan is still a partial solution to the query.

In our example, the algorithm will consider in the second
iteration all possible methods to join pairs of plans produced
in the first iteration. The algorithm will save the cheapest plan
for each of the two-way joins, assuming the result is still a
partial or complete solution to the query. The algorithm will

consider the following combinations (in this discussion we
ignore the choice of inner versus outer input to the join):

• The join ofV1 andV2 on the attributestudent: This join
produces a partial result to the query. There are two ways
to extend this join to complete execution plan. The first
is to apply an additional selection on thec-number at-
tribute and a projection onstudent anddept. The second,
which is explored in the subsequent iteration, is to join the
result withV3. Hence, the algorithm produces one com-
plete execution plan and keepsV1✶V2 for the subsequent
iterations.
In principle, as explained in bullet 3 above, the algorithm
should also consider joiningV1 andV2 on other attributes
(e.g.,V1.student=V2.c-number), but in this case, a sim-
ple semantic analysis shows that such a join will not yield
a partial solution.

• The joins ofV1withV3 (ondept) andofV2withV3 (onc-
number): These two joins produce partial solutions to the
query, but only if set semantics are considered (otherwise,
the resulting rewriting will have multiple occurrences of
theMajor (orRegistered) relation, whereas the query has
only one occurrence).

In the third iteration, thealgorithm tries to join theplans for
the partial solutions from the second iteration with a plan from
the first iteration. One of the plans the algorithm will consider
is the one in which the result of joiningV2 andV3 is then
joined withV1. Even though this plan may seem redundant
compared toV1 ✶ V2, it may be cheaper depending on the
available indexes on the views, because it enables pruning the
(possibly larger) set of students based on the selective course
number.

Variations on the above principles are presented in [TSI94,
TSI96] and [CKPS95]. The algorithm in [TSI96] attempts to
reformulate a query on a logical schema to refer directly to
GMAPs storing the data (see Sect.2). They consider select-
project-join queries with set semantics. To test whether a so-
lution is complete (i.e., whether it is equivalent to the original
query) they use an efficient and sufficient query-equivalence
condition that alsomakes use of some inclusion and functional
dependencies.

The goal of the algorithm described in [CKPS95] is to
make use ofmaterialized views in query evaluation. They con-
sider select-project-join querieswith bag semantics andwhich
mayalso include arithmetic comparison predicates.Under bag
semantics, the ways in which views may be combined to an-
swer a query are more limited. This is due to the fact that two
queries are equivalent if and only if there is a bi-directional
1-1 mapping between the two queries, which maps the join
predicates of one query to those of the other [CV93]. Hence,
if we ignore the arithmetic comparison operators, a view is
usable only if it is isomorphic to a subset of the query. An
additional difference between [TSI96] and [CKPS95] is that
the latter searches the space of join orderings in a top-down
fashion, compared to the bottom-up fashion in [TSI96]. How-
ever, since the algorithms consider different semantics, their
search spaces are incomparable. Both [TSI96] and [CKPS95]
present experimental results that examine the cost of consid-
ering materialized views in query optimization.
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Conventional optimizer Optimizer using views
Iteration 1 Iteration 1
a) find all possible access paths. a1) Find all views that arerelevantto the query.

a2) Distinguish between partial and complete solutions
to the query.

b) Compare their cost and keep the least b) Compare all pairs of views. If one has neither greater
expensive. contribution nor a lower cost than the other, prune it.

c) If the query has one relation, stop. c) If there are no partial solutions, stop.
Iteration 2 Iteration 2
For each query join:
a) Consider joining the relevant access paths a1) Consider joining all partial solutions found in the

found in the previous iteration using all previous iteration using all possible equi-join methods and
possible join methods. trying all possible subsets of join predicates.

a2) Distinguish between complete and partial solutions.
b) Compare the cost of the resulting join b) If any newly generated solution is either not relevant

plans and keep the least expensive. to the query, or dominated by another, prune it.
c) If the query has only 2 relations, stop. c) If there are no partial solutions, stop.
Iteration 3 Iteration 3
. . . . . .

Fig. 5.A comparison of a traditional query optimizer with one that exploits materialized views

5.2 Transformational and other approaches to view rewriting

In this sectionwe describe several works that incorporate view
rewriting as transformations. The common theme in these
works is that replacing somepart of a querywith a view is con-
sidered as another transformation available to the optimizer.
This approach is necessary when: (1) the entire optimizer is
transformational (e.g, in [GL01]); and (2) in the logical rewrit-
ing phase of a System-R style optimizer that is considering
more complex SQL queries (as in [ZCL+00]).

In [GL01] the authors describe an algorithm for rewrit-
ing queries using views that is implemented in the transfor-
mational optimizer of Microsoft SQL Server. In the algo-
rithm, view matching is added as another transformation rule
in the optimizer. The transformation rule is invoked on select-
project-join-group-by (SPJG) expressions, and it attempts to
replace the SPJG expression by a single view. The authors de-
scribe in detail the conditions under which a sub-query is re-
placed by a view. The key novelty in this work is thefilter-tree,
a clever index structure that makes it possible to efficiently
filter the set of views that are relevant to a particular SPJG ex-
pression. The index is composed of several sub-indexes, each
of which is built on a particular property of the views (e.g.,
the set of tables in the view, the set of output columns, group-
ing columns). The sub-indexes are combined in a hierarchical
fashion into the filter tree, where each level in the tree fur-
ther partitions the views according to another property. The
authors describe a set of experiments that shows that their al-
gorithm adds relatively little to the optimization time, even in
the presence of 1,000 views.

In [ZCL+00] the authors describe how view rewriting is
incorporated into the query rewrite phase of the IBM DB2
UDB optimizer. Their algorithm operates on the Query Graph
Model (QGM) representation of a query [HFLP89], which
decomposes the query into multiple QGMboxes, each cor-
responding to a select-project-join block. The algorithm at-
tempts to match pairs of QGM boxes in the views with those
in the query. The algorithm navigates the QGM in a bottom up
fashion, starting from the leaf boxes. A match between a box
in the query and in the view can be either: (1) exact, meaning

that the two boxes represent equivalent queries; or (2) may
require acompensation. A compensation represents a set of
additional operations that need to be performed on a box of
the view in order to obtain an equivalent result to a box in the
query. The algorithm considers a pair of boxes only after the
matchalgorithmhasbeenapplied toeverypossiblepair of their
children. Therefore, thematch (and corresponding compensa-
tion) can be determined without looking into the subtrees of
their children. The algorithm terminates when it finds a match
between the root of the view and some box in the QGM of
the query. The authors show that by considering rewritings at
the QGM level, they are able to extend previous algorithms
to handle SQL queries and views with multiple blocks, while
previous algorithms considered only single block queries. As
we point out in the next section, their algorithm also extends
previous work to handle more complex types of grouping and
aggregation.

In [DPT99] the authors use a transformational approach to
uniformly incorporate the use materialized views, specialized
indexes and semantic integrity constraints.All of these are rep-
resented as constraints. Their procedure involves two phases,
each involving a different set of transformations. In the first
phase, thechase,the query is expanded to include any other
structure (e.g,. materialized view or access structure) that is
relevant to the query, resulting in auniversalquery plan. In
the second phase, theback-chase,the optimizer tries to re-
move structures (and hence joins) from the universal plan, in
order to obtain a plan of minimal cost. The chase procedure is
based on a generalization of the standard chase procedure to
handle path conjunctive queries [PT99], thereby enabling the
algorithm to handle certain forms of object-oriented queries.
In [PDST00] the authors describe an implementation of the
framework and experiments that prove its feasibility, focusing
on methods for speeding up the back-chase phase.

