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Abstract. In this paper, we re-examine the results of prior
work on methods for computingad hoc joins. We develop
a detailed cost model for predicting join algorithm perfor-
mance, and we use the model to develop cost formulas
for the majorad hoc join methods found in the relational
database literature. We show that various pieces of “common
wisdom” about join algorithm performance fail to hold up
when analyzed carefully, and we use our detailed cost model
to derive optimal buffer allocation schemes for each of the
join methods examined here. We show that optimizing their
buffer allocations can lead to large performance improve-
ments, e.g., as much as a 400% improvement in some cases.
We also validate our cost model’s predictions by measuring
an actual implementation of each join algorithm considered.
The results of this work should be directly useful to imple-
mentors of relational query optimizers and query processing
systems.
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1 Introduction

The join of two sets of tuples is a fundamental operation for
relational database system, and many algorithms have been
proposed to compute joins [1, 2, 6, 12, 17, 24]. Some join
algorithms exploit pre-computed access structures, such as
B-trees or join indices [25]. These algorithms are ideal for
pre-meditated joins that will be done repeatedly. However,
in a decision support environment, not all joins can be an-
ticipated. Thus, an important subclass of join algorithms are
those intended to handlead hoc joins; Bratbergsengen [2]
aptly refers to these as algorithms of “last resort”.

A query optimizer chooses the algorithm to be used for
a particular join, using a cost model to compare alternatives.
An important component of the cost model is the I/O cost
model. In [4], we argued that, when some or all of the data is
stored on a tertiary device, the optimizer must have a detailed
I/O cost model that takes into account the various charac-
teristics of each of the devices that hold data referenced by

the query. Using such a model, we began to profile the I/O
cost of a number of standardad hocjoin methods, modified
to take their operands from tape. When the results did not
agree with our intuition as to how those algorithms should
compare, we applied our detailed model to the disk-based
versions of these algorithms. Still the results did not agree
well with those we had seen in the literature [2, 6, 10, 24].
When we re-visited these papers, we realized that they all
used simpler I/O cost models than ours. For example, the
most common model assumes that the I/O cost of a join is
simply proportional to the number of pages read and written,
ignoring latency and seek costs. (These papers and their cost
models will be discussed in Sect. 2).

The goal of the current paper, therefore, is two-fold: to
demonstrate the importance of a detailed I/O cost model,
and to share with the community some of the predictions of
that model. We argue that a query optimizermust employ
a detailed model, including latency and seek costs as well
as page transfer costs. This means that the optimizer must
understand the details of each join method in its repertoire,
as well as how the I/O hardware works. While the hardware
determines the cost of each step of an I/O operation (seek,
latency, page transfer), the join method determines when
these steps are needed, and how many of each are needed.
For example, the join method determines how many seeks
are required, and how many pages can be transferred dur-
ing a single I/O. The results of our study also demonstrate
the importance of understanding how each join method uses
memory (for example, the amount of space that it allocates
for input buffers), as the amount of memory available for
buffering affects the number of I/Os and the number of pages
that must be transferred.

Our study focuses on the cost of algorithms for han-
dling ad hoc joins, including nested block join, sort-merge
join, simple hash join, Grace hash join and hybrid hash join.
(For an overview of these and other join methods, see [17].)
These represent the major “last resort” join methods in the
literature. We will use this collection to show how a sim-
pler I/O cost model can easily lead the query optimizer to
select the wrong join method for a particular join. While a
number of variants exist for each of the join methods ex-
amined here ([8] provides an excellent discussion of many
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of them), we focus on a basic version of each method. Our
goals here are to demonstrate the importance of detailed cost
modeling for each type of algorithm, to illustrate how such
models can be derived, and to show how they can be used to
optimize a join algorithm’s usage of its allocated memory.
Of course, an overly simplistic cost model is not the only
potential pitfall for query optimization; even a detailed cost
model is only as good as its inputs and assumptions. Impor-
tant related problems include the development of accurate
estimation techniques for intermediate result sizes (e.g., see
[11, 16]) and techniques to enable join algorithms to tol-
erate data skew (see [8] for a survey of skew issues and
approaches) and to adapt to variations in system load due to
the multi-user nature of database systems (see [5, 18] for two
recently proposed approaches and pointers to other related
work). These other challenges, while important, are subjects
of ongoing database research and are beyond the scope of
this paper.

The remainder of this paper is organized as follows. In
Sect. 2, we briefly review the relevant literature on join al-
gorithms and their performance. Then we present a detailed
I/O cost model that we advocate for use in future query op-
timizers (Sect. 3), and we derive I/O cost formulas for each
of the ad hoc join methods that we consider (Sect. 4). In
Sect. 5, we put the model to work in a series of analyti-
cal “experiments”. Using the model, we show that various
pieces of “common wisdom” are simply not true when you
take the detailed I/O costs into account; for example, hybrid
hash join is not always the best method forad hocjoins, nor
is it best to divide memory equally between the two relations
in a nested block join. We show how important multi-block
I/Os can be if buffer pages are carefully allocated to sup-
port these I/Os. We then use the model to derive optimal
buffer allocations for each of the algorithms addressed here.
These formulas can be easily incorporated into a query op-
timizer so that it can instruct the runtime system how best
to use memory for a given join operation, and so that it
can compute the implied cost of this memory allocation. To
demonstrate that our detailed I/O cost model is indeed an
accurate predictor of join algorithm I/O costs, we present
measured results from an experimental implementation of
all of the join algorithms studied here. Finally, we present
our conclusions from this work (Sect. 6).

2 Related work

Many papers have been written on join algorithms. We do
not attempt a survey (see [8, 17]), but focus only on directly
related papers here, with an emphasis on the I/O cost models
that they used.

Perhaps the “granddaddy” of all join papers was the work
of Blasgen and Eswaran [1]. This paper, done in the con-
text of the System R project at IBM, derived costs for se-
lect/project/join queries evaluated using four join algorithms,
and compared them under various “typical” scenarios. The
I/O cost model used for the analyses counted page trans-
fers and then multiplied them by the page transfer cost.
The results contributed to the development of the System
R approach to query optimization [22]. The algorithms in-
troduced in this paper include two that have come to be

known as nested loops (from which nested block join [13]
descended), and sort-merge join. Since this is one of the
earliest papers on join methods, it did not include other im-
portant join algorithms, such as hash-based algorithms, and
it only considered very small memories (by today’s stan-
dards). In addition, the scenarios tested all assumed indexes
on the join attributes, so the paper presents no results for the
ad hoccase covered here.

In [15], Mackert and Lohman explored the accuracy of
the R* optimizer’s cost predictions and algorithm choices.
R* was a distributed relational DBMS, but its optimizer was
a direct descendant of the System R optimizer, and again
used an I/O cost model based on the number of pages trans-
ferred. The results presented in this paper for sort-merge
versus nested loop join with an index show the importance
of sequential I/Os in reducing the cost of a join, as well as the
importance of modeling buffer allocation among the tables
and indexes involved in the join. The R* optimizer consis-
tently overestimated I/O costs, because it ignored sequential
I/Os, and it had trouble capturing competition between in-
dexes and table scans for buffer pages.

Algorithms for Grace hash join, simple hash join and
hybrid hash join were introduced in [6, 24]. Cost models
of these algorithms and sort-merge join were developed and
compared in a range of memory sizes that allowed sort-
merge to run with a single merge pass. Again, a very sim-
ple I/O cost model, counting only page transfers, was used.
These papers popularized hashing as a technique for join
processing, and their results led to a fairly widespread belief
in the superiority of hashing techniques (especially hybrid
hash) forad hoc joins. These papers did not include any
form of nested loop join in their comparisons.

Another key reference on the use of hashing for process-
ing relational operations, especiallyad hocjoins, is [2]. This
paper, done independently of [6, 24], included algorithms,
analyses, and comparisons of nested block join, sort-merge
join, and a Grace-like hash join. Again, the cost model was
based on transfer costs, but the paper included a discus-
sion of using multi-page data transfers to lower I/O costs.
As in [6] and [24], the main conclusion from the paper is
that hashing is an important technique for relational algebra
operations.

In [10], Hagmann argued that the number of I/O requests,
not the number of pages transferred, should serve as the
main cost metric for an optimizer. Having stated his case,
he proceeded to use his new cost model to derive some in-
teresting results. Of particular interest here, he re-examined
the question of buffer allocation for nested block join, con-
cluding that the buffers should be split evenly between the
two relations in order to minimize cost. Hagmann also con-
sidered buffer allocation for hash joins as in [2], and derived
an optimal allocation using his cost metric (assuming a fixed
number of buckets). While this paper clearly showed that the
I/O cost model does affect predictions, it made no attempt
to show that the metric proposed was “correct”.

