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Abstract. In this paper, we re-examine the results of prior the query. Using such a model, we began to profile the /0
work on methods for computingd hocjoins. We develop  cost of a number of standaedl hocjoin methods, modified
a detailed cost model for predicting join algorithm perfor- to take their operands from tape. When the results did not
mance, and we use the model to develop cost formulasgree with our intuition as to how those algorithms should
for the majorad hocjoin methods found in the relational compare, we applied our detailed model to the disk-based
database literature. We show that various pieces of “commonersions of these algorithms. Still the results did not agree
wisdom” about join algorithm performance fail to hold up well with those we had seen in the literature [2, 6, 10, 24].
when analyzed carefully, and we use our detailed cost modalVhen we re-visited these papers, we realized that they all
to derive optimal buffer allocation schemes for each of theused simpler I/O cost models than ours. For example, the
join methods examined here. We show that optimizing theirmost common model assumes that the 1/O cost of a join is
buffer allocations can lead to large performance improve-simply proportional to the number of pages read and written,
ments, e.g., as much as a 400% improvement in some casdgnoring latency and seek costs. (These papers and their cost
We also validate our cost model’s predictions by measuringnodels will be discussed in Sect. 2).
an actual implementation of each join algorithm considered. = The goal of the current paper, therefore, is two-fold: to
The results of this work should be directly useful to imple- demonstrate the importance of a detailed 1/0O cost model,
mentors of relational query optimizers and query processingnd to share with the community some of the predictions of
systems. that model. We argue that a query optimizeustemploy
a detailed model, including latency and seek costs as well
Key words: Optimization — Cost models — Join methods — as page transfer costs. This means that the optimizer must
Buffer allocation — Performance understand the details of each join method in its repertoire,
as well as how the I/O hardware works. While the hardware
determines the cost of each step of an I/O operation (seek,
latency, page transfer), the join method determines when
these steps are needed, and how many of each are needed.
1 Introduction For example, the join method determines how many seeks
are required, and how many pages can be transferred dur-
The join of two sets of tuples is a fundamental operation foring a single 1/0. The results of our study also demonstrate
relational database system, and many algorithms have begRe importance of understanding how each join method uses
proposed to compute joins [1, 2, 6, 12, 17, 24]. Some joinmemory (for example, the amount of space that it allocates
algorithms exploit pre-computed access structures, such &gy input buffers), as the amount of memory available for
B-trees or join indices [25]. These algorithms are ideal forpyffering affects the number of 1/0s and the number of pages
pre-meditated joins that will be done repeatedly. Howeverthat must be transferred.
in a decision support environment, not all joins can be an-  QOur study focuses on the cost of algorithms for han-
ticipated. Thus, an important subclass of join algorithms aredling ad hocjoins, including nested block join, sort-merge
those intended to handied hocjoins; Bratbergsengen [2] join, simple hash join, Grace hash join and hybrid hash join.
aptly refers to these as algorithms of “last resort”. (For an overview of these and other join methods, see [17].)
A query optimizer chooses the algorithm to be used forThese represent the major “last resort” join methods in the
a particular join, using a cost model to compare alternativesiiterature. We will use this collection to show how a sim-
An important component of the cost model is the I/O costpler 1/0 cost model can easily lead the query optimizer to
model. In [4], we argued that, when some or all of the data isse|ect the wrong join method for a particular join. While a

stored on atertiary deVice, the Optimizer must have adeta“eﬂumber of variants exist for each of the join methods ex-
I/O cost model that takes into account the various CharaCamined here ([8] provides an excellent discussion of many

teristics of each of the devices that hold data referenced by
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of them), we focus on a basic version of each method. Ouknown as nested loops (from which nested block join [13]
goals here are to demonstrate the importance of detailed codescended), and sort-merge join. Since this is one of the
modeling for each type of algorithm, to illustrate how such earliest papers on join methods, it did not include other im-
models can be derived, and to show how they can be used toortant join algorithms, such as hash-based algorithms, and
optimize a join algorithm’s usage of its allocated memory.it only considered very small memories (by today’s stan-
Of course, an overly simplistic cost model is not the only dards). In addition, the scenarios tested all assumed indexes
potential pitfall for query optimization; even a detailed cost on the join attributes, so the paper presents no results for the
model is only as good as its inputs and assumptions. Imporad hoccase covered here.
tant related problems include the development of accurate In [15], Mackert and Lohman explored the accuracy of
estimation techniques for intermediate result sizes (e.g., sethe R* optimizer's cost predictions and algorithm choices.
[11, 16]) and techniques to enable join algorithms to tol- R* was a distributed relational DBMS, but its optimizer was
erate data skew (see [8] for a survey of skew issues and direct descendant of the System R optimizer, and again
approaches) and to adapt to variations in system load due tosed an I/O cost model based on the number of pages trans-
the multi-user nature of database systems (see [5, 18] for twéerred. The results presented in this paper for sort-merge
recently proposed approaches and pointers to other relategersus nested loop join with an index show the importance
work). These other challenges, while important, are subjectsf sequential I/Os in reducing the cost of a join, as well as the
of ongoing database research and are beyond the scope iofiportance of modeling buffer allocation among the tables
this paper. and indexes involved in the join. The R* optimizer consis-
The remainder of this paper is organized as follows. Intently overestimated 1/O costs, because it ignored sequential
Sect. 2, we briefly review the relevant literature on join al- I/Os, and it had trouble capturing competition between in-
gorithms and their performance. Then we present a detailedexes and table scans for buffer pages.
I/0 cost model that we advocate for use in future query op-  Algorithms for Grace hash join, simple hash join and
timizers (Sect. 3), and we derive 1/O cost formulas for eachhybrid hash join were introduced in [6, 24]. Cost models
of the ad hocjoin methods that we consider (Sect. 4). In of these algorithms and sort-merge join were developed and
Sect. 5, we put the model to work in a series of analyti-compared in a range of memory sizes that allowed sort-
cal “experiments”. Using the model, we show that variousmerge to run with a single merge pass. Again, a very sim-
pieces of “common wisdom” are simply not true when you ple 1/0 cost model, counting only page transfers, was used.
take the detailed 1/O costs into account; for example, hybridThese papers popularized hashing as a technique for join
hash join is not always the best method éakhocjoins, nor  processing, and their results led to a fairly widespread belief
is it best to divide memory equally between the two relationsin the superiority of hashing techniques (especially hybrid
in a nested block join. We show how important multi-block hash) forad hocjoins. These papers did not include any
I/Os can be if buffer pages are carefully allocated to sup-form of nested loop join in their comparisons.
port these 1/0s. We then use the model to derive optimal Another key reference on the use of hashing for process-
buffer allocations for each of the algorithms addressed hereng relational operations, especiadig hocjoins, is [2]. This
These formulas can be easily incorporated into a query oppaper, done independently of [6, 24], included algorithms,
timizer so that it can instruct the runtime system how bestanalyses, and comparisons of nested block join, sort-merge
to use memory for a given join operation, and so that itjoin, and a Grace-like hash join. Again, the cost model was
can compute the implied cost of this memory allocation. Tobased on transfer costs, but the paper included a discus-
demonstrate that our detailed 1/0 cost model is indeed amion of using multi-page data transfers to lower 1/O costs.
accurate predictor of join algorithm I/O costs, we presentAs in [6] and [24], the main conclusion from the paper is
measured results from an experimental implementation othat hashing is an important technique for relational algebra
all of the join algorithms studied here. Finally, we presentoperations.
our conclusions from this work (Sect. 6). In [10], Hagmann argued that the number of I/O requests,
not the number of pages transferred, should serve as the
main cost metric for an optimizer. Having stated his case,
2 Related work he proceeded to use his new cost model to derive some in-
teresting results. Of particular interest here, he re-examined
Many papers have been written on join algorithms. We dothe question of buffer allocation for nested block join, con-
not attempt a survey (see [8, 17]), but focus only on directlycluding that the buffers should be split evenly between the
related papers here, with an emphasis on the I/O cost modetwvo relations in order to minimize cost. Hagmann also con-
that they used. sidered buffer allocation for hash joins as in [2], and derived
Perhaps the “granddaddy” of all join papers was the workan optimal allocation using his cost metric (assuming a fixed
of Blasgen and Eswaran [1]. This paper, done in the connumber of buckets). While this paper clearly showed that the
text of the System R project at IBM, derived costs for se-1/0O cost model does affect predictions, it made no attempt
lect/project/join queries evaluated using four join algorithms,to show that the metric proposed was “correct”.
and compared them under various “typical” scenarios. The The main focus of [9] was to explore the dualities and
I/0O cost model used for the analyses counted page trangdifferences between sort-based and hash-based join methods.
fers and then multiplied them by the page transfer costThe paper presented interesting discussions of these dualities
The results contributed to the development of the Systemand gave several possible optimizations to the algorithms as
R approach to query optimization [22]. The algorithms in- a result. Included were experimental results using the Vol-
troduced in this paper include two that have come to becano system that showed that hashing was generally supe-
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rior to sorting except when data was highly skewed, and waghe values we will use fofl's, T, and T'x approximate
much better for operands of different sizes. One section othose observed for the Fujitsu Model M2266 disk drive, as
the paper showed that increasing the “cluster size” (the unitlescribed in [3] (see Table 1 for values). Unlike the analyses
of I/0O) could dramatically improve performance results for in [6, 24], our cost model includes the 1/Os required to read
both hashing and sorting. The paper concluded that a clughe source relations; as in [6, 24], however, we exclude the
ter size of 32 KB (eight pages) worked well, and thereafterl/O cost for writing the final result of the join to disk, as
used that size for other experiments; no attempt was maderiting out the result is not always necessary, depending on
to compute an optimal cluster size. Similar discussions apthe overall query plan, and those 1/Os are the same for all
peared in [8] as well. Finally, on a related note, [20] utilized join algorithms. The reason that we include the I/O cost for
a detailed cost model to examine the question of how besteading the source relations here is that, as we will see, it
to use a large amount of memory in performing an externais highly dependent on how input buffering is handled (and

