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Abstract. Motivated by the urgent need to improve the effi-
ciency of similarity queries, approximate similarity retrieval
is investigated in the environment of a metric tree index
called the M-tree. Three different approximation techniques
are proposed, which show how to forsake query precision
for improved performance. Measures are defined that can
quantify the improvements in performance efficiency and
the quality of approximations. The proposed approximation
techniques are then tested on various synthetic and real-life
files. The evidence obtained from the experiments confirms
our hypothesis that a high-quality approximated similarity
search can be performed at a much lower cost than that
needed to obtain the exact results. The proposed approxima-
tion techniques are scalable and appear to be independent
of the metric used. Extensions of these techniques to the
environments of other similarity search indexes are also dis-
cussed.

Key words: Access structures – Distance only data – Sim-
ilarity search – Approximation algorithms – Performance
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1 Introduction

The problem of processing collections of data objects so that
similarity queries can be answered efficiently has become in-
creasingly important for many application areas, such as data
compression, pattern recognition, statistics, learning theory,
and above all the multimedia content-based retrieval.

Although several syntactic forms of similarity queries
exist, the processing of any of these queries is based on
the principle ofsorting (or ranking) objects of a searched
database (file) with respect to a user-specified reference
query object. Typically, the ranking criterion (a similarity or
dissimilarity-based measure) is fixed for a given application,
but query objects change according to user needs, which re-
sults in a different ordering for different queries. The size of
the response to a query is restricted by putting constraints
either on the number of best (most similar) objects or on
the maximum distance which the retrieved objects can have

with respect to the query. However, the response sets always
have a form of agraded set, because the importance of a
retrieved object is determined by its distance from the query
object.

Our approach for searching contrasts with the traditional
one where Boolean queries, such as the queries known from
the relational database systems, are used – the response to a
Boolean query is a set where each element is of equal im-
portance. Consequently, it is difficult to apply the traditional
content-based indexing technology for similarity retrieval.
New approaches are therefore needed.

The problem of executing similarity queries has been
addressed by many researchers in both the theoretical and
system-oriented communities. Unfortunately, completely sat-
isfactory results have yet to be obtained. Efficiency still re-
mains a problem for large databases, which are typical for
multimedia applications. On the other hand, many expert
users, or data analysts, develop and test hypotheses on ap-
proximate data first and only then do they draw final con-
clusions on precise information, which is more expensive to
obtain. Furthermore, several (iterative) steps for performing
atomic similarity queries are required in a typical process
of searching in multimedia databases, because specifying an
appropriate query object is not always easy. Consequently,
anapproximate similarity searchmay be very useful in such
situations, especially if its execution is much faster.

This paper studies the problem of an approximate simi-
larity search which forsakes some precision in exchange for
improved performance. In particular, we propose three ap-
proximation hypotheses in the environment of the dynamic
metric tree for similarity retrieval (Ciaccia et al. 1997) called
the M-tree. The first type of approximation is bound by a
user-defined relative error on the distances that the retrieved
objects may have with respect to the exact answer. The sec-
ond type of approximation is based on stochastically defined
upper bounds on the number of best cases from which the ap-
proximated query response set should be retrieved. The third
type of approximation is based on a pragmatic observation
that the precise response is obtained through multiple search
steps which improve the precision of previous approximate
answers; the grades of improvements decrease rapidly dur-
ing the search time. All three types of approximation are
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experimentally tested on real and synthetic data sets, and
their efficiencies are compared. The results obtained are en-
couraging, and efficiency improvements of even two orders
of magnitude have been achieved. In other words, whereas
a precise similarity search may take several minutes, in an
approximated search this can be reduced to seconds, while
the precision of approximation typically remains quite high.
Although better performance improvements are achieved for
small sets of nearest neighbors, different metrics can be used,
and the larger the files, the better the performance improve-
ments.

This article is organized as follows. In Sect. 2, we dis-
cuss the background and objectives of our research. Three
approximation methods are specified and independently ana-
lyzed in Sects. 3, 4, and 5, respectively. A comparison of the
proposed approximations is the subject of Sect. 6, in which
also the aspects of extensibility and scalability are studied.
Section 7 concludes the paper.

2 Background and objectives

Depending on the applications, similarity is expressed by
the closeness of objects defined by adistance function, d,
which, for a pair of objects (or their representative features)
from the domainD, provides a non-negative real value,
d : D2 → R+

0. The distance function is generally of arbi-
trary complexity, and the problem of similarity retrieval can
always be solved in linear time through a simplebrute-force
search. After computing distances from a query object to all
objects in a given collection, similarity queries can easily be
decided by sorting objects in terms of their distances. How-
ever, it has always been an important research challenge to
find algorithms which would manage, possibly in dynamic
data environments, sets of objects so that searches can be
performed in a sub-linear time.

Typically, a similarity query has either a form of the
rangeor of thenearest neighbor(s)query. Though different
in their search algorithms, these query types are closely re-
lated. In fact, a range query retrieves all objects contained in
a specific, query-object-related region. On the other hand ak
nearest neighbors query,k-NN for short, retrievesk closest
objects of the query object; thus it determines the minimum
region in which these neighbors can be found. In any case,
retrieved sets are generallygraded(or ranked) sets, because
some of their objects may be closer to the reference query
object, thus more important, than the others.

2.1 The theoretical approach

The problem of similarity retrieval has also been one of the
fundamental subjects in the field ofcomputational geome-
try. This theoretical area concerns the design and analysis of
efficient algorithms for computing various properties and pa-
rameters of finite configurations of geometric objects. In this
way, it forms foundations of many applications. A survey on
geometric range searching can be found in Matousek (1994).
However, there are several fundamental differences between
the objectives and approaches that are considered as stan-
dard in the field of computational geometry and the needs

of advanced data-indexing applications such as multimedia.
The specific arguments can be summarized as follows.

1. In computational geometry,n-dimensional vector spaces
with usually not very highn (from 2 to 20) are typ-
ical, and theLm-distancebetween objects (points) is
used to measure dis-similarities. Notice thatL1, L2, and
L∞ are the well-known Manhattan, Euclidean, and MAX
metrics. Though such environments are also relevant in
the case of multimedia data indexing, the dimension
needed is typically much higher. Moreover, more com-
plex metrics are also relevant in the multimedia envi-
ronment, such as the quadratic form functions (Seidl
and Kriegel 1997), Hausdorff metric over sets ofn-
dimensional points (Huttenlocker et al. 1993), or the Lev-
enshtein (edit) distance over strings (Hall and Dowling
1980).

2. Data sets studied in the field of computational geometry
are typically static. In particular, it is assumed that the
data is known in advance and never changes. However,
multimedia data collections change in time; generally
growing, but also shrinking, since database objects may
be deleted.

