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Abstract. Motivated by the urgent need to improve the effi- with respect to the query. However, the response sets always
ciency of similarity queries, approximate similarity retrieval have a form of agraded set because the importance of a
is investigated in the environment of a metric tree indexretrieved object is determined by its distance from the query
called the M-tree. Three different approximation techniquesobject.
are proposed, which show how to forsake query precision Our approach for searching contrasts with the traditional
for improved performance. Measures are defined that caomne where Boolean queries, such as the queries known from
quantify the improvements in performance efficiency andthe relational database systems, are used — the response to a
the quality of approximations. The proposed approximationBoolean query is a set where each element is of equal im-
techniques are then tested on various synthetic and real-lifportance. Consequently, it is difficult to apply the traditional
files. The evidence obtained from the experiments confirmsontent-based indexing technology for similarity retrieval.
our hypothesis that a high-quality approximated similarity New approaches are therefore needed.
search can be performed at a much lower cost than that The problem of executing similarity queries has been
needed to obtain the exact results. The proposed approximaddressed by many researchers in both the theoretical and
tion techniques are scalable and appear to be independesystem-oriented communities. Unfortunately, completely sat-
of the metric used. Extensions of these techniques to thésfactory results have yet to be obtained. Efficiency still re-
environments of other similarity search indexes are also dismains a problem for large databases, which are typical for
cussed. multimedia applications. On the other hand, many expert
users, or data analysts, develop and test hypotheses on ap-
Key words: Access structures — Distance only data — Sim-proximate data first and only then do they draw final con-
ilarity search — Approximation algorithms — Performance clusions on precise information, which is more expensive to
evaluation obtain. Furthermore, several (iterative) steps for performing
atomic similarity queries are required in a typical process
of searching in multimedia databases, because specifying an
appropriate query object is not always easy. Consequently,
) anapproximate similarity searchnay be very useful in such
1 Introduction situations, especially if its execution is much faster.
This paper studies the problem of an approximate simi-
The problem of processing collections of data objects so thafarity search which forsakes some precision in exchange for
similarity queries can be answered efficiently has become ini'mproved performance_ In particu|ar, we propose three ap-
creasingly important for many application areas, such as datgroximation hypotheses in the environment of the dynamic
compression, pattern recognition, statistics, learning theorymetric tree for similarity retrieval (Ciaccia et al. 1997) called
and above all the multimedia content-based retrieval. the M-tree. The first type of approximation is bound by a
Although several syntactic forms of similarity queries yser-defined relative error on the distances that the retrieved
exist, the processing of any of these queries is based oBbjects may have with respect to the exact answer. The sec-
the principle ofsorting (or ranking) objects of a searched ond type of approximation is based on stochastically defined
database (file) with respect to a user-specified referenc@pper bounds on the number of best cases from which the ap-
query object. Typically, the ranking criterion (a similarity or proximated query response set should be retrieved. The third
dissimilarity-based measure) is fixed for a given application,type of approximation is based on a pragmaﬂc observation
but query objects change according to user needs, which rehat the precise response is obtained through multiple search
sults in a different ordering for different queries. The size of steps which improve the precision of previous approximate
the response to a query is restricted by putting constraintanswers; the grades of improvements decrease rapidly dur-

either on the number of best (most similar) objects or oning the search time. All three types of approximation are
the maximum distance which the retrieved objects can have
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experimentally tested on real and synthetic data sets, andf advanced data-indexing applications such as multimedia.

their efficiencies are compared. The results obtained are erfFhe specific arguments can be summarized as follows.

couraging, and efficiency improvements of even two orders

of magnitude have been achieved. In other words, wheread. In computational geometry,-dimensional vector spaces

a precise similarity search may take several minutes, in an with usually not very highn (from 2 to 20) are typ-

approximated search this can be reduced to seconds, while ical, and theL,,-distance between objects (points) is

the precision of approximation typically remains quite high.  used to measure dis-similarities. Notice tiat L,, and

Although better performance improvements are achieved for L., are the well-known Manhattan, Euclidean, and MAX

small sets of nearest neighbors, different metrics can be used, metrics. Though such environments are also relevant in

and the larger the files, the better the performance improve- the case of multimedia data indexing, the dimension
ments. needed is typically much higher. Moreover, more com-
This article is organized as follows. In Sect. 2, we dis-  plex metrics are also relevant in the multimedia envi-
cuss the background and objectives of our research. Three ronment, such as the quadratic form functions (Seidl
approximation methods are specified and independently ana- and Kriegel 1997), Hausdorff metric over sets of
lyzed in Sects. 3, 4, and 5, respectively. A comparison of the  dimensional points (Huttenlocker et al. 1993), or the Lev-
proposed approximations is the subject of Sect. 6, in which  enshtein €dif) distance over strings (Hall and Dowling

also the aspects of extensibility and scalability are studied. 1980).

Section 7 concludes the paper. 2. Data sets studied in the field of computational geometry
are typically static. In particular, it is assumed that the
data is known in advance and never changes. However,

2 Background and objectives multimedia data collections change in time; generally
growing, but also shrinking, since database objects may

Depending on the applications, similarity is expressed by be deleted.

the closeness of objects defined byliatance functiond, 3. In theoretical research, the efficiency of algorithms is
which, for a pair of objects (or their representative features) measured, almost exclusively, by the asymptotic order
from the domainD, provides a non-negative real value, of growth in their complexity. However, asymptotic ef-

d : D?> — .72}. The distance function is generally of arbi- ficiencies do not always agree with how fast such al-
trary complexity, and the problem of similarity retrieval can gorithms compute in real computer environments. The
always be solved in linear time through a simptate-force efficiency of database algorithms is better expressed in

search. After computing distances from a query object to all terms of elapsed time to perform a transaction, or, since

objects in a given collection, similarity queries can easily be  such time is practically impossible to express for com-

decided by sorting objects in terms of their distances. How-  plex systems in an analytic way, in terms of (estimated

ever, it has always been an important research challenge to or measured) I/0O and CPU costs.

find algorithms which would manage, possibly in dynamic

data environments, sets of objects so that searches can be

performed in a sub-linear time.