merge-sort. on the resulting I/O patterns); this cost is therefac the
From this set of papers we get an interesting collectionsame for all algorithms.
of methods for handlingd hocjoins, but, with the excep- Though we model seek time as a constant, an approxi-

tion of [10], much of the work has been based on a simplemation of the “average” seek time, seek time is actually a
model of 1/0 costs that counts only the number of pagesfunction of the number of cylinders traversed. However, it
transferred. Hagmann [10] argued for a different, but equallyis not normally practical to compute this number, as it will
simplistic model,i.e., counting only the number of I1/0 re- be a function of how data is laid out on the disk(s). For
guests. The predominant transfer-only model has been useskample, suppose we wish to join relations R and S. These
for most comparisons of these algorithms, resulting in a cerrelations could be back to back on the same disk, or many
tain set of beliefs about their relative merits. While severalcylinders apart on the same disk, or even on separate disks.
papers [2, 9, 10] have noted the importance of multi-pageBoth the number of seeks and the number of cylinders tra-
I/Os, exploring to a degree the impact of performing I/O versed will depend on where the relations are located. While
in clusters [8, 9, 20], none has studied their implications asa query optimizer might know, and hence be able to model
thoroughly or examined their impact for the range of join correctly, the locations of any base relations being joined, it
algorithms examined here. is unlikely to be able to predict this for any temporary, com-
In this paper, we will analyze all five of the key methods puted relations, including any produced while doing the join.
for ad hocjoins with a more detailed (hence, more realis- Thus any attempt to count cylinders as part of optimization
tic) 1/O cost model to produce better I/O cost equations forwill likely be inaccurate and potentially misleading. Using
a query optimizer. We will show that the detailed I/O cost an “average” seek time avoids this difficulty, and provides
model would lead an optimizer to very different conclusionsa close approximation of expected behavior, as discussed
than the simple models that are often used in the literaturebelow.
Given the importance of multi-page I/Os, we will also use  To derive the number of seeks, the model assumes that
these cost equations to compute how best to divide up menthe base relations for a join are stored on a single disk, while
ory for each of the join methods. temporaries are stored on a separate disk. Thus, reads of the
base relations will interfere with each other, in the sense that
reading from one of the base relations after reading from
3 A detailed I/O cost model the other will typically cause a seek. On the other hand,
reads of the base relations do not interfere with writes (or

In this section, we describe the /O cost model that we Wi”reads) of temporaries, that is, the model assumes that the

use to study the various join algorithms. We assume the I/iisk arm remains positioned on the correct cylinder for the

system works as follows: when data must be read or writte 236 rel(;;\t:qn Whlle.atte][nporarybls V\{thten to the OtTﬁr td'Sk'I d
to disk, a target location on disk is identified. There are thre € Model Ignores Interierence by other processes that cou
e using the disks in a multi-user system and only counts

steps in the I/O operation: a seek, if necessary, to move th : . -
disE head to the (E)esired cylinder, the latency yduring Whichseeks that must be done V.V'th this "".‘V‘?“‘ because of the join
; i Igorithm being used. While an optimizer could reasonably

the disk spins until the desired data is underneath the head . L
and finally, the transfer, during which one or more pages o apture this level of detail, it could hardly be expected to
data are moved between disk and memory. model interference by other processes.

The model assumes a fixed cost for each of thes?ga \évfnggge'\r?etr:'ga%ézzlSaieek;gez;lsa‘é?](;b?ssgLndptclj%nr?oihart1 dwle
steps. The number of times each step occurs, however, v in i ' unduly

algorithm-dependent. Thus, the total /O cag;, of an al- affect the results we report. To test this hypothesis, we im-
gorithm is equal to the sum of the three component Costsplemented a more detailed, c_yllnder-based model (.)f seeks,
seek cost, latency cost, and page transfer cost. Each of thegﬁd dp?n:jp%re?hthe costs pred|Et?_d by th%t ||”n?deItW|th d.t]fflose
costs is in turn the product of the (algorithm-dependent)pre Icted by e average seek ime model, Tor two ditter-

number of actionsXs, N; 0, and Ny, respectively) mul- ent layouts of data. In one layout, we assumed that relations

- i ; i _R and S are stored next to each other on one disk, and any
tiplied by the (algorithm-independent) time that action con emporary results from the join (e.g., hash buckets for a hash

sumes. Note that, since latency is accrued for each disk I/Ot,

the latency cost is equal ;, times the average latency.

In other words, 1 As shown in [19], even attempting to accurately model the interference
that can arise within a single, pipelined, multi-process join query plan is

Cr=NsxTs+NpjoxTp+Nx xTx. far from simple.
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Table 1. Parameters of the model The next five subsections derive the counts for each of

Parameter ~ Meaning Value(s) these classic algorithms: nested block join, sort-merge join,
P Page size 8 KB simple hash join, Grace hash join, and hybrid hash join. As
;i f;te;ﬁg;’ seek time 8?3"5m”;S explained earlier, we will analyze a basic version of each
Ty Page transfer time 26ms method, as the objectives of this paper are just to illustrate
F Universal fudge factor 1.2 how detailed 1/0 cost models can be derived, to demon-
IR Size of R in pages 1250 pages (10 MB) strate their importance for query optimizer performance pre-
S| Size of S in pages ¥ |R|, 10x |R)| dictions and plan selection, and to show how they can be
M Memory size in pages 621625 pages (0.35-13 MB) sed in deciding how best to use a join algorithm’s memory

allotment.

join) are stored contiguously on a second. In the other layout,
R, S, and any temporaries are all stored on separate disks. |
this configuration, there is less seeking, as separate position

can be held on each disk. For each layout, we generated two . . . _
sets of numbers: one, by counting the number of seeks an he nested block join algorithm (NBJ) divides memory into

multiplying by a constant seek cost (9.5 ms), and the othertWO Parts.Mr pages are used for relation Rls = M —Mp

by computing the distance (in cylinders) traveled in eachPages for S.' The Sma”ef relation, R, is reaq from disk in
seek and applying Gray’s formula (private communication)CNunks of sizeMpg/F'. This guarantees sufficient memory
for converting distance to seconds. The different predictiond® Puild @ hash table in memory [2] for the chunk. For each
are very close. For hybrid hash (see Sect. 4), the algorithn‘fhurlk of R t.hf%t IS readgll of S is rea_d in pieces of size
among those studied here that is most sensitive to seek cos}, S’ and the join 1s performed by probing the hash table for
the differences between layouts are imperceptible (less thaf'® R chunk with S tuples.