3. In theoretical research, the efficiency of algorithms is
measured, almost exclusively, by the asymptotic order
of growth in their complexity. However, asymptotic ef-
ficiencies do not always agree with how fast such al-
gorithms compute in real computer environments. The
efficiency of database algorithms is better expressed in
terms of elapsed time to perform a transaction, or, since
such time is practically impossible to express for com-
plex systems in an analytic way, in terms of (estimated
or measured) I/O and CPU costs.

2.2 Indexing structures for similarity retrieval

Developing index (or storage) structures which would sup-
port efficient evaluation of queries for data from complex
geometric spaces has long been a challenge in the database
research community. As far asn-dimensional vector spaces
are concerned, probably the most successful approach is the
R-tree by Guttman (1994), with its more advanced modifi-
cations, such as the R∗-tree (Beckmann et al. 1990), SS-tree
(White and Jain 1996), or X-tree (Berchtold et al. 1996).

Generic metric spaces, that is geometric spaces in which
only the positivity, symmetry, and triangle inequality dis-
tance postulates are necessary, have been considered in de-
signs such as the VP-tree by Chiueh (1994), GNAT by Brin
(1995), or MVP-tree by Bozkaya and Ozsoyoglu (1997).
Though different in the underlying principles used for data
partitioning, all these designs assume static data files. Since
processing dynamic files is an important feature of index
structures, Ciaccia et al. (1997) have designed a paged, dy-
namic, and balanced tree, called the M-tree. Notice that
collections of generic metric data are sometimes called
distance-onlydata, because only distances between pairs of
objects can be quantified – data objects are not necessarily
embedded in any multi-dimensional space.
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2.3 Objectives

Alhough there are several index structures that can support
the execution of similarity queries, experience with their ap-
plications shows that the processing costs are still very high.
For example, similarity retrieval in high-dimensional data
spaces tends to access most or even all similarity index tree
nodes (sometimes designated as thedimensionality curse).

Another important fact is that the specification of a query
objectQ, needed as a reference object in similarity queries,
is something users find quite difficult. This problem is easy
to understand if a space of many dimensions is considered.
Consequently, several queries need to be executed before a
good query object is found. Initial retrieval steps are needed
to find a more suitable query object. This iterative approach
to query processing makes the total costs of a query exe-
cution even higher, while the need for exact answers is not
always relevant.

The vagueness in query specification together with the
high query execution costs led us to investigating the fol-
lowing idea.

Provided an approximate similarity search can be
performed much faster than the precise search, the
approximate similarity retrieval can play a useful role
in the global process of iterative similarity retrieval.

In other words, since processing exact similarity queries is
not always required, approximate answers would suffice, es-
pecially when obtained at much lower costs.

Computational geometry researchers (Arya et al. 1994)
have also addressed the problem of approximate similar-
ity searching. However, to the best of our knowledge, no
dynamic indexing structure for approximate similarity re-
trieval has been proposed. In this paper, we develop three
alternative techniques for thek-NN query approximation.
Though the asymptotic execution costs of all our approxi-
mated search techniques are identical to the cost of the exact
similarity search for the same query, we demonstrate through
experiments that a high speed-up can be obtained even for
quite precise approximations.

Although our proposals are of general validity, we study
the problem of approximate similarity search in the context
of M-trees, so that different approximation hypotheses can be
compared through experiments on actual data sets. Another
reason for choosing the M-tree environment is that it is the
most general dynamic index structure for similarity retrieval.

Specific hardware configurations can affect experiments
by factors such as the simultaneous processing of several
jobs, the inability of most operating systems to accurately
allocate clock cycles to processes, and caching effects. To
avoid problems with the accuracy of measured query elapsed
times we measure the query-processing costs in terms of
the number of accessed M-tree nodes and the number of
distance computations. More precisely, since the number of
read nodes and distance computations is correlated (in tree
organizations, distances are only computed for objects of
accessed nodes), costs in all our graphs represent the number
of distance computations. This measurement gives higher
numbers, and is thus more precise.

Due to the lack of any standard experimental data (or a
benchmark), we choose three different data sets and report

on the averages obtained from many test runs in order to
increase confidence in the results obtained.

2.4 Principles of M-trees

An M-tree, can be seen as a hierarchy of metric (ball) re-
gions. A region is defined by a database objectOi and ra-
diusr(Oi), which represents the maximum distance between
Oi and any other object, including its region (if any), in
the region ofOi. An M-tree is a multiway-branching tree;
thus, each node can contain several object entries which are
all members of a region centered around aparent object,
Op, stored in a higher level node. Notice that the region
of objects from the root is assumed to be the entire uni-
verse, because these objects do not have any actual parent
object. Each entry is represented by the object’s features
and, in the case of non-leaf entries, by their region radii
which restrict minimum regions in which all descendant ob-
jects and/or regions can be found. For efficiency reasons,
child-to-parentobject distances, computed during the tree
construction phase, also form a part of the objects’ entries.

2.4.1 Similarity search strategies

Pruning sub-trees, or reducing search costs by avoiding dis-
tance computations and node accesses, is the primary con-
cern of the M-tree similarity search algorithms. As men-
tioned above, we only consider the more general case of
similarity retrieval, that isk-NN queries, which can be char-
acterized by the following sketch of the algorithm. Implic-
itly, the number of objects in the file is assumed to be no
smaller thank.

k-NN algorithm
initialize-set: consider any sub-file of sizek as the response

set, and assign tor(Q) the distance betweenQ and the
k-th nearest neighbor of this set (i.e., the largest dis-
tance). Put a pointer to the M-tree root node (region of
objects) into the priority queuePQ. Pointers inPQ are
ordered according to theproximity of their correspond-
ing regions with respect to the query region (Q, r(Q)),
which is dynamically shrinking during the search time.

purify-set: while there are entries inPQ with a positive
proximity (i.e., the query and entry regions intersect),
do
access node:access a node determined by a pointer lo-

cated at the top ofPQ;
test entry: for each entry in the accessed node,do

test object: if the object of this entry can improve
the response set, update the response set and
adjustr(Q);

test region: if the region of this entry intersects
(Q, r(Q)), put the pointer to this region intoPQ;

response set:the current response set containsk nearest
neighbors toQ.

Note that the algorithm consists of two phases, namely
the initialization and purification of the required response
set. However, though the first phase is typically very fast
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Fig. 1. Pruning principles of the M-tree

and a rather rough approximation of the desired response is
expected, the second phase typically needs many node reads
and distance computations.

To understand these algorithms suppose that the entry for
objectOj , with its parent objectOp and its region of radius
r(Oj), is to be processed (see also Fig. 1). Since the search
algorithm is strictly hierarchical – a parent object needs to
be processed before its child object can be considered – the
distanced(Q, Op) is known. The distanced(Oj , Op) is also
known because it is a part ofOj ’s entry.