In [BDD+98] the authors describe a limited use of trans-
formation rules to incorporate view rewriting algorithm into
the Oracle 8i DBMS. The algorithm works in two phases. In
the first phase, the algorithm applies a set of rewrite rules that
attempt to replace parts of the query with references to exist-
ing materialized views. The rewrite rules consider the cases in
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which views satisfy the conditions described in Sect.4, and
also consider common integrity constraints encountered in
practice, such as functional dependencies and foreign key con-
straints. The result of the rewrite phase is a query that refers
to the views. In the second phase, the algorithm compares the
estimated cost of two plans: the cost of the result of the first
phase, and the cost of the best plan found by the optimizer that
doesnotconsider the use ofmaterialized views. The optimizer
chooses to execute the cheaper of these two plans. The main
advantage of this approach is its ease of implementation, since
the capability of using views is added to the optimizer without
changing the join enumerationmodule. On the other hand, the
algorithm considers the cost of only one possible rewriting of
the query using the views, and hence may miss the cheapest
use of the materialized views.

Finally, in [ALU01] the authors consider using views for
query optimization from a different angle. They consider the
problemof finding the rewritingof thequerywithminimal cost
under three specific costmodels: (1)minimizing thenumber of
views in the rewriting (hence the number of joins); (2) reduc-
ing the size of the intermediate relations computed during the
rewriting; and (3) reducing the size of intermediate relations
while also dropping irrelevant attributes as the computation
proceeds. The techniques underlying theCoreCover algo-
rithm described in [ALU01] are closer in spirit to those used
in the MiniCon Algorithm [PL00] described in Sect.6.4.

5.3 Queries with grouping and aggregation

In decision support applications, when queries contain group-
ingandaggregation, there isevenmoreof anopportunity toob-
tain significant speedups by reusing the results of materialized
views. However, the presence of grouping and aggregation in
the queries or the views introduces several new difficulties to
the problem of answering queries using views. The first dif-
ficulty that arises is dealing with aggregated columns. Recall
that for a view to be usable by a query, it must not project
out an attribute that is needed in the query (and is not other-
wise recoverable). When a view performs an aggregation on
an attribute, we lose some information about the attribute, and
in a sensepartially projecting it out. If the query requires the
sameor a coarser grouping than performed in the view, and the
aggregated column is either available or can be reconstructed
from other attributes, then the view is still usable for the query.
The second difficulty arises due to the loss of multiplicity of
values on attributes on which grouping is performed. When
we group on an attributeA, we lose the multiplicity of the
attribute in the data, thereby losing the ability to perform sub-
sequent sum, counting or averaging operations. In some cases,
it may be possible to recover the multiplicity using additional
information.

The following simple example illustrates some of the sub-
tleties that arise in the presence of grouping and aggregation.
To make this example slightly more appealing, we assume the
quarter attribute of the relationTeaches is replacedby ayear
attribute (and hence, there are likely to be several offerings of
the same course during an academic year). Suppose we have
the following viewavailable, which considers all the graduate-
level courses, and for every pair of course and year, gives the

maximal course evaluation for that course in the given year,
and the number of times the course was offered.

create view V as
select c-number, year, Max(evaluation) as maxeval,

Count(∗) as offerings
from Teaches
where c-number ≥ 400
groupBy c-number, year.

The following query considers only Ph.D-level courses,
and asks for the maximal evaluation obtained foranycourse
during a given year, and the number of different course offer-
ings during that year.

select year, count(∗), Max(evaluation)
from Teaches
where c-number ≥ 500
groupBy year.

The following rewriting uses the viewV to answer our query.

select year, sum(offerings), Max(maxeval)
from V
where c-number ≥ 500
groupBy year.

There are a couple of points to note about the rewriting.
First, even though the view performed an aggregation on the
attributeevaluation, we could still use the view in the query,
because the groupings in the query (onyear) are more coarse
than those in the view (onyear andc-number). Thus, the
answer to the query can be obtained by coalescing groups
from the view. Second, since the view groups the answers by
c-number and thereby loses the multiplicity of each course,
we would have ordinarily not been able to use the view to
compute the number of course offerings per year. However,
since the view also computed the attributeofferings, there
was still enough information in the view to recover the total
number of course offerings per year, by summing the offerings
per course.

Several works considered the problem of answering
queries using views in the presence of grouping and aggrega-
tion. One approach considered involved a set of transforma-
tions in the query rewrite phase [GHQ95]. In this approach,
the algorithm performs syntactic transformations on the query
until it is possible to identify a subexpression of the query that
is identical to the view, and hence substitute the view for the
subexpression. However, as the authors point out, the purely
syntactic nature of this approach is a limiting factor in its ap-
plicability.

A more semantic approach is proposed in [SDJL96]. The
authors describe the conditions required for a view to be us-
able for answering a query in the presence of grouping and
aggregation, and a rewriting algorithm that incorporates these
conditions. That paper considers the cases in which the views
and/or the queries contain grouping and aggregation. It is in-
teresting to note that when the view contains grouping and
aggregation but the query does not, then unless the query re-
moves duplicates in theselect clause, the view cannot be used
to answer a query.Another important point to recall about this
context is that because of the bag semantics a view will be us-
able to answer a query only if there is an isomorphismbetween
the viewanda subset of the query [CV93]. Thework described



282 A.Y. Halevy: Answering queries using views: A survey

in [ZCL+00] extends the treatment of grouping and aggrega-
tion to consider multi-block queries and to multi-dimensional
aggregation functions such as cube, roll-up, and grouping sets
[GBLP98].

Several works [CNS99,GRT99,GT00] consider the for-
mal aspects of answering queries using views in the presence
of grouping and aggregation. They present cases in which it
can be shown that a rewriting algorithm is complete, in the
sense that it will find a rewriting if one exists. Their algorithms
are based on insights into the problem of query containment
for queries with grouping and aggregation.

An interesting issue that has not received attention to date
is extending the notion of maximally-contained rewritings to
the presence of grouping and aggregation. In particular, one
can imagine a notion of maximally-contained plans in which
theanswersprovide thebest possibleboundson theaggregated
columns.5

6 Answering queries using views for data integration

Theprevious section focusedonextending query optimizers to
accommodate the use of views. They were designed to handle
cases where the number of views is relatively small (i.e., com-
parable to the size of the database schema), and cases where
we require an equivalent rewriting of the query. In addition,
for the most part, these algorithms did not consider cases in
which the resulting rewriting may contain a union over the
views.

In contrast, the context of data integration requires that we
consider a large number of views, since each data source is
being described by one or more views. In addition, the view
definitions contain many complex predicates, whose goal is
to express fine-grained distinctions between the contents of
different data sources. As shown in Sect.2, we will often not
be able to find an equivalent rewriting of the query using the
source views, and the best we can do is find the maximally-
contained rewriting of the query. The maximally-contained
rewriting will often involve a union of several queries over the
sources. Furthermore, in the context of data integration it is
often assumed that the views are not complete, i.e., they may
only contain a subset of the tuples satisfying their definition.

In this section we describe algorithms for answering
queries using views that were developed specifically for the
context of data integration. These algorithms are thebucket al-
gorithmdeveloped in the context of the Information Manifold
system [LRO96b] and later studied in [GM99a], theinverse-
rules algorithm[Qia96,DGL00] which was implemented in
the InfoMaster system [DG97b], and the MiniCon algorithm
[PL00,PH01]. It should be noted that unlike the algorithmsde-
scribed in the previous section, the output of these algorithms
is not a query execution plan, but rather a query referring to
the view relations.

6.1 Datalog notation

For this and the next section, it is necessary to revert to datalog
notation and terminology. Hence, belowwe provide a brief re-

5 I thank an anonymous reviewer for suggesting this problem.

minder of datalog notation and of conjunctive queries [Ull89,
AHV95].

Conjunctive queries are able to express select-project-join
queries. A conjunctive query has the form:

q(X̄) :− r1(X̄1), . . . , rn(X̄n)

whereq, andr1, . . . , rn are predicate names. The predicate
namesr1, . . . , rn refer to database relations. The atomq(X̄)
is called theheadof thequery, and refers to theanswer relation.
Theatomsr1(X̄1), . . . , rn(X̄n)are thesubgoalsin thebodyof
the query. The tuples̄X, X̄1, . . . , X̄n contain either variables
or constants. We require that the query besafe, i.e., thatX̄ ⊆
X̄1 ∪ . . .∪ X̄n (that is, every variable that appears in the head
must also appear in the body).

