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Abstract. Many applications require the management of automate the process of understanding spatial data by repre-
spatial data in a multidimensional feature space. Clustersenting the data in a concise manner and reorganizing spatial
ing large spatial databases is an important problem, whicldatabases to accommodate data semantics. It can be used in
tries to find the densely populated regions in the featuremany applications such as seismology (grouping earthquakes
space to be used in data mining, knowledge discovery, oclustered along seismic faults), minefield detection (group-
efficient information retrieval. A good clustering approach ing mines in a minefield), and astronomy (grouping stars in
should be efficient and detect clusters of arbitrary shapegalaxies) [AF97, BR95].

It must be insensitive to the noise (outliers) and the order The aim ofdata-clusteringmethods is to group the ob-

of input data. We propos@/aveClustera novel clustering jects in spatial databases into meaningful subclasses. Due
approach based on wavelet transforms, which satisfies atb the huge amount of spatial data, an important challenge
the above requirements. Using the multiresolution propertyfor clustering algorithms is to achieve good time efficiency.
of wavelet transforms, we can effectively identify arbitrar- Also, due to the diverse nature and characteristics of the
ily shaped clusters at different degrees of detail. We alsmsources of the spatial data, the clusters may be of arbitrary
demonstrate thatvaveClusteis highly efficient in terms of shapes. They may be nested within one another, may have
time complexity. Experimental results on very large datasetsoles inside, or may possess concave shapes. A good cluster-
are presented, which show the efficiency and effectivenesig algorithm should be able to identify clusters irrespective
of the proposed approach compared to the other recent clusf their shapes or relative positions. Another important issue
tering methods. is the handling of noise. Noise objects (outliers) refer to the
objects which are not contained in any cluster and should be
discarded during the mining process. The results of a good
clustering approach should not become affected by the dif-
ferent ordering of input data and should produce the same
clusters. In other words, it should be order-insensitive with
respect to input data.

The complexity and enormous amount of spatial data
Following the current research achievements [JM95may hinder the user from obtaining any knowledge about
COM93], the visual content in an image may be represente¢he number of clusters present. Thus, clustering algorithms
by a set of features such as texture, color and shape. In ghould not assume to have the input of the number of clusters
database, the features of an image can be represented bypgesent in the spatial domain. To provide the user maximum
set of numerical numbers, termed a feature vector. Variou%ffectiveness, C|ustering a|gorithms should C|assify Spatia]
dimensions of feature vectors are used for content-based refata at different levels of detail. For example, in an image
trieval. We use the tereratiaI datato refer to those data database, the user may pose queries like whether a particu_
which are 2D and 3D points, polygons, and points in somejar image is of type agricultural or residential. Suppose the
d-dimensional feature space [EKSX98]. In this paper wesystem identifies that the image is of agricultural category.
explore adata-clusteringmethod in the spatial data-mining The user may be just satisfied with this broad classification.
problem. Spatial data mining is the discovery of interestingagain, the user may enquire about the actual type of the crop
characteristics and patterns that may exist in large spatiahat the image shows. This requires clustering at hierarchi-
databases. Usually the spatial relationships are implicit irca| levels of coarseness, which we call tmeltiresolution
nature. Because of the huge amounts of spatial data thgjroperty.
may be obtained from satellite images, medical equipments, |n this paper, we propose a spatial data-mining method,
geographic information systems (GIS), image database exermedWaveClusterWe consider the spatial data as multi-

plorat_ion, etc.,_ it is exp_ensive_and un_realistic fOf the users tddimensional Signa|s and app|y Signa|-processing techniques
examine spatial data in detail. Spatial data mining aims to

1 Introduction
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— wavelet transforms to convert the spatial data into the fre-on ¢; - count values. We define thigansformed spacas the
guency domain [SCZ98]. In wavelet transform, convolution set of cells after wavelet transformation on the count values
with an appropriate kernel function results in a transformedof the cells in the quantized space.

space where the natural clusters in the data become more In our approach, we take an all point stand on defining
distinguishable. We then identify the clusters by finding theclusters, i.e., we consider that all the points within a cluster
dense regions in the transformed domain. WaveCluster corare representatives of the cluster. We introduce the following
forms with all the requirements of good clustering algorithmsdefinitions to be used for the rest of the paper.

as discussed above. It can handle any large spatial datasets = ) ] )
efficiently. It discovers clusters of any arbitrary shape andPefinition 1. (Empty cell) A cell in the quantized space with
successfully handles noise, and it is totally insensitive to0 count value is called an empty cell.
:Jr:?)c%rgseilqggteocfht:i:ulggu;pd;it:d Ailiigjylti?:gglllﬁii r?;rg]gef’tenal Deflnltlon 2. (Nonempty qell) A cell in the quantized space
! X ’ with nonzero count value is called a nonempty cell.