In principle, Oj may qualify as a new member of the
result set, but to decide exactly, the distanced(Oj , Q) must
be computed. Also, provided the query andOj ’s regions
intersect, the pointer to the descendant node ofOj must
be put intoPQ, because it might include better qualifying
objects (see thetest object and test region steps of the
algorithm above).

To minimize retrieval costs, caused by distance computa-
tions and disk (node) reads, the search algorithm of M-trees
uses two kinds of (preliminary) tests on object entries. As
Ciaccia et al. (1997) explained and proved for correctness,
the corresponding tests are the following.

1. | d(Op, Q) − d(Oj , Op) |> r(Q) + r(Oj) . (1)

If this test is satisfied, the region (Oj , r(Oj)) can be
ignored without even computing the distance toOj .

2. d(Oj , Q) > r(Q) + r(Oj) . (2)

If this test is satisfied, the pointer to the region
(Oj , r(Oj)) is not inserted into the priority queue, thus
the descending node is never accessed1.

Obviously, provided thatd(Q, Oj) < r(Q), then Oj is a
new member of the result set and the query radius should
appropriately be reduced. Notice, however, that Eq. 1 can
also be used as a preliminary test ofOj ’s qualification by
consideringr(Oj) = 0, that is only considering the object
and ignoring its region. The cost minimization principles of
the M-tree are also illustrated in Fig. 1.

The execution costs of thek-NN algorithm above natu-
rally depend on the query pointQ and specific distribution

1 Notice that this test has a meaning, provided thatOj represents a
region, that is whenr(Oj ) > 0.

of objects in a given tree. Notice that the same file can re-
sult in many still correct, forms of M-trees. However, due
to the properties of this algorithm, the following cost-related
properties can still be defined.

Given an M-tree, the number of accessed nodes (regions
of objects) fork-NN search with respect to Q is determined
by the number of regions which intersect the query region
with radiusr(Q) = d(Q, Ok

N ), whereOk
N is thek-th nearest

neighbor of Q. More precisely, a region with the parent
objectOp is actually accessed from the priority queue if

d(Q, Op) ≤ r(Op) + d(Q, Ok
N ) . (3)

Those interested in M-trees should, besides Ciaccia et
al. (1997), also refer to the following articles: Ciaccia and
Patella (1998) on algorithms for bulk loading the M-trees;
Zezula et al. (1998) presenting practical experiences with a
parallel version of the M-tree; Ciaccia et al. (1998a) suggest-
ing an extension of M-tree for processing multiple (single-
feature) similarity predicates; Ciaccia et al. (1998b) propos-
ing a cost model for similarity queries in metric spaces.

2.5 The simulation testbed

To evaluate and compare our strategies of approximation,
we use three qualitatively different files of 45-dimensional
vectors, each one of the sizen = 10, 000. The first file,
designated as CHV, represents color features of images and
was chosen as a representative of real-life files. Color fea-
tures are in fact 9-dimensional vectors containing the av-
erage, standard deviation, and skewness of pixel values for
each of the red, green, and blue channels (see Stricker and
Orengo 1995). An image is divided into five overlapping re-
gions, each one represented by a 9-dimensional color feature
vector, which gives a 45-dimensional vector as a descriptor
of each image. The distance function is based on the Eu-
clidean (L2) metric. Notice that other approaches to image
color representations usecolor histograms. In such cases,
similarity searches typically use weighted measures of simi-
larity because of the crosstalk between similar colors. In our
experiments, we use a method that requires the Euclidean
distance in order to be consistent with the metrics adopted
for the other data sets.

The other two files contain synthetic data in order to
simulate rather extreme and orthogonal cases. Specifically,
the second file, designated as UV, contains vectors which are
uniformly distributed in a 45-dimensional unit hyper-cube,
while the third file, designated as CV, is formed, in the same
space, by 10 randomly distributed clusters of vectors with
a variance within a cluster ofσ = 0.05. For simplicity, we
always consider the Euclidean distance as the measure of
similarity.

Query points, again 45-dimensional vectors, are not from
the data files, but comply with data distributions which ob-
jects in the individual files follow. One hundred different
query objects are defined for each of the files. Then, all costs
reported are expressed as average values obtained from runs
of all queries. We used 10-NN queries in all the experiments.
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2.5.1 Performance measures

To quantify a degree (or a grade) of excellence which in-
dividual approximation techniques may possess, we suggest
considering as measures not only an improvement in perfor-
mance efficiency, but also a quality of approximation. High
improvements of the performance typically result in approx-
imations with poorer quality, and vice versa.

The first measure, called theimprovement in efficiency,
IE, relates the costs of the exact and approximated searches.
It is defined as

IE =
cost(Ok

N )

cost(Ok
A)

, (4)

where Ok
N and Ok

A are, respectively, thek-th actual and
approximated neighbors of Q as found by our search algo-
rithms. Then,cost(Ok

N ) andcost(Ok
A) are the corresponding

execution costs to retrieve these neighbors.
Contrary to the improvement in performance, the quality

of approximation is assessed through two complementary
measures. We call them theprecision of approximation, P ,
and therelative distance error, ε.

In order to define theprecision of approximation, as-
sume thatOi

A, i = 1, 2, . . . k, is the approximatedi-th nearest
neighbor with respect toQ. Thus, the precision is defined as

Pi =
i

#range(Q, d(Q, Oi
A))

, (5)

where #range(Q, d(Q, Oi
A)) is the cardinality of the set

which is obtained from a file of sizen while performing a
range query forQ with radiusd(Q, Oi

A). Sinced(Q, Ok
N ) ≤

d(Q, Ok
A), it is true thati ≤ #range(Q, d(Q, Oi

A)), because
the setrange(Q, d(Q, Oi

A)) contains not only the exact re-
sponse set of sizei, but possibly also other objects. For ex-
ample, whenP10 = 0.5, then the 10th approximated neighbor
is, in fact, the 20th actual neighbor ofQ.

Then, the precision of ak-NN search is defined as

P =

∑k
i=1 Pi

k
=

∑k
i=1

i
#range(Q,d(Q,Oi

A
))

k
. (6)

Notice that, when the approximated response is exact, the
precisionP = 1. On the other hand, the precision tends to 0
in the worst case.

The relative distance error, designated asε, is defined
in a similar way. LetOi

N be thei-th nearest neighbor of
Q and Oi

A the i-th approximated neighbor ofQ, which is
assumed to be different from any object in the database2.
Thus, obviously, 0< d(Q, Oi

N ) ≤ d(Q, Oi
A) for all i =

1, 2, . . . , k, and the expression

εi =
d(Q, Oi

A)
d(Q, Oi

N )
− 1 (7)

gives the relative error of thei-th nearest neighbor. The
global relative distance error is then defined as

ε =

∑k
i=1 εi

k
=

∑k
i=1

d(Q,Oi
A)

d(Q,Oi
N

)

k
− 1 . (8)

2 The relative error is not defined for the exact match where
d(Q, Oi

N ) = 0

When the approximation gives exact results, the relative er-
ror ε = 0.