0.3%), while predictions based on the seek cost constant Let N.B be the number of chunks needed to read a!l of
were about 2.5% higher than those based on the seek co§t The number of pages transferred by the NBJ algorithm
formula, over a wide range of memory sizes. Results for the>:

other algorithms that we studied are even better. It might bey . = |R|+(NB x |S]),

possible to get even closer by playing with the value of the

average seek cost. We did not feel that this was importantvhere

as even the distance-based model is an estimate of the real [ |R|F

seek costs, relying on assumptions about data placement th&tB = { Mg w

might not hold in a real system. For example, if the two re- . o

lations are further apart on the disk in the first layout, seekThe number of disk I/Os for NBJ is given by:

1 Nested block join

costs will be higher. S|
For the latency component, the model approximates theéV;,0 = N B x (l + [M D .
cost of the latency as half the disk rotation time. Finally, the o

third cost component, the transfer cost, is computed usingn other words, for each chunk of R, we need to start reading
the transfer rate for the device. We assume that our systenthis chunk, and then read S itS(/Ms) 1/Os.

is capable ofblocked I/Q that is, it can transfer multiple Since R and S are assumed to be on the same disk
pages (reading or writing) per disk I/O. In reality, a disk can (Sect. 3), a seek to the beginning of S must be performed
transfer only a certain number of pages before being forcedfter each read of R and another is needed after the read of
to seek (move to the next cylinder). In our model, we ignoreS, back to the next chunk of R. Since there &t& chunks
these tiny seeks, as the cost of a seek is very small comparesf R, there will beNg = 2 x NB seeks for NBJ.

to the cost of transferring an entire cylinder of data (9.5 ms

versus 216 ms with the parameter values of Table 1). These

seeks would not add significantly to the cost predictions. 4.2 Sort-merge join

The sort-merge join methddhas two phases. In the first
phase, each relation is sorted into runs. In the second phase,
Ighe runs from both relations are merged together; this phase’s

I/0s, number of seeks, and number of pages transferred b erging logic merges the set of runs from each relation

each of the five algorithms studied in this paper. Each algo- n the fly, yielding a tupl_e stream for each relation, a_nd
rithm joins two relations that we denote by R and S, Wherealso merges the two resulting tuple streams to form the final

IR| < |S|. We assume a uniform distribution of key val- ioined result. We assumg/ > ,/F|S|, which guarantees
ues for R; this allows us to ignore hash bucket overflow©N€ Merge pass [24]. With less memory, sort-merge join
for the hashing algorithms. Each of the algorithms requires/ill réquire multiple merge passes in the second phase. Each
some space in memory for additional structures (e.g., a hasfglation is read twice, and written, in the form of sorted runs,
table) roughly proportional to the size of the data being pro-Once: Thus,

cessed. As has become customary in the literature, we model It should be noted that we are assuming the use of a rather basic sorting

the_ fractional overhead implied by this extra space using th&cheme for sort-merge join; the algorithm could be improved by using a
universal “fudge factor”F' [6, 24]. better sorting algorithm, e.g., [20, 21].

4 Counting the steps

In this section, we present equations for the number of dis
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Nx =3|R|+3|5|. for input to the next iteration. Relation S is then read, and

: . R the same hash function is applied to the S tuples. S tuples
The number of disk I/Os is computed by dividing the amountthat hash to the same range of hash values as the memory-

\k/)ver;tr:gnr(;ettc;(iirmvgltten by the number of pages being read OFnemory R tuples are used to probe the in-memory hash
) table; matches are returned and used to create the result. Tu-

Nooo= LB TR IS IS ] (B ples that do not match are written back to disk, creating a
vo=ir 10) I o) MPR reduced version of S for the next iteration.

K For this join method, memory is again divided into three

[MPRW parts, the input buffer of size I, the output buffer of size O,

and the working space for the hash bucket of di¥e& =
During the first phase, memory is divided into three sections:M — I — O. The number of iterations, NI, is given by
an input buffer of size I, an output buffer of size O, and R|F

working space to build a tournament tree for the sort, of sizeN T = { w .

WS =M —I— 0. Inthe second phase, memory is divided WS

evenly between the runs of R and S, withPR pages per  The number of pages of R kept in memory on each iteration
run. The first four terms of the equation fdf;,, account is K, where

for the reads and writes during the first phase. During this WS

phase, the relation being sorted is read in chunks of size I, = { J ,

and copied from the input buffer into the tournament tree. F

Output runs are built up in the output buffer, and written t0 and the number of pages of S that match the in-memory
disk whenever the output buffer is full. Each run will be, on portion of R on each iteration (and hence are not written

average, back out) is on average
2 x WS} IS|K

RL = Kg= Bl
[ F ° { | J

pages long [13] and will be written to disk contiguously. Then the number of transfers for the simple hash join is:
The last two terms represent the phase two reads of these

runs in chunks of sizd/ PR, whereM PR is the number of
pages of memory divided by the sum of the number of runs’V X

NI
=NIx|R[=> (i—1)Kgr+

of R (NVRg) and the number of runs of SV(Rs). Thus, =1 NIt
M .
MPR = (NI -1)x |R| - i x Kp+
R NRr+ NRg ;
while, NI
NI x|[S] =) (i—DKg+
NRp = {Rr‘ i=1
‘ RL NI-1
and (NI—1)><|S|—Zz'><KS
=1
NRg = 5] ; i
s RL |- The first two terms give the number of pages of R read.

) On each iteration we reall g pages less than the iteration
Finally, we can count the number of seeks for sort-mergepefore. The next two terms show that we write RI(— 1)
join. The phase one reads of the relations and the writes argmes, again omittingl’ more pages each time. The last

sequential, i.e., they incur only initial seeks (four in all). The four terms correspond to the same counts of reads and writes
phase two reads are not sequential, however, as@hBR  of S, After simplification,

pages of each run can be read at a time, causing a seek to
be incurred from one run to the next for each of these readslVx = (2x NI — 1) x (|R[ +[S]) = NI x (N1 — 1)

This gives us x(Kgr+ Kg).
Ng=4+ BT TS Similar reasoning leads to
MPR MPR

1 1
Nijo = (NI X (R|+S]) = ;NI x (NI —1)

4.3 Simple hash join (K + Ks)> N é <(NI _ 1) (R +]S))

In simple hash join, relation R is read and reduced repeat- 1

edly, as follows. Each time R is read, a hash function is —2NI x (NI —1)x (KR+K5)>

applied to the join attribute(s) of its tuples. Based on the

result of applying the hash function, some of the tuples ard-inally, we assume that the reduced versions of R and S are
inserted into an in-memory hash table. The remaining tuplesvritten to a disk other than the one that they are read from on
are written back to disk, producing a reduced version of Reach iteration, so that reads do not conflict with writes. The
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seeks for simple hash join are therefore only those necessatyowever, during this phase, a portion of the memory is re-
to get to the beginning of each relation (source R, source Sserved for an in-memory hash bucket for R. This bucket of
and reduced R, reduced S) on each iteration. Since we redd will never be written to disk. Further, as S is read and
on each iteration, and write on all but the last iteration, hashed, tuples of S matching with this in-memory bucket
_ _ can be output immediately; they need not be written to disk
Ns=2x NI+2x (NI—-1)=4x NI 2. either. The second phase proceeds analogously to Grace’s:
the buckets of R on disk are read in one at a time, the match-
ing buckets of S are read i bytes at a time, and the join
is performed.

In the Grace hash join method there are two phases. In the Memory in the first phase is divided into three pieces,

first phase, each relation is read and hashed into buckef¥® of si;e]l for input, one ofsizerOfor.output puffers,
which are written to disk. The number of buckets, B, is Where K is the number of buckets excluding the in-memory

: . : bucket and O is the number of pages allocated to buffering
determined by the size of the smaller relation, each of these buckets, and one of 3i& = M — K x O— I
5= |R|F for the in-memory bucket. The optim&{, givenI, I; and
M-Il O, is the smallesfs for which

4.4 Grace hash join

wherel; is the number of pages reserved for the input bufferK x (M — I) + WS > |R|F .

in the first phase. Each bucket gets The first term corresponds to the amount of data stored in
| M-15 the K buckets (each bucket can be as big&s{1,) pages),
0= B the second to the amount kept in memory. Substituting in

. i the definition ofi”’.S and solving, we get
pages of memory during the first phase. The number of

buckets is chosen so that each individual bucket will fit in z- — PRF = (M - Il)w
memory with its hash table in the second phase. We assume M—-1,—0 ’

M > /F|R]| so that this is feasible. In the second phase,The size of the in-memory portion of R will be
buckets of R are read into memory one at a time, a hash

table is built, and then the corresponding bucket of S is reanR0| - {WSJ
I, pages at a time and used to probe the hash table. F

tené)ic\?gthszotrrt]_emr%?r?ﬁ:ragp rzlaélct)g:]ssgggdi;wme, and writ- and the size ofR’, the relation obtained from R after ex-
' bag tracting that bucket, will béR| — | Rp|. We assume that S is

Nx =3|R| +3|9]. reduced proportionately, so that
The number of disk I/Os is given by: R
given by 1= {151 @~ 1]
v IR TIRT L[S, 181 5o 18]
1o I o) I 0] L |- The number of page transfers for hybrid hash is then

The terms are, in order, the number of 1/0Os needed to readNx = |R| + |S| + 2|R'| + 2|5 .