is attributed naturally to WaveCluster. To our knowledge,

no method currently exists which exploits these propertieefinition 3. (Significant cell) A cell is a significant cell if

of wavelet transform in the clustering problem in spatial dataits count field in the transformed space is above a certain
mining. It should be noted that use of WaveCluster is notthresholdr.

limited only to the spatial data, and it is applicable to any

collection of attributes with ordered numerical values. Definition 4. (e-neighbor) A cellc; is ane-neighbor of cell
The rest of the paper is organized as follows. Section 2, if either both are significant cells (in transformed space)

formalizes the problem and defines its scope. We discuser nonempty cells (in quantized space) abcy, c;) < e,

the related work in Sect. 3. In Sect. 4, we present the mowhereD is an appropriate distance metric ared> 0.

tivation behind using signal-processing techniques for clus- o .

tering large spatial databases. This is followed by a brief e can extend the definition efneighborhood tdk-¢-

introduction on wavelet transform. Section5 discusses ouP€ighborhood.

clustering method WaveCluster and analyzes its CompleXityDefinition 5. (k-e-neighbor) A celkc; is a k-e-neighbor of a
In Sect. 6, we present the experimental evaluation of the efe.o) o if noth are significant cells (in transformed space) or

fectiveness and efficiency of WaveCluster using very large, i, tv cells (i tized it
datasets. Finally in Sect. 7, concluding remarks are oﬁeredO?thslzep?é):;g;ﬁigé:ﬁ];éwbglrjsggf space) and if one

Definition 6. (k-connected) Two celle; and ¢, are k-
2 Problem formalization connected if there is a sequence of celspy, ..., p;j such

that p; = ¢1 andp; = ¢ and pi+1 is a k-e-neighbor ofp;,
Following the definition of Agrawal et al. [AGGR98], let 1< < j.

A = A, Ay, ..., Aq be a set of bounded, totally ordered o ] o
domains andS = A; x A, x ... x Ay be ad-dimensional  Definition 7. (Cluster) A cluster?” is a set of significant

numerical space or feature spaes, .. ., A, are referred as  Cells {c1,Cz, ..., cm} which are k-connected in the trans-

dimensions ofS. The input dataset is a set éfdimensional ~ formed space.

pointsO = {01,0z,...,0n}, Whereo, = (01,02, . - ., 0id), , . _

1 < i < N. Thej-th component ob; is drawn from domain . leen_ a set ofV database point® = {01’.02’ e O}

A in the d-dimensional feature spacg our goal is to find the
J

clusters as defined above. After clustering, each cell in the
feature spacé will have a label indicating the cluster that it
belongs to. In this paper, we propose WaveCluster to cluster
very large databases with low number of dimensions, that
is, we assume thaV is very large andf is low.

We first partition the original feature space into nonover-
lapping hyper-rectangles, which we ca#lls The cells are
obtained by segmenting every dimensidn into m; num-
ber of intervals. Each ced; is the intersection of one inter-
val from each dimension. It has the for{@;4, o, . . ., ¢iq),
wherec;; = [l;;, hi;) is the right open interval in the parti-
tioning of A;. Each cellc; has a list of statistical parameters
Ci - param associated with it.

We say that a point, = is contained . . . . .
y P = (o1, Oa) We can categorize the clustering algorithms into four main

inacellg if [;; < og < hy; for 1 < j < d. The list ) A - : . .
¢ - param keeps track of the statistical properties such asdroups: partitioning algorithms, hierarchical algorithms,

aggregation, mean, variance, and the probability distributior{jens'ty'b"’lsed algorithms and grid-based algorithms.
of the data points contained in the cell In general, in
grid-based approaches the containment relations are discoy-
ered by a single pass through the dataset and appropria
statistical parameters are computed. Each cell has informa-

tion about the density of the data contained in the cell. ThusPartitioning algorithms construct a partition of a database

the collection ofc; - param summarizes the dataset. of N objects into a set of{ clusters. Usually, they start
We choose the number of points contained in each cell as 1 In case we keep more elaborate information about each cell, then we

the only statistic to be used. That is, we wsecount to be  can specify a range of values for each of the parameters of each cell for
thec; - param. In our approach, we apply wavelet transform determining whether it is a significant cell.