A proper evaluation of the quality of approximation en-
tails considering both the measures,P andε. In fact, we can
consider the precision of approximation as a measure that
only takes into consideration the ranking of database objects
with respect to the query object. On the other hand, the rel-
ative distance error only relates the actual and approximated
neighbor distances, irrespective of the rest of the file.

3 Approximation through relative distance errors

In this section, we study the case where the approximation
of a nearest neighbor with respect toQ is constrained by
a user-defined relative distance errorε. After outlining the
idea, we show how the M-tree pruning rules can be modi-
fied and demonstrate by observations from numerous exper-
iments how this method performs.

3.1 The idea

Let ON be the nearest neighbor ofQ and OA some other
object in the searched collection. Obviously, provided 0<
d(ON , Q) ≤ d(OA, Q),

d(OA, Q)
d(ON , Q)

= 1 + ε (9)

defines that the distance fromQ to OA is (1 +ε) times the
distance fromQ to ON . Now, assume thatOA is the ap-
proximatednearest neighbor ofQ. In such case,ε represents
the relative error of the distance approximation, that is of
consideringOA as the nearest neighbor ofQ instead ofON .

Naturally, the relative error of the distance betweenQ
and any database object with respect tod(Q, ON ) is non-
negative, but in order to consider an object as the approx-
imate neighbor ofQ, a user-defined bound on the relative
error must be respected. Provided this error isε, the follow-
ing constraint must hold forOA:

d(OA, Q)
d(ON , Q)

≤ 1 + ε . (10)

This idea can be generalized to the case ofk-NN search, for
1 ≤ k ≤ n, wheren is the size of the database. UsingOk

A

andOk
N to designate thek-th approximated and the nearest

neighbors, the constraint should be modified as follows:

d(Ok
A, Q)

d(Ok
N , Q)

≤ 1 + ε . (11)

If this constraint is satisfied,Ok
A is called the (1 +ε) k-NN

of Q. However, thoughd(Q, Ok
N ) is unique for a givenQ,

there may be several objects in the database which, when
considered asOk

A, satisfy Eq. 11. That means that the can-
didate set for approximate results is not necessarily singular.
In the limit case,d(Q, Ok

A) = d(Q, Ok
N ) or evenOk

A = Ok
N .

3.2 Approximate pruning constraints

To see how the search pruning tests of M-trees can be relaxed
by respecting a tolerable relative errorε, consider another
form of Eqs. 1 and 2 as follows:
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r(Q)
| d(Op, Q) − d(Oj , Op) | −r(Oj)

< 1 (12)

and

r(Q)
d(Oj , Q) − r(Oj)

< 1 . (13)

Looking at these fractions, the numerators specify, by
the query point radius, the distance to the (k-th) nearest
neighbor ofQ discovered so far. For convenience, see also
the k-NN algorithm in Sect. 2.4.1. Provided the search
has not finished, i.e., better objects can still be found, this
distance can be considered as the distance to the approxi-
mated neighbor. The denominators, on the other hand, put
the lower bounds(using the corresponding information about
distances at hand) on possible nearest neighbors in the re-
gion (Oj , r(Oj)) with respect toQ (see again Fig. 1). In
other words, the denominators represent the minimum dis-
tance that an object in the given region might have, with
respect toQ. Naturally, if the lower bounds (i.e., the de-
nominators) are higher than the current radius ofQ, the
region considered cannot contain any qualifying object, and
therefore can be ignored in the search from this point on.

In order to modify these tests to the case of approximate
search, that is, whenε > 0, the lower bounds can be relaxed
by the relative factorε in the following way:

r(Q)
| d(Op, Q) − d(Oj , Op) | −r(Oj)

< 1 + ε (14)

and

r(Q)
d(Oj , Q) − r(Oj)

< 1 + ε . (15)

By analogy, the actual test for an object qualification can be
modified as

r(Q)
d(Oj , Q)

< 1 + ε . (16)

Naturally, relaxing these tests in the above way can never
increase the similarity search costs, because both the number
of distance computations and the number of node reads can
only be reduced. To be more precise, consider again Eq. 3,
which specifies whether a region with its parent objectOp is
accessed by the M-tree’s search algorithm. To adjust this cost
condition to our relative-distance approximation algorithm,
two important facts must be reconsidered. First, the distance
to the approximatedk-th nearest neighbor may be larger than
the distance to the exact one, thus, restricted by

d(Q, Ok
N ) ≤ d(Q, Ok

A) ≤ d(Q, Ok
N ) × (1 + ε) . (17)

Second, all the pruning tests consider that the actual neigh-
bors, with respect to the approximate, are (1 +ε) times
smaller, so Eq. 3, which determines whether the region
(Op, r(Op)) is actually accessed or not, can be modified as

d(Q, Op) ≤ r(Op) + d(Q, Ok
A)/(1 + ε) . (18)

However, due to the properties of approximated neighbors,
see Eq. 17 for the range of their possible values, the approx-
imated search can never access more nodes than the exact
search, as the following example illustrates.

Example 3.1.Suppose a region with its centerOp, radius
r(Op) = 3, and distance to the query pointd(Op, Q) = 4.9.
Provided the distanced(Ok

N , Q) = 2 and the precise similar-
ity search is considered, this region must, according to Eq. 3,
be accessed, because 4.9 < 3+2. However, provided the ap-
proximate search withε = 0.2 is used, the situation is a bit
more complex, because the distance to a possible approxi-
mate neighbor is constrained by 2≤ d(Q, Ok

A) ≤ 2· (1+0.2)
(see Restriction 17 for verification). Naturally, provided that
d(Q, Ok

A) = 2.4, i.e., the most distant approximate nearest
neighbor is found, the situation is the same as in the case of
the precise nearest neighbor, and Inequality 18 orders this
region to be accessed. But, ifd(Q, Ok

A) = 2, Inequality 18 is
not satisfied, because 4.9 ≤ 3+2/(1+0.2) is not true. Gener-
ally, if we consider the approximate distanced(Q, Ok

A) as a
variable and solve the inequality 4.9 ≤ 3+d(Q, Ok

A)/(1+0.2),
we find out that our region only has to be accessed if
d(Q, Ok

A) ≥ 2.28.

Due to the fact that the actual savings depend on data
as well as the specific structure of a constructed M-tree, we
investigate this phenomenon by the following experiments.