R in the first phase, to write R in the first phase, to read - ;

in the first phase, to write S in the first phase, and finallfThe number of disk 1/0s will be

to read R in the second phase, and to read S in the secong _ [I&I] B[] [ISI] [15°1] , o, [19

phase. rjo I 0 I @) L |-
The number of seeks is

Again, the terms reflect the cost to read the full relation R
No=2+ |R| + S| +2B in phase 1, to write the reduced relation R, to read the full
s (0] @] ' S, to write the reduced S, and to read both reduced relations

The first term reflects the initial seeks to the beginnings of R phase 2. : .
and S. The next two terms account for the random I/O while The number of seeks is analogous to that in Grace,
writing buckets (each write incurs a seek). Then, since a”namely,

the buckets are on the same disk, the method has to Se?ﬁ B |R/| |57

back and forth between buckets of R and S in the second's = 2 +{ 19) -‘ * { 19) —‘ +2K.
phase.

5 Results
4.5 Hybrid hash join

In this section, we will look at the results of a variety of an-
Our last algorithm is hybrid hash join. This algorithm is alytical “experiments”, using the 1/0 cost model described
designed to combine the best behavior of simple hash andbove. We first explore the ramifications of our detailed 1/0
Grace hash. As in Grace, the algorithm has two phases, agost model and compare its predictions to those made by
suming again thad/ > \/F|R|. In the first, the relations earlier models. We then consider the affect of buffer allo-
are read, hashed into buckets, and written out, as in Graceations on performance, and use the cost model to derive
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formulas for “optimal” buffer allocations for each of the and sort-merge, each of which transfer a constant amount
algorithms. To demonstrate convincingly that our detailedof data. For smaller memories, the trends at the left edge
model is indeed a source of “truth” about join I/O costs, be-of Fig. 1(a) continue, withVB.J;, N BJso and simple hash
fore we close this section, we present measured results frofjetting rapidly worse, while Grace, hybrid and sort-merge
an experimental implementation of the join algorithms of are stable, with hybrid being slightly better than the other
interest. We then close the section by considering whethefiyo, Results for S| = 10x | R| (not shown) are qualitatively
the detailed model is really necessary and discussing OUimilar.
conclusions from all these experiments. We computed” using our detailed 1/O cost model over
the same parameters, with the same values for the buffer
sizes. The results are shown in Fig. 2. The y-axis in these
5.1 Debunking the “common wisdom” figures is in seconds, computed using the weidhits T
andT}, from Table 1.
Our first experiment compares the predictions of our model The more detailed model yields different results. In fact,
with the results predicted by the earlier, page-transfer-onlythe results are strikingly different. With the detailed model,
model described in Sect. 2. For this transfer-only model,N BJsg is the winner over the whole range of memory sizes
Cr =Cx = Nx x Tx, asTr = Ts = 0 under the assump- shown in Fig. 2. Also surprising relative to the common
tions of this model. For purposes of this experiment, we sewisdom, Grace and sort-merge both out-perform hybrid un-
the buffer sized, I, I; andO to one disk page, consistent til memory becomes very large (5 MB for sort-merge, and
with typical formulations in the literature. For NBJ, we use 7 MB for Grace). Hybrid is never better than fourth choice
two different values forMg, based on two different pro- among the algorithms over this range of memory sizes.
posals in the literature. The first uses one disk page for Moreover, the differences are significant; Hybrid is two to
(Mg = 1); the second uses half the available memory for Sthree times worse thaiV B.Jso, and as much as 50% worse
(Ms = M/2), per [10]. We call these two versions of the than Grace. The reason for these results is that hybrid, with
algorithm N BJ; and N BJgq, respectively. these buffer allocations, uses most of its phase one memory

We computedNx for each of these six algorithms for for bucket Ry, reading and writing the rest of R in many
memory sizes ranging from 0.35 MB to 13 MB, using the tiny pieces, thus requiring many disk 1/Os. Grace, on the
parameter values given in Table 1. We uSg instead of other hand, divides phase one memory over all the buckets,
Cx, becauseVy is independent of the value @fy, hence  so while its transfer cost is constant, it does those transfers
more general (and sincEy is a constant, the shapes of the very efficiently in terms of the number of disk 1/Os required.
curves are identical). The lower memory bound (0.35 MB) Grace’s cost is still dominated by transfer time, which is why
is slightly more than the minimum memory required to makeit appears constant at this resolution (it is actually declining
hybrid, Grace and sort-merge run as two-phase algorithmsslightly with increasing memory)V B.Jso provides the best
At the upper end of the rang&/ > |R|F, or, in other words, balance between pages transferred and 1/Os, hence its strong
R fits in memory. In Fig. 1, we show the number of page showing.
transfers Nx, for M = 2-13 MB, wherdS| = |R| = 10 MB. For memories under 2 MB (not shown); BJsg's per-

The graphs in Fig. 1 predict that hybrid will outper- formance degrades, falling to fourth place far < 1.5 MB.
form the other algorithms for much of the memory range. Although it continues to do an excellent job of reducing the
Its only rival is NBJ;, which, whenM > 4 MB (when  number of disk I/Os, the transfer costs skyrocket in this range
R can be read in three chunks or less), will at times out-(because the small size 81 forcesN B up). Hybrid never
perform hybrid. As expected, simple hash is terrible whenclimbs above third place, even whé < 1 MB, though it
memory is small, but improves to rival hybrid once memory does grow closer to Grace. As memory gets smaller, Grace
reaches about 6 MB. The worst in small memorni#s Jsg; needs more buckets, and each bucket gets less space; hence
in larger memory sizes, though, it too drops below Graceit cannot reduce disk 1/0Os as much. On the other hand, hy-
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brid also needs more buckets, and has little memory left folng ] algorithm. We show the results for two different mem-
reducing transfers. _ _ _ ory sizes, a small memory of 1 MB, and a large memory of
What do we learn from this exercise? First, that the12 5 MB. The model used is our detailed model, counting
“‘common wisdom” on join algorithms, based on analyses|/Os, seeks, and page transfers. The leftmost point on each
that only count page reads and writes, is potentially mis-graph corresponds to the allocation of a single page for S,
leading. This is because, as Hagmann [10] asserts, latenys in the N B.J, algorithm; atX = 50 half of memory is al-
is an important component of I/O costs. In fact, if we had |gcated to S, as is done fo¥ B.Jso. The minimum predicted
modeled latency costs only (or equivalently, only countedpy the detailed model lies between these two points in each
the 1/0s), as Hagmann suggests, we would have been lesgse. Each graph shows, in addition to the total @st,the
Surprised by the results of the detailed model. Figure 3 Sh0W§0mp0nent costs for |atencW6/O % TL) and for transfers
the predictions obtained by Counting disk I/Os Only. (NX X TX) When the percentage of memory given toSis
It is clear from comparing the very different predictions small, the number of 1/Os is high; as more memory is given
(under our detailed model) fav B.J; and NV B Jso that buffer  to S the number of 1/0s falls off quickly, but the number
allocations play an important role in reducing the number ofof chunks of R,V B, increases; the total cost then begins to
I/Os that are needed to perform a join, and hence, reducinge dominated by the cost of transferring increasing amounts
the cost of the join. If latency is an important cost factor, of data, as the amount of data transferred is proportional to
then it stands to reason that by selecting the “right” buffer v B. Finally, note that, for the two different memory sizes,
allocations, we may be able to improve the performancene optimal value of\/g is different. For the smaller mem-
of each of these algorithms. In the next two SubsectionSOI’y, the minimum occurs at around 20%, or 25 pages. For
we will use the detailed 1/0 cost model to first eXplore the the |arger memory, the minimum occurs at around 4%' or 63
effect of buffer allocation on the performance of the variouspages (this is the largest amount of memory we can give to
algorithms, and then derive the “Optimal” allocation for each S and still have R fit in memory in one chunk, m|n|m|z|ng
algorithm. transfer costs).
In [10], Hagmann predicts that the minimum should oc-
cur at 50% of memory, regardless of memory size. We will
5.2 Exploring buffer allocation show in Sect. 5.3 that this is in fact true in systems where
latency cost is so high that transfer costs are negligible, as
It has been shown [20] that increasing the size and numbefdagmann assumes. However, for more realistic (for the cur-
of input buffers can dramatically improve sorting perfor- rent day) values fofxy and7y, page reads must be consid-
mance. Others have observed [9] that increasing the size ared, and hence the discrepancy.
the input and output buffers can improve the performance Simple hash join, which we do not show, behaves very
of the hybrid hash and sort-merge join algorithms. In fact,similarly to NBJ as we increase the amount of space given
for all five join methods, increasing the amount of mem-to the I/O buffers, | and O. The main difference is that the
ory dedicated to 1/O will improve performance — to a point. curves are smoother (the step function is less pronounced).
After a while there comes a point of diminishing returns, The minima occur at about the same points or slightly earlier.
followed in general by increasing costs. The difference be-However, the optimal performance of simple hash in the
tween performance at the “optimal” /0O buffer size and asmall memory case is almost a factor of two worse than that
more naive buffer allocation can be significant — over 300%of NBJ; for the large memory case, where R fits completely
in some cases. Beyond these general observations, the algio- memory, they are about the same.
rithms behave quite differently, so we discuss each individ-  The results of the same experiment for sort-merge join
ually below. are given in Fig. 5 for the same two memory sizes. For the
In Fig. 4 we show the result of varying the percentage ofsmaller memory, the leftmost point again corresponds to the
memory dedicated to buffering the inner relation, S, for thenaive allocation of a single page per buffer (i.e., one page for
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I, one for O) in the first phase. For the larger meméry 3 it iS simply run as Grace hash. As memory gets larger, the
and O = 2 at the leftmost point. (For smaller allocations Minimum occurs earlier and earlier, until the best perfor-
the results are much worse, and the graph becomes hard fgance is achieved when almost all of memory is given to
read). Both curves are U-shaped, and very flat at the bottomfo- The reason for these trends can be seen by examining
This is because changes in buffer allocations do not affect th&ig- 6(b). In this figure we have shown the curves for the
amount of data transferred (the dominant component of costymallest and largest memory, with their component costs for
and quickly reduce the cost due to latency to close to zerofransfers and latency. For small memory, the transfer cost
Again, the actual optimum is different for the two memory iS Virtually constant, regardless of how much space is used
sizes (around 50% for the large memory, and between 240 o, asRo is never big enough to reduce significantly the
and 40% for the small), but the performance of sort-merge igmount of data transferred. The more space used for input
relatively insensitive to small changes in the allocation in the@nd output buffers, therefore, the fewer disk 1/0Os needed.
neighborhood of the optimum. For example, if the allocationSince transfers are essenUaIIyl constant, the fewer the disk
is 10% away from the optimal buffer size, this might mean /Os the better performance will Beln the large memory