Queries may also contain subgoals whose predicates are
arithmetic comparisons<,≤,=, �=. In this case, we require
that if a variableX appears in a subgoal of a comparison
predicate, thenX must also appear in an ordinary subgoal.
We refer to the subgoals of comparison predicates of a query
Q byC(Q).

As an example of expressing an SQL query in datalog,
consider the following SQL query asking for the students (and
their advisors) who took courses from their advisors after the
winter of 1998:

select Advises.prof, Advises.student
from Registered, Teaches, Advises
where Registered.c-number=Teaches.c-number and

Registered.quarter=Teaches.quarter and
Advises.prof=Teaches.prof and Advises.student
=Registered.student and
Registered.quarter > "winter98".

In the notation of conjunctive queries, the above query would
be expressed as follows:

q(prof, student) :-Registered(student, c-number, quarter),
Teaches(prof, c-number, quarter),
Advises(prof, student), quarter > "winter98".

Note that when using conjunctive queries, join predicates
of SQL are expressed by multiple occurrences of the same
variable in different subgoals of the body (e.g., the variables
quarter, c-number, prof, andstudent above). Unions can
be expressed in this notation by allowing a set of conjunctive
queries with the same head predicate.

A datalog query is a set of rules, each having the same form
asaconjunctivequery, except that predicates in thebodydonot
have to refer to database relations. In adatalogquerywedistin-
guish EDB (extensional database) predicates that refer to the
database relations from the IDB (intensional database) predi-
cates that refer to intermediate computed relations. Hence, in
the rules, EDB predicates appear only in the bodies, whereas
the IDB predicates may appear anywhere.We assume that ev-
ery datalog query has a distinguished IDB predicate called the
query predicate, referring to the relation of the result.

A predicatep in a datalog program is said todependon a
predicateq if q appears in one of the ruleswhose head isp. The
datalog program is said to berecursiveif there is a cycle in the
dependency graph of predicates. It is important to recall that if
a datalog program is not recursive, then it can be equivalently
rewritten as a union of conjunctive queries, though possibly
with an exponential blowup in the size of the query. As we
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see in Sect.7.2, certain cases may require rewritings that are
recursive datalog queries.

The input to a datalog queryQ consists of a databaseD
storing extensions of all EDB predicates inQ. Given such a
databaseD, the answer toQ, denoted byQ(D), is the least
fixpointmodel ofQandD, which can be computed as follows.
Weapply the rules of the program in anarbitrary order, starting
with empty extensions for the IDB relations. An application
of a rule may derive new tuples for the relation denoted by
the predicate in the head of the rule. We apply the rules until
we cannot derive any new tuples. The outputQ(D) is the set
of tuples computed for the query predicate. Note that since
the number of tuples that can be computed for each relation is
finite and monotonically increasing, the evaluation is guaran-
teed to terminate. Finally, we say that a datalog query refers
only to views if instead of EDB predicates we have predicates
referring to views (but we still allow arithmetic comparison
predicates and IDB predicates).

6.2 The bucket algorithm

The goal of the bucket algorithm is to reformulate a user query
that is posed on a mediated (virtual) schema into a query that
refers directly to the available data sources. Both the query
and the sources are described by conjunctive queries that may
include atoms of arithmetic comparison predicates (hereafter
referred to simply as predicates). As we explain in Sect.7, the
number of possible rewritings of the query using the views
is exponential in the size of the query. Hence, the main idea
underlying the bucket algorithm is that the number of query
rewritings that need to be considered can be drastically re-
duced if we first consider each subgoal in the query in iso-
lation, and determine which views may be relevant to each
subgoal.

Given a queryQ, the bucket algorithm proceeds in two
steps. In the first step, the algorithm creates a bucket for each
subgoal inQ that is not inC(Q), containing the views (i.e.,
data sources) that are relevant to answering the particular sub-
goal. More formally, to decide whether the viewV should be
in the bucket of a subgoalg, we consider each of the subgoals
g1 in V and do the following:

A. Check whether there is a unifierθ for g andg1, i.e., θ is
a variable mapping such thatθ(g) = θ(g1). If there is no
unifier, we proceed to the next subgoal.

B. Given the unifierθ, we check whether the view and the
query would be compatible after the unifier is applied.
Hence, we applyθh(V ) to the query and to the view, where
θh(V ) is the same asθ but its domain does not include the
existential variables inV (since only the head variables of
V are part of a rewriting). Then we check two conditions:
(1) that the predicates inQ and inV are mutually satisfi-
able, i.e.,θh(V )(C(Q)) ∧ θh(V )(C(V )) is satisfiable; and
(2) thatθ treats the head variables occurring ing correctly,
i.e., ifX is a head variable that appears in positioni of the
subgoalg, then the variable appearing in positioni of g1
must be a head variable ofV .

If the above conditions are satisfied, then we insert the
atomθ(head(V )) into the bucket ofg. Note that a subgoalg

Table 2.Contents of the buckets. The primed variables are those that
are not in the domain of the unifying mapping

Teaches(P,C,Q) Registered(S,C,Q) Course(C,T)

V2(S’,P,C,Q) V1(S,C,Q,T’) V1(S’,C,Q’,T)
V4(P,C,T’,Q) V2(S,P’,C,Q) V4(P’,C,T,Q’)

may unify with more than one subgoal in a viewV , and in that
case the bucket ofg will contain multiple occurrences ofV .

In the second step, the bucket algorithm finds a set ofcon-
junctive query rewritings, each of them being a conjunctive
query that includes one conjunct from every bucket. Each of
these conjunctive query rewritings represents one way of ob-
taining part of the answer toQ from the views. The result of
the bucket algorithm is defined to be the union of the con-
junctive query rewritings (since each of the rewritings may
contribute different tuples). Given a conjunction, constructed
from a single element from every bucket, it is a conjunctive
query rewriting if either: (1) the conjunction is contained in
the queryQ; or (2) it is possible to add atoms of compari-
son predicates such that the resulting conjunction is contained
in Q.

Example 2.Consider the following views

V1(student,c-number,quarter,title):-
Registered(student,c-number,quarter),
Course(c-number,title), c-number≥500, quarter≥Aut98.

V2(student,prof,c-number,quarter):-
Registered(student,c-number,quarter),
Teaches(prof,c-number,quarter)

V3(student,c-number):-
Registered(student,c-number,quarter), quarter ≤ Aut94.

V4(prof,c-number,title,quarter):-
Registered(student,c-number,quarter),
Course(c-number,title), Teaches(prof,c-number,quarter),
quarter≤Aut97.

Suppose our query is:

q(S,C,P) :- Teaches(P,C,Q), Registered(S,C,Q), Course(C,T),
C≥300, Q≥Aut95.

In the first step the algorithm creates a bucket for each
of the relational subgoals in the query in turn. The resulting
contents of the buckets are shown in Table 2. The bucket of
Teaches(P,C,Q) includes viewsV2 andV4, since the follow-
ing mapping unifies the subgoal in the query with the corre-
spondingTeaches subgoal in the views (thereby satisfying
condition (a) above):

{ P → prof, C → c-number, Q → quarter }.
Note that each view head in a bucket only includes vari-

ables in the domain of the mapping. Fresh variables (primed)
are used for the other head variables of the view.

The bucket of the subgoalRegistered(S,C,Q) contains
the viewsV1 andV2, since the following mapping unifies
the subgoal in the query with the correspondingRegistered
subgoal in the views:

{ S → student, C → c-number, Q → quarter }.
The viewV3 is not included in the bucket ofRegis-

tered(S,C,Q) because after applying the unificationmapping,
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the predicatesQ≥ Aut95 andQ≤ Aut94 aremutually incon-
sistent. The viewV4 is not included in the bucket ofRegis-
tered(S,C,Q) because the variablestudent is not in the head
ofV4, whileS is in the head of the query.