3.3 Experimentation

The experiments for the approximate similarity search con-
strained by relative distance errors 0≤ ε ≤ 2 are summa-
rized for all our data files in Fig. 2. Note that the actual
relative errorε is much smaller than the search approxima-
tion parameterε. Though this was true in all the cases, it
was more significant for the synthetic data files (UV and
CV) rather than the color features. We attribute this behav-
ior to the fact that the (unit) domain space in the case of
synthetic data was denser compared to the possible density
of our CHV file.

For higher relative errors, the precision obviously de-
creased. Here, however, the real-life file CHV performed
better than the synthetic files, and even forε = 0.4, whereε
was 0.2, the precision was still around 0.5.

Unfortunately, the observed improvements in efficiency
were not very significant. This was true above all for the
range of the relative distance errors up to, say 0.5, which is
the range of values for which the precision was still quite
high. Note that the best improvement in efficiency withε =
0.5 was obtained for the CHV file (IE = 1.2), while for the
CV file, the improvement was only 1.03, and in the case of
the UV file, the improvement was practically negligible.

In summary, an approximate similarity search constrained
by a relative distance errorε keeps, by definition, an upper
bound on the actual relative error, which is typically much
lower than the required constraint. However, since both of
the synthetic data files performed similarly in all the aspects
considered, it seems that it is the density of the search space,
rather than the data distribution, which influences the per-
formance. Less dense spaces can provide better precision
and higher improvements in efficiency, but may result in
approximations of higher relative errors. Unfortunately, per-
formance improvements are typically not high, whenever the
precision is important.
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Fig. 2. Approximation through the relative
error

4 Approximate search through distance distributions

Since the existence of a coordinate system, which is used
in vector spaces to determine the location of objects, is not
necessarily a condition for a metric, the only general way

to quantify topological relationships between objects is the
distance distribution. As Ciaccia et al. (1998b) argue, this
distance distribution is a correct counterpart of the data dis-
tribution used for vector spaces; thus, it can be applied as a
way to characterize metric data sets. In this section, we in-
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vestigate a method which exploits characteristics of distance
distributions to control a similarity search approximation.

4.1 Distance distributions

Let M = (U , d) be a metric space, whereU is the value
domain (or the universe), andd is the measure that quantifies
distances between pairs of objects fromU . The relative
distance distributionof an objectOi ∈ U with respect to
the others, or the so calledOi’s viewpoint, is defined as

FOi
(x) = Pr{d(Oi, O) ≤ x}, (19)

whereO is a random object fromU .
By definition, FOi

(x) is a monotonic, non-decreasing
function, which, for a given distancex, provides the proba-
bility that a randomly chosen object fromU is within a dis-
tance fromOi which is smaller than or equal tox. It is also
important to observe that, given two objects,Oi, Oj ∈ U ,
FOi

(x) may be different fromFOj
(x), because the points of

views of objectsOi andOj need not be the same.

4.2 The concept of approximation

Assume that the query object isQ and thatFQ(x) is the
distance distribution ofQ with respect to all objects in a
given database. According to Eq. 19,FQ(x) represents the
fraction of objects in the database for which the distance to
Q is less than or equal tox. Provided there aren objects in
the database,n × FQ(x) objects should have a distance to
Q not greater thanx.

Now, consider thek-NN search algorithm again and
imagine an intermediate retrieval step in which the distance
to thek-th approximated neighborOk

A is d(Q, Ok
A). By us-

ing the distance distribution,FQ(d(Q, Ok
A)) determines the

fraction of the best cases (with respect toQ) to which this
current approximate result belongs. For example, provided
FQ(d(Q, Ok

A)) = 0.01, the approximate result already be-
longs to 1% of the best cases in a given object file.

This property can easily be exploited for approximating
similarity searches – a user may wish to find anyk objects
among those belonging to the fraction of the best casesρ.
To this aim, the followingstop conditioncan be defined

FQ(d(Q, Ok
A)) ≤ ρ (20)

and used in thek-NN algorithm to terminate the search be-
fore the exact nearest neighbors are found. Since the search
algorithm remains the same, and it is only the stop condi-
tion which might terminate the algorithm earlier, the search
costs can never be higher than the costs needed to perform
the exact similarity retrieval – no search improvements are
obtained whenρ ≤ FQ(d(Q, Ok

N )).

4.3 Approximation through other distance distributions

So far we have assumed that the distance distribution with
respect toQ is known. However, computing and maintaining
this kind of information for any possible query object is
completely unrealistic. A possible solution would be to find a

functionFr(x) that would serve as arepresentative distance
distribution functionfor all viewpoints.

Provided that such a representative is found, the stop
condition Eq. 20 can be substituted by

Fr(d(Q, Ok
A)) ≤ ρ (21)

for each query objectQ.
The problems ofviewpoint discrepanciesor, alterna-

tively, homogeneity of viewpointshave been studied by Ciac-
cia et al. (1998b). For instance, experiments performed with
large text files have shown that the homogeneity of view-
points is quite high, which means that distance distributions,
measured with respect to different objects, are very similar.

Ciaccia et al. (1998b) also propose a methodology to
decide when one distance distribution can be used rather than
another. In particular, the so-calleddiscrepancybetween two
relative distance distributions was defined as

δ(FOi
, FOj

) = E[(| FOi
(x) − FOj

(x) |] , (22)

wherex is a random distance in the interval [0, d+], andd+

is the maximum distance between two objects ofU . The
index of homogeneity of viewpoints HVof a metric spaceM
was defined as

HV (M) = 1− E[δ(FO1, FO2)] ,

whereO1 andO2 are random points ofU . WhenHV (M)
≈ 1, two different relative distance distributions are likely
to behave similarly; thus, anyFOi

(x) could be used as the
representativeFr(x).

The index of homogeneity is too general for our pur-
poses, since it considers the discrepancy of relative distance
distributions over the whole interval [0, d+]. To make an ap-
proximation, we need to consider the behavior of a specific
function Fr in an interval [0, d′] where d′ is substantially
smaller thand+, since possible values ofρ can typically be
smaller than 0.1. Notice, however, that considering a smaller
range of distances does not necessarily imply a better dis-
crepancy than the one obtained when the total range of dis-
tances is taken into account.

The discrepancy of two relative distance distributions
in an interval [0, x] can be obtained by slightly modifying
Eq. 22 as follows:

δ(FOi
, FOj

)(x) = E[0,x] [| FOi
(x) − FOj

(x) |]
=

1
x

∫ x

0
| FOi

(y) − FOj
(y) | dy . (23)

The degree of representativenessRV Fr of a given represen-
tative Fr in the interval [0, x] can be defined as follows:

RV Fr (M)(x) = 1− E[δ(Fr, FO)(x)] . (24)

When RV Fr (M)(d′) ≈ 1, then we can argue thatFr is a
good representative in the interval [0, d′].