a performance loss of 2%, whereas a comparable error fofase, however, the number of disk I/Os is almost constant,
NBJ could mean a factor of 50% or more in performance forafter an initial drop, whereas space used fty has a big

the large memory case and 15% for the small memory caseeffect on the amount of data transferred (1% of the large
However, it is still important to get in the right ballpark, as memory is around 15 pages). _ _
the naive allocation results in performance about two times ~©Once again, choosing the buffer allocation correctly is
worse than that of the optimal allocation. important. The results of using a naive allocation of one page

For Grace hash (not shown), we varied the amount offer buffer ( = O = 1) are shown as the leftmost points of
space given to the input buffer in phase 1, and split the refig. 6. Performance there is as much as 400% worse than the
mainder evenly among the output buffers for the hash buckoptimal. We 'als.o see that Iarger'memorles are more sensitive
ets. The shape of the curves for Grace are similar to thos& small deviations from the optimum than small-to-medium
for sort-merge. However, the minima come somewhat earmemories, because, again, each percentage point increase in
lier for Grace, and the bottom of the “U” is narrower and Puffer size for the large memory causes a large decrease
less flat. The reason for this is that, while increasing the sizd" the size ofRo, and thus, a significant increase in transfer
of I; reduces the number of I/Os for reads, it also reduce$0sts. For the larger memories, being 10% from the optimum
the amount of space available for output buffers, thus in-ca@n mean a loss of about 15% in performance, as opposed
creasing the number of I/Os for writes. For sort-merge, ont0 3-5% for the smaller memory.
the other hand, we increased the amount of hotind O,
reducing I/Os for both reads and writes. Again, performance
is relatively insensitive to small deviations from the optimal 5.3 Finding optimal buffer allocations
allocation, because latency is still only a small component
of overall performance, but being on the wrong section of To enable a query optimizer to correctly choose between join
the curve will produce very bad results. methods, and to get the best performance from the method

Finally, Fig. 6(a) shows the effect of varying the amount selected, the preceding results show that it is important to
of space given to the input and output buffers for the hybridchoose a good I/O buffer allocation for each join method
hash algorithm for four different memory sizes. The moreconsidered. We note that each algorithm has one critical
space given to the input and output buffers, the less space
there is for Ry. Interestingly, when memory is small rela- s Lo
. . . may be beneficial in some situations to use even larger /O buffers — even
tive to |R" the best performanC(_a is achieved V_Vhen all OfWhen this implies one or more additional (recursive) hashing passes — if the
memory is used as buffers, that is, when theradsio. In resulting reduction in page transfers outweighs the corresponding increase
other words, when memory is tight, hybrid performs best if in the amount of data transferred [8].

3 In fact, while we have restricted our study to two-pass hashing, it
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Algorithm
NBJ

Sort-merge

Simple

Grace

Estimator

S|(y|S|+M S)—yl|S
Mg = | VYISl (8t Sl ‘—‘,y:TL/TX

1=0=[(vV2z - 4)M/(z - 8)]
z=aF(|R[+|S|)/M, z = (T +Ts)/TL
I=0= (\/y2+~5yM—yLy=TL/Tx
B= \R|F+\/\R|2F2+4]W\R\F—‘

= 2M
0= }%lJ
L=M—-—BxO
I, = M — [|R|F/B]

1]

dCnpy _ Tx|RIF|S|  TL|R|F|S|
dMs (M — Mg)? (M — Mg)M3

TL|RIF 1+ S| -0,
(M — Mg)? Mg

which can be simplified to
(1S +y)M§ +2y|S|Ms — y|S|M =0,

wherey = T, /Tx. Application of the quadratic formula
yields the result in Table 2.

Hybrid I1=1,=0=[11VM]

, ; _ Note that, if we take the limit of this formula as ap-
Table 2. Formulas to Estimate “Optimal” Buffer Allocations

proaches zero (this is the case in which latency is small, and
only page transfers matter), thefs approaches zero. In
other words, if only transfers count, very little space should
parameter (theleterminingparameter) whose value always he devoted to S. Likewise, if we take the limit & ap-
depends on memory allocations. For NBJ, the determining‘broaches zero, agaihls approaches zero. In other words,
parameter isN B, the number of chunks in which R can when S is small, we need less buffer space for S.

be read; for simple, it iSVI, the number of iterations; for Finally, we note that if we take the limit ag goes to
Grace, it is the number of buckets; for hybrid, K and infinity, we get to the case in which latency is so great that
for sort-merge it is the run lengtl?L. We examine each only disk I/Os count (page transfer costs can be ignored).

algorithm’s use of memory, with the goal of developing a This is the case that Hagmann considers in [10].
formula for the optimal allocation.

Our general approach is to minimize the cost function lim Mg = VIS X (M +|S)) - |S| = M}
via differentiation. To do this, we approximate the cost of '
each algorithm by a continuous function, parametrized byThis may not look much like 81/ (Hagmann's result), but
the buffer size. For some algorithms with multiple buffers in fact, as S becomes large, it converges to this. As proof,
(e.g., sort-merge), we have to make further assumptions, foprite [S| as a multiple of M, sayS| = ¢ x M. Then the
example, that the size of the input buffer and the outputformula above becomes
buf_fer are equal, in order to redl_Jce it to an e_qua_tion in_ oney s = (\/c % (c+1)—c)x M.
variable. Once we have a continuous function in a single
variable, we differentiate it, and set the result equal to zeroT0 take the limit of this ag goes to infinity, we rewrite the
For most of the algorithms, we ignore seek costs. Initially, Square root as a Taylor series expansion, as follows,
we included them, but they complicated the equations with-, ., _
out significantly affecting ){he repsults. This isqbecause forMs = (cx V1+lYe—gx M,
most of the algorithms, it is the ratio of the number of 1/0s 1 1
to the number of pages transferred that is the key tradeoff/s = (C x (1 + 2¢ 82 *e ) - C) x M,
for determining buffer allocations. Often, changing that ra-
tio will incidentally change the ratio of random to sequential | 1 1
I/Os, but this is a smaller, secondary effect. The one notabld/s = (C"' 27 8¢ e -
exception to this is sort-merge join; for sort-merge, there is
a significant tradeoff between sequential and random I/Os, , (/1 1
based on buffer allocations. We do, therefore, include seek™s = (2 " 8 o > X M.
costs in the sort-merge calculations. The results of this ex-
ercise are summarized in Table 2, and their derivations ardaking the limit as ¢ goes to infinity yields:
sketched below. 1
lim Mg = 2M .

