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Abstract. The optimized distance-based access methods cubetween the two corresponding images. Once the distance or
rently available for multidimensional indexing in multimedia similarity function is defined for the multidimensional feature
databases have been developed based on two major assungpace, a nearest neighbour search can be used to retrieve the
tions: a suitable distance function is known a priori and theimages that satisfy the criteria specified in a given query.
dimensionality of the image features is low. It is not trivial to The indexing methods that have been proposed to sup-
define a distance function that best mimics human visual perport this kind of retrieval are known as spatial access methods
ception regarding image similarity measurements. ReducingSAMs) andmetric trees The former includes$'S-tree [31],
high-dimensional features in images using the popular princi-R*-tree [26], and grid files [11]; the latter includes thg-
ple component analysis (PCA) might not always be possibldree [4],muvp-tree [1],GN AT [2], andM -tree [6]. While these
due to the non-linear correlations that may be present in thenethods are effective in some specialized image database ap-
feature vectors. We propose in this paper a fast and robugilications, many open problems in indexing still remain.
hybrid method for non-linear dimensions reduction of com-  First, image feature vectors usually have high dimensions
posite image features for indexing in large image databasge.g., some image feature vectors can have up to 100 dimen-
This method incorporates both the PCA and non-linear neusions). Since the existing access methods have an exponential
ral network techniques to reduce the dimensions of featur¢éime and space complexity as the number of dimensions in-
vectors so that an optimized access method can be appliedreases, for indexing high dimensional vectors, they are no
To incorporate human visual perception into our system, webetter than sequential scanning of the database. This is the
also conducted experiments that involved a number of subjectwell-known “dimensional curse” problem. For instance, meth-
classifying images into different classes for neural networkods based oR-trees can be efficientif the fan-out of tRetree
training. We demonstrate that not only can our neural networknodes remain greater than 2 and the number of dimensions is
system reduce the dimensions of the feature vectors, but thainder 5. The search time with linear quadtrees is proportional
the reduced dimensional feature vectors can also be mappéd the size of the hypersurface of the query region which grows
to an optimized access method for fast and accurate indexingvith the number of dimensions. With grid files, the search time
depends on the directory, whose size also grows with the num-
Key words: Image retrieval — High-dimensional indexing — ber of dimensions [11].
Neural network Second, one of the main differences between an image
retrieval system and a traditional database system is the for-
mer’s ability to rank-order results of retrieval by the degree of
similarity with the query image [15]. Given a set of different
) feature vector typeéo,, ¢o, . . ., s } Where each set;, for
1 Introduction i = 1...M, contains feature vectors of the same number of
o ) ) dimensions, i.e¢; = {p;; | k = 1... N;}. Then a similarity
Currently, intelligent image retrieval systems are mostly function must be determined for each feature vector type. That
similarity-based. The idea of indexing an image database is tgs, we must havés; |i = 1... M}, where eacl$; is a simi-
extract the features (Usua”y in the form of a VeCtOf) from eaCharity function. When a query feature Vect@ﬁs posed to the
image in the database and then to map features into points ifhage database, a number of feature vectors from each set
a multi-dimensional feature space. The distance between twghat satisfy a similarity criterion are retrieved. Consequently,
feature points is frequently used as a measure of similarityy separate indexing structure is required to support retrieval
based on each feature vector type.
Building a separate indexing structure for each feature
type, such as colour, texture, or shape, cannot efficiently sup-
port queries that involve composite features (features of more
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than one type, e.g., features that are composed of both colouates the PCA and neural network to reduce high-dimensional
and texture information). To answer a query that involvescomposite image features (non-linear in nature) such that they
a composite feature vector, a hierarchical approach is oftegan be mapped to an existing distance-based index structure
adopted in which each component of the query is appliedvithout any performance penalty.
against an appropriate index in a lower layer. The results are The rest of the paper is organized as follows. In Sect. 2
then merged and presented to the user at a higher layer. Fare review the related work in the areas of dimensionality re-
example, a query such as “find an object that is red in colourduction, image similarity measurement, and distance-based
round in shape, and has a fabric texture” can only be answereaccess methods. In Sect. 3, we briefly review feature extrac-
by first consulting the colour index, the shape index, the textion techniques and follow on with detailed presentation of
ture index, and finally returning the intersection of the threeour proposed method. Implementation and experimental re-
resulting sets. This is inefficient in terms of storage utiliza- sults are given and discussed in Sect. 4. Finally, in Sect.5, we
tion and system performance. Furthermore, it is assumed thadresent the conclusions and outline future research.
in a complex scene, each type of visual feature contributes
equally to the recognition of that image. This phenomenon is
not supported in human visual perception. 2 Background
Although many research works have claimed to support
queries on composite features by combining different feature2.1 Image feature dimension reduction
into an integrated index structure, very few of them explain
how the integration is implemented. There are two main prob4n any imaging system, image features that are extracted by
lems that need to be addressed here. The first one is that thiifferent image processing techniques are often high-
integrated features (or composite features) typically generatdimensional because of the large number of parameters re-
very high dimensional vectors, which cannot be handled efquired to model the features. Some parameters in these models
ficiently by the existing access methods. The other problenmare redundant for content-based retrieval purposes, but detect-
is the definition of image similarity measurements which re-ing such redundancies at the image processing stage is not
flects human visual perception. For example, in what forma trivial procedure. Since low-dimensional representations of
should the similarity function for composite features be whenfeature vectors are more efficient for image retrieval from an
the contribution of each feature type is weighted differently inimage database, itis necessary to apply a dimensions reduction
human visual perception? technique to eliminate the redundancies (correlated informa-
There are two approaches to solving the indexing problemtion) of image features as a post-process of feature detection.
The first approach is to develop a new spatial index method'he goal of a feature dimensions reducer is to discover com-
which can handle data of any dimensions and employ a kplex dependencies among the features of images, eliminate
nearest neighbourhood (k-NN) search. The second approaatorrelated information or noise while maintaining sufficient
is to map the high-dimensional feature space into a lower diinformation for discrimination between images of different
mensional feature space so that an existing access method calasses.
be applied. Creating a generalized high-dimensionalindexthat Many dimensions reduction methods have been proposed
can handle hundreds of dimensions is still an unsolved probwhich can be broadly classified into two categories: linear
lem to date. The second approach is clearly more practical. lsimensions reduction (LDR) and non-linear dimensions re-
this work, we focus on how to reduce the dimensions of com-duction (NLDR).
posite feature vectors so that effective index structures can be LDR is well known as an effective process for mapping the
created. original high-dimensional features into low-dimensional ones
The second problem is associated with human visual perby eliminating the redundant information from the original
ception. The various visual features in an image are nofeature space. The most well-known statistical approach for
weighted equally in human visual perception. In other words,doing this is the principal component analysis (PCA) [14,17].
the human visual system has different responses to colour, tef-he advantage of the PCA transformation is that it is linear
ture, and shape information in an image. When these visuadnd that any linear correlations present in the data are auto-
features are represented by the feature vectors extracted fromatically detected. If the data are known to come from a well-
animage, the similarity measure for each feature type betweedefined model where the underlying factors satisfy various as-
the query image and an image in the database is typically comsumptions, then factor analysis can be used to approximate the
puted by a Euclidean distance function. The similarity measur@riginal data in terms of the common factors and thus can be
between the two images is then expressed as a linear comhissed to achieve a reduction in dimensions [21]. Multidimen-
nation of the similarity measures of all the feature types. Thesional scaling (MDS) is another well-known LDR technique
question that remains here is whethelirear combination  for discovering the underlying spatial structure of a set of data
of the similarity measures of all the feature types best reflectitems from the similarity information among them [18].
how we perceive images as similar. So far, no experiments have Because of the simplicity in the underlying idea of LDR,
been conducted that demonstrate (or counter-demonstrate) titds commonly chosen for feature dimensions reduction. For
above belief. example, the QBIC system [22] used the PCAto reduce a 20-D
The main contribution of this work is in building an ef- moment-based shape feature vector for indexing in its image
fective content-based retrieval system which can efficientlydatabase; Faloutsos and Lin [10] used MDS for indexing and
support queries on composite features without the need tg@isualisation of a multimedia database.
construct a separate indexing structure for each feature type. LDR works well for data that exhibit some linear correla-
The core of the work is to use a hybrid method that incorpo-tion, for then a small number of eigenvalues may account for a
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large proportion of the variance of the data, and so dimensionare well supported. In [5], the similarity measure of a pair of
reduction can be achieved. If the data exhibit some non-lineaimages based on composite feature vectors described by both
correlation then this is not picked up by LDR. Since imagetexture and colour was proposed as a linear combination of
visual features are non-linear in nature, a much better perforthe similarity measure of the individual single feature vector.
mance in dimensions reduction is expected by using NLDRTheir proposal can be detailed as follows: {et.,x;} and