Typically, a similarity query has either a form of the 2.2 Indexing structures for similarity retrieval

rangeor of the nearest neighbor(sjuery. Though different

in their search algorithms, these query types are closely re-

lated. In fact, a range query retrieves all objects contained irDeveloping index (or storage) structures which would sup-

a specific, query-object-related region. On the other haind a port efficient evaluation of queries for data from complex

nearest neighbors querk;NN for short, retrieves: closest geometric spaces has long been a challenge in the database

objects of the query object; thus it determines the minimumresearch community. As far asdimensional vector spaces

region in which these neighbors can be found. In any caseare concerned, probably the most successful approach is the

retrieved sets are generatfyaded(or ranked sets, because R-tree by Guttman (1994), with its more advanced modifi-

some of their objects may be closer to the reference quergations, such as the*Rree (Beckmann et al. 1990), SS-tree

object, thus more important, than the others. (White and Jain 1996), or X-tree (Berchtold et al. 1996).

Generic metric spaces, that is geometric spaces in which

only the positivity, symmetry and triangle inequality dis-

2.1 The theoretical approach tance postulates are necessary, have been considered in de-
signs such as the VP-tree by Chiueh (1994), GNAT by Brin

The problem of similarity retrieval has also been one of the(1995), or MVP-tree by Bozkaya and Ozsoyoglu (1997).

fundamental subjects in the field abmputational geome- Though different in the underlying principles used for data

try. This theoretical area concerns the design and analysis gfartitioning, all these designs assume static data files. Since

efficient algorithms for computing various properties and pa-processing dynamic files is an important feature of index

rameters of finite configurations of geometric objects. In thisstructures, Ciaccia et al. (1997) have designed a paged, dy-

way, it forms foundations of many applications. A survey on namic, and balanced tree, called the M-tree. Notice that

geometric range searching can be found in Matousek (1994Xxollections of generic metric data are sometimes called

However, there are several fundamental differences betweedistance-onlydata, because only distances between pairs of

the objectives and approaches that are considered as stapbjects can be quantified — data objects are not necessarily

dard in the field of computational geometry and the needsmbedded in any multi-dimensional space.
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2.3 Objectives on the averages obtained from many test runs in order to
increase confidence in the results obtained.

Alhough there are several index structures that can support

the execution of similarity queries, experience with their ap-

plications shows that the processing costs are still very high2.4 Principles of M-trees

For example, similarity retrieval in high-dimensional data

spaces tends to access most or even all similarity index tregn M-tree, can be seen as a hierarchy of metric (ball) re-
nodes (sometimes designated asdimensionality curse gions. A region is defined by a database objectand ra-
Another important fact is that the specification of a query dius(0;), which represents the maximum distance between
object@, needed as a reference object in similarity queries,), and any other object, including its region (if any), in
is something users find quite difficult. This problem is easythe region ofO;. An M-tree is a multiway-branching tree;
to understand if a space of many dimensions is consideredhus, each node can contain several object entries which are
Consequently, several queries need to be executed beforezi members of a region centered aroungarent object
good query object is found. Initial retrieval steps are needed) , stored in a higher level node. Notice that the region
to find a more suitable query object. This iterative approachof objects from the root is assumed to be the entire uni-
to query processing makes the total costs of a query exeyerse, because these objects do not have any actual parent
cution even higher, while the need for exact answers is nopbject. Each entry is represented by the object's features
always relevant. and, in the case of non-leaf entries, by their region radii
The vagueness in query specification together with theyhich restrict minimum regions in which all descendant ob-
high query execution costs led us to investigating the fol-jects and/or regions can be found. For efficiency reasons,
lowing idea. child-to-parentobject distances, computed during the tree

Provided an approximate similarity search can be construction phase, also form a part of the objects’ entries.

performed much faster than the precise search, the
approximate similarity retrieval can play a useful role o .
in the global process of iterative similarity retrieval 2.4.1 Similarity search strategies

In other words, since processing exact similarity queries ispyyning sub-trees, or reducing search costs by avoiding dis-

not always required, approximate answers would suffice, €Stance computations and node accesses, is the primary con-

pecially when obtained at much lower costs. cern of the M-tree similarity search algorithms. As men-
Computational geometry researchers (Arya et al. 1994}ioned above, we only consider the more general case of

have also addressed the problem of approximate similarsimilarity retrieval, that isi-NN queries, which can be char-

ity searching. However, to the best of our knowledge, nogcterized by the following sketch of the algorithm. Implic-

dynamic indexing structure for approximate similarity re- jtjy the number of objects in the file is assumed to be no
trieval has been proposed. In this paper, we develop thregmaller thark.

alternative techniques for the-NN query approximation.

Though the asymptotic execution costs of all our approxi-k-NN algorithm

mated search techniques are identical to the cost of the exabiitialize-set: consider any sub-file of size as the response

similarity search for the same query, we demonstrate through ~ Set, and assign to(Q) the distance betweef? and the

experiments that a high speed-up can be obtained even for k-th nearest neighbor of this set (i.e., the largest dis-

quite precise approximations. tance). Put a pointer to the M-tree root node (region of
Although our proposals are of general validity, we study ~ objects) into the priority queu€Q. Pointers inPQ) are

the problem of approximate similarity search in the context  ordered according to thproximity of their correspond-

of M-trees, so that different approximation hypotheses can be ing regions with respect to the query regiaf, ¢(Q)),

compared through experiments on actual data sets. Another Which is dynamically shrinking during the search time.

reason for choosing the M-tree environment is that it is thepurify-set: while there are entries i) with a positive

most general dynamic index structure for similarity retrieval. ~ proximity (i.e., the query and entry regions intersect),
Specific hardware configurations can affect experiments do

by factors such as the simultaneous processing of several access nodeaccess a node determined by a pointer lo-

jobs, the inability of most operating systems to accurately cated at the top oPQ;

allocate clock cycles to processes, and caching effects. To test entry: for each entry in the accessed node,

avoid problems with the accuracy of measured query elapsed test object: if the object of this entry can improve
times we measure the query-processing costs in terms of the response set, update the response set and
the number of accessed M-tree nodes and the number of adjustr(Q);

distance computations. More precisely, since the number of test region: if the region of this entry intersects
read nodes and distance computations is correlated (in tree (Q,7(Q)), put the pointer to this region intBQ;

organizations, distances are only computed for objects OFesponse setthe current response set contaihsnearest
accessed nodes), costs in all our graphs represent the number neighbors taQ

of distance computations. This measurement gives higher

numbers, and is thus more precise. Note that the algorithm consists of two phases, namely
Due to the lack of any standard experimental data (or a&he initialization and purification of the required response

benchmark), we choose three different data sets and reposet. However, though the first phase is typically very fast
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of objects in a given tree. Notice that the same file can re-
sult in many still correct, forms of M-trees. However, due

to the properties of this algorithm, the following cost-related

properties can still be defined.