3 Related work

1 Partitioning algorithms
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with an initial partition and then use an iterative control 3.3 Density-based algorithms
strategy to optimize an objective function. There are mainly
two approaches: ik-means algorithm, where each cluster Pauwels et al. proposed an unsupervized clustering algorithm
is represented by the center of gravity of the clusterkii) to locate clusters by constructing a density function that re-
medoid algorithm, where each cluster is represented by onflects the spatial distribution of the data points [PFG97].
of the objects of the cluster located near the center. They modified the nonparametric density estimation prob-
PAM [KR90] uses ak-medoid method to identify the lem in two ways. Firstly, they use cross-validation to select
clusters. PAM select¥ objects arbitrarily as medoids and the appropriate width of the convolution kernel. Secondly,
swaps with other objects until alk' objects qualify as they use difference-of-gaussiafi30Gs)that allows for bet-
medoids. PAM compares an object with an entire dataseter clustering and frees the need to choose an arbitrary cut-off
to find a medoid; thus, it has a slow processing time,threshold. Their method can find arbitrary shape clusters and
O(K (N — K))?. CLARA (Clustering LARge Applications) does not make any assumptions about the underlying data
[KR90] draws a sample of the dataset, applies PAM on thedistribution. They have successfully applied the algorithm to
sample, and finds the medoids of the sample. color segmentation problems. This method is computation-
Ng and Han introduced CLARANS (Clustering Large ally very expensive [PFG97]. So it can make the method
Applications based on RANdomized Search), which is animpractical for very large databases.
improvedk-medoid method [NH94]. This is the first method Ester et al. presented a clustering algorithm DBSCAN
that introduces clustering techniques into spatial data-miningelying on a density-based notion of clusters. It is designed
problems and overcomes most of the disadvantages of tradte discover clusters of arbitrary shapes [EKSX96]. The key
tional clustering methods on large datasets. Althoughidea in DBSCAN is that, for each point of a cluster, the
CLARANS is faster than PAM, but still slow and, as men- neighborhood of a given radius has to contain at least a mini-
tioned in [WYM97], its computational complexity is? mum number of points, i.e., the density in the neighborhood
(K N?). Moreover, because of its randomized approach, fothas to exceed some threshold. DBSCAN can separate the
large values ofV, quality of results cannot be guaranteed. noise (outliers) and discover clusters of arbitrary shape. It
In general,k-medoid methods do not present enoughuses R-tree to achieve better performance. But the average
spatial information when the cluster structures are complexruntime complexity of DBSCAN isD(NlogN).

3.2 Hierarchical algorithms 3.4 Grid-based algorithms

Hierarchical algorithms create a hierarchical decompositiorRecently a number of algorithms have been presented which
of the the database. The hierarchical decomposition can bguantize the space into a finite number of cells and then do
represented as dendrogram[Gor81]. The algorithm iter- all operations on the quantized space. The main characteris-
atively splits the database into smaller subsets until soméic of these approaches is their fast processing time, which
termination condition is satisfied. Hierarchical algorithms dois typically independent of the number of data objects. They
not needK as an input parameter, which is an obvious ad-depend only on the number of cells in each dimension in the
vantage over partitioning algorithms. The disadvantage igjuantized space.
that the termination condition has to be specified. Wang et al. propose a STatistical INformation Grid-based
BIRCH (Balanced Iterative Reducing and Clustering us-method (STING) for spatial data mining [WYM97]. They
ing Hierarchies) [ZRL96] uses a hierarchical data structuredivide the spatial area into rectangular cells using a hierar-
called CF-tree for incrementally and dynamically clusteringchical structure. They store the statistical parameters (such
the incoming data points. CF-tree is a height-balanced tre@s mean, variance, minimum, maximum, and type of distri-
which stores the clustering features. BIRCH tries to producebution) of each numerical feature of the objects within cells.
the best clusters with the available resources. They conside3TING goes through the dataset once to compute the statis-
that the amount of available memory is limited (typically tical parameters of the cells; hence, the time complexity of
much smaller than the dataset size) and want to minimizeyenerating clusters ©(XN). The other previously mentioned
the time required for 1/0. In BIRCH, a single scan of the clustering approaches do not explain if (or how) the cluster-
dataset yields a good clustering, and one or more additionahg information is used to search for queries, or how a new
passes can (optionally) be used to improve the quality fur-object is assigned to the clusters. In STING, the hierarchi-
ther. So, the computational complexity of BIRCHGY ). cal representation of grid cells is used to process such cases.
BIRCH is also the first clustering algorithm to handle noise After generating the hierarchical structure, the response time
[ZRL96]. Since each node in a CF-tree can only hold a lim-for a query would be&)(K), whereK is the number of grid
ited number of entries due to its size, it does not alwayscells at the lowest level [WYM97]. Usuallif' << N, which
correspond to a natural cluster [ZRL96]. Moreover, for dif- makes this method fast. However, in their hierarchy, they
ferent orders of the same input data, it may generate differendo not consider the spatial relationship between the children
clusters. In other words, it is order-sensitive. In addition, asand their neighboring cells to construct the parent cell. This
our experimental results showed, if the clusters are “sphermight be the reason for thisotheticshape of resulting clus-
ical” or convex in shape, BIRCH performs well; however, ters, that is, all the cluster boundaries are either horizontal or
for other shapes it does not do as well. This is because ivertical, and no diagonal boundary is detected. It lowers the
uses the notion of radius or diameter to control the boundaryjuality and accuracy of clusters, despite the fast processing
of a cluster. time of this approach.
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Xu et al. proposed DBCLASD (Distribution Based Clus-
tering of LArge Spatial Databases) [XMKS98]. DBCLASD
assumes that the points inside a cluster are uniformly dis
tributed. For each point in the cluster, the nearest point which
is not inside the cluster is detected. Then it definegarest
neighbor distance sets the set of all distances between each
point in the cluster and its nearest point outside the cluster|
Then it defines &lusterto be a nearest neighbor distance set
that has the expected distribution with a required confidencs
level. DBCLASD incrementally augments an initial cluster
by its neighboring points as long as the nearest neighbor dig
tance set of the resulting cluster still fits the expected distri-_
bution. DBCLASD is able to find arbitrarily shaped clusters. Fi9- 1. A sample 2D feature space
Furthermore, DBCLASD does not require input parameters
to do the clustering. The experimental results presented by
Xu et al. ;hows that it is slower'than DBSCAN which has 4.2 Wavelet-based clustering
a complexity ofO(NlogN). Also, it assumes that points in-
side a cluster are uniformly distributed, which may not be
the case in many applications.