The main focus of [9] was to explore the dualities and
differences between sort-based and hash-based join methods.
The paper presented interesting discussions of these dualities
and gave several possible optimizations to the algorithms as
a result. Included were experimental results using the Vol-
cano system that showed that hashing was generally supe-
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rior to sorting except when data was highly skewed, and was
much better for operands of different sizes. One section of
the paper showed that increasing the “cluster size” (the unit
of I/O) could dramatically improve performance results for
both hashing and sorting. The paper concluded that a clus-
ter size of 32 KB (eight pages) worked well, and thereafter
used that size for other experiments; no attempt was made
to compute an optimal cluster size. Similar discussions ap-
peared in [8] as well. Finally, on a related note, [20] utilized
a detailed cost model to examine the question of how best
to use a large amount of memory in performing an external
merge-sort.

From this set of papers we get an interesting collection
of methods for handlingad hoc joins, but, with the excep-
tion of [10], much of the work has been based on a simple
model of I/O costs that counts only the number of pages
transferred. Hagmann [10] argued for a different, but equally
simplistic model,i.e., counting only the number of I/O re-
quests. The predominant transfer-only model has been used
for most comparisons of these algorithms, resulting in a cer-
tain set of beliefs about their relative merits. While several
papers [2, 9, 10] have noted the importance of multi-page
I/Os, exploring to a degree the impact of performing I/O
in clusters [8, 9, 20], none has studied their implications as
thoroughly or examined their impact for the range of join
algorithms examined here.

In this paper, we will analyze all five of the key methods
for ad hoc joins with a more detailed (hence, more realis-
tic) I/O cost model to produce better I/O cost equations for
a query optimizer. We will show that the detailed I/O cost
model would lead an optimizer to very different conclusions
than the simple models that are often used in the literature.
Given the importance of multi-page I/Os, we will also use
these cost equations to compute how best to divide up mem-
ory for each of the join methods.

3 A detailed I/O cost model

In this section, we describe the I/O cost model that we will
use to study the various join algorithms. We assume the I/O
system works as follows: when data must be read or written
to disk, a target location on disk is identified. There are three
steps in the I/O operation: a seek, if necessary, to move the
disk head to the desired cylinder, the latency, during which
the disk spins until the desired data is underneath the head,
and finally, the transfer, during which one or more pages of
data are moved between disk and memory.

The model assumes a fixed cost for each of these
steps. The number of times each step occurs, however, is
algorithm-dependent. Thus, the total I/O cost,CT , of an al-
gorithm is equal to the sum of the three component costs:
seek cost, latency cost, and page transfer cost. Each of these
costs is in turn the product of the (algorithm-dependent)
number of actions (NS , NI/O, andNX , respectively) mul-
tiplied by the (algorithm-independent) time that action con-
sumes. Note that, since latency is accrued for each disk I/O,
the latency cost is equal toNI/O times the average latency.
In other words,

CT = NS × TS +NI/O × TL +NX × TX .

The values we will use forTS , TL, and TX approximate
those observed for the Fujitsu Model M2266 disk drive, as
described in [3] (see Table 1 for values). Unlike the analyses
in [6, 24], our cost model includes the I/Os required to read
the source relations; as in [6, 24], however, we exclude the
I/O cost for writing the final result of the join to disk, as
writing out the result is not always necessary, depending on
the overall query plan, and those I/Os are the same for all
join algorithms. The reason that we include the I/O cost for
reading the source relations here is that, as we will see, it
is highly dependent on how input buffering is handled (and
on the resulting I/O patterns); this cost is thereforenot the
same for all algorithms.

Though we model seek time as a constant, an approxi-
mation of the “average” seek time, seek time is actually a
function of the number of cylinders traversed. However, it
is not normally practical to compute this number, as it will
be a function of how data is laid out on the disk(s). For
example, suppose we wish to join relations R and S. These
relations could be back to back on the same disk, or many
cylinders apart on the same disk, or even on separate disks.
Both the number of seeks and the number of cylinders tra-
versed will depend on where the relations are located. While
a query optimizer might know, and hence be able to model
correctly, the locations of any base relations being joined, it
is unlikely to be able to predict this for any temporary, com-
puted relations, including any produced while doing the join.
Thus any attempt to count cylinders as part of optimization
will likely be inaccurate and potentially misleading. Using
an “average” seek time avoids this difficulty, and provides
a close approximation of expected behavior, as discussed
below.

To derive the number of seeks, the model assumes that
the base relations for a join are stored on a single disk, while
temporaries are stored on a separate disk. Thus, reads of the
base relations will interfere with each other, in the sense that
reading from one of the base relations after reading from
the other will typically cause a seek. On the other hand,
reads of the base relations do not interfere with writes (or
reads) of temporaries, that is, the model assumes that the
disk arm remains positioned on the correct cylinder for the
base relation while a temporary is written to the other disk.
The model ignores interference by other processes that could
be using the disks in a multi-user system and only counts
seeks that must be done with this layout because of the join
algorithm being used. While an optimizer could reasonably
capture this level of detail, it could hardly be expected to
model interference by other processes.1

We believe that the seek-related assumptions that we
have made in this model are reasonable, and do not unduly
affect the results we report. To test this hypothesis, we im-
plemented a more detailed, cylinder-based model of seeks,
and compared the costs predicted by that model with those
predicted by the average seek time model, for two differ-
ent layouts of data. In one layout, we assumed that relations
R and S are stored next to each other on one disk, and any
temporary results from the join (e.g., hash buckets for a hash

1 As shown in [19], even attempting to accurately model the interference
that can arise within a single, pipelined, multi-process join query plan is
far from simple.
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Table 1. Parameters of the model

Parameter Meaning Value(s)
P Page size 8 KB
TS Average seek time 9.5 ms
TL Latency 8.3 ms
TX Page transfer time 2.6 ms
F Universal fudge factor 1.2
|R| Size of R in pages 1250 pages (10 MB)
|S| Size of S in pages 1× |R|, 10× |R|
M Memory size in pages 62–1625 pages (0.35–13 MB)

join) are stored contiguously on a second. In the other layout,
R, S, and any temporaries are all stored on separate disks. In
this configuration, there is less seeking, as separate positions
can be held on each disk. For each layout, we generated two
sets of numbers: one, by counting the number of seeks and
multiplying by a constant seek cost (9.5 ms), and the other,
by computing the distance (in cylinders) traveled in each
seek and applying Gray’s formula (private communication)
for converting distance to seconds. The different predictions
are very close. For hybrid hash (see Sect. 4), the algorithm
among those studied here that is most sensitive to seek cost,
the differences between layouts are imperceptible (less than
0.3%), while predictions based on the seek cost constant
were about 2.5% higher than those based on the seek cost
formula, over a wide range of memory sizes. Results for the
other algorithms that we studied are even better. It might be
possible to get even closer by playing with the value of the
average seek cost. We did not feel that this was important,
as even the distance-based model is an estimate of the real
seek costs, relying on assumptions about data placement that
might not hold in a real system. For example, if the two re-
lations are further apart on the disk in the first layout, seek
costs will be higher.

For the latency component, the model approximates the
cost of the latency as half the disk rotation time. Finally, the
third cost component, the transfer cost, is computed using
the transfer rate for the device. We assume that our system
is capable ofblocked I/O; that is, it can transfer multiple
pages (reading or writing) per disk I/O. In reality, a disk can
transfer only a certain number of pages before being forced
to seek (move to the next cylinder). In our model, we ignore
these tiny seeks, as the cost of a seek is very small compared
to the cost of transferring an entire cylinder of data (9.5 ms
versus 216 ms with the parameter values of Table 1). These
seeks would not add significantly to the cost predictions.

4 Counting the steps

In this section, we present equations for the number of disk
I/Os, number of seeks, and number of pages transferred by
each of the five algorithms studied in this paper. Each algo-
rithm joins two relations that we denote by R and S, where
|R| ≤ |S|. We assume a uniform distribution of key val-
ues for R; this allows us to ignore hash bucket overflow
for the hashing algorithms. Each of the algorithms requires
some space in memory for additional structures (e.g., a hash
table) roughly proportional to the size of the data being pro-
cessed. As has become customary in the literature, we model
the fractional overhead implied by this extra space using the
universal “fudge factor”,F [6, 24].