Next, consider the bucket of the subgoalCourse(C,T).
The viewsV1 andV4 will be included in the bucket because
of the mapping

{ C → c-number, T → title }.
In the second step of the algorithm, we combine elements

from the buckets. In our example, we start with a rewriting
that includes the top elements of each bucket, i.e.,

q’(S,C,P) :- V2(S’,P,C,Q), V1(S,C,Q,T’), V1(S’, C, Q’, T).

As can be checked, this rewriting can be simplified by
equating the variablesS andS’, andQ andQ’, and then re-
moving the third subgoal, resulting with

q’(S,C,P) :- V2(S’,P,C,Q), V1(S,C,Q,T’).

Another possibility that the bucket algorithm would explore
is:

q’(S,C,P) :- V4(P, C, T’, Q), V1(S,C,Q,T’), V4(P’, C, T, Q’).

However, this rewriting would be dismissed because the
quarters given inV1 are disjoint from those given inV4. In
this case, the viewsV1 andV4 are relevant to the query when
they are considered inisolation, but, if joined, would yield the
empty answer.

Finally, the algorithm would also produce the rewriting

q’(S,C,P) :- V2(S,P,C,Q), V4(P, C, T’, Q).

Hence, the result of the bucket algorithm is the union of
two conjunctive queries, one obtains answers by joiningV1
andV2, and the other by joiningV2 andV4. The reader should
note that in this example, as often happens in the data integra-
tion context, the algorithm produced amaximally-contained
rewriting of the query using the views, and not an equivalent
rewriting. In fact, when the query does not contain arithmetic
comparison predicates (but the view definitions still may)
the bucket algorithm is guaranteed to return the maximally-
contained rewriting of the query using the views.
�

The strength of the bucket algorithm is that it exploits the
predicates in the query to prune significantly the number of
candidate conjunctive rewritings that need to be considered.
Checking whether a view should belong to a bucket can be
done in time polynomial in the size of the query and view def-
inition when the predicates involved are arithmetic compar-
isons. Hence, if the data sources (i.e., the views) are indeed
distinguished by having different comparison predicates, then
the resulting buckets will be relatively small. The bucket algo-
rithm also extends naturally to cases where the query (but not
the views) is a union of conjunctive queries, and to other forms
of predicates in the query such as class hierarchies [LRO96a].
Finally, the bucket algorithm also makes it possible to iden-
tify opportunities for interleaving optimization and execution
in a data integration system in cases where one of the buckets
contains an especially large number of views [LRO96a].

The main disadvantage of the bucket algorithm is that the
Cartesian product of the buckets may still be rather large. Fur-
thermore, in the second step the algorithm needs to perform

a query containment test for every candidate rewriting. The
testing problem isΠp

2 -complete,6 though only in the size of
the query and the view definition, and hence quite efficient in
practice.

6.3 The inverse-rules algorithm

Like thebucket algorithm, the inverse-rulesalgorithmwasalso
developed in the context of a data integration system [DG97b].
The key idea underlying the algorithm is to construct a set of
rules thatinvert the view definitions, i.e., rules that show how
to compute tuples for the database relations from tuples of the
views. We illustrate inverse rules with an example. Suppose
we have the following view (we omit thequarter attribute of
Registered for brevity in this example):

V3(dept, c-number) :- Major(student,dept),
Registered(student,c-number).

We construct one inverse rule for every subgoal in the body of
the view:

Major(f1(dept,X), dept) :- V3(dept,X)
Registered(f1(Y, c-number), c-number) :- V3(Y,c-number)

Intuitively, the inverse rules have the following meaning.
A tuple of the form(dept,c-number) in the extension of the
viewV3 is awitnessof tuples in the relationsMajor andReg-
istered. The tuple(dept,c-number) is a witness in the sense
that it tells us two things:

• The relationMajor contains a tuple of the form(Z, dept),
for some value ofZ.

• The relationRegistered contains a tuple of the form(Z,
c-number), for thesamevalue ofZ.

In order to express the information that the unknown value
of Z is the same in the two atoms, we refer to it using the
functional termf1(dept,c-number). Formally,f1 is a Skolem
function (see [ABS99], Pg. 96) and therefore uninterpreted.
Note that there may be several values ofZ in the database that
cause the tuple(dept,c-number) to be in the join ofMajor
andRegistered, but all that matters is that there exists at least
one such value.

In general, we create one function symbol for every ex-
istential variable that appears in the view definitions. These
function symbols are used in the heads of the inverse rules.

The rewriting of a queryQ using the set of viewsV is the
datalog program that includes:

• The inverse rules forV.
• The queryQ.

As shown in [DG97a,DGL00], the inverse-rules algorithm
returns the maximally-contained rewriting ofQ usingV. In
fact, thealgorithm returns themaximally containedquery even
if Q is an arbitrary recursive datalog program.

Example 3.Suppose a query asks for the departments in
which the students of the 444 course are majoring,

6 For conjunctive queries with no comparison predicates, query
containment is in NP because we only need to guess a containment
mapping. Here, however, we need to guess a containment mapping
for every possible ordering on the variables in containing query.
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q(dept) :- Major(student,dept), Registered(student, 444)

and the viewV3 includes the tuples:

{ (CS, 444), (EE, 444), (CS, 333) }.
The inverse rules would compute the following tuples:

Registered: { (f1(CS,444), CS), (f1(EE,444), EE),
(f1(CS,333), CS) }

Major: { (f1(CS,444),444), (f1(EE,444),444),
(f1(CS,333),333) }

Applying the query to these extensions would yield the an-
swersCS andEE. 
�

In the above example we showed how functional terms
are generated as part of the evaluation of the inverse rules.
However, the resulting rewriting can actually be rewritten in
such a way that no functional terms appear [DG97a].

There are several interesting similarities and differences
between the bucket and inverse rules algorithms that are worth
noting. In particular, the step of computing buckets is similar
in spirit to that of computing the inverse rules, because both of
themcompute the views that are relevant to single atoms of the
database relations. The difference is that the bucket algorithm
computes the relevant views by taking into consideration the
contextin which the atom appears in the query, while the in-
verse rules algorithm does not. Hence, if the predicates in a
view definition entail that the view cannot provide tuples rel-
evant to a query (because they are mutually unsatisfiable with
the predicates in the query), then the view will not end up in a
bucket. In contrast, the query rewriting obtained by the inverse
rules algorithm may contain views that are not relevant to the
query. However, the inverse rules can be computed once, and
be applicable to any query. In order to remove irrelevant views
from the rewriting produced by the inverse-rules algorithmwe
need to apply a subsequent constraint propagation phase (as
in [LFS97,SR92]).

A key advantage of the inverse-rules algorithm is its con-
ceptual simplicity and modularity. As shown in [DGL00],
extending the algorithm to exploit functional dependencies
on the database schema, recursive queries or the existence of
access-pattern limitations can be done by adding another set of
rules to the inverse rules. Furthermore, the algorithm produces
the maximally-contained rewriting in time that is polynomial
in the size of the query and the views. Note that the algorithm
does not tell us whether the maximally-contained rewriting
is equivalent to the original query, which would contradict
the fact that the problem of finding an equivalent rewriting is
NP-complete [LMSS95] (see Sect.7).

On the other hand, using the resulting rewriting produced
by the algorithm for actually evaluating queries from the views
has a significant drawback, since it insists on recomputing the
extensions of the database relations. In our example, evalu-
ating the inverse rules computes tuples forRegistered and
Major, and the query is then evaluated over these extensions.
However, by doing that, we lose the fact that the view already
computed the join that the query is requesting. Hence, much
of the computational advantage of exploiting the materialized
view is lost.

In order to obtain a more efficient rewriting from the in-
verse rules, we must unfold the inverse rules and remove re-
dundant subgoals from the unfolded rules. Unfolding the rules

turns out to be similar to (but still slightly better than) the sec-
ond phase of the bucket algorithm, where we consider the
Cartesian product of the buckets (see [PL00] for an experi-
mental analysis).