The basis of NLDR is the standard non-linear regression anal{y.,y:} be the colour and texture feature vectors that fully
ysis as used in neural network approaches, which have beeatescribe two imageX andY’, then the similarity measure of
widely studied in recent years. The advantage of using neurdagesX andY’, denoted a§’(X, Y), is given by:

network for NLDR is that it can learn directly from the training .
samples to form a model of the feature data (i.e., the features S(X,Y) = VaSe(xc, ye) + B9 (x, y:) )

that matter the most in forming the expected solutions). Sincgyhere theS,. andsS, are the colour and texture similarity func-
neural _net\Nork isthe core teChniqL:le that we adoptEd for dOingionS, respective|y; and andﬁ are non-negative We|ght|ng
NLDR in our research work, we will cover this topic in more factors. However, criteria for selecting these weighting factors
detail in Sect. 3. o are not mentioned in their research work. From the statistics
~Ingeneral, the main difference between LDR and NLDR yjewpoint, by treating the above weighting factors as normal-
is that NLDR enables the system to maintain a great deal ofzation factors, the above definition is just a natural extension
knowledge about the information on the data source. This inpfthe Euclidean distance function to a high-dimensional space
formation can be represented as network weights betweefh which the coordinate axes are not commensurable. If the kth
units in successive layers of the network. Thus, NLDR canyeighting factor is set to the inverse of the variance of the kth
be used for reducing the dimensions of image feature vectorsomponent of the feature vectors then the distance function is
that cannot be handled by LDR. The only drawback of NLDR cajled theKarl Pearson distanceif the kth weighting factor
is that the network training process can be very slow. is set to the inverse of the range of values for the kth compo-
nent of the feature vectors then the distance function is said
to bestandardized by rangef correlation was found to be
2.2 Image similarity measurement present among the components of the feature vectors then the
Mahalanobis distance function can be used [21].
A major goal of content-based retrieval is finding the best The question that remains to be answered is whether a
matched (most similar) images from the multimedia databas&uclidean distance function for the similarity measure best
with respect to a query object (image). The query object carcorrelates with the response from human visual perception
be specified by a sample object (image), descriptive conceptis classifying images. That is, when humans perceive two im-
(keywords), or numerical specification. The feature vectorsages as similar in colour and in texture, can a distance function
(mainly numerical) for the given query object is then derived given in the form of (1) be defined? Does this same function
using basic image processing techniques such as segmentzeld for another pair of images that are also perceived as sim-
tion and feature extraction. Calculating the similarity betweenilar in colour and in texture? So far, no experiments have been
a query object and an object in the multimedia databasesonducted that demonstrate (or counter-demonstrate) whether
is then reduced to computing the distance between two imlinear combinations of different image features are valid sim-
age feature vectors. Given twe-D image feature vectors ilarity measure based on human visual perception. The im-
x = (z1,29,---,2,)" andy = (y1,%2,---,¥n) , Where  portance of designing a distance function that best mimics
T denotes vector and matrix transpose, a similarity functionnuman perception to approximate a perceptual ordering of the
S(x,y) can be defined using one of the following well-known database is not unrecognized. Jain [25] reported that an image
distance functions: database should use human pre-attentive similarity as much
. . N as possible; also, the distance functions of QBIC [13] were
1. City-block (theL;-norm):S(x,y) = > ;2 |2 — yil inte?]ded to reflect human perception. Incorporating LurLan vi-
. ~ sual perception into image similarity measurement is the other
2. Euclidean (the.-norm): S(x,y) =1/>_,2 (zi — ¥:)? major motivation behind our work. This will be discussed in
Sect. 3.

3. Minkowski (theL,-norm): S(x,y) = (Zfil |a:,;fy,;|1’)5

4. Dominance (thd..-norm): S(x, y) = max|z; — v 2.3 Distance-based access methods

Each of the distance functions above has its advantages ar&kveral spatial access methods have been proposed recently.
disadvantages when applied to image retrieval. For examplélhese methods can be broadly classified into the following
the Li-norm may cause false dismissals (i.e., not all quali-classespoint access methoa@mdrectangle access methads
fied images are retrieved); the,-norm, on the other hand, The point quad-tree, which was first proposed in [12], is an
may have false alarms (i.e., unqualified images can also bexample of a point access method. To handle complex ob-
returned) [28]. jects, such as circles, polygons, and any undefined irregularly-

So far, research has been focused on finding a similarshaped objects, minimum bounding rectangles (MBRs) have
ity function that corresponds only to single features (featuredeen used to approximate the representations of these ob-
of one type, e.g., features that are composed of colour inforjects. Hence, the name, rectangle access method. The K-D-
mation only or texture information only). That is, only simple B tree [23], andR"-tree [26] are some typical examples. A
queries, such as how similar two images are in terms of colourgomprehensive survey on SAMs can be found in [24].
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The applicability of SAMs is limited on two counts. First, 3.1.1 Colour features
objects for indexing must be represented by feature valuesin a
multi-dimensional space. Second, the design of SAMs is baset is known that the human eye responds well to colour fea-
on the assumption that the comparison of feature values hasires. In this work, the colour features were extracted using
a negligible CPU cost with respect to disk I/0O cost. Unfortu- the colour histogram techniqdf29]. Given a discrete colour
nately, in multimedia applications, the assumption above doespace defined by some colour axes, the colour histogram is
not normally hold. Consequently, a more general approaclvbtained by discretising the image colours and counting the
to the “similarity indexing” problem has gained popularity number of times each discrete colour occurs in the image.
in recent years, leading to the development of the so-called In our experiments, we used the colour space CIE L*u*v.
metric trees Metric trees only consider the relative distances The reason for selecting the CIE L*u*v instead of the normal
of objects (rather than their absolute positions in a multi-RGB or other colour spaces is that it is more uniform percep-
dimensional space) to organize and partition the search spacgally. We first divided the three axes of the L*u*v space into
The only requirementis that the distance function mustbe metfour sections to obtain a total of 64 (i.g.x 4 x 4) bins for
ric so that the triangle inequality property applies and can behe colour histogram. However, we found that, for the collec-
used to prune the search space. Several metric trees have bagyn of images used in our experiments, not all the bins had
developed so far, including thep-tree [4], theGN AT [2], non-zero counts. So, after, eliminating those bins which had a
themuop-tree [1], andM -tree [7]. zero count, our colour features are presented as 37-D vectors.
Our goal is not to develop a new indexing structure for
high-dimensional image features but to use an existing one
effectively. We chose a very well-established access method 1.2 Texture features
called the)M -tree as the underlying method for indexing our