The next five subsections derive the counts for each of
these classic algorithms: nested block join, sort-merge join,
simple hash join, Grace hash join, and hybrid hash join. As
explained earlier, we will analyze a basic version of each
method, as the objectives of this paper are just to illustrate
how detailed I/O cost models can be derived, to demon-
strate their importance for query optimizer performance pre-
dictions and plan selection, and to show how they can be
used in deciding how best to use a join algorithm’s memory
allotment.

4.1 Nested block join

The nested block join algorithm (NBJ) divides memory into
two parts.MR pages are used for relation R,MS = M−MR

pages for S. The smaller relation, R, is read from disk in
chunks of sizeMR/F . This guarantees sufficient memory
to build a hash table in memory [2] for the chunk. For each
chunk of R that is read,all of S is read in pieces of size
MS , and the join is performed by probing the hash table for
the R chunk with S tuples.

Let NB be the number of chunks needed to read all of
R. The number of pages transferred by the NBJ algorithm
is:

NX = |R| + (NB × |S|) ,
where

NB =

⌈ |R|F
MR

⌉
.

The number of disk I/Os for NBJ is given by:

NI/O = NB ×
(

1 +

⌈ |S|
MS

⌉)
.

In other words, for each chunk of R, we need to start reading
this chunk, and then read S in (|S|/MS) I/Os.

Since R and S are assumed to be on the same disk
(Sect. 3), a seek to the beginning of S must be performed
after each read of R and another is needed after the read of
S, back to the next chunk of R. Since there areNB chunks
of R, there will beNS = 2×NB seeks for NBJ.

4.2 Sort-merge join

The sort-merge join method2 has two phases. In the first
phase, each relation is sorted into runs. In the second phase,
the runs from both relations are merged together; this phase’s
merging logic merges the set of runs from each relation
on the fly, yielding a tuple stream for each relation, and
also merges the two resulting tuple streams to form the final
joined result. We assumeM >

√
F |S|, which guarantees

one merge pass [24]. With less memory, sort-merge join
will require multiple merge passes in the second phase. Each
relation is read twice, and written, in the form of sorted runs,
once. Thus,

2 It should be noted that we are assuming the use of a rather basic sorting
scheme for sort-merge join; the algorithm could be improved by using a
better sorting algorithm, e.g., [20, 21].
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NX = 3|R| + 3|S| .
The number of disk I/Os is computed by dividing the amount
being read or written by the number of pages being read or
written at a time:

NI/O =

⌈ |R|
I

⌉
+

⌈ |R|
O

⌉
+

⌈ |S|
I

⌉
+

⌈ |S|
O

⌉
+

⌈ |R|
MPR

⌉
+

⌈ |S|
MPR

⌉
During the first phase, memory is divided into three sections:
an input buffer of size I, an output buffer of size O, and
working space to build a tournament tree for the sort, of size
WS = M − I −O. In the second phase, memory is divided
evenly between the runs of R and S, withMPR pages per
run. The first four terms of the equation forNI/O account
for the reads and writes during the first phase. During this
phase, the relation being sorted is read in chunks of size I,
and copied from the input buffer into the tournament tree.
Output runs are built up in the output buffer, and written to
disk whenever the output buffer is full. Each run will be, on
average,

RL =

⌈
2×WS

F

⌉
pages long [13] and will be written to disk contiguously.
The last two terms represent the phase two reads of these
runs in chunks of sizeMPR, whereMPR is the number of
pages of memory divided by the sum of the number of runs
of R (NRR) and the number of runs of S (NRS). Thus,

MPR =
M

NRR +NRS
while,

NRR =

⌈ |R|
RL

⌉
and

NRS =

⌈ |S|
RL

⌉
.

Finally, we can count the number of seeks for sort-merge
join. The phase one reads of the relations and the writes are
sequential, i.e., they incur only initial seeks (four in all). The
phase two reads are not sequential, however, as onlyMPR
pages of each run can be read at a time, causing a seek to
be incurred from one run to the next for each of these reads.
This gives us

NS = 4 +

⌈ |R|
MPR

⌉
+

⌈ |S|
MPR

⌉
.

4.3 Simple hash join

In simple hash join, relation R is read and reduced repeat-
edly, as follows. Each time R is read, a hash function is
applied to the join attribute(s) of its tuples. Based on the
result of applying the hash function, some of the tuples are
inserted into an in-memory hash table. The remaining tuples
are written back to disk, producing a reduced version of R

for input to the next iteration. Relation S is then read, and
the same hash function is applied to the S tuples. S tuples
that hash to the same range of hash values as the memory-
memory R tuples are used to probe the in-memory hash
table; matches are returned and used to create the result. Tu-
ples that do not match are written back to disk, creating a
reduced version of S for the next iteration.

For this join method, memory is again divided into three
parts, the input buffer of size I, the output buffer of size O,
and the working space for the hash bucket of sizeWS =
M − I −O. The number of iterations, NI, is given by

NI =

⌈ |R|F
WS

⌉
.

The number of pages of R kept in memory on each iteration
is KR, where

KR =

⌊
WS

F

⌋
,

and the number of pages of S that match the in-memory
portion of R on each iteration (and hence are not written
back out) is on average

KS =

⌊ |S|KR

|R|
⌋
.

Then the number of transfers for the simple hash join is:

NX = NI × |R| −
NI∑
i=1

(i− 1)KR +

(NI − 1)× |R| −
NI−1∑
i=1

i×KR +

NI × |S| −
NI∑
i=1

(i− 1)KS +

(NI − 1)× |S| −
NI−1∑
i=1

i×KS

The first two terms give the number of pages of R read.
On each iteration we readKR pages less than the iteration
before. The next two terms show that we write R (NI − 1)
times, again omittingKR more pages each time. The last
four terms correspond to the same counts of reads and writes
of S. After simplification,

NX = (2×NI − 1)× (|R| + |S|) −NI × (NI − 1)

×(KR +KS) .

Similar reasoning leads to

NI/O =
1
I

(
NI × (|R| + |S|) − 1

2
NI × (NI − 1)

×(KR +KS)

)
+

1
O

(
(NI − 1)× (|R| + |S|)

−1
2
NI × (NI − 1)× (KR +KS)

)
Finally, we assume that the reduced versions of R and S are
written to a disk other than the one that they are read from on
each iteration, so that reads do not conflict with writes. The
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seeks for simple hash join are therefore only those necessary
to get to the beginning of each relation (source R, source S,
and reduced R, reduced S) on each iteration. Since we read
on each iteration, and write on all but the last iteration,

NS = 2×NI + 2× (NI − 1) = 4×NI − 2 .

4.4 Grace hash join

In the Grace hash join method there are two phases. In the
first phase, each relation is read and hashed into buckets
which are written to disk. The number of buckets, B, is
determined by the size of the smaller relation,

B =

⌈ |R|F
M − I1

⌉
,

whereI1 is the number of pages reserved for the input buffer
in the first phase. Each bucket gets

O =

⌊
M − I1

B

⌋
pages of memory during the first phase. The number of
buckets is chosen so that each individual bucket will fit in
memory with its hash table in the second phase. We assume
M >

√
F |R| so that this is feasible. In the second phase,

buckets of R are read into memory one at a time, a hash
table is built, and then the corresponding bucket of S is read
I2 pages at a time and used to probe the hash table.

As with sort-merge, each relation is read twice, and writ-
ten once, so the number of page transfers is

NX = 3|R| + 3|S| .
The number of disk I/Os is given by:

NI/O =

⌈ |R|
I1

⌉
+

⌈ |R|
O

⌉
+

⌈ |S|
I1

⌉
+

⌈ |S|
O

⌉
+B +

⌈ |S|
I2

⌉
.

The terms are, in order, the number of I/Os needed to read
R in the first phase, to write R in the first phase, to read S
in the first phase, to write S in the first phase, and finally,
to read R in the second phase, and to read S in the second
phase.

The number of seeks is

NS = 2 +

⌈ |R|
O

⌉
+

⌈ |S|
O

⌉
+ 2B .

The first term reflects the initial seeks to the beginnings of R
and S. The next two terms account for the random I/O while
writing buckets (each write incurs a seek). Then, since all
the buckets are on the same disk, the method has to seek
back and forth between buckets of R and S in the second
phase.

4.5 Hybrid hash join

Our last algorithm is hybrid hash join. This algorithm is
designed to combine the best behavior of simple hash and
Grace hash. As in Grace, the algorithm has two phases, as-
suming again thatM >

√
F |R|. In the first, the relations

are read, hashed into buckets, and written out, as in Grace.