Let us consider, for instance, as a representative theav-
erage distribution functiondefined as follows:

Favg(x) = E[FO(x)] . (25)

Figure 3 shows a graph of the degree of representativeness
of function Favg for our testbed. The graph was obtained
by computing for eachρ the valueRV Favg (M)(Gavg(ρ)),
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whereGavg is the inverse ofFavg, that is if ρ = Favg(x)
thenx = Gavg(ρ).

It can be seen that, for values ofρ ≤ 0.1, the degree of
representativeness always has values greater than 0.99. No-
tice thatρ = 0.1 corresponds to 10% of the whole database,
so it can be used as a realistic limit for running approximate
queries. Observe that, for the CV file, the degree of repre-
sentativeness remains above 0.99 even for values ofρ up to
0.4.

4.4 Experimentation

The precision (P ), the relative error (ε̄), and theimprove-
ment in efficiency(IE) were computed for different values
of the approximation parameterρ. The results are reported
in Fig. 4.

Since realistic values ofρ are lower than 0.1, this ap-
proach obtains good precision for all of our files. In particu-
lar, the precision seems to be very high using the UV file. In
that case, it always remains above 0.2 for values ofρ up to
0.09. Using the CV and CHV files, the precision falls below
0.2 for values ofρ ≥ 0.02.

While for ρ ≤ 0.1 the relative error for CV and UV is
quite good, we obtain higher values of ¯ε for the CHV file.
In particular, whenρ is smaller than 0.1, the error is always
smaller than 0.4 for CV and UV, while it rises up to 0.7 for
the CHV file. Notice that, for the CV file, the error increases
rapidly for values ofρ greater than 0.1. This is due to the
fact that the CV file contains clusters. Specifically, consid-
ering the distance distributions, 10% of the distances are
smaller than 0.7, the remaining 90% of the distances belong
to the interval [1.9,3.6]. This implies that, whenρ is greater

than 0.1, the approximate search may include objects that
are suddenly more distant than those considered for values
smaller than 0.1.

The last graph shows the measure of the improvement
in efficiency. Using CHV and UV files, we obtain good
improvements for small values ofρ. When ρ = 0.025, we
have an improvement of 33 times for UV, and 52 for CHV.
On the other hand, for the CV file, the improvement is 34
times only whenρ = 0.1.

In summary, with this method values ofρ can be found
that give good values of precision, relative error and im-
provement in efficiency for all three files considered. For
example, if we want to limit the precision toP ≈ 0.3, then
values ofρ ≈ 0.01 (CHV file), ρ ≈ 0.025 (CV file), and
ρ ≈ 0.05 (UV file) should be used. With these values, high
improvements in efficiency (35≤ IE ≤ 50) are obtained
and the approximate results have a limited relative error
(ε ≈ 0.15 for the CV and UV files, andε ≈ 0.3 for the
CHV file).

5 Approximation through the slowdown
of distance improvements

The approximation method we present in this section is
based on the following pragmatic observation.

Observation 5.1. The M-tree’sk-NN algorithm determines
the response set forQ by gradually improving an initial, ap-
proximate and potentially rough, subset of the file’s objects
of sizek. Accordingly, the distance to thek-th (approximate)
nearest neighborOk

A shrinks during the query evaluation and
finally becomesd(Ok

N , Q) whenOk
A = Ok

N . However, the
early improvements are typically significant, and with a very
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limited computational effort a good approximation of the ex-
act result can be obtained. On the other hand, this process
slows down, and later improvements are usually minor and
time consuming.

The typical situation is illustrated in Fig. 5, which, for a
certainQ, shows the approximatek-NN distance,d(Ok

A, Q),
and the number of necessary distance computations #d(·).
Obviously, the minimum value ofd(Ok

A, Q) is d(Ok
N , Q)

and, for this distance value, we have the maximum of dis-
tance computations, which represents the costs for finding
the actualk-th nearest neighbor. Observe that at the end of
this search, more than 1000 distance computations are per-
formed just to be sure that no better nearest neighbor exists.

Since the number of node reads, or the I/O costs, and
the number of distance computations are strictly correlated,
identical trends have also been observed when the number
of node reads instead of the number of distance computa-
tions was considered. Furthermore, a similar behavior to the
one shown in Fig. 5 was observed in every experiment we
performed, when changing not only query points but also
the data sets.

5.1 The approach to approximation

Based on Observation 5.1, the approximation method de-
scribed in this section reduces search costs by executing the
standard search algorithm until the variation (i.e., the reduc-
tion) of the distance between the query and the approximated
k-NN objects becomes sufficiently low. In the following, we
first clarify the idea and then describe in detail its implemen-
tation.

5.1.1 The idea

Assume the functionf : #d(·) → d(Ok
A, Q) as a strictly

decreasing continuous function. In order to simplify the no-
tation, we designate this function asf (x) and its first deriva-
tive asf

′
(x), wherex represents the search costs. For con-

venience, a derivative of degreeν is designated asf (ν)(x).

Due to the assumed properties off (x), f
′
(x) decreases as

x increases and its value, in fact, represents the chances of
finding better nearest neighbors – the lower the value of
f

′
(x), the lower the possibility of improving the approxima-

tion.
Thus, given a constraintκ > 0, we can stop the ap-

proximate search as soon asf
′
(x) ≤ κ. The quality of this

approximation, i.e., the error we get by stopping the search
algorithm at a certain point, and the speed-up we obtain,
i.e., the reduction in distance computations and I/O opera-
tions we gain, are clearly inversely proportional to the value
of κ. Provided thatκ is sufficiently low andf

′
(x) ≤ κ, the

approximation obtained should already be of a good quality,
since the chances of finding better approximations are not
high.

5.1.2 Our implementation

The approximation error and the speed-up for a given value
of κ cannot be measured exactly, because they both depend
on the functionf (x) which is not known a priori. In reality,
the functionf (x) does not have the nice properties we have
assumed above, because

(a) values ofx are discrete and the corresponding values
of f (x) only become available (for increasingx) as the
search algorithm proceeds;

(b) f (x) is a piecewise constant function, monotonically de-
creasing.

From an implementation point of view, (a) requires a
numerical evaluation off

′
(x), while (b) requires a care-

ful choice of arguments which are used during the calcula-
tion of derivatives. Hereafter, we assume that the function
f (x) has known values inz + 1 points, x0, . . . , xz, with
x0 < x1 < . . . < xz. Sincef (x) is a piecewise constant
and monotonically decreasing function, it has the following
properties:

1. f (xi) ≥ f (xj) for i < j;
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optimal points for stopping the k-NN approx-
imate search

2. there exist pointsxp
0, xp

1, xp
2, . . . (with xp

0 < xp
1 < xp

2 <
. . . andf (xp

0) < f (xp
1) < f (xp

2) < . . .) such that, given
xp

i ≡ xr, f (xr−1) > f (xr).