6.4 The MiniCon algorithm

The MiniCon algorithm [PL00,PH01] addresses the limita-
tions of the previous algorithms. The key idea underlying
the algorithm is a change of perspective: instead of building
rewritings by combining rewritings for each of the querysub-
goalsor the database relation, we consider how each of the
variablesin the query can interact with the available views.
The result is that the second phase of the MiniCon algorithm
needs to consider drastically fewer combinations of views.
The following example illustrates the key idea of MiniCon.
Consider the query

q(D) :- Major(S, D), Registered(S, 444, Q), Advises(P, S)

and the views:

V1(dept) :- Major(student,dept),
Registered(student, 444, quarter).

V2(prof, dept, area) :- Advises(prof, student),
Prof(name, area)

V3(dept, c-number) :- Major(student,dept),
Registered(student, c-number, quarter),
Advises(prof, student).

The bucket algorithm considers each of the subgoals in
the query in isolation, and therefore puts the viewV1 into the
buckets ofMajor(student, dept) andRegistered(student,
444, quarter). However, a careful analysis reveals thatV1
cannot possibly be useful in a rewriting of the query. The
reason is that since the variablestudent is not in the head of
the view, then in order forV1 to be useful, it must contain the
subgoalAdvises(prof,student) as well. Otherwise, the join
on the variableS in the query cannot be applied using the
results ofV1.

The MiniCon algorithm starts out like the bucket algo-
rithm, considering which views contain subgoals that corre-
spond to subgoals in the query. However, once the algorithm
finds a partial variable mapping from a subgoalg in the query
to a subgoalg1 in a viewV , it changes perspective and looks
at the variables in the query. The algorithm considers the join
predicates in the query (which are specified bymultiple occur-
rences of the same variable) and finds the minimal additional
set of subgoals thatmustto bemapped to subgoals inV , given
thatg will be mapped tog1. This set of subgoals and mapping
information is called aMiniCon Description(MCD), and can
be viewed as a generalized bucket. Unlike buckets, MCDs are
associated withsetsof subgoals in the query. In the second
phase, the MCDs are combined to produce the query rewrit-
ings.

In the above example, the algorithm will determine that it
cannot create an MCD forV1 because it cannot apply the join
predicates in the query.WhenV2 is considered, the MCDwill
contain only the subgoalAdvises(prof, student). WhenV3
is considered, the MCDwill include all of the query subgoals.

The key advantage of the MiniCon algorithm is that the
second phase of the algorithm considersmany fewer combina-
tions of MCDs compared to the Cartesian product of the buck-
ets or compared to the number of unfoldings of inverse rules.
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Thework in [PL00] describesadetailed set of experiments that
shows that the MiniCon significantly outperforms the inverse
rules algorithm, which in turn outperforms the bucket algo-
rithm. The paper demonstrates exactly how these savings are
obtained in the second phase of the algorithm. Furthermore,
the experiments show that the algorithm scales up to hundreds
of views with commonly occurring shapes such as chain, star,
and complete queries (see [MGA97] for a description of these
query shapes). The work in [PH01] also explains how to ex-
ploit the key ideas of the theMiniCon algroithm to the context
of query optimization with materialized views, where the cost
of the query plan if the primary concern.

7 Theory of answering queries using views

In the previous sections we discussed specific algorithms for
answering queries using views. Here we consider several fun-
damental issues that cut across all of the algorithms we have
discussed thus far, and which have been studied from a more
theoretical perspective in the literature.

The first question concerns thecompletenessof the query
rewriting algorithms. That is, given a set of views and a query,
will the algorithm always find a rewriting of the query using
the views if one exists? A related issue is characterizing the
complexity of the query rewriting problem. We discuss these
issues in Sect.7.1.

Completeness of a rewriting algorithm is characterized
with respect to a specific query language in which the rewrit-
ings are expressed (e.g., select-project-join queries, queries
with union, recursion). For example, there are cases in which
if we do not allow unions in the rewriting of the query, thenwe
will not be able to find an equivalent rewriting of a query using
a set of views. The language that we consider for the rewriting
is even more crucial when we consider maximally-contained
rewritings, because the notion of maximal containment is de-
fined with respect to a specific query language. As it turns
out, there are several important cases in which a maximally-
contained rewriting of a query can only be found if we con-
siderrecursivedatalog rewritings. These cases are illustrated
in Sect.7.2.

At the limit, we would like to be able to extract all the
certainanswers for a query given a set of views, whether we
do it by applying a query rewriting to the extensions of the
views or via an arbitrary algorithm. In Sect.7.3 we consider
the complexity of finding all the certain answers, and show
that even in some simple cases the problem is surprisingly
co-NP-hard in the size of the extensions of the views.

7.1 Completeness and complexity of finding query rewritings

The first question one can ask about an algorithm for rewrit-
ing queries using views is whether the algorithm is complete:
given a queryQ and a set of viewsV, will the algorithm find
a rewriting ofQ usingV when one exists. The first answer
to this question was given for the class of queries and views
expressed as conjunctive queries [LMSS95]. In that paper it
was shown that when the query does not contain comparison
predicates and hasn subgoals, then there exists an equivalent

conjunctive rewriting ofQ usingV only if there is a rewrit-
ing with at mostn subgoals. An immediate corollary of the
bound on the size of the rewriting is that the problem of find-
ing an equivalent rewriting of a query using a set of views is
in NP, because it suffices to guess a rewriting and check its
correctness.7

The bound on the size of the rewriting also sheds some
light on the algorithms described in the previous sections. In
particular, it entails that the search strategy that the GMAP
algorithm [TSI96] employs is guaranteed to be complete under
the conditions that (1) we use a sound and complete algorithm
for query containment for testing equivalence of rewritings;
(2) when combining two subplans, the algorithm considers
all possible join predicates on the attributes of the combined
subplans; and (3) we consider self-joins of the views. These
conditions essentially guarantee that the algorithm searches
through all rewritings whose size is bounded by the size of the
query. It is important to emphasize that the rewriting of the
query that produces the mostefficientplan for answering the
query may havemoreconjuncts that the original query. The
bound of [LMSS95] also guarantees that the bucket algorithm
is guaranteed to find themaximally-contained rewriting of the
query when the query does not contain arithmetic comparison
predicates (but the views may), and that we consider unions
of conjunctive queries as the language for the rewriting.

In [LMSS95] it is also shown that the problem of find-
ing a rewriting is NP-hard for two independent reasons: (1)
the number of possible ways to map a single view into the
query; and (2) the number of ways to combine the mappings
of different views into the query.

In [RSU95] the authors extend the bound on the size of the
rewriting to the case where the views contain access-pattern
limitations (discussed in detail in Sect.8.2). In [CR97] the
authors exploit the close connection between the containment
and rewriting problems, and show several polynomial-time
cases of the rewriting problems, corresponding to analogous
cases for the problem of query containment.

7.2 The need for recursive rewritings

As noted earlier, in cases where we cannot find an equiva-
lent rewriting of the query using a set of views, we consider
the problem of finding maximally-contained rewritings. Our
hope is that when we apply the maximally-contained rewrit-
ing to the extensions of the views, we will obtain the set of
all certain answers to the query (Definition 4). Interestingly,
there are several contexts where in order to achieve this goal
we need to consider recursive datalog rewritings of the query
[DGL00]. We recall that a datalog rewriting is a datalog pro-
gram in which the base (EDB) predicates are the view re-
lations, and there are additional intermediate IDB relations.
Except for the obvious case in which the query is recursive
[DG97a], other cases include: when we exploit the presence
of functional dependencies on the database relations or when
there are access-pattern limitations on the extensions of the

7 Note that checking the correctness of a rewriting isNP-complete;
however, the guess of a rewriting can be extended to a guess for
containment mappings showing the equivalence of the rewriting and
of the query.
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views [DL97] (see Sect.8.2 for a more detailed discussion),
when views contain unions [Afr00] (though even recursion
does not always suffice here), and the case where additional
semantic information about class hierarchies on objects is ex-
pressed using description logics [BLR97]. We illustrate the
case of functional dependencies below.