Given an M-tree, the number of accessed nodes (regions
of objects) fork-NN search with respect to Q is determined
by the number of regions which intersect the query region

r(Q) with radiusr(Q) = d(Q, O%,), whereO%; is the k-th nearest
1+e neighbor of Q. More precisely, a region with the parent
objectO,, is actually accessed from the priority queue if

d(Q,0p) < 7(0p) +d(Q, OF). ®)

Those interested in M-trees should, besides Ciaccia et
al. (1997), also refer to the following articles: Ciaccia and
Fig. 1. Pruning principles of the M-tree Patella (1998) on algorithms for bulk loading the M-trees;

Zezula et al. (1998) presenting practical experiences with a

parallel version of the M-tree; Ciaccia et al. (1998a) suggest-
and a rather rough approximation of the desired response img an extension of M-tree for processing multiple (single-
expected, the second phase typically needs many node reafisature) similarity predicates; Ciaccia et al. (1998b) propos-
and distance computations. ing a cost model for similarity queries in metric spaces.

To understand these algorithms suppose that the entry for
objectO;, with its parent objecO, and its region of radius
r(0;), is to be processed (see also Fig. 1). Since the search
algorithm is strictly hierarchida- a parent object needs to 2.5 The simulation testbed
be processed before its child object can be considered — the
distanced(Q®, O,) is known. The distancé€(O;, O,) is also
known because it is a part 6¥;'s entry. To evaluate and compare our strategies of approximation,

In principle, O; may qualify as a new member of the we use three qualitatively different files of 45-dimensional
result set, but to decide exactly, the distad¢®;, Q) must  vectors, each one of the size = 10,000. The first file,
be computed. Also, provided the query a6d’s regions  designated as CHV, represents color features of images and
intersect, the pointer to the descendant nodeDgfmust ~ was chosen as a representative of real-life files. Color fea-
be put into PQ, because it might include better qualifying tures are in fact 9-dimensional vectors containing the av-
objects (see theest object and test region steps of the erage, standard deviation, and skewness of pixel values for
algorithm above). each of the red, green, and blue channels (see Stricker and

To minimize retrieval costs, caused by distance computaOrengo 1995). An image is divided into five overlapping re-
tions and disk (node) reads, the search algorithm of M-treegions, each one represented by a 9-dimensional color feature
uses two kinds of (preliminary) tests on object entries. Asvector, which gives a 45-dimensional vector as a descriptor
Ciaccia et al. (1997) explained and proved for correctnesspf each image. The distance function is based on the Eu-

the corresponding tests are the following. clidean ({,) metric. Notice that other approaches to image

color representations usmlor histograms In such cases,

1. [d(Op, Q) — d(O;, 0p) |> (@) +7(0;) .- (1) similarity searches typically use weighted measures of simi-
If this test is satisfied, the regiorO¢, r(O,)) can be larity because of the crosstalk between similar colors. In our
ignored without even computing the distance(g. experiments, we use a method that requires the Euclidean

2. d(0;,Q) > r(Q) +r(0;). ) distance in order to be consistent with the metrics adopted

for the other data sets.

The other two files contain synthetic data in order to
simulate rather extreme and orthogonal cases. Specifically,
the second file, designated as UV, contains vectors which are

Obviously, provided thati(Q,0;) < r(Q), then 0. is a uni_formly d!strik_)uted ir_1 a 45—dimensi9nal unit h_yper—cube,
new member of the result set and the query radius shoulg/hile the third file, designated as CV, is formed, in the same
appropriately be reduced. Notice, however, that Eq. 1 caryPac€, by 10 randomly distributed clusters of vectors with
also be used as a preliminary test@f’s qualification by & variance within a cluster of = 0.05. For simplicity, we
consideringr(O;) = 0, that is only considering the object always consider the Euclidean distance as the measure of
and ignoring its region. The cost minimization principles of Similarity. . . .

the M-tree are also illustrated in Fig. 1. Query points, again 45-dimensional vectors, are not from

The execution costs of theNN algorithm above natu- the data files, but comply with data distributions which ob-

rallv depend on the querv poid@ and specific distribution J€Cts in the individual files follow. One hundred different
y aep query poi pecific cistribUt query objects are defined for each of the files. Then, all costs

1 Notice that this test has a meaning, provided togt represents a  reported are expressed as average va_Iues obtained f_rom runs
region, that is when(O;) > 0. of all queries. We used 10-NN queries in all the experiments.

If this test is satisfied, the pointer to the region
(04,7(0;)) is not inserted into the priority queue, thus
the descending node is never acce$sed
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2.5.1 Performance measures When the approximation gives exact results, the relative er-
ror€ = 0.

To quantify a degree (or a grade) of excellence which in- A proper evaluation of the quality of approximation en-

dividual approximation techniques may possess, we suggesails considering both the measurésande. In fact, we can

considering as measures not only an improvement in perforeonsider the precision of approximation as a measure that

mance efficiency, but also a quality of approximation. High only takes into consideration the ranking of database objects

improvements of the performance typically result in approx-with respect to the query object. On the other hand, the rel-

imations with poorer quality, and vice versa. ative distance error only relates the actual and approximated

The first measure, called thmprovement in efficiengy neighbor distances, irrespective of the rest of the file.

1FE, relates the costs of the exact and approximated searches.

It is defined as
cost(O%;)

- cost(O%)’ @)

3 Approximation through relative distance errors

In this section, we study the case where the approximation
of a nearest neighbor with respect @ is constrained by
where O%, and O are, respectively, thé-th actual and a user-defined relative distance errorAfter outlining the
approximated neighbors of Q as found by our search algoidea, we show how the M-tree pruning rules can be modi-
rithms. Thengost(O%) andcost(O%) are the corresponding  fied and demonstrate by observations from numerous exper-
execution costs to retrieve these neighbors. iments how this method performs.

Contrary to the improvement in performance, the quality
of approximation is assessed through two complementary
measures. We call them tipeecision of approximation?, 3.1 The idea
and therelative distance errqre.