However, during this phase, a portion of the memory is re-
served for an in-memory hash bucket for R. This bucket of
R will never be written to disk. Further, as S is read and
hashed, tuples of S matching with this in-memory bucket
can be output immediately; they need not be written to disk
either. The second phase proceeds analogously to Grace’s:
the buckets of R on disk are read in one at a time, the match-
ing buckets of S are read inI2 bytes at a time, and the join
is performed.

Memory in the first phase is divided into three pieces,
one of sizeI1 for input, one of sizeK×O for output buffers,
where K is the number of buckets excluding the in-memory
bucket and O is the number of pages allocated to buffering
each of these buckets, and one of sizeWS = M−K×O−I1
for the in-memory bucket. The optimalK, givenI1, I2 and
O, is the smallestK for which

K × (M − I2) +WS ≥ |R|F .
The first term corresponds to the amount of data stored in
theK buckets (each bucket can be as big as (M−I2) pages),
the second to the amount kept in memory. Substituting in
the definition ofWS and solving, we get

K =

⌈ |R|F − (M − I1)
M − I2 −O

⌉
.

The size of the in-memory portion of R will be

|R0| =

⌊
WS

F

⌋
and the size ofR′, the relation obtained from R after ex-
tracting that bucket, will be|R| − |R0|. We assume that S is
reduced proportionately, so that

|S′| =

⌈
|S| × (1− |R0|

|R| )

⌉
.

The number of page transfers for hybrid hash is then

NX = |R| + |S| + 2|R′| + 2|S′| .
The number of disk I/Os will be

NI/O =

⌈ |R|
I1

⌉
+

⌈ |R′|
O

⌉
+

⌈ |S|
I1

⌉
+

⌈ |S′|
O

⌉
+K +

⌈ |S′|
I2

⌉
.

Again, the terms reflect the cost to read the full relation R
in phase 1, to write the reduced relation R, to read the full
S, to write the reduced S, and to read both reduced relations
in phase 2.

The number of seeks is analogous to that in Grace,
namely,

NS = 2 +

⌈ |R′|
O

⌉
+

⌈ |S′|
O

⌉
+ 2K .

5 Results

In this section, we will look at the results of a variety of an-
alytical “experiments”, using the I/O cost model described
above. We first explore the ramifications of our detailed I/O
cost model and compare its predictions to those made by
earlier models. We then consider the affect of buffer allo-
cations on performance, and use the cost model to derive
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Fig. 1. Predictions of the transfer-only model

formulas for “optimal” buffer allocations for each of the
algorithms. To demonstrate convincingly that our detailed
model is indeed a source of “truth” about join I/O costs, be-
fore we close this section, we present measured results from
an experimental implementation of the join algorithms of
interest. We then close the section by considering whether
the detailed model is really necessary and discussing our
conclusions from all these experiments.

5.1 Debunking the “common wisdom”

Our first experiment compares the predictions of our model
with the results predicted by the earlier, page-transfer-only,
model described in Sect. 2. For this transfer-only model,
CT = CX = NX × TX , asTL = TS = 0 under the assump-
tions of this model. For purposes of this experiment, we set
the buffer sizesI, I1, I2 andO to one disk page, consistent
with typical formulations in the literature. For NBJ, we use
two different values forMS , based on two different pro-
posals in the literature. The first uses one disk page for S
(MS = 1); the second uses half the available memory for S
(MS = M/2), per [10]. We call these two versions of the
algorithmNBJ1 andNBJ50, respectively.

We computedNX for each of these six algorithms for
memory sizes ranging from 0.35 MB to 13 MB, using the
parameter values given in Table 1. We useNX instead of
CX , becauseNX is independent of the value ofTX , hence
more general (and sinceTX is a constant, the shapes of the
curves are identical). The lower memory bound (0.35 MB)
is slightly more than the minimum memory required to make
hybrid, Grace and sort-merge run as two-phase algorithms.
At the upper end of the range,M > |R|F , or, in other words,
R fits in memory. In Fig. 1, we show the number of page
transfers,NX , forM = 2–13 MB, where|S| = |R| = 10 MB.

The graphs in Fig. 1 predict that hybrid will outper-
form the other algorithms for much of the memory range.
Its only rival is NBJ1, which, whenM > 4 MB (when
R can be read in three chunks or less), will at times out-
perform hybrid. As expected, simple hash is terrible when
memory is small, but improves to rival hybrid once memory
reaches about 6 MB. The worst in small memory isNBJ50;
in larger memory sizes, though, it too drops below Grace
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Fig. 2. Predictions of the detailed model

and sort-merge, each of which transfer a constant amount
of data. For smaller memories, the trends at the left edge
of Fig. 1(a) continue, withNBJ1, NBJ50 and simple hash
getting rapidly worse, while Grace, hybrid and sort-merge
are stable, with hybrid being slightly better than the other
two. Results for|S| = 10×|R| (not shown) are qualitatively
similar.

We computedCT using our detailed I/O cost model over
the same parameters, with the same values for the buffer
sizes. The results are shown in Fig. 2. The y-axis in these
figures is in seconds, computed using the weightsTX , TS
andTL from Table 1.

The more detailed model yields different results. In fact,
the results are strikingly different. With the detailed model,
NBJ50 is the winner over the whole range of memory sizes
shown in Fig. 2. Also surprising relative to the common
wisdom, Grace and sort-merge both out-perform hybrid un-
til memory becomes very large (5 MB for sort-merge, and
7 MB for Grace). Hybrid is never better than fourth choice
among the algorithms over this range of memory sizes.
Moreover, the differences are significant; Hybrid is two to
three times worse thanNBJ50, and as much as 50% worse
than Grace. The reason for these results is that hybrid, with
these buffer allocations, uses most of its phase one memory
for bucketR0, reading and writing the rest of R in many
tiny pieces, thus requiring many disk I/Os. Grace, on the
other hand, divides phase one memory over all the buckets,
so while its transfer cost is constant, it does those transfers
very efficiently in terms of the number of disk I/Os required.
Grace’s cost is still dominated by transfer time, which is why
it appears constant at this resolution (it is actually declining
slightly with increasing memory).NBJ50 provides the best
balance between pages transferred and I/Os, hence its strong
showing.

For memories under 2 MB (not shown),NBJ50’s per-
formance degrades, falling to fourth place forM < 1.5 MB.
Although it continues to do an excellent job of reducing the
number of disk I/Os, the transfer costs skyrocket in this range
(because the small size ofMR forcesNB up). Hybrid never
climbs above third place, even whenM < 1 MB, though it
does grow closer to Grace. As memory gets smaller, Grace
needs more buckets, and each bucket gets less space; hence
it cannot reduce disk I/Os as much. On the other hand, hy-
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Fig. 3. Predictions obtained by counting I/Os only

brid also needs more buckets, and has little memory left for
reducing transfers.

What do we learn from this exercise? First, that the
“common wisdom” on join algorithms, based on analyses
that only count page reads and writes, is potentially mis-
leading. This is because, as Hagmann [10] asserts, latency
is an important component of I/O costs. In fact, if we had
modeled latency costs only (or equivalently, only counted
the I/Os), as Hagmann suggests, we would have been less
surprised by the results of the detailed model. Figure 3 shows
the predictions obtained by counting disk I/Os only.

It is clear from comparing the very different predictions
(under our detailed model) forNBJ1 andNBJ50 that buffer
allocations play an important role in reducing the number of
I/Os that are needed to perform a join, and hence, reducing
the cost of the join. If latency is an important cost factor,
then it stands to reason that by selecting the “right” buffer
allocations, we may be able to improve the performance
of each of these algorithms. In the next two subsections,
we will use the detailed I/O cost model to first explore the
effect of buffer allocation on the performance of the various
algorithms, and then derive the “optimal” allocation for each
algorithm.

5.2 Exploring buffer allocation

It has been shown [20] that increasing the size and number
of input buffers can dramatically improve sorting perfor-
mance. Others have observed [9] that increasing the size of
the input and output buffers can improve the performance
of the hybrid hash and sort-merge join algorithms. In fact,
for all five join methods, increasing the amount of mem-
ory dedicated to I/O will improve performance – to a point.
After a while there comes a point of diminishing returns,
followed in general by increasing costs. The difference be-
tween performance at the “optimal” I/O buffer size and a
more naive buffer allocation can be significant – over 300%
in some cases. Beyond these general observations, the algo-
rithms behave quite differently, so we discuss each individ-
ually below.