Example 4.To illustrate the need for recursive rewritings in
the presence of functional dependencies, we temporarily ven-
ture into the domain of airline flights. Suppose we have the
following database relation

schedule(Airline,Flight no,Date,Pilot,Aircraft)

which stores tuples describing the pilot that is scheduled for
a certain flight, and the aircraft that is used for this flight.
Assume we have the following functional dependencies on
the relations in the mediated schema

Pilot → Airline and
Aircraft → Airline

expressing the constraints that pilots work for only one air-
line, and that there is no joint ownership of aircrafts between
airlines. Suppose we have the following view available, which
projects thedate, pilot, andaircraft attributes from thedatabase
relation:

v(D,P,C) :- schedule(A,N,D,P,C)

The view v records on which date which pilot flies which
aircraft. Now consider a query asking for pilots that work for
the same airline as Mike (expressed as the following self join
on the attributeAirline of theschedule relation):

q(P) :- schedule(A,N,D,‘mike’,C), schedule(A,N’,D’,P,C’)

The viewv doesn’t record the airlines that pilots work for, and
therefore, deriving answers to the above query requires using
the functional dependencies in subtle ways. For example, if
both Mike and Ann are known to have flown aircraft #111,
then, since each aircraft belongs to a single airline, and every
pilot flies for only one airline, Ann must work for the same
airlineasMike.Moreover, if, in addition,Ann is known tohave
flown aircraft #222, and John has flown aircraft #222 then the
same line of reasoning leads us to conclude thatAnn and John
work for the same airline. In general, for any value ofn, the
following conjunctive rewriting is a contained rewriting:

qn(P ) :− v(D1, mike, C1), v(D2, P2, C1),
v(D3, P2, C2), v(D4, P3, C2), . . . ,
v(D2n−2, Pn, Cn−1), v(D2n−1, Pn, Cn), v(D2n, P, Cn)

Moreover, for eachn, qn(P ) may provide answers that
were not given byqi for i < n, because one can always build
an extension of the viewv that requiresn steps of chaining
in order to find answers to the query. The conclusion is that
we cannot find a maximally-contained rewriting of this query
using the views if we only consider non-recursive rewritings.
Instead, the maximally-contained rewriting is the following
datalog program:

relevantPilot(“mike”).
relevantAirCraft(C) :- v(D, “mike”, C).
relevantAirCraft(C) :- v(D,P,C), relevantPilot(P).
relevantPilot(P) :- relevantPilot(P1), relevantAirCraft(C),

v(D1, P1, C), v(D2, P, C).

In the program above, the relationrelevantPilot will in-
clude the set of pilots who work for the same airline as Mike,
and the relationrelevantAirCraft will include the aircraft
flown by relevant pilots. Note that the fourth rule is mutually
recursive with the definition ofrelevantAirCraft.
�

In [DL97,DGL00] it is shown how to augment the inverse-
rules algorithm to incorporate functional dependencies. The
key element of that algorithm is to add a set of rules that
simulate the application of a Chase algorithm [MMS79] on
the atoms of the database relations.

7.3 Finding the certain answers

A different perspective on the problem of answering queries
using views is the following. Given a set of materialized views
and the corresponding view definitions, we obtain somein-
completeinformation about the contents of the database.More
specifically, the views define a set ofpossibleunderlying
databasesD. Given a queryQ over the database and a tuplet,
there are a few possibilities: (1)twould be an answer toQ for
every database inD; (2) t is an answer toQ for some database
in D; or (3)t is not an answer toQ for any database inD. The
notion of certain answers, (see Definition 4) formalizes case
(1).

If Q′ is anequivalent rewritingof a queryQ using the
set of viewsV, then it will always produce the same result as
Q, independent of the state of the database or of the views.
In particular, this means thatQ′ will always produce all the
certain answers toQ for any possible database.

WhenQ′ is amaximally-contained rewritingof Q using
the viewsV it may produce only a subset of the answers of
Q for a given state of the database. The maximality ofQ′ is
defined only with respect to the other possible rewritings in a
particular query languageL that we consider forQ′. Hence,
the question that remains is how to find all the certain answers,
whetherwedo it byapplying some rewrittenquery to theviews
or by some other algorithm.

The question of finding all the certain answers is consid-
ered in detail in [AD98,GM99a]. In their analysis they distin-
guish the case of theopen-world assumptionfrom that of the
closed-world assumption. With the closed-world assumption,
the extensions of the views are assumed to containall the tu-
ples that would result from applying the view definition to the
database. Under the open-world assumption, the extensions
of the views may be missing tuples. The open-world assump-
tion is especially appropriate in data integration applications,
where the views describe sources that may be incomplete (see
[EGW97,Lev96,Dus97] for treatments of complete sources
in the data integration context). The closed-world assumption
is appropriate for the context of query optimization and main-
tainingphysical data independence,where viewshaveactually
been computed from existing database relations.

Under the open-world assumption, [AD98] show that in
many practical cases, finding all the certain answers can be
done in polynomial time. However, the problem becomes co-
NP-hard (in the size of the view extensions!) as soon as we
allow union in the language for defining the views, or allow
the predicate�= in the language defining the query.

Under the closed-world assumption the situation is even
worse. Even when both the views and the query are defined by
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conjunctive queries without comparison predicates, the prob-
lem of finding all certain answers is already co-NP-hard. The
following example is the crux of the proof of the co-NP-
hardness result [AD98].

Example 5.The following example shows a reduction of the
problem of graph 3-colorability to the problem of finding all
the certain answers. Suppose the relationedge(X,Y) encodes
the edges of a graph, and the relationcolor(X,Z) encodes
which colorZ is attached to the nodes of the graph. Consider
the following three views:

V1(X) :- color(X,Y)
V2(Y) :- color(X,Y)
V3(X,Y) :- edge(X,Y)

where the extension ofV1 is the set of nodes in a graph, the
extension ofV2 is the set{red, green, blue}, and the extension
of V3 is the set of edges in the graph. Consider the following
query:

q(c) :- edge(X,Y), color(X,Z), color(Y,Z)

In [AD98] it is shown thatc is a certain answer toq if
and only if the graph encoded byedge isnot three-colorable.
Hence, they show that the problem of finding all certain an-
swers is co-NP-hard.
�

The hardness of finding all the certain answers provides an
interesting perspective on formalisms for data integration. In-
tuitively, the result entails that when we use views to describe
the contents of data sources, even if we only use conjunctive
queries to describe the sources, the complexity of finding all
the answers to a query from the set of sources is co-NP-hard.
In contrast, using a formalism inwhich the relations of theme-
diated schemaare described by views over the source relations
(as in [GMPQ+97]), the complexity of finding all the answers
is always polynomial. Hence, this result hints that the former
formalism has a greater expressive power as a formalism for
data integration.

It is also interesting to note the connection established in
[AD98] between the problem of finding all certain answers
and computation with conditional tables [IL84]. As the au-
thors show, the partial information about the database that is
available from a set of views can be encoded as a conditional
table using the formalism studied in [IL84], providing a for-
malization to the intuition starting out this section.

The work in [GM99a] also considers the case where the
views may either be incomplete, complete, or contain tuples
that don’t satisfy the view definition (referred to asincorrect
tuples). It is shown that without comparison predicates in the
views or the query, when either all the views are complete or
all of them may contain incorrect tuples, finding all certain
answers can be done in polynomial time in the size of the
view extensions. In other cases, the problem is co-NP-hard.
The work in [MM01] considers the query answering problem
in cases where we may have bounds on the soundness and/or
completeness of the views.

Finally, [MLF00] considers the problem of relative query
containment, i.e., whether the set of certain answers of a query
Q1 is always contained in the set of certain answers of a query
Q2.Thepaper shows that for the conjunctivequeriesandviews
with no comparison predicates the problem isΠp

2 -complete,
and that the problem is still decidable in the presence of access
pattern limitations.