In order to define theprecision of approximationas-
sume that)’,, i = 1,2, ...k, is the approximateérth nearest
neighbor with respect tQ). Thus, the precision is defined as

Let On be the nearest neighbor ¢f and O, some other
object in the searched collection. Obviously, providee 0
d(ONa Q) S d(OAa Q)y
d(OAa Q)
i ————=1+e¢ 9
P= s ®  dOn.Q) ©
gelke, @&, Ma defines that the distance fro@ to O4 is (1 +¢) times the
where #ange(Q,d(Q,0%)) is the cardinality of the set distance fromQ to On. Now, assume thab, is the ap-
which is obtained from a file of size while performing a  proximatednearest neighbor @j. In such cases represents
range query foQ with radiusd(Q, O%). Sinced(Q, O%) < the relative error of the distance approximation, that is of
d(Q, O%), itis true thati < #range(Q, d(Q, O%)), because consideringD 4 as the nearest neighbor @finstead ofOy .
the setrange(Q, d(Q, O%)) contains not only the exact re- Naturally, the relative error of the distance betwegn
sponse set of siz& but possibly also other objects. For ex- and any database object with respectd(@, Oy) is non-
ample, whenPy, = 0.5, then the 10th approximated neighbor negative, but in order to consider an object as the approx-

is, in fact, the 20th actual neighbor &f. imate neighbor of@, a user-defined bound on the relative
Then, the precision of &-NN search is defined as error must be respected. Provided this erray, ithe follow-
) ing constraint must hold fo© 4:
Yoy P Yiag CRCEG) d(04,Q)
i= i _ =1 #range(Q, ,O" ,
p=&tl s = A= 6) A g4 (10)
i k d(On,Q)

Notice that, when the approximated response is exact, thehis idea can be generalized to the casé-fN search, for
precisionP = 1. On the other hand, the precision tends to 01 < k < n, wheren is the size of the database. Usitg,
in the worst case. and O% to designate thé-th approximated and the nearest

_ Therelative distance errardesignated a8, is defined  pejghhors, the constraint should be modified as follows:
in a similar way. LetO}, be thei-th nearest neighbor of

Q and O, the i-th approximated neighbor a, which is d(0%, Q) <14c) (11)
assumed to be different from any object in the database d(O%,Q) ~

Ihzus, Ozv'gﬁl);hg:xdr(gs’s%%) < d(Q,0}) for all i = If this constraint is satisfied)” is called the (1 +) k-NN
o P of Q. However, thoughi(Q, O%;) is unique for a giverQ),
__d(Q,0%) there may be several objects in the database which, when
“" d(Q,0%) (T)  considered a®);, satisfy Eq. 11. That means that the can-
didate set for approximate results is not necessarily singular.

gives the relative error of the-th nearest neighbor. The | the limit cased(Q,0%) = d(Q, O%) or evenO¥, = O%,.
global relative distance error is then defined as

E  d(Q,0Y) . . .
Eo— _ A
- Y1 G _ >t dQ.0%) 1 @®) 3.2 Approximate pruning constraints
k k To see how the search pruning tests of M-trees can be relaxed
2 The relative error is not defined for the exact match where by respecting a tolerable relative errgrconsider another

d(@Q,04)=0 form of Egs. 1 and 2 as follows:
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(@) <1 (12) Example 3.1.Suppose a region with its centér,, radius
| d(Op, Q) — d(O;,0,) | —r(0;) r(O,) = 3, and distance to the query poiftO,, Q) = 4.9.
Provided the distancé(O%;, Q) = 2 and the precise similar-
ity search is considered, this region must, according to Eq. 3,
r(Q) <1 (13)  be accessed, becaus® & 3+2. However, provided the ap-
d(0;,Q) — r(0;) ' proximate search witla = 0.2 is used, the situation is a bit
. . . more complex, because the distance to a possible approxi-
Looking at these_ fract|ons,_ the numerators specify, bymate neigr?bor is constrained by=2d(Q, O%) 2 2-(1+0'2r;p
thg query point radius, the distance to tﬁgtm) nearest (see Restriction 17 for verification). Naturally, provided that
neighbor of@ discovered so far. For convenience, see aIsod(Q Ok) = 2.4, i.e., the most distant approximate nearest
. . - Pl A - <y 1Ly,
Lhe k-Ntl\i" 5."%0fghm mb Sttect. 54% Provntj_ﬁdb thfe Sec?r(t:r?' neighbor is found, the situation is the same as in the case of
as not finished, 1.e., better objects can sull be found, iy, precise nearest neighbor, and Inequality 18 orders this
distance can be considered as the distance to the appro>9égion to be accessed. ButdQ, O%) = 2, Inequality 18 is

Ihelower botnd§sing the corresponding information about |2t Satsfiec: becausegts 3+2/(1+02) s ot rue, Gener-
: - : ; %
distances at hand) on possible nearest neighbors in the rg-”y' if we consider the approximate distané(&, 0;) as a

: : - variable and solve the inequality®< 3+d(Q, O%)/(1+0.2),
gion (O;,7(0;)) with respect toQ) (see again Fig. 1). In : . ’ .
other words, the denominators represent the minimum dis\z’iv(%fgg)c;u; t2h8at our region only has to be accessed if
tance that an object in the given region might have, with™+*> 47 = ===

respect to@). Naturally, if the lower bounds (i.e., the de-  pye 1o the fact that the actual savings depend on data
nominators) are higher than the current radiusdfthe 55 well as the specific structure of a constructed M-tree, we

region considered cannot contain any qualifying object, anqyestigate this phenomenon by the following experiments.
therefore can be ignored in the search from this point on.

In order to modify these tests to the case of approximate
search, that is, when> 0, the lower bounds can be relaxed

and

by the relative factok in the following way: 3.3 Experimentation
r(Q) s (14) _ o
1 d(0,,Q) — d(0;,0,) | —(0;) € The. experiments for t.he approximate similarity search con-
P 7 / strained by relative distance errors<Oe < 2 are summa-
and rized for all our data files in Fig. 2. Note that the actual
Q) rglative errore is much sma!ler than the .search approxima—
40:.0) — 10 <l+e. (15)  tion parametek. Though this was true in all the cases, it
7 J was more significant for the synthetic data files (UV and
By analogy, the actual test for an object qualification can beCV) rather than the color features. We attribute this behav-
modified as ior to the fact that the (unit) domain space in the case of
(Q) synthetic data was denser compared to the possible density
——— < l+e. (16)  of our CHYV file.
d(0;, Q) For higher relative errors, the precision obviously de-

Naturally, relaxing these tests in the above way can nevefréased. Here, however, the real-life file CHV performed
increase the similarity search costs, because both the numbBgtter than the synthetic files, and even dor 0.4, wheree
of distance computations and the number of node reads caffaS 02, the precision was still around3 o
only be reduced. To be more precise, consider again Eq. 3, Unfortunately, the observed improvements in efficiency
which specifies whether a region with its parent objegtis ~ Were not very significant. This was true above all for the
accessed by the M-tree’s search algorithm. To adjust this codgnge of the relative distance errors up to, sa& Which is -
condition to our relative-distance approximation algorithm, the range of values for which the precision was still quite
two important facts must be reconsidered. First, the distanc81gh- Note that the best improvement in efficiency with
to the approximatedé-th nearest neighbor may be larger than 0-5 was obtained for the CHV file/£ = 1.2), while for the

the distance to the exact one, thus, restricted by CV file, the improvement was only.d3, and in the case of
the UV file, the improvement was practically negligible.
d(Q,0%) < d(Q,0%) <d(Q,0%) x (L+¢). (17) In summary, an approximate similarity search constrained