In Fig. 4 we show the result of varying the percentage of
memory dedicated to buffering the inner relation, S, for the
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Fig. 4. Varying % of memory given to S for NBJ

NBJ algorithm. We show the results for two different mem-
ory sizes, a small memory of 1 MB, and a large memory of
12.5 MB. The model used is our detailed model, counting
I/Os, seeks, and page transfers. The leftmost point on each
graph corresponds to the allocation of a single page for S,
as in theNBJ1 algorithm; atX = 50 half of memory is al-
located to S, as is done forNBJ50. The minimum predicted
by the detailed model lies between these two points in each
case. Each graph shows, in addition to the total cost,CT , the
component costs for latency (NI/O × TL) and for transfers
(NX × TX ). When the percentage of memory given to S is
small, the number of I/Os is high; as more memory is given
to S, the number of I/Os falls off quickly, but the number
of chunks of R,NB, increases; the total cost then begins to
be dominated by the cost of transferring increasing amounts
of data, as the amount of data transferred is proportional to
NB. Finally, note that, for the two different memory sizes,
the optimal value ofMS is different. For the smaller mem-
ory, the minimum occurs at around 20%, or 25 pages. For
the larger memory, the minimum occurs at around 4%, or 63
pages (this is the largest amount of memory we can give to
S and still have R fit in memory in one chunk, minimizing
transfer costs).

In [10], Hagmann predicts that the minimum should oc-
cur at 50% of memory, regardless of memory size. We will
show in Sect. 5.3 that this is in fact true in systems where
latency cost is so high that transfer costs are negligible, as
Hagmann assumes. However, for more realistic (for the cur-
rent day) values forTX andTL, page reads must be consid-
ered, and hence the discrepancy.

Simple hash join, which we do not show, behaves very
similarly to NBJ as we increase the amount of space given
to the I/O buffers, I and O. The main difference is that the
curves are smoother (the step function is less pronounced).
The minima occur at about the same points or slightly earlier.
However, the optimal performance of simple hash in the
small memory case is almost a factor of two worse than that
of NBJ; for the large memory case, where R fits completely
in memory, they are about the same.

The results of the same experiment for sort-merge join
are given in Fig. 5 for the same two memory sizes. For the
smaller memory, the leftmost point again corresponds to the
naive allocation of a single page per buffer (i.e., one page for
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Fig. 5. Varying % of memory for I/O buffers for sort-merge

I, one for O) in the first phase. For the larger memoryI = 3
and O = 2 at the leftmost point. (For smaller allocations
the results are much worse, and the graph becomes hard to
read). Both curves are U-shaped, and very flat at the bottom.
This is because changes in buffer allocations do not affect the
amount of data transferred (the dominant component of cost)
and quickly reduce the cost due to latency to close to zero.
Again, the actual optimum is different for the two memory
sizes (around 50% for the large memory, and between 25
and 40% for the small), but the performance of sort-merge is
relatively insensitive to small changes in the allocation in the
neighborhood of the optimum. For example, if the allocation
is 10% away from the optimal buffer size, this might mean
a performance loss of 2%, whereas a comparable error for
NBJ could mean a factor of 50% or more in performance for
the large memory case and 15% for the small memory case.
However, it is still important to get in the right ballpark, as
the naive allocation results in performance about two times
worse than that of the optimal allocation.

For Grace hash (not shown), we varied the amount of
space given to the input buffer in phase 1, and split the re-
mainder evenly among the output buffers for the hash buck-
ets. The shape of the curves for Grace are similar to those
for sort-merge. However, the minima come somewhat ear-
lier for Grace, and the bottom of the “U” is narrower and
less flat. The reason for this is that, while increasing the size
of I1 reduces the number of I/Os for reads, it also reduces
the amount of space available for output buffers, thus in-
creasing the number of I/Os for writes. For sort-merge, on
the other hand, we increased the amount of bothI andO,
reducing I/Os for both reads and writes. Again, performance
is relatively insensitive to small deviations from the optimal
allocation, because latency is still only a small component
of overall performance, but being on the wrong section of
the curve will produce very bad results.

Finally, Fig. 6(a) shows the effect of varying the amount
of space given to the input and output buffers for the hybrid
hash algorithm for four different memory sizes. The more
space given to the input and output buffers, the less space
there is forR0. Interestingly, when memory is small rela-
tive to |R|, the best performance is achieved when all of
memory is used as buffers, that is, when there isno R0. In
other words, when memory is tight, hybrid performs best if
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it is simply run as Grace hash. As memory gets larger, the
minimum occurs earlier and earlier, until the best perfor-
mance is achieved when almost all of memory is given to
R0. The reason for these trends can be seen by examining
Fig. 6(b). In this figure we have shown the curves for the
smallest and largest memory, with their component costs for
transfers and latency. For small memory, the transfer cost
is virtually constant, regardless of how much space is used
for R0, asR0 is never big enough to reduce significantly the
amount of data transferred. The more space used for input
and output buffers, therefore, the fewer disk I/Os needed.
Since transfers are essentially constant, the fewer the disk
I/Os the better performance will be.3 In the large memory
case, however, the number of disk I/Os is almost constant,
after an initial drop, whereas space used forR0 has a big
effect on the amount of data transferred (1% of the large
memory is around 15 pages).

Once again, choosing the buffer allocation correctly is
important. The results of using a naive allocation of one page
per buffer (I = O = 1) are shown as the leftmost points of
Fig. 6. Performance there is as much as 400% worse than the
optimal. We also see that larger memories are more sensitive
to small deviations from the optimum than small-to-medium
memories, because, again, each percentage point increase in
buffer size for the large memory causes a large decrease
in the size ofR0, and thus, a significant increase in transfer
costs. For the larger memories, being 10% from the optimum
can mean a loss of about 15% in performance, as opposed
to 3–5% for the smaller memory.

5.3 Finding optimal buffer allocations

To enable a query optimizer to correctly choose between join
methods, and to get the best performance from the method
selected, the preceding results show that it is important to
choose a good I/O buffer allocation for each join method
considered. We note that each algorithm has one critical

3 In fact, while we have restricted our study to two-pass hashing, it
may be beneficial in some situations to use even larger I/O buffers – even
when this implies one or more additional (recursive) hashing passes – if the
resulting reduction in page transfers outweighs the corresponding increase
in the amount of data transferred [8].
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Algorithm Estimator

NBJ MS =
⌈√

y|S|(y|S|+M (y+|S|))−y|S|
y+|S|

⌉
, y = TL/TX

Sort-merge I = O =
⌈

(
√

2z − 4)M/(z − 8)
⌉

z = xF (|R| + |S|)/M , x = (TL + TS )/TL
Simple I = O = d

√
y2 + .5yM − ye, y = TL/TX

Grace B =
⌈
|R|F+

√
|R|2F 2+4M|R|F

2M

⌉
O =

⌊
M
B+1

⌋
I1 = M −B ×O
I2 = M − d|R|F/Be

Hybrid I1 = I2 = O = d1.1√Me
Table 2. Formulas to Estimate “Optimal” Buffer Allocations

parameter (thedeterminingparameter) whose value always
depends on memory allocations. For NBJ, the determining
parameter isNB, the number of chunks in which R can
be read; for simple, it isNI, the number of iterations; for
Grace, it is the number of buckets,B; for hybrid, K; and
for sort-merge it is the run length,RL. We examine each
algorithm’s use of memory, with the goal of developing a
formula for the optimal allocation.

Our general approach is to minimize the cost function
via differentiation. To do this, we approximate the cost of
each algorithm by a continuous function, parametrized by
the buffer size. For some algorithms with multiple buffers
(e.g., sort-merge), we have to make further assumptions, for
example, that the size of the input buffer and the output
buffer are equal, in order to reduce it to an equation in one
variable. Once we have a continuous function in a single
variable, we differentiate it, and set the result equal to zero.
For most of the algorithms, we ignore seek costs. Initially,
we included them, but they complicated the equations with-
out significantly affecting the results. This is because for
most of the algorithms, it is the ratio of the number of I/Os
to the number of pages transferred that is the key tradeoff
for determining buffer allocations. Often, changing that ra-
tio will incidentally change the ratio of random to sequential
I/Os, but this is a smaller, secondary effect. The one notable
exception to this is sort-merge join; for sort-merge, there is
a significant tradeoff between sequential and random I/Os,
based on buffer allocations. We do, therefore, include seek
costs in the sort-merge calculations. The results of this ex-
ercise are summarized in Table 2, and their derivations are
sketched below.