c—00

Nested block join Q.E.D.
Let us begin by examining NBJ. The cost of NBJ (ignoring
seeks) is

Cnps =Tx x (|R|+(NB x |S]))

S
+TLXNBX<1+HW .
S 4 We should mention that this formula can be simplified even further by

Approximating by a continuous function, this is equivalent noting that generallyy < 5, and that as disks get faste(= 77 /T'x) will
to become even smaller. As a resyjtk | S|, andy + |S| could be replaced

by |S| in the formula. Also,y < M, soy + M could be replaced by/.
IRIFS] ) . TLIRIF (1+ S|>

Sort-merge join

For sort-merge, we assume thiat O. Ignoring page trans-
fers, which are constant, the cost of sort-merge is

The resulting simplified formula can then be boiled all the way down to
M—Mg) M- Mg Mg

Cnpy=Tx x (|R| + Ms = [v/yM — y]. However, since the NBJ formula as given in Table 2
Taking the derivative with respect tls yields

is not especially more complicated than some of the others given there, we
will keep the more accurate version.
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Corty = 2T) x (PRW N PSD can solve the cubic, but the result is difficult to understand
I I (and annoying to program!). We note that, for Grace, all

IR| S| of memory in phase one is used for 1/O. The problem is

+(Tp, +Ts) x UMPRW {MPRD . therefore only to decide how much should be used for the

single input buffer, and how much for each of the B output
If we approximateC with a continuous function, we arrive  buffers. We note that there is no great advantage to be gained

at from making any one of these buffers much larger than the
2TL(|R| +|S|) . (T1, +Ts)F(|R| +|S|)? others, as the same amount of data is input and output. We
Csmg = + therefore hypothesized that the best performance would be
1 2M (M — 2I) . ;
. o achieved when all buffers were the same size, and ran a
Differentiating, series of experiments to test this, with excellent results.
_ + + +1G])2 When all buffers are equal; = M/(B +1) = O (if
dc;f‘] = 2TL(|I§| 15D + (T ]\;S]QF('};'] Z‘SD =0. we pretend memory can be divided infinitely finely). Since
(M —2I) B = |R|F/(M —I,) (again, approximating with a continuous
After simplification, function), we can substitute the desired formula fgrand
(@F(|R|+|S|) — 8M)I2 + 8M2T — 203 = 0, obtain the following quadratic i3:
wherex = (T, + Ts)/Ty, the ratio of random to sequential B = |R‘FM )
I/O costs. Application of the quadratic formula yields the M= gy
result given in Table 2. This can be reduced to

If we look at the limits, we again get sensible results. )
For example, agR| and|S| become large] andO approach MB®—|R|FB — |R|F =0,
zero, that is, it becomes important to make the runs as longyhich can be solved using the quadratic formula again. The
as possible. AsM increases, so should and O; as M result is given in Table 2. Give8, and remembering that
decreased, andO will decrease. If seek costs are very high, memory comes in discrete units, we then choose values for
xT approaches infinity; in this case buffers will shrink towards ]1, [2, andO. C|ear|y']2 should be chosen as |arge as pos-
zero, as this increases run length andP R, reducing the  siple, that is, it should use up all the space in the second
number of seeks. phase not taken up by the residéhbucket. ForO and I,

we subdivide the space as evenly as possible, then give the

extra pages, if any, t@;.
Simple hash join

Simple hash lives up to its name; its solution is remarkablyHybrid hash join
tractable. Again, we assume that O. Once we approxi-

mateCr with a continuous function, we get Finally, we come to hybrid hash join. The result of differen-
o Tx|R|F x (|R| +|9]) . Tp|R|F x (|R| +]S]) f[iating ano_l tryir_lg to solve the resulting equation for hy_brid
sH = is a quartic, with a uselessly long and complex solition
M-21 I(M —2I) However, by making a series of approximations we were
Taking the derivative yields able to arrive at a cost formula that we could minimize. We
dCsy used the following approximationd: = O = I, |R| > K,
a - |R|F x (|R| +|S]) |R|F > I, and|S| = |R|. We argue that these are nor-
mally reasonable assumptions (with the exception of the last;
> ( rx _ Tp(M - 41)) =0 however, the solution is not highly sensitive to this ratio, and
(M —21)2  T*M —2I)? ’ the simplification is significant). With these assumptions, we
which simplifies out to get an approximate costy; ,; (for clarity, we have divided
) through byT'x; minimizing this function will produce the
207+ 4yl —yM =0, same result as minimizing’; ;;, asT’x is a constant).

where once again, y is the ratio of latency to transfer costcr. .y AT + 3y

(T1./Tx). Again, the quadratic formula can be used to reach . * = ;IR =3M/F)+[R|, =~

the solution shown in Table 2. As the result is proportional i )

to y, the buffer size will be small when latency is small, that Remember thay is the ratio of latency to transfer cost,
is, when it is not important to minimize 1/0s. When latency 7z/Tx- Taking the derivative with respect toyields:

is large, and it does, therefore, pay to reduce I/Os, the buffeyc’. /T _ AM +

size will also be large. HCZ/ * = If(SIR\ —3M/F)+|R| (M — 2%2 =0,

(12yM/F + 4M|R| — 14y|R|)I?
+(20yM|R| — 12yM?/F)I
If we try the same procedure using the cost equation for _ -~ 2 _
Grace hash, the result after differentiation and simplification Gyl Rl = 3yM/F)M*= 0.
is a cubic. Using a system such as Mathematica [26], we 5 The solution, using Mathematica, covered tens of pages, unformatted!

Grace hash join
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Using our old friend, the quadratic formula, we arrive at

(65— M)+ \/7.57 45M | 5M _ 3M?2 .

—o— NBJ(obs)

-8 Grace (obs))
—o—Hybrid (obs.)
——Simple (obs.)
—— SortMerge (obs.)

~IR|F IRIF "y y|R|F

6/|R|F +2/y—7/M s
Since this is already a fairly rough approximation, due toy Zgﬁ'&f@

+- Simple (est.)

Seconds

the simplifications used to reduce the cost to a quadrati
we feel justified in simplifying further, by taking the limit © <
as |R| goes to infinity (basically, looking at what happens
when R and S are much bigger thad/), and noting that

M > y. This yields the simple result given in Table 2.

In fact, this last approximation tends to compensate for the

earlier approximations; this simple formula yields excellent o £ = N 0 . -
results, often 10% better than those achieved using the value Memory in MB Memory in MB
for I given by the quadratic above. However, we do not @S| = |R| (b) |S] =10 % |R|

k!’]OW if these results are strictly optimal for all memory Fig. 7. Performance using observed optimal buffer allocations vs. estimates
sizes and values df5| and |R].

Our formula for Grace sets the determining parameter
directly, and this “sliding” process for the buffer allocations

For NBJ, sort-merge and simple hash, the formulas in Ta—is dont_a by the equations in Tal_)Ie 2. For_hybrid, the form_ula
' X we arrived at works well as it is; some improvement using

ble 2 should be used as an initial estimate of the buffer

sizes. To account for the discrete nature of the actual cos?irnilar tricks may be possible, but it must be done carefully,
formulas, this estimate should be used to compute an opti@S each change in the buffer space always affects the overall

mal value of the determining parameter for the algorithm.amoum of data that will be transferred (by changing the size

Then, for sort-merge and NBJ, the buffer space should bé’f }'%I'Or)m. V]Ye d'dl nottrf:ntd it wort_hw(rjuletto pursuc(aj_tms. th
re-computed as the maximum number of pages that still pro—I .tﬁ ormu as | a wEe arr]rlvle %h are as aiverse %S.ﬁ €
duces this value for the determining parameter. For exampleagorl ms themselves. =ach algorithm uses memory ditier-

: éntly, and none of the derivations was particularly easy. To
suppose we have a memory size of 500 pages= 500) ' . i )
and a ratio of latency to transfer cost of about three @), éeascfhoirl rng[ﬂtri’ ggrﬁ%‘zw:g;agyz;ﬁglelds”':/TBk))U;fr?(fj Ségﬁ] fOf
with |R| = |S| = 1250. For NBJ, we get the valuds = 37. 9