. . . by a relative distance errerkeeps, by definition, an upper
Second,_ all the pruning tests cons_lder that the aCtl.JaI neig 'gund on the actual relative erFr)or, v%//hich is typically F:r?uch
borsl,l with reEspec::st tohthﬁ gp{)rox!mate, r?rfh (1)::[1|mes . lower than the required constraint. However, since both of
sgna eg SO q.t ’”W Ic egrmmef w eb er ;rf%g'onme synthetic data files performed similarly in all the aspects
(Op,7(0p)) is actually accessed or not, can be modified as considered, it seems that it is the density of the search space,
d(Q, 0,) < 1(0,) +d(Q, OF) /(L +¢). 18 rather than the data distribution, which influences the per-

(@, 0p) < 1(Op) +d(Q, 02)/(1 +€) (18) formance. Less dense spaces can provide better precision
However, due to the properties of approximated neighborsand higher improvements in efficiency, but may result in
see Eq. 17 for the range of their possible values, the approxapproximations of higher relative errors. Unfortunately, per-
imated search can never access more nodes than the exd&stmance improvements are typically not high, whenever the
search, as the following example illustrates. precision is important.
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4 Approximate search through distance distributions

Since the existence of a coordinate system, which is use
in vector spaces to determine the location of objects, is no

necessarily a condition for a metric, the only general way

1.8 2

to quantify topological relationships between objects is the
distance distribution. As Ciaccia et al. (1998b) argue, this
gistance distribution is a correct counterpart of the data dis-
{ribution used for vector spaces; thus, it can be applied as a
way to characterize metric data sets. In this section, we in-
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vestigate a method which exploits characteristics of distancéunction F..(x) that would serve as @presentative distance
distributions to control a similarity search approximation. distribution functionfor all viewpoints
Provided that such a representative is found, the stop
condition Eg. 20 can be substituted by

Fo(dQ,0%) < p (21)
Let.7¢ = (74,d) be a metric space, where/ is the value  for each query objeaf).
domain (or the universe), antis the measure that quantifies The problems ofviewpoint discrepancier, alterna-

distances between pairs of objects fromd. The relative  tyely, homogeneity of viewpointsve been studied by Ciac-
distance distributiorof an objectO; < 2 with respect 10 ¢ja et al. (1998b). For instance, experiments performed with

4.1 Distance distributions

the others, or the so called;’s viewpoint is defined as large text files have shown that the homogeneity of view-
Fo,(x) = Pr{d(0;,0) < z}, (19)  Points is quite high, which means that distance distributions,

' ) ] ) measured with respect to different objects, are very similar.
whereO is a random object fronv. Ciaccia et al. (1998b) also propose a methodology to

By definition, Fo,(x) is a monotonic, non-decreasing decide when one distance distribution can be used rather than
function, which, for a given distance, provides the proba-  another. In particular, the so-calleiscrepancypetween two

bility that a randomly chosen object from¥ is within a dis-  relative distance distributions was defined as
tance fromO; which is smaller than or equal ta It is also

important to observe that, given two object, O; € 24,  6(Fo,, Fo,;) = El(| Fo,(X) — Fo,(X) [], (22)
Fo,(x) may be different fromfo (), because the points of

: : . . .
views of objectsD; andO; need not be the same. wherex is a random distance in the interval, 0], and d

is the maximum distance between two objectsZgf The
index of homogeneity of viewpoints t8¥/a metric spaceZ
was defined as

HV(.2) =1— E[(Fo,, Fo,)] ,
Assume that the query object @ and thatfy(z) is the ) )
distance distribution of9 with respect to all objects in a WhereO1 andO, are random points o?2. When 'V (.7/)
given database. According to Eq. 18,(z) represents the ~ 1, two dlffe(ent relative distance distributions are likely
fraction of objects in the database for which the distance tot0 behave similarly; thus, anyo, (x) could be used as the
Q is less than or equal to. Provided there are objects in ~ "epresentative. ().

the database; x F,(z) objects should have a distance to  The index of homogeneity is too general for our pur-
Q not greater than:. poses, since it considers the discrepancy of relative distance

Now, consider thek-NN search algorithm again and distributions over the whole interval [@"]. To make an ap-
imagine an intermediate retrieval step in which the distancé’roximation, we need to consider the behavior of a specific
to the k-th approximated neighbad”, is d(Q, O%). By us- function F,. in an interval [Qd’] where d’ is substantially

b . + . . .
ing the distance distributioniy(d(Q, O%)) determines the smaller thand*, since possible values @fcan ty_plcally be
fraction of the best cases (with respect@d to which this smaller tha_n @. Notice, however, that C(_)ns_lderlng asmalle_r
current approximate result belongs. For example, provided@nge of distances does not necessarily imply a better dis-
longs to 1% of the best cases in a given object file. tances Is _taken into account. . . C

This property can easily be exploited for approximating 1 n€ discrepancy of two relative distance distributions
similarity searche — a user may wish to find arlyobjects N @n interval [0z] can be obtained by slightly modifying
among those belonging to the fraction of the best cases Ed- 22 as follows:

To this aim, the followingstop conditioncan be defined 8(Fo,, Fo,)() = Epl| Fo,(x) — Fo,() []

Fo(d(@,0%) < p (20) 1 /

. _ _ = | Fo,(y) — Fo,) | dy. (23)
and used in thé&-NN algorithm to terminate the search be- 0
fore the exact nearest neighbors are found. Since the Searclkhedegree of representativeneBd - of a given represen-
algorithm remains the same, and it is only the stop condi-

. . . i . . tative F.. in the interval can be defined as follows:
tion which might terminate the algorithm earlier, the search " [07]

4.2 The concept of approximation

costs can never be higher than the costs needed to perfor®V () (x) = 1 — E[6(F,, Fo)(x)] - (24)
the exact similarity retrieval — no search improvements are Fo .
obtained wherp < Fy(d(Q, O%)). When RV (_26)(d’) ~ 1, then we can argue thdt. is a

good representative in the interval, [0)].