Nested block join

Let us begin by examining NBJ. The cost of NBJ (ignoring
seeks) is

CNBJ = TX × (|R| + (NB × |S|))
+TL ×NB ×

(
1 +

⌈ |S|
MS

⌉)
.

Approximating by a continuous function, this is equivalent
to

CNBJ = TX ×
(
|R| +

|R|F |S|
M −MS

)
+
TL|R|F
M −MS

(
1 +

|S|
MS

)
.

Taking the derivative with respect toMS yields

dCNBJ
dMS

=
TX |R|F |S|
(M −MS)2

− TL|R|F |S|
(M −MS)M2

S

+
TL|R|F

(M −MS)2

(
1 +

|S|
MS

)
= 0 ,

which can be simplified to

(|S| + y)M2
S + 2y|S|MS − y|S|M = 0 ,

where y = TL/TX . Application of the quadratic formula
yields the result in Table 2.4

Note that, if we take the limit of this formula asy ap-
proaches zero (this is the case in which latency is small, and
only page transfers matter), thenMS approaches zero. In
other words, if only transfers count, very little space should
be devoted to S. Likewise, if we take the limit as|S| ap-
proaches zero, againMS approaches zero. In other words,
when S is small, we need less buffer space for S.

Finally, we note that if we take the limit asy goes to
infinity, we get to the case in which latency is so great that
only disk I/Os count (page transfer costs can be ignored).
This is the case that Hagmann considers in [10].

lim
y→∞MS =

√
|S| × (M + |S|) − |S| = M ′

S

This may not look much like 0.5M (Hagmann’s result), but
in fact, as S becomes large, it converges to this. As proof,
write |S| as a multiple of M, say|S| = c ×M . Then the
formula above becomes

M ′
S = (

√
c× (c + 1)− c) ×M .

To take the limit of this asc goes to infinity, we rewrite the
square root as a Taylor series expansion, as follows,

M ′
S = (c×

√
1 + 1/c− c) ×M ,

M ′
S =

(
c×

(
1 +

1
2c

− 1
8c2

+ · · ·
)
− c

)
×M ,

M ′
S =

(
c +

1
2
− 1

8c
+ · · · − c

)
×M ,

M ′
S =

(
1
2
− 1

8c
+ · · ·

)
×M .

Taking the limit as c goes to infinity yields:

lim
c→∞M ′

S =
1
2
M .

Q.E.D.

Sort-merge join

For sort-merge, we assume thatI = O. Ignoring page trans-
fers, which are constant, the cost of sort-merge is

4 We should mention that this formula can be simplified even further by
noting that generally,y ≤ 5, and that as disks get faster,y(= TL/TX ) will
become even smaller. As a result,y � |S|, andy + |S| could be replaced
by |S| in the formula. Also,y � M , soy + M could be replaced byM .
The resulting simplified formula can then be boiled all the way down to
MS = d√yM − ye. However, since the NBJ formula as given in Table 2
is not especially more complicated than some of the others given there, we
will keep the more accurate version.
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CSMJ = 2TL ×
(⌈ |R|

I

⌉
+

⌈ |S|
I

⌉)
+(TL + TS) ×

(⌈ |R|
MPR

⌉
+

⌈ |S|
MPR

⌉)
.

If we approximateCT with a continuous function, we arrive
at

CSMJ =
2TL(|R| + |S|)

I
+

(TL + TS)F (|R| + |S|)2

2M (M − 2I)
.

Differentiating,

dCSMJ

dI
=
−2TL(|R| + |S|)

I2
+

(TL + TS)F (|R| + |S|)2

M (M − 2I)2
= 0 .

After simplification,

(xF (|R| + |S|) − 8M )I2 + 8M2I − 2M3 = 0 ,

wherex = (TL + TS)/TL, the ratio of random to sequential
I/O costs. Application of the quadratic formula yields the
result given in Table 2.

If we look at the limits, we again get sensible results.
For example, as|R| and|S| become large,I andO approach
zero, that is, it becomes important to make the runs as long
as possible. AsM increases, so shouldI and O; as M
decreases,I andO will decrease. If seek costs are very high,
x approaches infinity; in this case buffers will shrink towards
zero, as this increases run length andMPR, reducing the
number of seeks.

Simple hash join

Simple hash lives up to its name; its solution is remarkably
tractable. Again, we assume thatI = O. Once we approxi-
mateCT with a continuous function, we get

CSH =
TX |R|F × (|R| + |S|)

M − 2I
+
TL|R|F × (|R| + |S|)

I(M − 2I)
.

Taking the derivative yields

dCSH
dI

= |R|F × (|R| + |S|)

×
(

2TX
(M − 2I)2

− TL(M − 4I)
I2(M − 2I)2

)
= 0 ,

which simplifies out to

2I2 + 4yI − yM = 0 ,

where once again, y is the ratio of latency to transfer cost
(TL/TX ). Again, the quadratic formula can be used to reach
the solution shown in Table 2. As the result is proportional
to y, the buffer size will be small when latency is small, that
is, when it is not important to minimize I/Os. When latency
is large, and it does, therefore, pay to reduce I/Os, the buffer
size will also be large.

Grace hash join

If we try the same procedure using the cost equation for
Grace hash, the result after differentiation and simplification
is a cubic. Using a system such as Mathematica [26], we

can solve the cubic, but the result is difficult to understand
(and annoying to program!). We note that, for Grace, all
of memory in phase one is used for I/O. The problem is
therefore only to decide how much should be used for the
single input buffer, and how much for each of the B output
buffers. We note that there is no great advantage to be gained
from making any one of these buffers much larger than the
others, as the same amount of data is input and output. We
therefore hypothesized that the best performance would be
achieved when all buffers were the same size, and ran a
series of experiments to test this, with excellent results.

When all buffers are equal,I1 = M/(B + 1) = O (if
we pretend memory can be divided infinitely finely). Since
B = |R|F/(M−I1) (again, approximating with a continuous
function), we can substitute the desired formula forI1, and
obtain the following quadratic inB:

B =
|R|F

M − M
B+1

.

This can be reduced to

MB2 − |R|FB − |R|F = 0 ,

which can be solved using the quadratic formula again. The
result is given in Table 2. GivenB, and remembering that
memory comes in discrete units, we then choose values for
I1, I2, andO. Clearly,I2 should be chosen as large as pos-
sible, that is, it should use up all the space in the second
phase not taken up by the residentR bucket. ForO andI1,
we subdivide the space as evenly as possible, then give the
extra pages, if any, toI1.

Hybrid hash join

Finally, we come to hybrid hash join. The result of differen-
tiating and trying to solve the resulting equation for hybrid
is a quartic, with a uselessly long and complex solution5.
However, by making a series of approximations we were
able to arrive at a cost formula that we could minimize. We
used the following approximations:I = O = I2, |R| � K,
|R|F � I, and |S| = |R|. We argue that these are nor-
mally reasonable assumptions (with the exception of the last;
however, the solution is not highly sensitive to this ratio, and
the simplification is significant). With these assumptions, we
get an approximate costC ′HH (for clarity, we have divided
through byTX ; minimizing this function will produce the
same result as minimizingC ′HH , asTX is a constant).

C ′HH
TX

=
y

I
(5|R| − 3M/F ) + |R| 4I + 3y

M − 2I

Remember thaty is the ratio of latency to transfer cost,
TL/TX . Taking the derivative with respect toI yields:

dC ′HH/TX
dI

=
−y
I2

(5|R| − 3M/F ) + |R| 4M + 6y
(M − 2I)2

= 0 ,

(12yM/F + 4M |R| − 14y|R|)I2

+(20yM |R| − 12yM2/F )I

−(5y|R| − 3yM/F )M2 = 0 .

5 The solution, using Mathematica, covered tens of pages, unformatted!
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Using our old friend, the quadratic formula, we arrive at

I =
−(5− 3M

|R|F ) +
√

7.5− 4.5M
|R|F + 5M

y − 3M2

y|R|F
6/|R|F + 2/y − 7/M

.

Since this is already a fairly rough approximation, due to
the simplifications used to reduce the cost to a quadratic,
we feel justified in simplifying further, by taking the limit
as |R| goes to infinity (basically, looking at what happens
whenR andS are much bigger thanM ), and noting that
M � y. This yields the simple result given in Table 2.
In fact, this last approximation tends to compensate for the
earlier approximations; this simple formula yields excellent
results, often 10% better than those achieved using the value
for I given by the quadratic above. However, we do not
know if these results are strictly optimal for all memory
sizes and values of|S| and |R|.