reduced composite image visual features. Théreesare bal-  Texture features carry the property measures, such as the
anced, paged metric trees which are implemented _based on t@%oothness:oarsenessandregularity, of an image. In this
GiST (Generalized Search Tre€l6] framework. Since the  york, the texture features were extracted using a filter-based
design of thel/-trees is inspired by the principles of metric method. This method detects the global periodicity of intensity
trees and database access methods, pe_rformance optimizatipilyes in an image by identifying regions that have high en-
concerns both CPU (distance computations) and /O costs. Igrgy, narrow peaks. The advantage of the filter-based methods
anM-tree, the leaf nodes store all indexed (database) objectg in their consistent interpretation of feature data over both
represented by their keys or features; the internal nodes stotgatyral and artificial images.
the so-calledrouting objects A routing object is a database The Gabor filter [30] is a frequently used filter in texture
object to which a routing role is assigned by a specific promo-extraction. It measures a set of selected orientations and spatial
tion algonthm. See [7] for more details about the design anohequencies. Six frequencies are required to cover the range
implementation ofl/-trees. of frequencies from 0 to 60 cycles/degree for human visual
perception. We chose 1, 2, 4, 8, 16, and 32 cycles/degrees.
The total number of filters needed for our Gabor filter is 30.
3 Hybrid dimension reducer Texture features are therefore represented as 30-D vectors.
When forming composite feature vectors from the two

Multimedia visual features are usually complex and cannotyPes of features described above, the most common approach
be represented by single feature vectors. Thus, an effectivis t0 use the direct sum operation. betandx, be the colour
content-based retrieval system cannot be achieved by consi@nd texture feature vectors, the direct sum operation, denoted
ering only a single type of feature such as colour, texture oY the symboks, of these two feature vectors is defined as
shape alone. However, creating an index based on a concatt@/lows:
nation (see (2)) of feature vectors (such as colour, shape, and X,
texture) will result in a very high dimensional feature space, X = Xc® Xt = (Xt> @)
rendering all existing indexing methods useless. ) ) )

We need to “fuse” the multiple single feature vectors into The number of dimensions of the composite feature vector
a composite feature vector whichigsvin dimensions and yet X is then the sum of those of the single feature vectors, i.e.,
preserves all the necessary information for image retrievaldim(x) = dim(x.) + dim(x;). The & operator given in (2)
In this section, we describe our proposed hybrid method ofXxtends naturally to multiple single feature vectors.
dimensions reduction on image visual features.

3.2 Architecture of hybrid image feature dimension reducer
3.1 Composite image features ) ) i
With the 67-D feature vectors (37 dimensions for colour and
The image features that we deal with in this paper are colou30 d|n_1e.n.3|on's for t'exture) In our system, the PCA 1S useful
X g Bs an initial dimensions reducer while further dimensions re-
and texture features. Note that our system is not limited uction for non-linear correlations can be handled by NLDR.

dealing with these two features qnly. We restrict ou_rselve igure 1 shows the overall architecture of our hybrid method.
to these two visual features for simplification in setting up

the experiments and the availability of the source codes for ! Part of the source codes for the colour extraction was supplied
automatic extraction of these two types of features. by the National University of Singapore.
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Ll |1 s — Fig. 1. A hybrid image feature dimensions reduction
- L Princinal components scheme. The linear PCA appears at the bottom, the non-
PCA Analysis [ PCA ] [ PCA ] [ PCA ] P P linear neural network is at the top, and the representation
of lower dimensional vectors appears in the hidden layer
COLOUR SHAPE

The different components of the architecture will be coveredand
in detail in this section. 1 v
There are two methods for combining the PCA and NLDR: lvill =1, ¥i.

1. Apply the PCAto the single feature vectors separately. The ~ The key idea in dimensions reduction of the PCA is in the
lower-dimensional single feature vectors are then com-computation ol and the user-determined valug and finally
bined to form low-dimensional composite feature vectorsthem x n orthogonal matrix’ ", which is the required linear
for NLDR and classification. transformation. The feature vectors in the origindD space

2. Apply the PCA to the high-dimensional composite fea- can be projected onto an-D subspace via the transformation
ture vectors. The reduced-dimensional composite featurd ' - The value ofn is normally determined by the percentage

vectors are then used for NLDR and classification. of variance that the system can “afford” to lose. _
The ith component of thg,, vector in (4) is called the ith

principal componentPC) of the original feature vectox;.
Alternatively, one may consider just the ith column of fhe
matrix defined in (3), then the ith principal componenixpf
is simply

Both methods were adopted in our system so that the dif
ferences in the reduction results could be compared.

3.2.1 The PCA for dimensions reduction

=V (X, — X
Mathematically, the PCA method can be described as follows: Yri = Vi (X6 = X)

given a set ofV feature vector§ x;, = (1, Tx2, - - - Trn) wherev; is the ith eigenvector of.

€ R™ | k = 1.--N} and the mean vectat computed as The PCA has been employed to reduce the dimensions of
x= %Zillxk- The covariance matrif is given as single feature vectors so that an efficient index can be con-
N structed for retrieval in the image database [19,8]. It has also
1 _ T been applied to image coding, e.g., for removing correlation
S=x Z(Xk’ —X)(xx —X) . from highly correlated data, such as face images [27]. In our
k=1 work, the PCA is used as the first step in an NLDR method
Let v; and\; be a pair of eigenvector and eigenvalue of the where it provides optimal reduced dimensional feature vectors
covariance matri¥. Thenv; and); satisfy the following: for the 3-layer neural network, and thus speeds up the NLDR
N training time.
A=Y (v (xx—%))%
k=1

Since tracéS) = 3>, \; accounts for the total variance of 3.2.2 Classification based on human visual perception

the original set of feature vectors, and singean be arranged . .
in decreasing order, i.e; > X\ > --- > \, > 0, if themn A Major part of the human perceptual process involves relat-