We propose WaveCluster, which is a grid-based ap-We propose to look at the feature space from a signal-
proach. The proposed approach is very efficient, especiallprocessing perspective. The collection of objects in the
for very large databases. The computational complexity offeature space composesdadimensional signal. The high-
detecting clusters in our methodG& V). The results are not frequency parts of the signal correspond to the regions of
affected by noise and the method is not sensitive to the ordethe feature space where there is a rapid change in the dis-
of input objects to be processed. WaveCluster is well capabléribution of objects, that is, the boundaries of clusters. The
of finding arbitrary-shape clusters with complex structureslow-frequency parts of thé-dimensional signal which have
such as concave or nested clusters at different scales, armigh amplitude correspond to the areas of the feature space
does not assume any specific shape for the clusters. A priotishere the objects are concentrated, in other words, the clus-
knowledge about the exact number of clusters is not requireters themselves. For example, Fig.1 shows a 2D feature
in WaveCluster. However, an estimation of expected num-space, where the 2D data points have formed four clus-
ber of clusters helps in choosing the appropriate resolutioners. Note that Fig. 1 and also the figures in Sect.5 are the
of clusters. visualizationsof the 2D feature spaces, and each point in

the images represents the feature values of one object in

the spatial datasets. Each row or column can be considered
4 Relating spatial data to multidimensional signals as a 1D signal, so the whole feature space will be a 2D

signal. Boundaries and edges of the clusters constitute the
rlligh—frequency parts of this 2D signal, whereas the clusters

In this section, we discuss the relationship between Spat"%hemselves, correspond to the parts of the signal which have

data and multidimensional signals, and show how to us f h hiah litude. When th b ¢
wavelet transforms to illustrate the inherent relationships inow frequency wi 'gh amplitude. €n the number o
spatial data. objgcts is h!gh, we can apply signal-processing techniques
to find the high-frequency and low-frequency parts of dhe
dimensional signal representing the feature space, resulting
) o ) ) in detecting the clusters.
4.1 Spatial data versus multidimensional signals Wavelet transform is a signal-processing technique that
decomposes a signal into different frequency subbands (for
The primary motivation for applying signal-processing prim- example, high-frequency subband and low-frequency sub-
itives to spatial databases comes from the observation thdtand). The wavelet model can be generalized do
the multidimensional spatial data objects can be representedimensional signals in which a 1D transform can be ap-
in a d-dimensionalfeature spaceThe numerical attributes plied multiple times. Methods have been used to compress
of a spatial object can be represented bfeature vector  data [HJS94], or to extract features from signals (images)
where each element of the vector corresponds to one numeusing wavelet transform [SC94, JFS95, SZ97, SZB97]. For
ical attribute, orfeature These feature vectors of the spatial each object, the extracted features form a feature vector that
data can be represented in the spatial area, which is termazhn be represented by a point in thedimensional fea-
feature spacewhere each dimension of the feature spaceture space. A spatial database will be the collection of such
corresponds to one of the features (numerical attributes)points. Wavelet transform has been applied on the objects to
For an object withd numerical attributes, the feature vector generate the feature vectors (feature space). The key idea in
will be one point in thed-dimensional feature space. The our proposed approach is to apply wavelet transform on the
feature space is usually not uniformly occupied by the feafeature spacdginstead of the objects themselves) to find the
ture vectors. Clustering the data identifies the sparse and thdense regions in the feature space, which are the clusters.
dense places, and hence discovers the overall distribution dfhe next subsection discusses the strategy and motivation of
patterns of the feature vectors. using wavelet transform od-dimensional feature spaces.
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majority of the noise objects in the original space are
removed after the transformation.