Let us consider, for instance, as a representativathe
4.3 Approximation through other distance distributions erage distribution functiorlefined as follows:
. L . . Favg(x) = E[Fo(.’b)] . (25)
So far we have assumed that the distance distribution with
respect tay is known. However, computing and maintaining Figure 3 shows a graph of the degree of representativeness
this kind of information for any possible query object is of function F;,, for our testbed. The graph was obtained
completely unrealistic. A possible solution would be to find aby computing for eachy the value RV Favs (_2£)(G 4v4(p)).
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where G4 IS the inverse off,,,, that is if p = Fyu4(x)
thena = Gaug(p).

It can be seen that, for values pf< 0.1, the degree of
representativeness always has values greater ti98n No-
tice thatp = 0.1 corresponds to 10% of the whole database

0 0,04 0,080,12 0,16 0,2 0,24 0,28 0,32 0,36 0,4 0,44 0,48 0,52 0,56 O,

6 0,64 0,68 0,72 0,76 0,8 0,84 0,880,920,96 1

than 0.1, the approximate search may include objects that
are suddenly more distant than those considered for values
smaller than 0.1.

The last graph shows the measure of the improvement

in efficiency. Using CHV and UV files, we obtain good

so it can be used as a realistic limit for running approximateimprovements for small values @f Whenp = 0.025, we
queries. Observe that, for the CV file, the degree of reprehave an improvement of 33 times for UV, and 52 for CHV.

sentativeness remains above 0.99 even for valuesugf to
0.4.

4.4 Experimentation

The precision (P), the relative error (¢), and theimprove-
ment in efficiency{/ E) were computed for different values
of the approximation parameter The results are reported
in Fig. 4.

Since realistic values of are lower than 0.1, this ap-
proach obtains good precision for all of our files. In particu-

lar, the precision seems to be very high using the UV file. In

that case, it always remains above 0.2 for valueg ap to
0.09. Using the CV and CHYV files, the precision falls below
0.2 for values ofp > 0.02.
While for p < 0.1 the relative error for CV and UV is

guite good, we obtain higher values ofor the CHV file.

In particular, wherp is smaller than 0.1, the error is always
smaller than 0.4 for CV and UV, while it rises up to 0.7 for
the CHYV file. Notice that, for the CV file, the error increases
rapidly for values ofp greater than 0.1. This is due to the

fact that the CV file contains clusters. Specifically, consid-

On the other hand, for the CV file, the improvement is 34
times only wherp = 0.1.

In summary, with this method values pfcan be found
that give good values of precision, relative error and im-
provement in efficiency for all three files considered. For
example, if we want to limit the precision t8 ~ 0.3, then
values ofp ~ 0.01 (CHYV file), p ~ 0.025 (CV file), and
p =~ 0.05 (UV file) should be used. With these values, high
improvements in efficiency (35 IE < 50) are obtained
and the approximate results have a limited relative error
(¢ = 0.15 for the CV and UV files, and ~ 0.3 for the
CHYV file).

5 Approximation through the slowdown
of distance improvements

The approximation method we present in this section is
based on the following pragmatic observation.

Observation 5.1. The M-tree’sk-NN algorithm determines
the response set fa@p by gradually improving an initial, ap-
proximate and potentially rough, subset of the file’'s objects
of sizek. Accordingly, the distance to theth (approximate)

ering the distance distributions, 10% of the distances ar@earest neighbo®* shrinks during the query evaluation and
smaller than 0.7, the remaining 90% of the distances belonginally becomesi(O%;, Q) whenO% = O%,. However, the

to the interval [1.9,3.6]. This implies that, whens greater

early improvements are typically significant, and with a very
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limited computational effort a good approximation of the ex- Due to the assumed properties fz), f (z) decreases as
act result can be obtained. On the other hand, this process: increases and its value, in fact, represents the chances of
slows down, and later improvements are usually minor andfinding better nearest neighbors — the lower the value of

time consuming. f'(z), the lower the possibility of improving the approxima-
The typical situation is illustrated in Fig. 5, which, for a tion.
certain@, shows the approximateNN distanced(0%, Q), Thus, given a constraint > 0, we can stop the ap-

and the number of necessary distance computatlmb(l$ # proximate search as soon Agz) < «. The quality of this

Obviously, the minimum value ofl(O%, Q) is d(O Q) approximation, i.e., the error we get by stopping the search

and, for this distance value, we have the maximum of dis-algorithm at a certain point, and the speed-up we obtain,

tance computations, which represents the costs for findinge., the reduction in distance computations and 1/O opera-

the actualk-th nearest neighbor. Observe that at the end ofions we gain, are clearly inversely proportional to the value

this search, more than 1000 distance computations are peof . Provided thats is sufficiently low andf'(z) < &, the

formed just to be sure that no better nearest neighbor existg&ipproximation obtained should already be of a good quality,
Since the number of node reads, or the I/O costs, angince the chances of finding better approximations are not

the number of distance computations are strictly correlatedhigh.

identical trends have also been observed when the number

of node reads instead of the number of distance computa-

tions was considered. Furthermore, a similar behavior to th&.1.2 Our implementation

one shown in Fig. 5 was observed in every experiment we

performed, when changing not only query points but alsoThe approximation error and the speed-up for a given value
the data sets. of k cannot be measured exactly, because they both depend

on the functionf(z) which is not known a priori. In reality,
the functionf(x) does not have the nice properties we have
5.1 The approach to approximation assumed above, because

Based on Observation 5.1, the approximation method deta) values ofz are discrete and the corresponding values
scribed in this section reduces search costs by executing the of f(z) only become available (for increasing as the
standard search algorithm until the variation (i.e., the reduc-  search algorithm proceeds;

tion) of the distance between the query and the approximategh) f(z) is a piecewise constant function, monotonically de-
k-NN objects becomes sufficiently low. In the following, we creasing.

first clarify the idea and then describe in detail its implemen- ] . ) ) .
tation. From an implementation point of view, (a) requires a

numerical evaluation off (z), while (b) requires a care-
ful choice of arguments which are used during the calcula-
5.1.1 The idea tion of derivatives. Hereafter, we assume that the function
f(x) has known values irx + 1 points, xg, ..., z,, with
To < x1 < ... < x,. Since f(x) is a piecewise constant
and monotonically decreasing function, it has the following
properties:

Assume the functionf : #d(-) — d(O%,Q) as a strictly
decreasing continuous function. In order to simplify the no-
tation, we designate this function #ér) and its first deriva-
tive as f'(x), wherez represents the search costs. For con-
venience, a derivative of degreeis designated ag®)(z). 1. f(xs) > f(xy) for i < g,
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f(x) L

Fig. 6. Graph of f(x) showing the potentially
optimal points for stopping the k-NN approx-
imate search

2. there exist pointsf, 27, 25, ... (with 2§ < 2} < 2§ <
coand f(xg) < f(zf) < f(ah) < ..
x =z, flar—1) > f(z).