8 Extensions to the query language

In this section we survey the algorithms for answering queries
using views in the context of several important extensions
to the query languages considered thus far. We consider ex-
tensions for Object Query Language (OQL) [FRV96,Flo96,
DPT99], and views with access pattern limitations [RSU95,
KW96,DL97].

8.1 Object query language

In [FRV96,Flo96] the authors studied the problem of answer-
ing queries using views in the context of querying object-
oriented databases, and have incorporated their algorithm into
the FloraOQL optimizer. In object-oriented databases the cor-
respondence between thelogical model of the data and the
physicalmodel is even less direct than in relational systems.
Hence, as argued in [Flo96], it is imperative for a query opti-
mizer for object-oriented database be based on the notion of
physical data independence.

Answering queries using views in the context of object-
oriented systems introduces two key difficulties. First, finding
rewritings often requires that we exploit some semantic in-
formation about the class hierarchy and about the attributes
of classes. Second, OQL does not make a clean distinction
between theselect , from andwhere clauses as in SQL.
Select clauses may contain arbitrary expressions, and the
where clauses also allow path navigation.

Thealgorithm foransweringqueriesusingviewsdescribed
in [Flo96] operates in two phases. In the first phase the algo-
rithm rewrites the query into a canonical form, thereby ad-
dressing the lack of distinction between theselect , from
andwhere clauses.As an example, in this phase, navigational
expressions are removed from thewhere clause by introduc-
ing new variables and terms in thefrom clause.

In the second phase, the algorithm exploits semantic
knowledge about the class hierarchy in order to find a subex-
pression of the query that is matched by one of the views.
When such amatch is found, the subexpression in the query is
replaced by a reference to the view and appropriate conditions
are added in order to conserve the equivalence to the query.

We illustrate the main novelties of the algorithm with the
following example from [Flo96], using a French version of
our university domain. Here we have the classUniversities,
with subclassFrance.Universities and the classCity. The
first two classes have the attributesstudents, PhDstudents
(a sub-attribute ofstudents), professors andadjuncts.

Example 6.Suppose we have the following view asking for
students who are at least as old as their professors, and who
study in universities in small cities. Below we use the notation
of OQL. Note that theselect clause of OQL defines the record
structure of the result. In addition, note the use of path expres-
sions – for example,y in x.students means that the variable
y will be bound to each of the students of the object to which
x will be bound.

create view V1 as
select distinct [A:=x.name, B:=y.identifier, C:=z]
from x in Universities, y in x.students,

z in union(x.professors, x.adjuncts)
where x.city.kind="small" and y.age ≥ z.age.
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Suppose a query asks for Ph.D students in French universities
who have the same age as their professors, and study in small
town universities:

select distinct [D:=u.name, E:=v.name, F:=t.name]
from u in France.Universities, v in u.PhDstudents,

t in u.professors
where u.city.kind="small" and v.age=t.age.

In the first step, the algorithmwill transform the query and
the view into their normal form. The resulting expression for
the query would be: (note that the variablew was added to
the query in order to eliminate the navigation term from the
where clause)

select distinct [D:=u.name, E:=v.name, F:=t.name]
from u in France.Universities, w in City,

v in u.PhDstudents, t in u.professors
where w.kind="small" and v.age=t.age and u.city=w.

In the next step, the algorithmwill note the following prop-
erties of the schema:

1. The collectionFrance.Universities is included in the col-
lectionUniversities,

2. The collection denoted by the expressionu.PhDstudents
is included in the collection denoted byx.students. This
inclusion follows from the first inclusion and the fact that
PhD students are a subset of students.

3. The collectionu.professors is included in the collection
union(x.professors, x.adjuncts).

Putting these three inclusions together, the algorithm de-
termines that the view can be used to answer the query, be-
cause the selections in the view are less restrictive than those
in the query. The rewriting of the query using the view is the
following:

select distinct [D:=a.A, E:=a.B.name, F:=t.name]
from a in V1, u in France.Universities,

v in u.PhDstudents, t in u.professors
where u.city.kind="small" and v.age=t.age and

u.name=a.A and v.name=a.B and t=a.C.

Note that the role of the view is only to restrict the possible
bindings of the variables used in the query. In particular, the
query still has to restrict the universities to only the French
ones, the students to only the Ph.Ds, and the range of the
variablet to cover only professors. In this case, the evaluation
of the query using the view is likely to be more efficient than
computing the query only from the class extents.
�

As noted in Sect.5.2, the algorithm described in [DPT99,
PDST00] also considers certain types of queries over object-
oriented data.

8.2 Access pattern limitations

In the context of data integration, where data sources aremod-
eled as views, we may have limitations on the possible access
paths to the data. For example, when querying the Internet
Movie Database, we cannot simply ask for all the tuples in the
database. Instead, we must supply one of several inputs, (e.g.,
actor name or director), and obtain the set of movies in which
they are involved.

We can model limited access paths by attaching a set of
adornments to every data source. If a source is modeled by a
view with n attributes, then an adornment consists of a string
of lengthn, composed of the lettersb andf . The meaning of
the letterb in an adornment is that the sourcemustbe given
values for the attribute in that position. The meaning of the
letterf in an adornment is that the source doesn’t have to be
given a value for the attribute in that position. For example,
an adornmentbf for a viewV (A,B) means that tuples ofV
can be obtained only by providing values for the attributesA.

Several works have considered the problem of answering
queries using views when the views are also associated with
adornments describing limited access patterns. In [RSU95] it
is shown that the bound given in [LMSS95] on the length of a
possible rewriting does not hold anymore. To illustrate, con-
sider the following example, where the binary relationCites
stores pairs of papersX,Y , whereX citesY . Suppose we
have the following views with their associated adornments:

CitationDBbf (X,Y) :- Cites(X,Y)
CitingPapersf (X) :- Cites(X,Y)

and suppose we have the following query asking for all the
papers citing paper #001:

Q(X) :- Cites(X,001)

The bound given in [LMSS95] would require that if there
exists a rewriting, then there is one with at most one atom, the
size of the query. However, the only possible rewriting in this
case is:

q(X) :- CitingPapers(X), CitationDB(X,001).

[RSU95] shows that in the presence of access-pattern lim-
itations it is sufficient to consider a slightly larger bound on
the size of the rewriting:n + v, wheren is the number of
subgoals in the query andv is the number of variables in the
query. Hence, the problem of finding an equivalent rewriting
of the query using a set of views is still NP-complete.

The situation becomes more complicated when we con-
sider maximally-contained rewritings. As the following ex-
ample given in [KW96] shows, there may beno bound on
the size of a rewriting. In the following example, the relation
DBpapers denotes the set of papers in the database field, and
the relationAwardPapers stores papers that have received
awards (in databases or any other field). The following views
are available:

DBSourcef (X) :- DBpapers(X)
CitationDBbf (X,Y) :- Cites(X,Y)
AwardDBb(X) :- AwardPaper(X)

The first source provides all the papers in databases, and has
no access-pattern limitations. The second source, when given
a paper, will return all the papers that are cited by it. The third
source, when given a paper, returns whether the paper is an
award winner or not.

The query asks for all the papers that won awards:

Q(X) :- AwardPaper(X).

Since the viewAwardDB requires its input to be bound,
we cannot query it directly. One way to get solutions to the
query is to obtain the set of all database papers from the
viewDBSource, and perform a dependent join with the view
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AwardDB. Another way would be to begin by retrieving the
papers inDBSource, join the result with the viewCitationDB
to obtainall papers citedbypapers inDBSource, and then join
the result with the viewAwardDB. As the rewritings below
show, we can follow any length of citation chains beginning
with papers inDBSource and obtain answers to the query that
were possibly not obtained by shorter chains. Hence, there is
no bound on the length of a rewriting of the query using the
views.

Q’(X) :- DBSource(X), AwardDB(X)
Q’(X) :- DBSource(V), CitationDB(V,X1), . . . ,

CitationDB(Xn,X), AwardDB(X).