— Multiresolution. The multiresolution property of wavelet
transform can help in detecting the clusters at different
levels of detail. As will be shown later, wavelet trans-
form provides multiple levels of decompositions, which
results in clusters at different scales from fine to coarse.
The appropriate scale for choosing clusters can be de-
cided based on the user’s needs.

Fig. 2. Cohen-Daubechies-Feauveau (2,2) biorthogonal wavelet — Cost efficiency. Since applying wavelet transform is
very fast, it makes our approach cost-effective. As will be
shown in the experiments, clustering very large datasets

4.3 Applying wavelet transform takes only a few seconds. Using parallel processing, we

can obtain even faster responses.

Wavelet transform is a type of signal representation that can
give the frequency content of the signal at a particular in-
stant of time by filtering. A 1D signad can be filtered by
convolving the filter coefficients; with the signal values:

Applying wavelet transform on a signal decomposes it
into different frequency subbands [Mal89a]. We now briefly
review wavelet-based multiresolution decomposition. More
details can be found in Mallat's paper [Mal89b]. To have

M multiresolution representation of signals, we can use discrete
5 = Z ChSisk— M 5 wavelet transform. We can compute a coarser approximation

k=1 of the 1D input signalsy by convolving it with the low-pass
filter H and downsampling the signal by 2 [Mal89b]. By
downsampling, we mean skipping every other signal sam-
ple (For example, one row in a 2D feature space). All the
gfscrete approximationS;, 1 < j < J (J is the maximum
possible scale), can thus be computed fr&grby repeating
this process. Resolution becomes coarser with incregsing

Eor example, the third approximation 6% (that is Ss) is

coarser than the second approximatign Figure 4 illus-

trates the method.

— Unsupervised clustering.The hat-shapefilters empha- We can extract the difference of information between the
size regions where points cluster, but simultaneouslyapproximation of signal at scaje- 1 and;. D; denotes this
tend to suppress weaker information in their boundary difference of information and is calledetail signalat the
Intuitively, dense regions in the original feature space actscalej. We can compute the detail sign@l; by convolving
asattractorsfor the nearby points and at the same time S;_, with the high-pass filteG and returning every other
as inhibitors for the points that are not close enough. sample of output. The wavelet representation of a discrete
This means clusters in the data and clear regions arounsignal Sy can therefore be computed by successively decom-
them automatically stand out, so that they become morgosingsS; into S;+1 and D1 for 0 < j < J. This represen-
distinct [PFG97]. It makes finding the connected compo-tation provides information about signal approximation and
nents in the transformed space easier than in the originadetail signals at different scales.
feature space, because the dense regions in the feature We can easily generalize the wavelet model to 2D feature
space will be more salient. Figure 3a shows an examspace, in which we can apply two separate 1D transforms
ple of a feature space before and after transform. In thigHJS94]. We can represent a 2D feature space as an image
case, we have used Cohen-Daubechies-Feauveau (2,8here each pixel of image corresponds to one cell in the fea-
biorthogonal transform. Two cluster centers were firstture space. The 2D feature space (image) is first convolved
placed in a 2D feature space and then 500,000 pointalong the horizontal«) dimension, resulting in a low-pass
were generated around them following bivariate normalimage L and a high-pass imag#. We then downsample
distribution. Then 25,000 uniformly distributed random each of the convolved images in thedimension by 2. Both
noise points were added to the data to check the effecf. and H are then convolved along the verticaf) (dimen-
of applying wavelet transform on them. As the figure sion, resulting in four subimage&.L, LH, HL, and HH.
shows, the clusters in the transformed space are mor®nce again, we downsample the subimages by 2, this time
salient and thus easier to be found. along they dimension. The 2D convolution decomposes an

— Effective removal of noise objectsNoise objects are image into anaverage signa(L L) and threedetail signals
the objects that do not belong to any of the clusterswhich are directionally sensitivel. H emphasizes the hor-
and usually their presence causes problems for the cuiizontal image featurest{ L the vertical features, anéf H
rent clustering methods. Applying wavelet transform re-the diagonal features.
moves the noise in the original feature space, resulting Figure5 shows the wavelet representation of the image
in more accurate clusters. As we will show, we take ad-in Fig. 1 at three scales. At each level, subbdrdd(wavelet
vantage of low-pass filters used in the wavelet transformapproximation of original image) is shown in the upper left
to automatically remove the noise. Figure 3 shows thatjuadrant. Subband A (horizontal edges) is shown in the

where M is the number of coefficients in the filter ards”
the result of convolution [HJS94]. Wavelet transform pro-
vides us with a set of attractive filters. For example, Fig. 2
shows the Cohen-Daubechies-Feauveau (2,2) biorthogon
wavelet.