Points 2’ are called thepotentially optimal pointsIn

fact, these are the points that provide the highest perfor-

.) such that, given

(ij — xo — 1) :|
+f(x2) [(1’2 — o) (w2 — 1)
2
+(13f(3)(€j) IT @ — =) (29)

i=0,i%

mance improvement for the same level of the approximationfor each;j = 0, 1, 2, where the notatios; indicates that this

Figure 6 gives an example ¢fz) and of the potentially op-

timal points.

The numerical evaluation of (z) is based on standard

point depends upon;.

numerical analysis techniques (see for example Burden €b.1.3 Terminating the approximate search

al. 1979). Accordingly, the derivative of(x) in x = x,,
s € [0, z] can be calculated as follows:
@) = L) * (2, — 20) - (s

S 4 (Z+1)|7

where L. (z) is the Lagrange polynomial defined as

- .235_1)(1‘3 - $s+1)

(26)

L.(@) =) f@)li(), (27)
=0

with

O (28)

(m - xz)
— Zi+1) - (T — )

( — 2@ — @is1) . ..
(Ii, - 177:—1)(%,

(xr —xo)(x — 1) . ..
(x; — zo)(xy — 1) ...

and¢ € [zo, ..., z.].
The error term is thusaf, — zq) - (zs — z5—1)(zs —
Toi1) - (Ts — 22) (2+ZI).('§) Unfortunately, since we do not

have any information about the analytic form 6fx), no

The condition used to terminate the search algorithm is based
on the estimation of () derivatives in points:?. We tested

the quality of three different methods for calculatifigz).
They are based on the use of two, three, or five points,
respectively. All three methods approximatéz) by using

a limited number of pointg? and the latest value af.

Let us consider two consecutivpotentially optimal
points z¥_, andz?, and let us also suppose that the search
algorithm has run up to a point where the number of distance
computations isc;, wherex, = 2. We can then calculate
the value off(zs+1). By using two points, the derivative in
f(z?) is estimated as the slope of a line passing through
f(@V ) and f(zs41). If f(zs41) = f(zs), then the derivative
is compared withk; if it is higher thank, the function is cal-
culated in a new point,., and the procedure is repeated,
otherwise it stops. Iff(zs) > f(zs+1), a new potentially
optimal pointz?,; = z.1 has been found and the proce-
dure is repeated by using this new point. More formally, the
procedure can be expressed as follows.

assumptions can be made on its derivatives of higher order§iput: z?_,, ml, flxs) with zg =2
and on their errors. We will not take into consideration theseQutput: if f'(z”) < , the search terminates, otherwise a

errors.

As an example, for = 2, that is when the function is

known in the pointseg, x1, x2,

f/(l'j) = f(xo) [ (2x; — x1 — x2) }

(22 — 21)(w0 — 72)

(2; — x0 — 22) ]

(z1 — wo)(71 — 72)

+f(en) [

new potentially optimal point?, s found.
Step 1: calculatef(xs+1)
Step 2: if f(zs+1) = f(xs), then
flaf_)—f(wse)
{ f@h) = ==

@l j—wen
if f () < &, then stop else = s + 1; goto Step 1}
Step 3:if f(rs+1) < f(xs), then the nevpotentially optimal

point 2%, = 241 has been found.
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With three and five points, the derivative is estimated by = These three methods of numerical derivation have been

usingz? ;.2 xs andal 5, 2t ,, 2 | ¥z, respectively.
The calculation off'(xf) in Step 2is modified, for both

cases, according to Egs. 26-28.

evaluated by computing the relative err@) é&nd the pre-
cision (P) as a function ofx. The experiments obviously
entailed running the approximateNN search and the exact
k-NN search, and comparing the distance between the query
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0.3

and thek-th object in the approximated result set with the that, apart from the UV file, the values &f are quite high.
distance between the query and th¢h object in the exact For example P varies in the range [@5, 0.20] for the CHV
result set. The experiments showed that, although the firdile — a very good result. Roughly speaking, we can say that
method is the simplest, it is far too inaccurate. Although P = 0.5 means that the firét approximate nearest neighbors
the quality of approximation of the second method is ac-containk/2 of the exact nearest neighbors.

ceptable, the third one, i.e., the method using five points, is The real relative errot was very good for all three data
significantly better and was adopted in all the experimentdiles. For the CHV file,e is in the range [@3 0.19]. To
described below. give an idea of the quality of the resutt= 0.1 means that
the approximate results have an average distance from the
query point that is 10% higher than the exact result. The
second graph of Fig. 7 highlights that the results are quite
od even for thé/V file, contrary to what happens fdr.

5.2 Experimentation

The approach to reducing distance computations described > . ) J :
in this section was evaluated by measuring the precigipn | NiS is due to the fact that in this file the objects are very
the relative errof, and the improvement in efficiendy as close each other, which gives a limited relative error even
a function of . The results of this evaluation are reported though the precision is low. . .
in Fig. 7. We used a logarithmic scale fer because we Of parng:ular interest are the resultg rgported in the third
considered a wide range of values for this parameter. graph of Fig. 7, which shows the variation &£ with x.

In particular, the first graph in Fig. 7 shows how pre- The method allows an improvement in performance to be

cision varies withs for the three data files (CV, UV, and obtained, measured with the number of distance computa-

CHV) used in the experiments. The best results were options, up to 50 'Fimes. To conclud_e, this method can gen-
tained for the CHV file and the worst for the UV file. Note €rally achieve high performance improvements while still
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maintaining good quality results. For example, for the CHV this method has not generally proved to be very efficient.
file, we havel £ = 20 with P = 0.3 ande = 0.15. For all our data files, the improvements in efficiency, with
respect to the same quality, were practically negligible com-
pared to those obtained by the other two approximation
6 Comparisons and further performance considerations ~ methods. _ .