Then My = 500— 37 = 463. For this value oMy, with pared the observed minima to those predicted by our for-

|R| = 1250, we getN B = [|R|F/Mpy] = [1500/463] = 4 mulas when used as described above. In Fig. 7 we show
Note that i;‘ we are reading R in ﬁ chunks, we need .onlythe predicted response times in seconds for our formulas

for all five algorithms (“estimated” curves), as well as the
]3\;: Ea?\}as_obn;erolrggorﬁ?sc r\]/vﬁlhléwt‘rti/t{;f?e)t.t;hghsén observed minima for those algorithms (“observed” curves),

the original estimate, as it will decrease the number of I/0g°" S| = || and|S| = 10 x |R]. In most cases, the for-

needed to read S, while leaving the number of I/OsH@and mu!as are a”?azmg'y accurate, typically within 2% of the
the amount of data transferred the same. Similar optimiza®Ptimal. Looking at Table 3, we get a better sense of the

tions can be made for sort-merge using an initial estimate of 'S involved in Fig. 7. As indicated above, the roughest
buffer size to set run length. estimates are for simple and hybrid hash join, and even those

For simple hash, some adjustment of the estimate is nec@'Stimates are normally within 5%, except when memory is

essary, as the continuous approximation to the cost formul§umc'elnt][¥ large to holdr zng |t|s ?ﬁSh table,t W'tlh some
was a very rough one, introducing significant error in the SPace left over, 1.e.M > | £ In IS case, 100 jarge a
results in some cases. However, each change in the buff ffer can keepr? from fitting, grt_aatly Increasing the cost
space changes the amount of data transferred, so using ok algor|t.hms'such as NBJ, hyb”d anq simple hash. When
maximum number of pages is not a solution. We have found"€M"Y is this large, an additional sanity check, comparing

through experimentation that a good approximation result he cots; ofttvt\)/lo chunks verlsus a S'Tﬁlet (t)r?e, ST.OUI? betmaadtta.
from the following procedure. Let the initial estimate ob- rom (ne table, we can also see hat the estimates tend 1o

tained from the formula in Table 2 big. The largest buffer get worse ass| increases. This is to be expected, given the

size for the number of iterationsy I, determined byl is simplifications we made when deriving the formulas for the
1 \R|F A 0 estimates. However, the percent error increases only slightly
Iaz = 5 (M - [ NI D The optimum lies betweefy and  yjth the ten-fold increase ihS|.

Using the formulas

I.qz, @Sl is an underestimate. Sindg is more accurate To see what we gain from correctly tuning buffer al-
for larger memories, we would like the estimate to be closelocations, compare the graphs in Fig. 8 to those in Fig. 9
to Ip when M is large, and closer t,,,,, whenM is small.  (repeated for viewing convenience from Fig. 2). The dif-

We therefore choosé = O = Ip + ', (I;mas — lo), Wherew ferences are fairly dramatic. First, note that the expected
represents a small memory size. For our parameter valueperformance of all of the algorithms is significantly better
we foundw = min()M, 125) worked well. (I.e., for memories in Fig. 8. For example, Grace improves by a factor of about
up to 125 paged, = O = I,,4.. FOr bigger memoried, = O 2.5, and NBJ by as much as 3.5 times (relativ&VtB J1; it is
slides back towardg,, as desired). 1.3 to 1.5 times better thalV B.Jsg). Hybrid also improves
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Table 3. Percent error in performance using estimated buffer sizes

% Error when |S| = |R)| % Error when |S| =10x |R|
M (MB) NBJ S-MJ Grace Simple Hybrid NBJ S-MJ Grace Simple Hybrid
1.0 3.9 0.0 0.0 3.4 0.0 4.2 0.0 14 35 0.0
2.0 3.1 0.0 0.5 1.9 1.9 0.0 0.1 0.3 1.9 3.2
3.0 0.0 0.0 0.5 0.3 1.0 0.0 0.7 0.2 0.3 1.3
4.0 0.0 0.0 0.0 0.0 11 0.0 3.0 0.0 0.1 1.1
5.0 0.0 0.5 0.0 2.0 1.2 0.0 0.4 0.1 1.9 0.9
6.0 0.0 0.0 0.0 0.0 0.7 0.0 0.9 0.0 0.0 0.5
7.0 0.0 0.0 0.0 4.4 0.7 0.0 11 0.0 5.2 0.5
8.0 0.0 0.0 0.5 1.6 0.0 0.0 0.1 0.1 1.6 0.3
9.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0
10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.2 0.2
12.0 0.0 0.5 0.0 1.3 0.0 0.0 0.1 0.0 0.5 0.5
13.0 0.0 0.0 0.0 7.0 0.0 0.0 0.1 0.0 7.6 0.0
B 60
% © NBJ 150 NBJL
& Grace gGrme >‘\ e
< Hybrid < Hybrid
© = SortMerge + SortMerge
+Simple +Simple
*NBJ0 4
100
3 4 4 3
£ g E £
& & & &
solbe- 5 - \e\g 20
5 \‘\‘\‘M‘\x
° 3 4 5 [ 0 [ 10 12 ° 3 4 5 [3 ° [] 10 12
Memory in MB Memory in MB Memory in MB Memory in MB
(a) Small memory (b) Large memory (a) Small memory (b) Large memory
Fig. 8. Predictions of the detailed model, optimized buffer allocations Fig. 9. Predictions of the detailed model, naive buffer allocations

substantially, making it much more competitive, though it ior of an optimizer based on one of these models. Thus, we
still only beats NBJ in low memory (under 3 MB), when assumed buffer allocations would be tuned to be optimal
it essentially behaves like Grace, and in very large mem-according to the model doing the cost predictions. For ex-
ory (M > |R|F), where it strongly resembles simple hash. ample, the transfer-only model us@&B.J; for NBJ, while
Differences in performance that were significant under thethe I/O count-only model use¥ B.Jso. The detailed model
naive buffer allocations become insignificant when the allo-yses the formulas for optimizing buffer allocations derived
cations are well-tuned. For example, when buffer sizes arén Sect. 5.3.
set appropriately, Grace and sort-merge are virtually indis-  The table shows, for a range of memory sizes from 0.35
tinguishable. This is because, with the buffer sizes set corto 13 MB, which algorithm each model would pick as the
rectly, transfer costs dominate the total cost, and these cosiginner (the cheapest way to execute the join), and the “ac-
are identical for the two algorithms (see Sect. 4). tual” cost (according to the detailed model) in seconds of
executing the join using that algorithm with the buffer allo-
cations chosen given that model. In cases where more than
5.4 Yes, the model matters one algorithm is listed, the model was unable to distinguish
between them (that is, an optimizer based on that model
The differences between Figs. 8 and 9 illustrate, once againyould predict identical performance for those algorithms).
that it is necessary to model buffer allocations in a queryHowever, the actual cost of the algorithms according to the
optimizer in order to correctly choose among join methods.detailed model may differ; thus, the cost of each algorithm
Since buffer allocation and latency have such important efis given separately. Clearly, an optimizer based on either of
fects on performance, it is natural to ask whether a modethe two simpler models would make some serious mistakes,
based only on counting disk I/Os would be sufficient, aschoosing both the wrong algorithms and the wrong buffer
suggested by [10]. That is, do we really need to include theallocations. These decisions could lead to performance as
cost of page transfers? much as four times worse than the “optimal” picked by the
Table 4 dramatizes the answer. This table compares thdetailed model.
join algorithm recommendations of the two simpler models ~ Why is the number of I/Os such a bad predictor of the
(transfer-only and I/O count-only) with those of the detailed optimized algorithms’ performance, when we showed earlier
I/O cost model. Our intent was to approximate the behav{in Sect. 5.1) that latency is so important? The answer is
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Table 4. Comparison of optimizer predictions under three I/O cost models