(wherem < n) largest eigenvalues account for a large per-ing new stimuli to past experiences and trying to answer such

centage of variance, then, with anx m linear transformation ~ guestion as “Have | ever seen something like this before?” or
matrix T defined as: “What kind of thing is it?". The Gestalt psychologists main-

tained that one of the major tasks perceptual processes must
T=[vi,va,..;Vm ], () perform is the recognition of shapes or form. That is, we tend
the m x n transformationT"" transforms the originah-D to perceive whole objects even when we are looking at only
feature vectors ta:-D ones. That is, a part or some component of that object. Closure, continuity,
T (xp —%)=yp, k=1---N (4) proximity, and_similarity are the four Gestfilt prinpiples of per-
, . ceptual organization that have been applied quite successfully
wherey,. € R™,Vk. The matrixT" above has orthonormal i feature detection and scene understanding in machine vi-
columns becausgv; i = 1---n}formanorthonormalbasis,  gjon. Linking and merging a set of detected edge elements into
1e., more prominent features such as line and curve segments [3]is
ij _ {0 ifi £j a typical application of perceptual organization. Distinguish-

v 1 otherwise, ing figure from ground is another basic and powerful Gestalt

i
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principle of visual perceptual organization. When we are pre- @ ~<— Output layer

sented with an image, we tend to see “things”. We interpret
the visual message transmitted from the retina to the brain as
objects against a background. Even though the image could be
as complicated as a ship standing out against the background
of sea and sky, a camel and a man standing out against a back-
ground of desert sand, or a group of people posing against
background of hills, trees, and a waterfall, our perceptual sys-
tem does not seem to have any major difficulty in determiningFig. 2. Layout of a three-layered neural network system
which is figure and which is ground [20]. Furthermore, we
would distinguish an image of a camel against a background ) ]
of desert sand as more similar to an image of a camel and Figure 2 depicts the three-layer neural network that we
a man against the same background than to an image of 4s€d. The units in the input layer accept the feature vector
camel against a sandy beach. In general, we incorporate ay Of each training pattern; the number of units in this layer
the information about colour, texture, and shape under a cettherefore corresponds to the dimensionsvofThe hidden
tain context that is presented to us and classify the image int§Yer is configured to have fewer units. The number of units
the appropriate class. in the output'layer correspo.nds to ;h'e total number of image

In conducting our experiments on image classification¢lasses). Given that(v, c) is a training pattern, the input
based on human perception, we first prepared a set of imlﬁyer will accept vectox V\{hl'e.the output Iaye_r will qontaln
ages (there were 163 images altogether), which we called®:-,0,1,0,---,0)T, which is a vector of dimension&/
test-images , from our 10,000 image collection. This set and has a 1 for the cth component and Os everywhere else.
covers all the 14 different classes of images in the collection. Each uniti in the neural network is a simple processing
Amongst the images itest-images  , images in each class unit that calculates its activation bas_ed onits pr_ede_cessor
have a similarity to each other both in colour and in texture. Unitsp;, and the overall incoming activation of uriits given

We set up a simple image classification experiment on theé*s:
Web and asked seven people (subjects), all of whom are from pet — Z sjwij — 0; (5)
different backgrounds, to participate in the experiments. At the
beginning of each experiment, a query image was arbitrarily » . . .
chosen fromest-images  and presented to the subjects. wherej is a predecessor unit afthe termw;; is the intercon-

The subjects were then asked to pick 20 images which wer§€Cted weights from unitto uniti, and; is the bias value of
most similar in both colour and texture to the query image.[N€ uniti. Passing the value nethrough a non-linear activa-
n function, the activation valug of unit7 can be obtained.

Those images that were selected by more than three subjec%% . : e :
were classified into the same class as the query image ant® Sigmoid logistic function
were then deleted frotest-images . The experiment was 1
repeated until every image test-images  had been cate- 5 = 1 4+ e—net ©)
+e
gorized into an appropriate class. . N .
The end result of the experiments is that images which ar&® used as the activation function.
similar to each other in colour and in texture are put into theSupervised learning. Supervised learning is appropriate in
same class based on human visual perception. These classifiur neural network system because we have a well-defined
cation results are used in the NLDR process described belovget of training patterns. The learning process governed by the
training patterns will adjust the weights in the network so that a
desired mapping of input to output activation can be obtained.
3.2.3 Neural network for dimension reduction Given that we have a set of feature vectors and their ap-
propriate class numbers classified by the subjects, the goal of
The advantage of using neural networks for NLDR is that neuthe supervised learning is to seek the global minimum of cost
ral networks can be trained from the input data to get to thefunction E:
desired solution. In our work, a three-layer perceptron neural 1
network with a quickprop learning algorithm [9] is used to E= D) Zz(tm ~ 0p;)’ @
perform dimensions reductions of image features. In fact, the P J
network acts as an image classifier. In [32], a special neuralvheret,,; ando,; are, respectively, the target output and the
network calledlearning based on experiences and perspec-actual output for feature vecterat node;.
tives (LEP) has been used to create categories of images in  The rule for updating the weights of the network can be
the domains of human faces and trademarks; however, no detefined as follows:
tails are given in his work on how the training samples were
created. In our system, the training samples were training pat- Aw;;(t) = n d(t) 8)
terns of the forn{v, ¢) wherev is a feature vector, which can wi(t+ 1) = wij(t) + Aw;j(t) (9)
be either a single-feature vector or a composite feature vector,
andc is the class number to which the image represented by wheren is the parameter that controls the learning rate, and
belongs. We note that the class number for each feature vectai(¢) is the direction along which the weights need to be ad-
was determined by the experiments mentioned in the previougisted in order to minimize the cost functidi. There are
subsection. many learning algorithms for performing weight updates. The

ij

-«—— Hidden layer

<—— |nput layer

JEP;
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quickprop [9] algorithm is one of most frequently used adap-where f is the activation function as defined in (6). Here,

tive learning paradigms. The weight update can be obtaineg¢ = (y1,y2, - -
ofunitsinthe hidden layer. Because the number of hidden units
(m) is smaller than the number of input unitg) (dimensions
reductionis achieved from the neural network training process.
Thus, when a high-dimensional feature vector is passed
through the network, its activation values in the hidden units

by the following equation:

2E (1)
Awij(t) = 8?5]_ (t _ 1) _ a‘?fj (t) Awij(t — 1). (10)

-, ym) ' is @anm-vector, andn is the number

form a lower-dimensional vector. This lower dimensional fea-

Network training and dimensions reduction. The training

ture vector keeps the most important information of the orig-

procedure of the network consists of repeated presentations @fal feature vectors (colour and texture).

input (the feature vectov’s in the training patterns) and the
desired output (the class nhumhsefor v) to the network.

In general, the weights of the network are randomly sety
to small continuous values, initially. Our network adopts the
learning by epoctapproach. This means that the updates of

.2.4 The hybrid training algorithm

weights only happen after all the training samples have beefhe cqmplete training algorithm for this hybrid dimensions
presented to the network. In the quickprop learning algorithm feduction method is given as follows:

there are two important parameters: the learninga&tethe
gradient descent and the maximum step siz8hese two  Step 1:
parameters govern the convergence of network learning. In
general, the learning rate for gradient descent can vary from
0.1t0 0.9. In our system, the learning rate is kept as a constar8tep 2:
value during network training. The step sizis 1.75. In every
iteration of the training, the error generated will be in the di-
rection of the minimum error function. This is due to the fact
that the training starts in the direction of the eigenvectors asStep 3:
sociated with the largest eigenvalue for each feature. Thus, the
network has less chance of being trapped in a local minimum.