Using the formulas

For NBJ, sort-merge and simple hash, the formulas in Ta-
ble 2 should be used as an initial estimate of the buffer
sizes. To account for the discrete nature of the actual cost
formulas, this estimate should be used to compute an opti-
mal value of the determining parameter for the algorithm.
Then, for sort-merge and NBJ, the buffer space should be
re-computed as the maximum number of pages that still pro-
duces this value for the determining parameter. For example,
suppose we have a memory size of 500 pages (M = 500)
and a ratio of latency to transfer cost of about three (y = 3),
with |R| = |S| = 1250. For NBJ, we get the valueMS = 37.
ThenMR = 500− 37 = 463. For this value ofMR, with
|R| = 1250, we getNB = d|R|F/MRe = d1500/463e = 4.
Note that if we are reading R in 4 chunks, we need only
375 pages of memory for each chunk (d|R|F/NBe). Thus,
MS = M − MR = 125. This will be strictly better than
the original estimate, as it will decrease the number of I/Os
needed to read S, while leaving the number of I/Os forR and
the amount of data transferred the same. Similar optimiza-
tions can be made for sort-merge using an initial estimate of
buffer size to set run length.

For simple hash, some adjustment of the estimate is nec-
essary, as the continuous approximation to the cost formula
was a very rough one, introducing significant error in the
results in some cases. However, each change in the buffer
space changes the amount of data transferred, so using the
maximum number of pages is not a solution. We have found
through experimentation that a good approximation results
from the following procedure. Let the initial estimate ob-
tained from the formula in Table 2 beI0. The largest buffer
size for the number of iterations,NI, determined byI0 is

Imax = 1
2

(
M −

⌈
|R|F
NI

⌉)
. The optimum lies betweenI0 and

Imax, asI0 is an underestimate. SinceI0 is more accurate
for larger memories, we would like the estimate to be close
to I0 whenM is large, and closer toImax whenM is small.
We therefore chooseI = O = I0 + w

M (Imax − I0), wherew
represents a small memory size. For our parameter values,
we foundw = min(M, 125) worked well. (I.e., for memories
up to 125 pages,I = O = Imax. For bigger memories,I = O
slides back towardsI0, as desired).
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Fig. 7. Performance using observed optimal buffer allocations vs. estimates

Our formula for Grace sets the determining parameter
directly, and this “sliding” process for the buffer allocations
is done by the equations in Table 2. For hybrid, the formula
we arrived at works well as it is; some improvement using
similar tricks may be possible, but it must be done carefully,
as each change in the buffer space always affects the overall
amount of data that will be transferred (by changing the size
of R0). We did not find it worthwhile to pursue this.

The formulas that we arrived at are as diverse as the
algorithms themselves. Each algorithm uses memory differ-
ently, and none of the derivations was particularly easy. To
test our results, we experimentally varied the buffer size for
each algorithm (forM between 1 and 13 MB) and com-
pared the observed minima to those predicted by our for-
mulas when used as described above. In Fig. 7 we show
the predicted response times in seconds for our formulas
for all five algorithms (“estimated” curves), as well as the
observed minima for those algorithms (“observed” curves),
for |S| = |R| and |S| = 10× |R|. In most cases, the for-
mulas are amazingly accurate, typically within 2% of the
optimal. Looking at Table 3, we get a better sense of the
errors involved in Fig. 7. As indicated above, the roughest
estimates are for simple and hybrid hash join, and even those
estimates are normally within 5%, except when memory is
sufficiently large to holdR and its hash table, with some
space left over, i.e.,M > |R|F . In this case, too large a
buffer can keepR from fitting, greatly increasing the cost
of algorithms such as NBJ, hybrid and simple hash. When
memory is this large, an additional sanity check, comparing
the cost of two chunks versus a single one, should be made.
From the table, we can also see that the estimates tend to
get worse as|S| increases. This is to be expected, given the
simplifications we made when deriving the formulas for the
estimates. However, the percent error increases only slightly
with the ten-fold increase in|S|.

To see what we gain from correctly tuning buffer al-
locations, compare the graphs in Fig. 8 to those in Fig. 9
(repeated for viewing convenience from Fig. 2). The dif-
ferences are fairly dramatic. First, note that the expected
performance of all of the algorithms is significantly better
in Fig. 8. For example, Grace improves by a factor of about
2.5, and NBJ by as much as 3.5 times (relative toNBJ1; it is
1.3 to 1.5 times better thanNBJ50). Hybrid also improves
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Table 3. Percent error in performance using estimated buffer sizes

% Error when |S| = |R| % Error when |S| = 10× |R|
M (MB) NBJ S-MJ Grace Simple Hybrid NBJ S-MJ Grace Simple Hybrid

1.0 3.9 0.0 0.0 3.4 0.0 4.2 0.0 1.4 3.5 0.0
2.0 3.1 0.0 0.5 1.9 1.9 0.0 0.1 0.3 1.9 3.2
3.0 0.0 0.0 0.5 0.3 1.0 0.0 0.7 0.2 0.3 1.3
4.0 0.0 0.0 0.0 0.0 1.1 0.0 3.0 0.0 0.1 1.1
5.0 0.0 0.5 0.0 2.0 1.2 0.0 0.4 0.1 1.9 0.9
6.0 0.0 0.0 0.0 0.0 0.7 0.0 0.9 0.0 0.0 0.5
7.0 0.0 0.0 0.0 4.4 0.7 0.0 1.1 0.0 5.2 0.5
8.0 0.0 0.0 0.5 1.6 0.0 0.0 0.1 0.1 1.6 0.3
9.0 0.0 0.0 0.0 0.0 0.0 0.0 1.6 0.0 0.0 0.0

10.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
11.0 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 0.2 0.2
12.0 0.0 0.5 0.0 1.3 0.0 0.0 0.1 0.0 0.5 0.5
13.0 0.0 0.0 0.0 7.0 0.0 0.0 0.1 0.0 7.6 0.0
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Fig. 8. Predictions of the detailed model, optimized buffer allocations

substantially, making it much more competitive, though it
still only beats NBJ in low memory (under 3 MB), when
it essentially behaves like Grace, and in very large mem-
ory (M > |R|F ), where it strongly resembles simple hash.
Differences in performance that were significant under the
naive buffer allocations become insignificant when the allo-
cations are well-tuned. For example, when buffer sizes are
set appropriately, Grace and sort-merge are virtually indis-
tinguishable. This is because, with the buffer sizes set cor-
rectly, transfer costs dominate the total cost, and these costs
are identical for the two algorithms (see Sect. 4).

5.4 Yes, the model matters

The differences between Figs. 8 and 9 illustrate, once again,
that it is necessary to model buffer allocations in a query
optimizer in order to correctly choose among join methods.
Since buffer allocation and latency have such important ef-
fects on performance, it is natural to ask whether a model
based only on counting disk I/Os would be sufficient, as
suggested by [10]. That is, do we really need to include the
cost of page transfers?

Table 4 dramatizes the answer. This table compares the
join algorithm recommendations of the two simpler models
(transfer-only and I/O count-only) with those of the detailed
I/O cost model. Our intent was to approximate the behav-
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Fig. 9. Predictions of the detailed model, naive buffer allocations

ior of an optimizer based on one of these models. Thus, we
assumed buffer allocations would be tuned to be optimal
according to the model doing the cost predictions. For ex-
ample, the transfer-only model usesNBJ1 for NBJ, while
the I/O count-only model usesNBJ50. The detailed model
uses the formulas for optimizing buffer allocations derived
in Sect. 5.3.

The table shows, for a range of memory sizes from 0.35
to 13 MB, which algorithm each model would pick as the
winner (the cheapest way to execute the join), and the “ac-
tual” cost (according to the detailed model) in seconds of
executing the join using that algorithm with the buffer allo-
cations chosen given that model. In cases where more than
one algorithm is listed, the model was unable to distinguish
between them (that is, an optimizer based on that model
would predict identical performance for those algorithms).
However, the actual cost of the algorithms according to the
detailed model may differ; thus, the cost of each algorithm
is given separately. Clearly, an optimizer based on either of
the two simpler models would make some serious mistakes,
choosing both the wrong algorithms and the wrong buffer
allocations. These decisions could lead to performance as
much as four times worse than the “optimal” picked by the
detailed model.