The experiments suggest that the best approach is ap-
yroximation through distance distribution, which showed the
niques independently by relating their characteristic approx-19nest improvements in efficiency. This phenomenon was

especially significant when precision was considered (see

imation parameterse{p, and ) with defined performance le Fia. 8. wh h . h
measures, that is the improvement in efficiency, the searcfP! €xample Fig. 8, where the approximate search was per-
formed 100 times faster, while the precision was still)0

precision, and the actual relative error. To compare our ap-

proaches to approximation, we ignore the way the approX_Roughly speaking, we can say that instead of retrieving the

imations are specified (constrained) and only relate the imexact 10'nearest neﬁghbors, 10 objects fro'”f.‘ 10(.) best cases
provement in efficiency, which was the main objective of were retrieved 100 times faster. The approximation through

our research, with the quality, which is the precision and thedistance distribution also performed well with respect to the

relative error obtained. Such comparisons were made for affictu@! relative distance error. Here, only in the case of the

the files from our testbed, and the results can be found fof!0r feature vectors, did approximation through the slow-
the uniformly distributed data in Fig. 8, for the clustered d0Wn Of distance improvements achieve better results.
data in Fig. 9, and for the color features in Fig. 10. As far as the complexity of the methods is concerned,

Although approximation through relative errors explic- we can say that all of the proposed approximation meth-

itly puts upper bounds on possible relative distance errors?dS are quite easy to implement. Except for approximation

So far, we have considered the proposed approximation tec
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through distance distribution, no additional auxiliary data isfurther forms of queries, anscalability, i.e., the reaction of
required. Obviously, to obtain and maintain distance dis-performance parameters to changing sizes of searched files.
tributions might be an additional cost for the user or theBecause the first approximation technique proved not to be
system administrator; however, distance distributions can beery efficient, hereafter we only consider the second and
obtained, for example, during the M-tree construction phasethird approximation techniques.
because the insertion of objects into an M-tree requires many So far, we have assumed that the number of request-
distance computations. Another possibility is to acquire theing nearest neighbors is 10. Since the search algorithms are
distance distribution by sampling on the data file. However,independent of;, it is important to know how the preci-
if a user is not willing to bear the additional costs, or if a sion and efficiency change in relationtoIn particular, we
good representative distance distribution is difficult to find, investigated the case whekechanges from 1 to 50.
then approximation through the slowdown of distance im-  We now report the experimental results obtained for the
provements is the best option: it is easy to implement, it ha<CHV file when the approximation through the slowdown of
proved to perform well, and it does not need any supportingperformance improvements is used. Figure 11 shows two
data. graphs, the first reports the improvement in efficienEg
as a function of the precisio®, while the second shows

o . the variation in/E as a function of the relative err@r A
6.1 Extensibility and scalability slight difference can be observed by comparing the results
reported here fok = 10 with those given in Fig. 10. This
is due to the fact that a different set of queries was used in
Shese two experiments. The graphs in Fig. 11 highlight that
€the improvement in performance deteriorates (though not
gramatically) with increasing. A similar behavior was also

Though our testbed was designed to allow a comprehen
sive evaluation of various approximation techniques, it doe
not cover all the aspects needed when proposing an ind
structure. In particular, we have not considerdensibil-

ity, i.e., how far the technique can be extended to suppor
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down of distance improvements” was
used for the CHV file

observed when approximation through distance distributionS’hese results are quite comparable with those reported in
was used. Fig. 4 for vector data.

By definition, M-tree is not only able to deal with vec- To demonstrate that our approximation techniques scale
tor data of different dimensions, but it can also managewell for growing files, we considered files from 1000 to
non-vector space data. Furthermore, since M-tree organizes1000 objects. Figure 12 reports the results of experiments
search regions exclusively on distances, the actual numbgrerformed on the CHV file by using the “approximation
of dimension of vector spaces is not important from a per-through the slowdown of distance improvements” methods.
formance point of view. What counts is the distribution of When a file grows, we observed that efficiency increases for
distances, and the worst case occurs when the variance @onstant values of precision and of the relative error. This is
(very) low. a significant result which proves how useful our techniques

To demonstrate that M-trees are suitable for extreme datare for large files.
distributions as well, we have ran experiments with an lItal-
ian dictionary, using the edit distance as the metric. The
maximum distance observed was 17, but practically all dis-7 Conclusions
tances were in the range from 7 to 10. The results obtained
for the method based on an approximate search through dissjnce multimedia content-based retrieval has to deal with
tance distributions demonstrate performance improvements, iidimensional or distance-only data, similarity queries
from IE =100, whenp = 0.2, to [E = 20, whenp = 0.02. a6 pecome the most common type of queries in multi-

media information systems. Though the idea of similarity
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retrieval seems to be clear, it is quite difficult to imple- We have also defined measures to quantify the performance
ment efficiently, and the performance of similarity indexesimprovements and the quality of efficiency, and tested all of
remains a serious problem. However, since even the conceplur approximation techniques by querying on three different
of similarity typically invokes a certain amount eéémantic  multidimensional data files.
imprecision or vagueness in its definition, we have proposed Our results show that approximation through relative er-
to forsake someyntacticprecision in exchange for improved ror is not very efficient. Approximation through distance
efficiency. distribution performs best; in fact, improvements in effi-
To investigate this idea, we have specified three approxeiency of even two orders of magnitude were observed for
imation techniques in the environment of the M-tree. Thestill quite high precisions. However, a characteristic distance
approximations of the proposed techniques are bound, redistribution is needed, and the quality of this distribution
spectively, by: may influence the performance. If such a distribution is not
available, the approximation through the slowdown of dis-
tance improvements is strongly recommended, because this

— the relative distance error; _ method is simple, it does not need additional data, and it
— the Statlstlca”y obtained fraction of the searched-file besta|so performs very well. Though the techniques of approxi_
casesyp, mation seem to be more efficient for smaller sets of nearest

— the tangent of the expected search improvement curvepeighbors, approximation techniques also seem to perform
K.



well for skewed distance distributions, and they scale well 5.
to manage large data files.

In this paper we have only considered the M-tree in-
dex. However, other multidimensional indexes, such as the
R-tree and the X-tree, could clearly be modified in a simi- ¢
lar way, because they use the same, or very similadN
search algorithms. Furthermore, we believe that the proposed.
technology could also be used to process multiple similarity
predicates by modifying the search algorithms suggested by
Ciaccia et al. (1998a). 8.

Encouraged by the results obtained, our future activity
will concentrate on improving the performance of the ex-
isting methods and also on developing other approximation
techniques. For example, provided more distance distribu-
tions in a specific file are available and the one which is
most similar to the distribution with respect to the query
is used, precision should improve. Another idea might be to
considerregion proximityas the constraint of approximation.

We also plan to investigate approximation precision from a
human user perspective by running experiments on featurek.
of images and then comparing the relevance of the exact and
approximated sets. In this way, a user-acceptable precision
P could be determined and the approximation parameters
correspondingly adjusted. Finally, though the nearest neighs1.
bor search seems to be the most important type of similarity
query, we also plan to investigate the problem of approx-
imate similarity range queries, which will certainly require
new approaches.
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