The total gradient error or the total number of error bits
indicates the condition of network convergence. When this
value does not change during network training, the networkStep 4:
is said to have converged. The total error is the sum of the
total output minus the desired output. It can be measured btep 5:
the total number of error bits since the network also functions
as a pattern classifier. In this case, the error bit is determined
by the difference of the actual and the desired output. If theStep 6:
difference is withint-40%, then the number of the error bits
is increased by 1.

Itis obvious that this hybrid method for dimensions reduc-
tion of image features is computationally more efficient thanStep 7:
the standard neural network with the original feature vectors.
The efficiency is gained by using a relatively small number
of network inputs and the network training iterations are con-Step 8:
ducted in the direction of the largest eigenvalues for each fea-
ture.

During the network training process, the network weightsStep 9:
gradually converge and the required mapping from image fea-

For each type of feature vectbx;, € R"| k =
1...N}, compute the covariance matrix of all the
N images.

Apply the eigen-decomposition to each of the com-
puted covariance matrixin Step 1. This processyields
a list of eigenvectors and eigenvalueg, (vhich are
normally sorted in decreasing order.

Compute the total varianse= > A\; and select
the m largest eigenvalues whose sum just exceeds
s * 1%, wherey is a predefined cut-off value. This
step selects the: largest eigenvalues that account
forthey% of the total variance of the feature vectors.

Construct matrix’ using them corresponding
eigenvectors as given in (3).

Obtain the new representatyqrfor each image fea-
ture vectorsc;, by applying the PCA transformation
given in (4).

Select the training samples from the image collec-
tion. Group these training samples into different
classes as determined by the experiments described
in Sect.3.2.2.

Construct the composite feature vecterEom the
colour and texture feature vectors using the direct
sum operation defined in (2).

Prepare the training pattefms, ¢y, ), for all k where
¢, is the class number to which the composite feature
vectorz;, belongs.

Set all the weights and node offsets of the network
to small random values.

ture vectors to the corresponding classes is implicitly storedStep 10: Present the training pattemsas input and:;, as

in the network.

After the network has been successfully trained, the
weights that connect between the input and hidden layers are
entries of a transformation that map the feature vectois

output to the network. The training patterns can be
different on each trial; alternatively, the training pat-
terns can be presented cyclically until the weights in
the network stabilize.

smaller dimensional vectors. This transformation can be deStep 11: Use the quickprop learning algorithm to update the

fined as follows: letw;; be the weight that connects the unit

weights of the network.

j in the input layer and the unitin the hidden layer; then an Step 12: Test the convergence of the network. If the condi-

image feature vectot = (z1, 22, ..., 2,)  is mapped to the

units in the hidden layer as:

Jj=1

tion of convergence of the network is satisfied then
stop the training process of the network. Otherwise,
go back to Step 10 and repeat the process. If the net-
work does not converge, it needs a new starting point.
Thus, it is necessary to go back to Step 9 instead of
Step 10.
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Steps 1-5 cover the dimensions reduction procedure of théhe help of a domain expert. Next, we built tdé-tree image
PCA, which was applied to all images in the data rather thardatabases for the collection. The first one used colour as the
only to the training samples. This has an advantage in thaindex and the second used texture as the index. For each image
the covariance matrix for each type of single feature vectoiin each class, we retrieved the most similar images in colour
contains the global variance of images in the database. Thesing theM -tree colour index to form a colour collection of
number of principal components to be used is determined bymages. We then repeated the same procedure to get images
the cut-off valuey. There is no formal method to define this similar in texture for each image in each class to form the
cut-off value. In Step 3, the cut-off valugis set to 99 so that texture collection. Finally, we obtained our training samples
the minimum variance that is retained after the PCA dimen-there were 163 of them) that are similar both in colour and in
sions reduction is at least 99%. texture by taking the intersection ofimages from the colour and

After the completion of the PCA, the images are classifiedtexture collections. The training sampldsst-images )
into classes in Step 6. Because the classification incorporatesere presented to the subjects for classification (Sect. 3.2.2).
human visual perception, more valid training patterns have Appendix A (Table 9) shows the fourteen classes of im-
been used in the neural network training process. Steps 7ages categorized by subjects from the image collection. These
12 then prepare the necessary input and output values for tHeurteen classes of images were used in the following experi-
network training process. ments.

The network training corresponds to Steps 8-11. In gen-
eral, the weight of each link (nk connects two units in the
network) is randomly initialized to a small value. The net-
work adopts thdearning by epoctapproach to learning. In 4.2 The benchmark of the experiments
the quickprop learning algorithm, the parametethat lim-
its the step-size is set to 1.75, and the learning rate for the

gradient descent can vary from 0.1 to 0.9. Each time we apThe aim of these experiments is to determine the accuracy and
ply the quickprop learning algorithm, the weight of each link efficiency of the three methods for dimensions reduction. The
in the network is updated. After a specified number applicaimages are represented by their corresponding feature vec-
tions of the quickprop learning algorithm, the convergence oftors (67 dimensions: 37 dimensions for colour; 30 dimensions
the network is tested in Step 12. At this pOint, itis deCidedfor texture) which can be viewed as points in a multidimen-
whether the network has converged or a new starting weighgjonal feature space. Thus, the distance between any two fea-
is required for each link of the network. In the latter case, thetyre points in this feature space measures the similarity of the
process involved in Steps 9-12 is repeated. The problem abowyo corresponding images. After the dimensions reduction of
the convergence of a neural network systemiis still an open onghe image features, a new feature space that combines colour
and is outside the scope of this paper. and texture is formed. The distance between two feature points
in this space represents the visual similarity of their original
images in colour and texture. In order to measure the similarity
4 Experiments and discussions of images and the separation of classes in this feature space,

) ) ) _ we introduce the measuctass separation degreg;, defined
This section presents three experimental results. The aim gfs:

these experiments is to demonstrate that the hybrid dimensions

reduction method is superior to using the PCA or using neural ZN—1 Q;
networks alone. The first experiment shows the result of using C; = m,
the PCA for the reduction of composite feature vectors in (M - N)

images. The second experiment shows the result of using theh is th ber of classed is th ber of rel t
neural network for reducing the same set of feature vector erem IS thé number of classes, IS the number of relevan

o : ; ; mage$ in the class)\/ is the total number of testimages, and

inimages. The third experiment shows the result of using théQ ) igthe numberof]i\éa s whose distances to the t% mage in

proposed hybrid dimensions reduction method. J 9 : Jthimag
the class are greater than all the distances from the jth image

to its relevant images. Obviously, @; is 1 (100%), the ith
class is clearly separated from other classes and the images in
this class are all similar.