Transfer-only optimizer I/0 count-only optimizer Detailed optimizer
M (MB) Winner Actual cost Winner Actual cost Winner Actual cost
0.35 Hybrid 88.2 S-MJ 69.4 S-MJ 69.4
0.5 Hybrid 86.7 Grace/Hyb. 43.4/43.4 Grace/Hyb. 43.4/43.4
1.0 Hybrid 83.4 NBJ 85.7 Grace/Hyb. 26.6/26.6
2.0 Hybrid 78.0 NBJ 43.3 Grace/S-MJ 21.8/21.8
3.0 Hybrid 72.5 NBJ 29.8 Hybrid 19.7
4.0 Hybrid 67.5 NBJ 23.0 NBJ 16.6
5.0 NBJ 44.2 NBJ 19.7 NBJ 13.3
6.0 NBJ 44.2 NBJ 16.4 NBJ 13.1
7.0 NBJ 30.6 NBJ 16.4 NBJ 9.9
8.0 NBJ 30.6 NBJ 131 NBJ 9.8
9.0 NBJ 30.6 NBJ 131 NBJ 9.8
10.0 Simple 36.5 NBJ 13.1 NBJ 9.8
11.0 Simp./Hyb. 31.9/32.3 NBJ 131 Simple 8.9
12.0 Simp./Hyb. 27.4/27.4 NBJ 9.8 Simp./Hyb. 7.8/7.8
13.0 NBJ/Simp./Hyb.  16.9/27.3/27.3 NBJ 9.8 NBJ 6.6
60 S = e e
2 150 = NBJL e
= NBJ = Grace
= Grace - Hybrid
~-Hybrid - SortMerge
40 -+ SortMerge » —+Simple

—+~Simple

Seconds

5
Seconds
Seconds

20

S

5 0 [ 10 12
Memory in MB

5

12 o

3 4 10
Memory in MB Memory in MB 2 3

Memory4in MB
(a) Small memory (b) Large memory

(a) Small memory (b) Large memory
Fig. 10. Measured 1/O times, optimized buffer allocations

Fig. 11. Measured 1/O times, naive buffer allocations

. L. . 80 .
simply that by optimizing the buffer allocations, we reduced e ©
with the naive allocations. Thus, the effect of page transfers e

was increased — but only because we significantly reduced ®
the number of 1/Os. If the model that we used for buffer
allocation had not included both page transfers and latency,%

of course, we could not have achieved these results. “

Secon
Seconds

P A
the negative effect of the excessive 1/Os that were occurring o Hybrid [ S

5.5 Checking the truth x 10

The “experiments” that we have done so far show that the .

detailed I/0 cost model makes a difference in our predictions 2 3

for which method will be best. However, they do not prove

that the detailed model’s predictions are more accurate than (2) Small memory (b) Large memory

a less detailed model. In this section, we present results frorig- 12- Measured join times, optimized buffer allocations

an exercise in which we implemented the fize hocjoin

methods that we have studied here and measured their 1/0

times and overall execution times for the memory sizes andarge block of memory and then using some of its pages as

memory allocations covered by Figs. 8 and 9. input buffers, some as output buffers, some for holding data
We implemented the five join algorithms based on thepages, and some for a hash table directory, as per the earlier

memory management schemes described in Sect. 3. To elim@escriptions of the various algorithms’ memory management

nate operating system effects, our implementation was basesthemes. Each relation to be joined was stored on disk as

on raw Unix file systems and we did our own buffer man- a series of contiguous 8-KB pages, with each page holding

agement. Buffer management consisted of allocating a singlas many 100-byte tuples as possible (yielding 101250 tuples

5 8

4 10
Memory in MB Memory in MB
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5.6 Discussion

o NBIL We made several simplifying assumptions in developing our

= Grace cost models. Several of the algorithms presented require a
e certain minimum amount of memory in order to compute the

——Simple

Simple join in two phases. For example, the sort-merge algorithm

requiresM > /F|S|. With less memory, the algorithm will
require multiple merge passes. We are confident that our the-
sis, that a detailed model is necessary, is still equally valid
when this occurs, as indicated by the empirical results in [9].
However, we have not directly verified this, nor do we pre-
dict which algorithms will perform better than others when
memory becomes extremely scarce. We expect extensions

Seconds

20

0 0 73

: * Memoryin MB Memory oMB for this case to be straightforward.
(a) Small memory (b) Large memory For ease of exposition, we used a simple version of each
Fig. 13. Measured join times, naive buffer allocations algorithm. Variations of several of the join methods have

been proposed that generally improve the performance of
the methods. For example, Kim [12] has proposed a vari-
ation on NBJ, in which S is read first forwards, and then
backwards. This variation will generally perform better than

per 10-MB relation). Each tuple contained a 4-byte uniquethe version described here, as the number of disk I/Os and
i y ) f f ill lightly) less. M iati
integer key field plus 96 bytes of padding. The join keys0 page transfers will be (slightly) less. Many variations on

4 hat both relati ned th sort-merge join have been proposed [9], and Graefe [7] has
were generated so that both relations contained the same Sglisijed several optimizations of hybrid hash join. We have
of key values (yielding a one-to-one join), and tuples in thep, ,-hosely chosen simple versions: the point of this work is

two relations were stored in random order (i.e., unclustereq,; . say which is the best join method, but to show how
with respect to their join key values). the model used affects our view of “best”.

Our experiments were performe_d on a 133'M.HZ DEC "}t should also be stressed that we used only one set of
3000/400 workstation running Ultrix. This machine had 41 es for the key parametergy, T; and Ts. Different

32MB of real memory, though we varied the size of the weights would again change our view of which algorithm
buffer pool used, as mentioned above. Two identical disk§g «pegt” hyt would only emphasize the need for a detailed
were dedicated to the experiments and utilized in the mannefjy ~ost model. Finally, different 1/0 systems may include

described in each algorithm’s cost analysis. Each disk was giher features that should be included in the cost model, for
Quantum Maverick 540S 0901; performance-wise, each PrOgxample, overlapped or parallel I/O.

vided an average seek time of 7.0 ms, a latency of 8.3 ms,
and a transfer time of 2.5 ms per 8-KB page. Note that al-
though their seek times are a bit faster than the Fujitsu disk .
that served as our model’'s basis, their two most importanf Cenclusions
performance parameters, the latency and the transfer time,
are virtually identical. In this paper, we have looked at three 1/O cost models: the
Figures 10 and 11 show the measured I/O times thatransfer-only model common in the literature, an 1/0O-count-
resulted when we repeated the “experiments” of Figs. 8only model advocated by [10], and a detailed model that we
and 9 using our implementations of the join algorithms. proposed that includes latency, seek and page transfer costs.
These were obtained by measuring the total running time&Ve showed that the common wisdom from previously pub-
(wall clock time) of each algorithm, also shown, in Figs. 12 lished work is not wholly reliable. Hybrid is nalwaysthe
and 13, and then subtracting off the reported CPU timesnethod of choice forad hocjoins; NBJ does not perform
used by the algorithms. We focus on measured I/O timedest when 50% of the available memory is given to each
here, since our primary objective is to verify the predictionsrelation (or with a single page for the larger relation). In
of our detailed I/O cost model. As can be seen by comparaddition to our I/O cost analyses, we presented results mea-
ing Fig. 10 against Fig. 8 and Fig. 11 against Fig. 9, oursured from implementations of the join algorithms that were
detailed I/O cost model is indeed an accurate predictor ofnodeled; the measured results corroborated the predictions
the measured 1/O costs and 1/O time trends. Moreover, thef the detailed I/O cost model.
performance trends that are evident in Figs. 12 and 13 in- The results in the preceding pages indicate that good
dicate that the relative overall execution times of the joinpredictions of join performance require a detailed 1/0O cost
algorithms are also predicted rather well by our detailed I/Omodel. We have shown that a query optimizer needs to con-
cost model; while the overall execution times are higher, duesider all three components of I/O cost, and needs to have a
to the presence of CPU time as well as I/O time, the relathorough understanding of the algorithms it is modeling, in
tive performance tradeoffs are largely the same among therder to correctly choose a good join method. Furthermore,
algorithms. (The only notable difference is that sort-mergethe optimizer should be aware of how the implementation
appears to be somewhat more expensive, relatively speakingf a particular join method allocates buffers for 1/0, and the
due to its more CPU-intensive nature.) join method implementation should pay careful attention to
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buffer allocation. Systems that allow hints to be passed be-7.

tween join execution and the buffer manager will be at an
advantage here [14].

Once again, we stress that the reader should not interpreb
our work as simply, for example, proving that NBJ is the

best choice for a large range of memory sizes. Instead, weg.

hope this work will inspire database system builders and op-
timizer “gurus” to evaluate which algorithms are appropriate

for their own hardware and software systems and then modéi!:

them using a detailed I/O cost model such as that which we
proposed here. Also, this work is not limited in scope to ,,
relational query processing; similar results are applicable in
object-oriented database systems that utilize pointer-based

join methods [23]. Finally, it should be noted that we are 13.

not advocating that query optimizers consider only I/O cost

in their models; they must continue to account for CPU and**

network costs as well (though we did see in our measure-

ments that I/O cost trends were strong predictors of the overis,

all join execution time trends).
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