Points xp
i are called thepotentially optimal points. In

fact, these are the points that provide the highest perfor-
mance improvement for the same level of the approximation.
Figure 6 gives an example off (x) and of the potentially op-
timal points.

The numerical evaluation off
′
(x) is based on standard

numerical analysis techniques (see for example Burden et
al. 1979). Accordingly, the derivative off (x) in x = xs,
s ∈ [0, z] can be calculated as follows:

f
′
(xs) = L

′
z(xs) + (xs − x0) · · · (xs − xs−1)(xs − xs+1)

· · · (xs − xz)
f (z+1)(ξ)
(z + 1)!

, (26)

whereLz(x) is the Lagrange polynomial defined as

Lz(x) =
z∑

i=0

f (xi)lz,i(x) , (27)

with

lz,i(x) = (28)
(x − x0)(x − x1) . . . (x − xi−1)(x − xi+1) . . . (x − xz)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xz)

andξ ∈ [x0, . . . , xz].
The error term is thus (xs − x0) · · · (xs − xs−1)(xs −

xs+1) · · · (xs − xz) f (z+1)(ξ)
(z+1)! . Unfortunately, since we do not

have any information about the analytic form off (x), no
assumptions can be made on its derivatives of higher orders
and on their errors. We will not take into consideration these
errors.

As an example, forz = 2, that is when the function is
known in the pointsx0, x1, x2,

f
′
(xj) = f (x0)

[
(2xj − x1 − x2)

(x2 − x1)(x0 − x2)

]

+f (x1)

[
(2xj − x0 − x2)

(x1 − x0)(x1 − x2)

]

+f (x2)

[
(2xj − x0 − x1)

(x2 − x0)(x2 − x1)

]

+
1
6
f (3)(ξj)

2∏
i=0,i/=j

(xj − xi) (29)

for eachj = 0, 1, 2, where the notationξj indicates that this
point depends uponxj .

5.1.3 Terminating the approximate search

The condition used to terminate the search algorithm is based
on the estimation off (x) derivatives in pointsxp

i . We tested
the quality of three different methods for calculatingf

′
(x).

They are based on the use of two, three, or five points,
respectively. All three methods approximatef

′
(x) by using

a limited number of pointsxp and the latest value ofx.
Let us consider two consecutivepotentially optimal

points, xp
i−1 andxp

i , and let us also suppose that the search
algorithm has run up to a point where the number of distance
computations isxs, wherexs = xp

i . We can then calculate
the value off (xs+1). By using two points, the derivative in
f (xp

i ) is estimated as the slope of a line passing through
f (xp

i−1) andf (xs+1). If f (xs+1) = f (xs), then the derivative
is compared withκ; if it is higher thanκ, the function is cal-
culated in a new pointxs+2 and the procedure is repeated,
otherwise it stops. Iff (xs) > f (xs+1), a new potentially
optimal point xp

i+1 ≡ xs+1 has been found and the proce-
dure is repeated by using this new point. More formally, the
procedure can be expressed as follows.

Input: xp
i−1, xp

i , f (xs) with xs = xp
i

Output: if f
′
(xp

i ) < κ, the search terminates, otherwise a
new potentially optimal pointxp

i+1isfound.
Step 1: calculatef (xs+1)
Step 2: if f (xs+1) = f (xs), then

{ f
′
(xp

i ) =
f (xp

i−1)−f (xs+1)

xp
i−1−xs+1

;

if f
′
(xp

i ) < κ, then stop elses = s + 1; goto Step 1;}
Step 3: if f (xs+1) < f (xs), then the newpotentially optimal

point xp
i+1 ≡ xs+1 has been found.
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With three and five points, the derivative is estimated by
usingxp

i−1, x
p
i , xs andxp

i−3, x
p
i−2, xp

i−1, x
p
i , xs, respectively.

The calculation off
′
(xp

i ) in Step 2 is modified, for both
cases, according to Eqs. 26-28.

These three methods of numerical derivation have been
evaluated by computing the relative error (ε) and the pre-
cision (P ) as a function ofκ. The experiments obviously
entailed running the approximatek-NN search and the exact
k-NN search, and comparing the distance between the query
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Fig. 8. Comparison of approxima-
tion techniques for the UV file

and thek-th object in the approximated result set with the
distance between the query and thek-th object in the exact
result set. The experiments showed that, although the first
method is the simplest, it is far too inaccurate. Although
the quality of approximation of the second method is ac-
ceptable, the third one, i.e., the method using five points, is
significantly better and was adopted in all the experiments
described below.

5.2 Experimentation

The approach to reducing distance computations described
in this section was evaluated by measuring the precisionP ,
the relative errorε, and the improvement in efficiencyIE as
a function ofκ. The results of this evaluation are reported
in Fig. 7. We used a logarithmic scale forκ, because we
considered a wide range of values for this parameter.

In particular, the first graph in Fig. 7 shows how pre-
cision varies withκ for the three data files (CV, UV, and
CHV) used in the experiments. The best results were ob-
tained for the CHV file and the worst for the UV file. Note

that, apart from the UV file, the values ofP are quite high.
For example,P varies in the range [0.75, 0.20] for the CHV
file – a very good result. Roughly speaking, we can say that
P = 0.5 means that the firstk approximate nearest neighbors
containk/2 of the exact nearest neighbors.

The real relative errorε was very good for all three data
files. For the CHV file,ε is in the range [0.03, 0.19]. To
give an idea of the quality of the result,ε = 0.1 means that
the approximate results have an average distance from the
query point that is 10% higher than the exact result. The
second graph of Fig. 7 highlights that the results are quite
good even for theUV file, contrary to what happens forP .
This is due to the fact that in this file the objects are very
close each other, which gives a limited relative error even
though the precision is low.

Of particular interest are the results reported in the third
graph of Fig. 7, which shows the variation ofIE with κ.
The method allows an improvement in performance to be
obtained, measured with the number of distance computa-
tions, up to 50 times. To conclude, this method can gen-
erally achieve high performance improvements while still
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tion techniques for the CV file

maintaining good quality results. For example, for the CHV
file, we haveIE = 20 with P = 0.3 andε = 0.15.

6 Comparisons and further performance considerations

So far, we have considered the proposed approximation tech-
niques independently by relating their characteristic approx-
imation parameters (ε, ρ, and κ) with defined performance
measures, that is the improvement in efficiency, the search
precision, and the actual relative error. To compare our ap-
proaches to approximation, we ignore the way the approx-
imations are specified (constrained) and only relate the im-
provement in efficiency, which was the main objective of
our research, with the quality, which is the precision and the
relative error obtained. Such comparisons were made for all
the files from our testbed, and the results can be found for
the uniformly distributed data in Fig. 8, for the clustered
data in Fig. 9, and for the color features in Fig. 10.