The learning time parametet,is used to indicate the ef-
ency of dimensions reduction, that is, the total number of

=1...m (12)

4.1 Test image collection

We used a collection of 10,000 images for our research. TheSﬁeCi
images were retrieved from different public domains that can

be classified under a number of themes which cover naturat pegizsergglxr%d f(;:ftg?r'ﬂgndg,;hetﬁgl?r?sﬁgfﬁufﬁ;gﬁ]n%tgfj
scenery, architectural buildings, plants, animals, rocks, flags P y 9 P

3 . . . .
etc. All the images were scaled to the same sI28 128 tion®> and so we will not compare its efficiency against the
other two methods.

pixels).
A subset of this collection of images was then selected
to form the training sampledgst-images ). There were 2 An image is said to beelevantto a class if it belongs and has

three steps involved in forming the training samples. First, webeen correctly assigned or classified to that class.

decided on the number of classes according to the themes of® Note that because the covariance matrix is symmetric and posi-
the image collection and selected one image for each clas#e semi-definite, the singular value decomposition of the covariance
from the collection of 10,000 images. This can be done withmatrix is equivalent to the eigen-decomposition of it.
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Table 1.The eigenvalues and the percentage of total variation

Class No.| 1 2 3 4 5 6 7 8 9 10

A 1035 636 271 152 140 85 73 64 59 43

% 35.6 219 934 52 4.8 2.9 2.5 2.2 2.0 1.5

Class No.| 11 12 13 14 15 16 17 18 19 20

A 42.3 344 300 247 211 199 172 157 139 133

% 1.4 1.2 1.0 0.8 0.7 0.6 059 054 048 0.46

Class No.| 21 22 23 24 25 26 27 28 29 30

A 1299 9.78 8.18 6.67 597 575 506 485 3.69 3.68

% 0.44 034 028 023 021 019 0.17 0.16 0.13 0.13

Class No.| 31 32 33 34 35 36 37 38 39 40-67

A 3.52 345 333 319 305 295 274 238 21%1.85

% 0.12 0.11 011 0.0 0.10 0.10 0.10 0.09 0.080.06
Table 2.Class separation values from the PCA experiment 4.4 Result of neural network approach

to dimension reduction

ClassNag 1 2 3 4 5 6 7 8
C; % |60.5 949 100 97.9 84.3 100 96.9 95.1

In this experiment, we used a three-layer neural network dis-
ClassNg9 10 11 12 13 14  Average cussed in Sect. 3.2.3 to reduce the feature dimensions of the
C, % |89.4 91.0 945 835 906 84.1 90.2 images intest-images  (see Table 9). All feature vectors
were 67-D, containing both colour and texture information
from the images. As in the PCA experiment, there are also
two ways to combine the colour and texture feature vectors:
x. ®x; andx; @ x.. TheRecognition Ratevas defined as the
4.3 Result of principal component analysis approach percentage of test images that the network could recognize.
to reduction The learning rate was set to 0.9 and the step size was set to
1.75in the quickprop learning algorithm (Sect. 3.2.3). The ini-
tial weights were chosen randomly within the [0, 0.7] range.
In this experiment, the PCA was performed on all training The number of hidden nodes was set to 6. Table 3 shows the
images in Table 9. There are two ways to combine the featurelassification results from the network training process.
vectors. Lek, andx; be the colour and texture feature vectors,  The learning time was defined as the average number of
then the combined feature vectors can be defined as: x; epochs required until the network converged. The convergence
andx;®x. (see (2)). We performed the PCA on both combinedof the network can be measured by the total error or the to-
feature vectors. The results show thatthere was no difference ital number of error bits of the network. Figure 3 shows the
eigenvalues for the two different ways in combining the featurelearning time of the network fat. ® x; andx; ® x..
vectors. Table 1 shows the eigenvalues and the percentage of From Fig. 3, we can see that when the network learning is
total variance. The eigenvalues are arranged in descendirgpoout 6100%. & x;) and 5700%; ¢ x.) epochs, the errors of
order, i.e.,A\;1 > Ao > --- > Ag7. The first 16 eigenvalues the network tend to be steady at about 0.02. Note that it is not
accountfor 94.1% of the total variance of the combined featurenecessary to get to zero since an error of 0.02 is already very
vectors. Choosing the first 16 eigenvalues and using the 16 PGsnall in comparison with the initial error. Thus, the network
(see Sect. 3.2.1) as anew representation for each of the originbdarning times for x. @ x; andx; @ x. are 6100 and 5700
67-D combined feature vectors, we effectively reduced ourepochs, respectively.
feature dimensions from 67 to 16. After the network training was completed, dimensions re-
We note that the 14 image classes are not well separateduction was achieved by feeding the image feature vectors
from each other both before and after the PCA transformationinto the network and taking the vectors computed in the hid-
In the former situation, the image classes reside in a 67-0den units as the lower dimensional representations. Table 4
space; in the latter situation, they are in a 16-D space. Tahows all class separation valu€s ) measured by the new
measure the separation of image classes, we selected the fitetver-dimensional representations obtained from this neural
six PCs, which accounted for 79.9% of the total variance ofnetwork.
the feature vectors, and computed the class separation value In Table 4, it can be seen that all classes of the test image
C; (see (12))for each class, whichis listed in Table 2. It can becollection are well separated in the new 6-D feature space: the
seen that only class 3 and 6 are well separated from the othelistance of any two images from the same class is less than
classes. The remaining 12 classes are not well separated in thige distance of any two images from two different classes.
feature space. If any distance function was applied directlyHowever, as shown in Fig. 3, the learning time is very long.
to these 12 classes, the distance between any two images in the next section, we show that our proposed hybrid method
any one class would be larger than the distance between twean improve the network learning time without losing much
images of two different image classes. accuracy.
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Table 3. Classification results from the network training process

Class No. 1 2 3 4 5 6 7 8
Recognition Rate{. ¢ x;) % | 100 75 100 100 100 100 87 75
Recognition Rate{; & x.) % | 100 87 100 100 100 100 100 87
Class No. 9 10 11 12 13 14 Average
Recognition Rate{. ® x;) % | 87 87 100 100 100 100 93
Recognition Rate{; & x.) % | 87 87 100 100 100 100 96
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Table 4.Class separation values from the neural network experimensions reduction process was first accomplished by applying
the PCAto the features of the network training samples. There

Class 1 2 3 4 5 6 7 8
Ci(xc ®x¢)%|100 100 100 100 100 100 100 100
Ci(xt ® x.) %|100 100 100 100 100 100 100 100
Class 9 10 11 12 13 14 Average
Ci(xc ®xt) %| 100 99.88 100 100 100 100 99.99
Ci(xt ®x.) %|100 100 100 100 100 100 100

4.5 Result of hybrid approach to reduction

are four possible ways to obtain the reduced feature vectors:
P(x.)® P(x:), P(xt) ® P(x.), P(x. ®x;) andP(x; D x.)

(see Sect. 3.2) wher denotes the PCA processing. The first
36 PCs, which accounted for about 99.2% of the total vari-
ance of the feature vectors in the training samples, were then
selected. Thus, the input feature vectors of the network were
reduced from 67 to 36 dimensions. Table 5 shows the results
of recognition rate from the hybrid network training and Fig. 4
shows the time of the hybrid network learning with six hidden

units.