Fortunately, as shown in [DL97,DGL00], we can still find
afinite rewritingof thequeryusing the views, albeit a recursive
one. The following datalog rewriting will obtain all the pos-
sible answers from the above views. The key in constructing
the program is to define a new intermediate relationpapers
whose extension is the set of all papers reachable by citation
chains from papers in databases, and is defined by a transitive
closure over the viewCitationDB.

papers(X) :- DBsource(X)
papers(X) :- papers(Y), CitationDB(Y,X)
Q’(X) :- papers(X), AwardDB(X).

In [DL97] it is shown that amaximally-contained rewriting
of the query using the views can always be obtained with
a recursive rewriting. In [FW97] and [LKG99] the authors
describe additional optimizations to this basic algorithm.

8.3 Other extensions

Several authors have considered additional extensions of the
query rewriting problems in various contexts. We mention
some of them here.

Extensions to the query and schema language:In [AGK99,
Dus98] the authors consider the rewriting problem when the
views may contain unions. The consideration of inclusion de-
pendencies on the database relations introduces several sub-
tleties to the query rewriting problem, which are considered in
[Gry98]. In [Mil98], the author considers the query rewriting
problem for a language that enables querying the schema and
data uniformly, and hence, names of attributes in the data may
become constants in the extensions of the views. In [MRP99]
the authors show that when the schema contains a single uni-
versal relation, answering queries using views and several re-
lated operations can be done more efficiently.

Semi-structured data:The emergence of XML as a standard
for sharing data on theWWW has spurred significant interest
in building systems for integrating XML data from multiple
sources.Theemerging formalisms formodelingXMLdata are
variations on labeled directed graphs, which have also been
used to model semi-structured data [Abi97,Bun97,ABS99].
The model of labeled directed graphs is especially well suited
for modeling the irregularity and the lack of schema which

are inherent in XML data. Several languages have been devel-
oped for querying semi-structured data and XML [AQM+97,
FFLS97,BDHS96,DFF+99,CRF00].

Several works have started considering the problem of an-
swering queries using views when the views and queries are
expressed in a language for querying semi-structured data.
There are two main difficulties that arise in this context. First,
such query languages enable usingregular path expressions
in the query, to express navigational queries over data whose
structure is not well known a priori. Regular path expressions
essentially provideavery limitedkindof recursion in thequery
language. In [CGLV99] the authors consider the problem of
rewriting a regular path query using a set of regular path views,
and show that the problem is in 2EXPTIME (and checking
whether the rewriting is an equivalent one is in 2EXPSPACE).
In [CGLV00a] the authors consider the problem of finding all
the certain answers when queries and views are expressed us-
ing regular path expressions, and show that the problem is
co-NP-complete when data complexity (i.e., size of the view
extensions) is considered. In [CGLV00b] the authors extend
the results of [CGLV99,CGLV00a] to path expressions that
include the inverse operator, allowing both forward and back-
ward traversals in a graph.

The second problem that arises in the context of semi-
structured data stems from the rich restructuring capabilities
which enable the creation of arbitrary graphs in the output.
The output graphs can also include nodes that did not exist
in the input data. In [PV99] the authors consider the rewrit-
ing problem in the case where the query can createanswer
trees, and queries that do not involve regular path expressions
with recursion. For the most part, considering queries with
restructuring remains an open research problem.

Infinite number of views:Two works have considered the
problem of answering queries using views in the presence of
an infinite number of views [LRU96,VP97]. The motivation
for this seemingly curious problem is that when a data source
has the capability to performlocal processing, it can be mod-
eled by the (possibly infinite) set of views it can supply, rather
than a single one.As a simple example, consider a data source
that stores a set of documents, and can answer queries of the
form:

q(doc) :- document(doc), contains(doc, w1), . . .,
contains(doc,wn)

wherewe can have any number of occurrences of thecontains
subgoal, each with a different word.

To answer queries using such sources, one need not only
choosewhich sources to query, but wemust also choosewhich
query to send to it out of the set of possible queries it can
answer. In [LRU96,VP97] it is shown that in certain important
cases the problem of answering a query using an infinite set
of views is decidable. Of particular note is the case in which
the set of views that a source can answer is described by the
finite unfoldings of a datalog program.

Description logics:Description logics are a family of logics
for modeling complex hierarchical structures. A description
logic makes it possible to define sets of objects by specifying
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their properties, and then to reason about the relationship be-
tween these sets (e.g., subsumption, disjointness). A descrip-
tion logic also enables reasoning about individual objects, and
their membership in different sets. One of the reasons that de-
scription logics are useful in data management is their ability
to describe complex models of a domain and reason about
inter-schema relationships [CL93]. For that reason, descrip-
tion logics have been used in several data integration systems
[AKS96,LRO96a]. Borgida [Bor95] surveys the use of de-
scription logics in data management.

Several works have considered the problem of answering
queries using viewswhen description logics are used tomodel
the domain. In [BLR97] it is shown that in general, answer-
ing queries using views in this context may be NP-hard, and
presents cases in which we can obtain a maximally-contained
rewritingof aquery in recursivedatalog.Thecomplexity of an-
sweringqueriesusingviews foranexpressivedescription logic
(which also includes n-ary relations) is studied in [CGL99].

9 Conclusions

As this survey has shown, the problem of answering queries
using views raises amultitude of challenges, ranging from the-
oretical foundations to considerations of a more practical na-
ture. While algorithms for answering queries using views are
already being incorporated into commercial database systems
(e.g., [BDD+98,ZCL+00]), these algorithms will have even
more importance in data integration systems and data ware-
house design. Furthermore, answering queries using views is
a key technique to give database systems the ability of main-
taining physical data independence.

There are many issues that remain open in this realm. Al-
thoughwe have touched upon several query languages and ex-
tensions thereof,many cases remain to be investigated.Of par-
ticular note are studying rewriting algorithms in the presence
of a wider class of integrity constraints on both the database
and view relations, and studying the effect of restructuring
capabilities of query languages (as in OQL or languages for
querying semistructured data [BDHS96,AQM+97,FFLS97,
DFF+99,CRF00]).

As described in the article, different motivations have led
to two strands of work on answering queries using views, one
in the context of optimization and the other in the context of
data integration. In part, these differences are due to the fact
that in the data integration context the algorithms search for a
maximally-contained rewriting of the query and assume that
the number of views is relatively large. However, as we illus-
trated, the principles underlying the two strands are similar.
Furthermore, interesting challenges arise as we try to bridge
the gaps between these bodies of work. The first challenge is
to extend the work on query optimization to handle a much
larger number of more complex views. The second challenge
is to extend data integration algorithms to choose judiciously
the best rewritings of the query. This can be done by either
trying to order the access to the data sources (as in [FKL97,
DL99,NLF99]), or to combine the choice of rewritings with
other adaptive aspects of query processing explored in data
integration systems (e.g., [UFA98,IFF+99]).

The context of data warehouse design, when one tries to
select a set of views to materialize in the warehouse, raises

another challenge.Thedatawarehousedesignproblem isoften
treated as a problem ofsearchthrough a set of warehouse
configurations. In each configuration, we need to determine
whether the workload queries anticipated on the warehouse
can be answered using the selected views, and estimate the
cost of the configuration. In this context it is important to be
able to reuse the results of the computation from the previous
state in the search space. In particular, this raises the challenge
of developingincrementalalgorithms for answering queries
using views, which can compute rewritings more efficiently
when only minor changes are made to the set of available
views.

In this survey we considered the problem of using ma-
terialized views when they are available. I believe that
the next challenge isselectingwhich views to material-
ize in the first place. The problem of view selection also
has a surprising number of potential applications, such as
query optimization, data warehousing, web-site design, con-
tent distribution networks, peer-to-peer computing and ubiq-
uitous computing. Even though there has been work on
this problem (e.g., [CHS01,ACN00,Gup97a,CG00,GM99c,
TS97,YKL97,BPT97,GHRU97,HRU96,GHI+01]), the re-
search is still in its infancy. The wealth of techniques devel-
oped for answering queries using views will be very useful in
this realm.
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