The motivation for using wavelet transform and thereby
finding connected components in the transformed space i
drawn from the following observations.
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Fig. 3a. Original feature spacda Transformed space
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Fig. 4. Block diagram of multiresolution wavelet transform

upper right quadrant, subbaridl (vertical edges) is dis- objects based on the cluster that they belong to. The main

played in the lower left quadrant, and subbadhé (corners) ideain WaveCluster is to transform the original feature space

is in the lower right quadrant. by applying wavelet transform and then find the dense re-

The above wavelet model can similarly be generalizedgions in the new space. It yields sets of clusters at different

for d-dimensional feature space, where 1D wavelet transtesolutions and scales, which can be chosen based on the

form will be appliedd times. As mentioned earlier, we user's needs. The main steps of WaveCluster are shown in

apply wavelet transform on the feature vectors of objectsAlgorithm 1.

At different scales, it decomposes the original feature space

into an approximation, oaverage subband (feature space) Algorithm 1

which has information about content of clusters, atet  |npyt: Multidimensional data objects’ feature vectors

tall subbands (feature spaceshich haV(_e mformat_lon about Output: clustered objects

boundaries of clusters. The next section describes how we

use this information to detect the clusters. 1. Quantize feature space, then assign objects to the cells.
2. Apply wavelet transform on the quantized feature space.
3. Find the connected components (clusters) in the sub-

5 WaveCluster bands of transformed feature space, at different levels.

In this section, we introduce our proposed algorithm and 4 ASSign labels to the cells.
discuss its properties. The time complexity analysis of theg' Make the lookup table.

algorithm is then presented. . Map the objects to the clusters.
5.1 Algorithm 5.1.1 Quantization

Given a set of spatial objects, 1 < i < N, the goal of The first step of the WaveCluster algorithm is to quantize the
the algorithm is to detect clusters and assign labels to théeature space, where each dimensifrin the d-dimensional
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Fig. 5. Multiresolution wavelet representation of the feature space in Figalsatle 1;b scale 2;c scale 3

feature space will be divided inta; intervals. If we assume . The connected component analysis consists of scanning

that m; is equal tom for all the dimensions, there would through the image once to find all the connected compo-

be m? cells in the feature space. Then, the correspondingients, and then equivalence analysis to relabel the compo-

cell for the objects will be determined based on their featurenents. This takes care of components with holes and concave

values. A cellci = {¢;q, ¢io, . . ., Ciq) CONtaiNs an objeaty = shapes. There are many well-known algorithms for finding

(01, - - - Oka), if connected components in images and we used the one men-
. tioned in [Hor88] for our purpose. Figure 9 in Sect. 5 shows

lij < Oki < g lsjsd the clusters that WaveCluster found at each scale in different

We may recall that;; = [l;;, hi;) is the right open inter- colors.

val in the partitioning ofA;. For each cell, we count the

number of objects contained in it to represent the aggrega-

tion of the objects. The number (or size) of these cells and.1.3 Label cells and make lookup table

the aggregation information in each cell are important is-

sues that affect the performance of clustering. We discus&ach clusterw, w € %;, will have a cluster numbew,.

these quantization issues in the next section. Because of tHa the fourth step of the algorithm, WaveCluster labels the

multiresolution property of wavelet transform, we considercells in each cluster in the transformed feature space with

different cell sizes at different scales of transform. its cluster number. That is,

Yw Vi, tk e w =1, =w,, wE &,

5.1.2 Transforming and clustering wherel,, is the label of the celt. The clusters that are

_ _ ~ found are in the transformed feature space and are based on
In the second step, discrete wavelet transform will be appliedyavelet coefficients. Thus, they cannot be directly used to
on the quantized feature space. Applying wavelet transformyefine the clusters in the original feature space. WaveClus-
on the cells in{g; : 1 < j < 7} results in a new fea- ter makes a lookup tabl&7 to map the cells in the trans-
ture space, and hence new ceftg : 1 < k < .ZZ}.  formed feature space to the cells in the original feature space.
Given the set of cell{ty : 1 < k < .77}, WaveCluster  Each entry in the table specifies the relationship between one
detects the connected components in the transformed fege|| in the transformed feature space and the corresponding
ture space. Each connected component is a set of cells igel|(s) of the original feature space. So the label of each
{t« 1 1 < k < .77} and is considered as a cluster. Cor- ce|| in the original feature space can be easily determined.
responding to each resolutionof wavelet transform, there  Finally, WaveCluster assigns the label of each cell in the
would be a set of clusters;, where, usually at the coarser feature space to all the objects whose feature vector is in

resolutions, the number of clusters is less. In the experithat cell, and thus the clusters are determined. That is,
ments, we applied each of the three-level wavelet transforms