When the network learning time reached 1400 epochs

In this experiment, we applied the hybrid dimensions reducyp(x,) @ P(x,)), 980 epochs®(x;) ® P(x.)), 920 epochs
tion method to the images in the test collection. A dimen- )
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Table 5. Results of recognition rate from the hybrid approach

Class No. 1 2 3 4 5 6 7 8

Recognition Ratef(x.) & P(x¢)) % | 100 50 100 100 100 100 100 75
Recognition Ratef(x¢) ® P(x.)) % | 100 75 100 100 100 100 100 75
Recognition Rate®(x. ® x¢)) % | 100 75 100 100 100 100 100 75
Recognition Rate®(x: ®x.)) % | 100 75 100 100 100 100 75 75

Class No. 9 10 11 12 13 14 Average
Recognition Ratef(x.) & P(x;))% | 87 87 100 100 100 100 93
Recognition Ratef(x;) & P(x.))% | 75 75 100 100 100 100 93

(

(

e P
e P
Recognition Rate®(x. ® x¢)) % | 75 87 100 100 100 100 94
Recognition Rate® (x: ® x.)) % | 87 75 100 100 100 100 92

(P(x. @ x¢)), 1600 epochsR(x; & x.)), the errors of the as the result in Table 2. We can also see thatRheull and
networks were steady at about 0.02. This indicates that thérecision values from the neural network and the hybrid
learning of the networks were completed after 1400, 980, 920methods are almost the same. Thus, the major difference be-
and 1600 epochs for the four methods, respectively. We catween two approaches is the time required to train the network.
see that the learning times are much shorter than the standa€he can therefore conclude that itis more advantageous to use
network training with input feature vectors beigigin dimen-  a hybrid dimensions reduction method to reduce the dimen-
sions. Table 6 shows all the class separation values from thisions of image features for effective indexing usivigtrees.
experiment. Figure 6 shows some sample retrieval results from the three
From Table 6, we can see that all classes are well separateld -tree image databases using the same query image (the first
in the new 6-D feature space, just as in the pure neural networkne in each result). It is easy to see that using the PCA as
approach, but the learning time is much shorter. There is naimensions reducer gives the worstresultas comparedto either
difference in the results of the four methods used to organizéneural network or hybrid approach.
the input feature vectors. We also present a content-based retrieval demonstration
system on the web using these three methods. The web site is:
http://www.cse.unsw.edu.auimagedb/MVindex/index.html.

4.6 Evaluation of reduced dimensional image features
using M -trees
4.7 Analysis and discussion

We usedV -trees [6] for evaluating the quality of our reduced
features as indexes. The number of dimensiodd dfeeswas The above experimental results show that the proposed hybrid
set to six*, corresponding to the number of hidden units useddimensions reduction method is superior to the other two di-
in the neural networks. We built thré@é-tree image databases mensions reduction methods —the PCA and the neural network
for the 10,000 image collection using 6-D composite vectors—that are applied alone. In this section, we present a discussion
(including colour and texture information after dimensions of the issues related to the performance of this hybrid method.
reduction) of each image in the image collection.

Every image from the collection can serve as a query im-
age. We posed a query image to fifetrees to conductak-NN  4.7.1 Parameters for network training
search. Here k was set to 15. The conceptBaicision and
Recall in information retrieval were used to evaluate the ef- A wide variety of parameter values were tested in order to
fectiveness of similarity retrieval. Lé® be the number of all  find an optimal choice for the network learning algorithm in
images that are relevant to the query ima@ebe the num-  the above experiments. However, in practice, it is often unde-
ber of relevant images retrieved, aRde the total number of  sirable or even impossible to perform a large parameter test

images retrieved, then series. Moreover, different practical applications may require
different sets of parameters of the network. In our case, the
Recall = R= Q % 100. Precision = P= Q % 100. optimal parameter for the quickprop algorithm is a step size

’ R

of 1.75 and a learning rate of 0.9.

A high Precision value means that there are few false alarms __1h€ number of the hidden units used can also significantly
(i.e., the percentage of irrelevant images in the retrieval) while2ffect the network convergence and learning time. The more
a high Recall value means that there are few false dismissaldn® number of hidden units, the easier itis for the network to

(i.e., the percentage of relevant images which failed to be relearn. This is because more hidden units can keep more infor-

trieved). Table 7 shows the results of queries posed against iiation. However, since the network is a dimensions reducer,
class images using the thraé-trees. the number of hidden units is restricted to a practical limit. We

The result in Table 7 shows that for the PCA method, omytakeP(xc@xt) in Sect. 4.5 as an example. If we set the hidden

class 3 and class 6 have no false dismissal. This is the saniilits to 15 instead of 6, then the learning time can be reduced
dramatically and the network can even reach an error of zero.

4 M-trees can index up to at least 20 dimensions Figure 5 shows the learning time. It takes only 40 epochs to
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Table 6.Class separation values from the hybrid approach

Class No. 1 2 3 4 5 6 7 8

Ci(P(xc) ® P(x:))% | 100 100 100 100 100 100 100 100
Ci(P(x¢) ® P(x.))% | 100 100 100 100 100 100 100 100
Ci(P(xc®x:)) % | 100 100 100 100 100 100 100 100
Ci(P(x¢®x%x:)) % |999 100 100 100 100 100 100 100

Class No. 9 10 11 12 13 14 Average
Ci(P(xc) ® P(x4))% | 100 100 100 100 100 100 100
Ci(P(x¢) @ P(x.))% | 100 100 99.9 100 100 99.2 99.9
Ci(P(xc®x¢)) % | 100 100 100 99.9 99.9 100 99.9
Ci(P(x¢®x:)) % | 100 100 99.8 100 100 100 99.9

Table 7. Results of retrievals using thel -trees

PCA Neural Network Hybrid Method
Image Xe D x¢ Xt D Xe P(x.)® P(x)® P(xc®x¢) P(xe®xc)
class P(xy) P(x¢)

R P R P R P R P R P R P R P
1 32 25 100 80 100 80 100 80 100 80 100 80 100 80
2 85 68 100 80 100 80 100 80 100 80 100 80 100 80
3 100 80 100 80 100 80 100 80 100 80 100 80 100 80
4 97 77 100 80 100 80 100 80 100 80 100 80 100 80
5 76 61 100 80 100 80 100 80 100 80 100 80 100 80
6 100 80 100 80 100 80 100 80 100 80 100 80 100 80
7 88 70 100 80 100 80 100 80 100 80 100 80 100 80
8 93 75 100 80 100 80 100 80 100 80 100 80 100 80
9 82 66 100 80 100 80 100 80 100 80 100 80 100 80
10 76 61 100 80 100 80 100 80 100 80 100 80 100 80
11 78 57 100 73 100 73 100 73 100 73 100 73 100 73
12 61 45 100 73 100 73 100 73 100 73 100 73 100 73
13 8 60 100 73 100 73 100 73 100 73 100 73 100 73
14 82 54 100 67 100 67 100 67 100 67 100 67 100 67
Average| 81 63 100 78 100 78 100 78 100 78 100 78 100 78

140
120
100
80
60
40
20

may affect the network performance. It may not be necessary
to take too many PCs for network training. On the other hand,
the network may not be trained well with too few PCs since
some important information of the feature vectors may have
been excluded in the network training process. In this subsec-
tion, we give the results of using different numbers of PCs for
the hybrid dimensions reduction method for the collection of

0 50 100 150 200 images in Table 9. Again, we take(x. @ x;) in Sect. 4.5 as

Epoch an example. The network training condition is the same as that
mentioned in Sect. 4.4 for six hidden units. Table 8 shows the
learning time for different numbers of PCs.