Why is the number of I/Os such a bad predictor of the
optimized algorithms’ performance, when we showed earlier
(in Sect. 5.1) that latency is so important? The answer is
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Table 4. Comparison of optimizer predictions under three I/O cost models

Transfer-only optimizer I/O count-only optimizer Detailed optimizer
M (MB) Winner Actual cost Winner Actual cost Winner Actual cost

0.35 Hybrid 88.2 S-MJ 69.4 S-MJ 69.4
0.5 Hybrid 86.7 Grace/Hyb. 43.4/43.4 Grace/Hyb. 43.4/43.4
1.0 Hybrid 83.4 NBJ 85.7 Grace/Hyb. 26.6/26.6
2.0 Hybrid 78.0 NBJ 43.3 Grace/S-MJ 21.8/21.8
3.0 Hybrid 72.5 NBJ 29.8 Hybrid 19.7
4.0 Hybrid 67.5 NBJ 23.0 NBJ 16.6
5.0 NBJ 44.2 NBJ 19.7 NBJ 13.3
6.0 NBJ 44.2 NBJ 16.4 NBJ 13.1
7.0 NBJ 30.6 NBJ 16.4 NBJ 9.9
8.0 NBJ 30.6 NBJ 13.1 NBJ 9.8
9.0 NBJ 30.6 NBJ 13.1 NBJ 9.8

10.0 Simple 36.5 NBJ 13.1 NBJ 9.8
11.0 Simp./Hyb. 31.9/32.3 NBJ 13.1 Simple 8.9
12.0 Simp./Hyb. 27.4/27.4 NBJ 9.8 Simp./Hyb. 7.8/7.8
13.0 NBJ/Simp./Hyb. 16.9/27.3/27.3 NBJ 9.8 NBJ 6.6
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Fig. 10. Measured I/O times, optimized buffer allocations

simply that by optimizing the buffer allocations, we reduced
the negative effect of the excessive I/Os that were occurring
with the naive allocations. Thus, the effect of page transfers
was increased – but only because we significantly reduced
the number of I/Os. If the model that we used for buffer
allocation had not included both page transfers and latency,
of course, we could not have achieved these results.

5.5 Checking the truth

The “experiments” that we have done so far show that the
detailed I/O cost model makes a difference in our predictions
for which method will be best. However, they do not prove
that the detailed model’s predictions are more accurate than
a less detailed model. In this section, we present results from
an exercise in which we implemented the fivead hoc join
methods that we have studied here and measured their I/O
times and overall execution times for the memory sizes and
memory allocations covered by Figs. 8 and 9.

We implemented the five join algorithms based on the
memory management schemes described in Sect. 3. To elimi-
nate operating system effects, our implementation was based
on raw Unix file systems and we did our own buffer man-
agement. Buffer management consisted of allocating a single
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Fig. 12. Measured join times, optimized buffer allocations

large block of memory and then using some of its pages as
input buffers, some as output buffers, some for holding data
pages, and some for a hash table directory, as per the earlier
descriptions of the various algorithms’ memory management
schemes. Each relation to be joined was stored on disk as
a series of contiguous 8-KB pages, with each page holding
as many 100-byte tuples as possible (yielding 101250 tuples
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Fig. 13. Measured join times, naive buffer allocations

per 10-MB relation). Each tuple contained a 4-byte unique
integer key field plus 96 bytes of padding. The join keys
were generated so that both relations contained the same set
of key values (yielding a one-to-one join), and tuples in the
two relations were stored in random order (i.e., unclustered
with respect to their join key values).

Our experiments were performed on a 133-MHz DEC
3000/400 workstation running Ultrix. This machine had
32MB of real memory, though we varied the size of the
buffer pool used, as mentioned above. Two identical disks
were dedicated to the experiments and utilized in the manner
described in each algorithm’s cost analysis. Each disk was a
Quantum Maverick 540S 0901; performance-wise, each pro-
vided an average seek time of 7.0 ms, a latency of 8.3 ms,
and a transfer time of 2.5 ms per 8-KB page. Note that al-
though their seek times are a bit faster than the Fujitsu disk
that served as our model’s basis, their two most important
performance parameters, the latency and the transfer time,
are virtually identical.

Figures 10 and 11 show the measured I/O times that
resulted when we repeated the “experiments” of Figs. 8
and 9 using our implementations of the join algorithms.
These were obtained by measuring the total running times
(wall clock time) of each algorithm, also shown, in Figs. 12
and 13, and then subtracting off the reported CPU times
used by the algorithms. We focus on measured I/O times
here, since our primary objective is to verify the predictions
of our detailed I/O cost model. As can be seen by compar-
ing Fig. 10 against Fig. 8 and Fig. 11 against Fig. 9, our
detailed I/O cost model is indeed an accurate predictor of
the measured I/O costs and I/O time trends. Moreover, the
performance trends that are evident in Figs. 12 and 13 in-
dicate that the relative overall execution times of the join
algorithms are also predicted rather well by our detailed I/O
cost model; while the overall execution times are higher, due
to the presence of CPU time as well as I/O time, the rela-
tive performance tradeoffs are largely the same among the
algorithms. (The only notable difference is that sort-merge
appears to be somewhat more expensive, relatively speaking,
due to its more CPU-intensive nature.)

5.6 Discussion

We made several simplifying assumptions in developing our
cost models. Several of the algorithms presented require a
certain minimum amount of memory in order to compute the
join in two phases. For example, the sort-merge algorithm
requiresM >

√
F |S|. With less memory, the algorithm will

require multiple merge passes. We are confident that our the-
sis, that a detailed model is necessary, is still equally valid
when this occurs, as indicated by the empirical results in [9].
However, we have not directly verified this, nor do we pre-
dict which algorithms will perform better than others when
memory becomes extremely scarce. We expect extensions
for this case to be straightforward.

For ease of exposition, we used a simple version of each
algorithm. Variations of several of the join methods have
been proposed that generally improve the performance of
the methods. For example, Kim [12] has proposed a vari-
ation on NBJ, in which S is read first forwards, and then
backwards. This variation will generally perform better than
the version described here, as the number of disk I/Os and
of page transfers will be (slightly) less. Many variations on
sort-merge join have been proposed [9], and Graefe [7] has
detailed several optimizations of hybrid hash join. We have
purposely chosen simple versions: the point of this work is
not to say which is the best join method, but to show how
the model used affects our view of “best”.

It should also be stressed that we used only one set of
values for the key parameters,TX , TL and TS . Different
weights would again change our view of which algorithm
is “best”, but would only emphasize the need for a detailed
I/O cost model. Finally, different I/O systems may include
other features that should be included in the cost model, for
example, overlapped or parallel I/O.

6 Conclusions

In this paper, we have looked at three I/O cost models: the
transfer-only model common in the literature, an I/O-count-
only model advocated by [10], and a detailed model that we
proposed that includes latency, seek and page transfer costs.
We showed that the common wisdom from previously pub-
lished work is not wholly reliable. Hybrid is notalwaysthe
method of choice forad hoc joins; NBJ does not perform
best when 50% of the available memory is given to each
relation (or with a single page for the larger relation). In
addition to our I/O cost analyses, we presented results mea-
sured from implementations of the join algorithms that were
modeled; the measured results corroborated the predictions
of the detailed I/O cost model.

The results in the preceding pages indicate that good
predictions of join performance require a detailed I/O cost
model. We have shown that a query optimizer needs to con-
sider all three components of I/O cost, and needs to have a
thorough understanding of the algorithms it is modeling, in
order to correctly choose a good join method. Furthermore,
the optimizer should be aware of how the implementation
of a particular join method allocates buffers for I/O, and the
join method implementation should pay careful attention to
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buffer allocation. Systems that allow hints to be passed be-
tween join execution and the buffer manager will be at an
advantage here [14].

Once again, we stress that the reader should not interpret
our work as simply, for example, proving that NBJ is the
best choice for a large range of memory sizes. Instead, we
hope this work will inspire database system builders and op-
timizer “gurus” to evaluate which algorithms are appropriate
for their own hardware and software systems and then model
them using a detailed I/O cost model such as that which we
proposed here. Also, this work is not limited in scope to
relational query processing; similar results are applicable in
object-oriented database systems that utilize pointer-based
join methods [23]. Finally, it should be noted that we are
not advocating that query optimizers consider only I/O cost
in their models; they must continue to account for CPU and
network costs as well (though we did see in our measure-
ments that I/O cost trends were strong predictors of the over-
all join execution time trends).
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