Daubechies, Cohen-Daubechies-Feauveau ((4,2) and (2,2))0 VG, Vo €G, lo, =w,, we &, 1<i<N,
[Vai93, SN96, URB97]. Average subbands (feature spacesyherel,, is the cluster label of objed;.

give approximations of the original feature space at differ- '

ent scales, which help in finding clusters at different levels

of details. For example, as shown in Fig. 5, for a 2D features 2 Properties of WaveCluster

space, the subbandd. show the clusters at different scales.

We use the algorithm in [Hor88] to find the connected When the objects are assigned to the cells of the quantized
components in the 2D feature space (image). The same coffieature space at step 1 of the algorithm, the final content of
cept can be generalized for higher dimensions. In our implethe cells is independent of the order in which the objects
mentation, we havé = 8 ande = v/2 for k-e-neighborhood  are presented. The following steps of the algorithm will be
as defined in Sect. 2. That is, a significant egilh the trans-  performed on these cells. Hence, the algorithm will have
formed feature space is-e-neighbor of another celb if the same results for any different order of input data, so it
a lies within one of the eight grid cells surrounding cell is order insensitive with respect to input objects. As will
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a DS1 b DS2

c DS3 d DS4

e DS5 f DS6

g DS7 h DS8
Fig. 6a—h. Visualization of some of the datasets used in the experiments.

be formally and experimentally shown later, the requiredof cells in the feature space. Thus, it makes WaveCluster
time for WaveCluster to detect the clusters is linear in termsvery efficient, especially for very large numbers of objects.
of number of input data, and it cannot go below that, be-WaveCluster will be especially very efficient for the cases
cause all the data should be at least read. After reading thehere the number of cells: and the number of feature
data, the processing time will be only a function of numberspace dimensiong are low. Minefield detection and some
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seismology applications are examples where we have low- We may use a heuristic-based approach to experimentally
dimensional (two dimensions) feature spaces. find a good quantization. We can start with very small size

All the grid-based approaches for clustering spatial datagrid cells (over-quantized feature space) and try to find the
suffer from themodifiable areal cell problem (MAUPjrst clusters. Most likely, no clusters will be found at this step.
addressed by Openshaw in 1977, and Openshaw and Tay¥e can then increase the size of cells and find the possible
lor in 1981 [Ope77, OT81]. The problem occurs in terms clusters. If no acceptable clusters are found, we repeat the
of scaling and aggregation. The problem of scaling is inprocess after enlarging the size of cells. This process can
selecting the appropriate size and number of cells to reprebe continued until we obtain some acceptable clusters. At
sent the spatial data. There are infinitely large numbers othis phase, WaveCluster, using the multiresolution property
ways in which the cells may be organized and their sizeof wavelet transform, can provide multiple sets of clusters
be specified. Aggregation is the problem of summarizingat different scales. This approach to finding an appropri-
the datacontainedin each cell. In our case, we use a sim- ate quantization will increase the overall time to cluster the
ple accumulative approach where the number of the datalatabase. However, given the appropriate quantization, the
points contained in a cell summarizes all information aboutrequired time complexity of WaveCluster will still B@(V).
the cell. But there might be other measures which characFinding the suitable quantization is a common problem for
terize the data more appropriately. In his paper, Openshawll grid-based methods and this cost should be considered
[Ope77] defines this problem mathematically and discussefor all of them.
some heuristics to solve the problem. WaveCluster finds the connected components inatire