Although approximation through relative errors explic-
itly puts upper bounds on possible relative distance errors,

this method has not generally proved to be very efficient.
For all our data files, the improvements in efficiency, with
respect to the same quality, were practically negligible com-
pared to those obtained by the other two approximation
methods.

The experiments suggest that the best approach is ap-
proximation through distance distribution, which showed the
highest improvements in efficiency. This phenomenon was
especially significant when precision was considered (see
for example Fig. 8, where the approximate search was per-
formed 100 times faster, while the precision was still 0.1).
Roughly speaking, we can say that instead of retrieving the
exact 10 nearest neighbors, 10 objects from 100 best cases
were retrieved 100 times faster. The approximation through
distance distribution also performed well with respect to the
actual relative distance error. Here, only in the case of the
color feature vectors, did approximation through the slow-
down of distance improvements achieve better results.

As far as the complexity of the methods is concerned,
we can say that all of the proposed approximation meth-
ods are quite easy to implement. Except for approximation
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Fig. 10. Comparison of approximation
techniques for the CHV file

through distance distribution, no additional auxiliary data is
required. Obviously, to obtain and maintain distance dis-
tributions might be an additional cost for the user or the
system administrator; however, distance distributions can be
obtained, for example, during the M-tree construction phase,
because the insertion of objects into an M-tree requires many
distance computations. Another possibility is to acquire the
distance distribution by sampling on the data file. However,
if a user is not willing to bear the additional costs, or if a
good representative distance distribution is difficult to find,
then approximation through the slowdown of distance im-
provements is the best option: it is easy to implement, it has
proved to perform well, and it does not need any supporting
data.

6.1 Extensibility and scalability

Though our testbed was designed to allow a comprehen-
sive evaluation of various approximation techniques, it does
not cover all the aspects needed when proposing an index
structure. In particular, we have not consideredextensibil-
ity, i.e., how far the technique can be extended to support

further forms of queries, andscalability, i.e., the reaction of
performance parameters to changing sizes of searched files.
Because the first approximation technique proved not to be
very efficient, hereafter we only consider the second and
third approximation techniques.

So far, we have assumed that the number of request-
ing nearest neighbors is 10. Since the search algorithms are
independent ofk, it is important to know how the preci-
sion and efficiency change in relation tok. In particular, we
investigated the case wherek changes from 1 to 50.

We now report the experimental results obtained for the
CHV file when the approximation through the slowdown of
performance improvements is used. Figure 11 shows two
graphs, the first reports the improvement in efficiency (IE)
as a function of the precisionP , while the second shows
the variation inIE as a function of the relative errorε. A
slight difference can be observed by comparing the results
reported here fork = 10 with those given in Fig. 10. This
is due to the fact that a different set of queries was used in
these two experiments. The graphs in Fig. 11 highlight that
the improvement in performance deteriorates (though not
dramatically) with increasingk. A similar behavior was also
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observed when approximation through distance distributions
was used.

By definition, M-tree is not only able to deal with vec-
tor data of different dimensions, but it can also manage
non-vector space data. Furthermore, since M-tree organizes
search regions exclusively on distances, the actual number
of dimension of vector spaces is not important from a per-
formance point of view. What counts is the distribution of
distances, and the worst case occurs when the variance is
(very) low.

To demonstrate that M-trees are suitable for extreme data
distributions as well, we have ran experiments with an Ital-
ian dictionary, using the edit distance as the metric. The
maximum distance observed was 17, but practically all dis-
tances were in the range from 7 to 10. The results obtained
for the method based on an approximate search through dis-
tance distributions demonstrate performance improvements
from IE = 100, whenρ = 0.2, to IE = 20, whenρ = 0.02.

These results are quite comparable with those reported in
Fig. 4 for vector data.

To demonstrate that our approximation techniques scale
well for growing files, we considered files from 1000 to
11000 objects. Figure 12 reports the results of experiments
performed on the CHV file by using the “approximation
through the slowdown of distance improvements” methods.
When a file grows, we observed that efficiency increases for
constant values of precision and of the relative error. This is
a significant result which proves how useful our techniques
are for large files.

7 Conclusions

Since multimedia content-based retrieval has to deal with
multidimensional or distance-only data, similarity queries
have become the most common type of queries in multi-
media information systems. Though the idea of similarity
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retrieval seems to be clear, it is quite difficult to imple-
ment efficiently, and the performance of similarity indexes
remains a serious problem. However, since even the concept
of similarity typically invokes a certain amount ofsemantic
imprecision or vagueness in its definition, we have proposed
to forsake somesyntacticprecision in exchange for improved
efficiency.

To investigate this idea, we have specified three approx-
imation techniques in the environment of the M-tree. The
approximations of the proposed techniques are bound, re-
spectively, by:

– the relative distance error,ε;
– the statistically obtained fraction of the searched-file best

cases,ρ;
– the tangent of the expected search improvement curve,

κ.

We have also defined measures to quantify the performance
improvements and the quality of efficiency, and tested all of
our approximation techniques by querying on three different
multidimensional data files.

Our results show that approximation through relative er-
ror is not very efficient. Approximation through distance
distribution performs best; in fact, improvements in effi-
ciency of even two orders of magnitude were observed for
still quite high precisions. However, a characteristic distance
distribution is needed, and the quality of this distribution
may influence the performance. If such a distribution is not
available, the approximation through the slowdown of dis-
tance improvements is strongly recommended, because this
method is simple, it does not need additional data, and it
also performs very well. Though the techniques of approxi-
mation seem to be more efficient for smaller sets of nearest
neighbors, approximation techniques also seem to perform
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well for skewed distance distributions, and they scale well
to manage large data files.

In this paper we have only considered the M-tree in-
dex. However, other multidimensional indexes, such as the
R-tree and the X-tree, could clearly be modified in a simi-
lar way, because they use the same, or very similar,k-NN
search algorithms. Furthermore, we believe that the proposed
technology could also be used to process multiple similarity
predicates by modifying the search algorithms suggested by
Ciaccia et al. (1998a).

Encouraged by the results obtained, our future activity
will concentrate on improving the performance of the ex-
isting methods and also on developing other approximation
techniques. For example, provided more distance distribu-
tions in a specific file are available and the one which is
most similar to the distribution with respect to the query
is used, precision should improve. Another idea might be to
considerregion proximityas the constraint of approximation.
We also plan to investigate approximation precision from a
human user perspective by running experiments on features
of images and then comparing the relevance of the exact and
approximated sets. In this way, a user-acceptable precision
P could be determined and the approximation parameters
correspondingly adjusted. Finally, though the nearest neigh-
bor search seems to be the most important type of similarity
query, we also plan to investigate the problem of approx-
imate similarity range queries, which will certainly require
new approaches.
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