It can be seen that the numbers of PCs for the best net-
work training in our application depends on their total vari-
reach an error of 0.02, compared to Fig. 4 in which about 92Qance. There are no significant differences in the time required
epochs are required. for network training from 35 to 50 PCs since they account

for more than 99% of the total variance. Moreover, since the

o eigenvalues are in decreasing order, increasing the number of

4.7.2 Number of principal components PCs after the first 40 PCs does not require much extra time
used in network training to train the network. For example, there are only 20 epochs’

. . , . difference between 45 PCs and 50 PCs. However, if we choose
In the hybrid dimensions reduction method, the inputs to theiﬁ::e number of PCs with a total variance that is less than 90% of

Total number of error bits

Fig. 5. Learning time of the hybrid dimensions reduction method
with 15 hidden units

network are notthe original image features butthe transformeg g 1ot variance then the differences are significant. It takes
image features from the PCA. The number of PCs selecte
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Table 8.Learning time of the hybrid approach for different numbers 5 Conclusion

of PCs
Number of _Total Learning  Number of In this paper we have p_roposed an indexing scheme py com-
PCs variance  errors epochs _b|n|ng different types of_lmage features to support queries that
% !nvolve composite multiple features. The core of this sc_heme
7 824 8.0 100,000 is to (;ombme the PCA and neura] network as a hybrid Q|—
10 88.2 0.02 11,680 mensions reducer. The PCA _prov_ldes the optimal selection
! of features to reduce the training time of the neural network.
15 93.5 0.02 4,320 Through the learning phase of the network, the context that
20 96.2 0.02 3,040 the human visual system uses for judging the similarity of
25 97.7 0.02 1,820 the visual features in images is acquired. This is implicitly
30 98.5 0.02 1,440 represented as the network weights after the training process.
35 99.1 0.02 1,180 The feature vectors computed at the hidden units (which has
40 99.5 0.02 780 a smaller number of dimensions) of the neural network repre-
45 99.7 0.02 820 sent our reduced-dimensional composite image features. The
50 99.9 0.02 840 distance between any two feature vectors at the hidden layer

can be used directly as a measure of similarity between the
two corresponding images.
We have developed a learning algorithm to train the hybrid
dimensions reducer. We tested this hybrid dimensions reduc-
a]ion method on a collection of 10,000 images. The resultis that
it achieved the same level of accuracy as the standard neural
network approach with a much shorter network training time.
We have also demonstrated the output quality of our hybrid
method for indexing the test image collection usivigtrees.
This shows that our proposed hybrid dimensions reduction
of image features can correctly and efficiently reduce the di-
The number of images that we used in our experiments fo ensions of image features and accumulate the knowledge of

testing our dimensions reducer is 10,000, which is a reasonsuman visual perception in the weights of the netvyo_rk. This
enables any existing access method to be used efficiently.

ably large image database collection. From our experience, -~ .
the most time-consuming part of the system is not the neural The parameters that affect the network training algorithm

network training process itself but the collection of training 'Stl?é?ggziet?]énsfsl(:bﬁi'z'0'}'?&6;2%:282; I?)ﬁ'[r?r?qe?nfora%g&er
samples for the neural network system. For example, it tooi y galg -Inp

11,680 epochs for 10 PCs that account for 88.2% of the tot
variance to reach the ultimate network error of 0.02, which is
far greater than the epochs needed for 35 PCs or more.

4.8 Scalability and updates

us around 25 h to collect a suitable set of training sample ar, the issue of how to choose a minimal training set that can

(163) from the 10,000 images versus 8 min to train those sam?® used_for a maximal Image coIIecthn n_eeds tobe add_ressed.

ples using a Solaris machine with 64 MB RAM. The creation The issues t_hatl rgmauﬂ to be strfd|ed mcludehextenk(]jmg thed

fraing sample s a on-of o wrich can be perfomedX0%TTEN (oL Sher e featres suchas shape

off-line. The indexing structure that we used is the well-known I P gd 0] tp ¢ d P d gh' : I .

M-tree whose scalability has been demonstrated in many sp 1S0 a neea 1o investigate more advanced machine fearning

tial information systems. _echnlques tha_lt can mcrem_entally re-classify images as new
The goal of our indexing mechanism is to be able to cre-Mages from different domains are added.

ate a content-based image retrieval system that makes use of

human visual perception with a small cost (the initial train- A Test-image collection

ing). Given an arbitrary query image (i.e., an image not from

the database), the system is capable of retrieving images froffippe 9 outlines the types of images used in the training and

the database that are most similar in color and texture to thigesting process.

query image. If a new image from the same domain were to

be added to the database, then the colour and texture features

must be first extracted from the image. The combined colouB Results of k-NN search using reduced dimensions

and texture image features could then be passed through the

PCA and neural network for dimensions reduction. Finally, theFigure 6 shows the results of the k-NN search for the three

reduced feature vector could be easily inserted intb/attee.  methods described in the text.

However, if a new image class from a different domain were

to be added, then the neural network system would have to backnowledgementsiVe wish to thank the anonymous reviewers for

retrained and the indexes rebuilt for accurate retrieval. Fortutheir helpful comments and the editors for their patience while wait-

nately, for image deletion, the task would be a lot simpler: if ing for our revised version. We would also like to thank Ooi Beng

an image were to be deleted from the database then all th&thin from the National University of Singapore for providing the

would be required would be the deletion of the correspondingsource codes for colour extraction. This research was supported by
index from thelM -trees. the Australian Research Council and the Murdoch Special Research

Grant MUAMH.D.410 MAR.
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Table 9.A collection of 163 images used as a test bed

A.H.H. Ngu et al.. Combining multi-visual features for efficient indexing in a large image database

9.

Image Description No. of  No. of
class training testing 10.
images images
1 Various red flower images similar tdl2 12
each other in colour and in texture. 1
2 Various sea scenery images similar th? 8 '
each other in colour and in texture.
3 Various astronomical images similartd.2 12 12.
each other in colour and in texture. 13
4 Various images of mountains similar td 2 8 '
each other in colour and in texture.
5 Various human face images similar t@2 8
each other in colour and in texture. 14.
6 Various images of several bible storief2 8
similar to each other in colour and in 15
texture. ‘ o '
7 Various national flag images similar td.2 8 6
each other in colour and in texture. 16.
8 Various yellow flower images similarl2 8
to each other in colour and texture. 17.
9 Various images of artistic works simi-12 8
lar to each other in colour and texture. 18.
10 Various images of green grass simildr2 8 19.
to each other in colour and texture.
11 Various animal images similar to eacthl 11
other in colour and texture. 20
12 Various sunset scenery images similad 11 '
to each other in colour and texture. 21.
13 Various building images similar toll 11
each other in colour and texture. 22.
14 Various images of black-white drawd0 10
ings similar to each other in colour and
texture. 23,
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c

Fig. 6. Results of k-NN search with indexes built using the three methdtie PCA,b Neural networkc Hybrid approach