All the present grid-based algorithms suffer from theseerage subband [ L) of the wavelet transformed feature
problems. In general, when the quantization valués too  space, as the output clusters. As mentioned in Sect. 4.3, av-
low (very coarse quantization), more objects will be assignecerage subband is constructed by convolving the low-pass
to the same cell, and there is higher probability for the ob-filter along each dimension and downsampling by two. So a
jects from different clusters to belong to the same cell. Wewavelet-transformed cell will be affected by the content of
call this caseunder-quantizationproblem. This results in cells in the neighborhood covered by the filter. It means that
merging of the two clusters and mislabeling their objects;the spatial relationships between neighboring cells will be
thus, the quality of clustering decreases. In contrast, if thepreserved. The algorithm to find the connected components
guantization valuen is too high (very fine quantization), labels each cell of feature space with respect to the cluster
each object will be in a separate cell, which might be farthat it belongs to. The label of each cell is determined based
from the other cells. We call thisver-quantizationprob-  on the labels of its neighboring cells [Hor88]. It does not
lem. Over-quantization can result in many unnecessary smathake any assumptions about the shape of connected com-
clusters (that might be later removed as noise) and does ngitonents and can find convex, concave, or nested connected
find the real clusters; thus, it will also decrease the qual<components. Hence, WaveCluster can detect arbitrary shapes
ity of clustering. Aggregation also plays a role in clustering of clusters.
and it depends on the kind of algorithm used for clustering.  WaveCluster applies wavelet transform on the feature
In STING, each cell maintains a list of statistical attributes, space to generate multiple decomposition levels. Each time
like number of objects in the cell, mean of values, stan-we consider a new decomposition level, we ignore some de-
dard deviation of values, min, max, type of distribution of tails in the average subband and effectively increase the size
the values in the cell [WYM97]. In CLIQUE proposed by of a cell's neighborhood whose spatial relationship is consid-
Agrawal et al., each cell is classified as dense or not basedred. This results in sets of clusters with different degrees of
on the count value in each cell [AGGR98]. But none of the details after each decomposition level of wavelet transform.
methods discusses the problems regarding aggregation. In other words, we will have multiresolution clusters at dif-

We argue that, in this context, scaling is an inherentferent scales, from fine to coarse. For example, in Sect. 6,
problem in what a human user can call a cluster, in othefFig. 9 shows an example where a three-level wavelet trans-
words, the definition of cluster. As Openshaw and Taylorform is applied and the output clusters after each transform
stated, it seems very unlikely that there will ever be ei-are presented. At scale 1, we have the four fine clusters,
ther a purely statistical or mathematical solution for MAUP and at the next scale, two of those clusters are merged. At
[OT81]. To have an optimal quantization, application domainscale 3, we have only two coarse clusters representing orig-
information should be incorporated. Openshaw provided &nal feature space. In our approach, a user does not have
geographical solution to scale and aggregation problems ito know the exact number of clusters. However, a good es-
region-building, partitioning, and spatial modeling [Ope77]. timation of the number of clusters helps in choosing the
However, as he mentions, although his approach seems tappropriate scale and the corresponding clusters. One of the
work, and perhaps provides the only real solution to a com-effects of applying a low-pass filter on the feature space is
plicated problem, it has its own weaknesses [OT81]. Quanthe removal of noise. WaveCluster takes advantage of this
tization is a problem thaall grid-based algorithms suffer property, and removes the noise from the feature space auto-
from. However, while other existing grid-based clustering matically. Figure 3a shows an example where about 25,000
methods ignore this problem, WaveCluster has the advannoise objects are scattered in the feature space. After apply-
tage of producing clusters at multiple scales at the saméng wavelet transform, the noise objects are removed, and
time. This means that the results of WaveCluster implicitly thus WaveCluster can detect the clusters correctly.
reflect multiple quantizations of the feature space, resulting
in multiple sets of clusters that can be selected based on the
user’s requirements.
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5.3 Time complexity N < K =m¢. For such cases, we can also perform princi-
ple component analysis [Sch92] to find the most important

Let N be the number of objects in the database, wiéiea  features and to reduce the number of dimensions to a value

very large number. Assume the feature vectors of objects ar¢ such thatN > m/. We have provided another solution

d-dimensional, resulting in édimensional feature space. As using a hash-based data structure for the cases when number

we mentioned in Sect. 2, the current version of WaveClusteof dimensions is high, which is presented in [YCSZ98].

is designed for the cases whele is very large andd is

low. The time complexity of the first step of WaveCluster

algorithm isO(N), because it scans all the database object$ Performance evaluation

and assigns them to the corresponding cells. Assuming

cells in each dimension of feature space, there woulflbe  In this section, we evaluate the performance of WaveCluster

m? cells. Complexity of applying wavelet transform on the and demonstrate it's effectiveness on different types of dis-

quantized feature space (step 2) will O¢ldK) = O(dK), tributions of data. Tests were done on synthetic datasets gen-

where! is a small constant representing the length of theerated by us and also on datasets used to evaluate BIRCH

filter used in the wavelet transform. Since we assume thafZRL96]. We mainly compare our clustering results with

the value ofd is low, we can consider it as a constant, thus BIRCH.

O(dK) = O(K). If we apply wavelet transform fof" levels

of decomposition, since for each level, we downsample the

space by 2, foel > 2, the required time would be Synthetic dataset generation
ol K+ K + K + o+ K For the experiments, we used the datasets generated by both
2d (2d)2 (Zd)T our own synthetic generator and the ones used by [ZRL96].

- - In the dataset generation method described in [ZRL96], clus-
1 . . i . :
-0 (KZ > -0 (KZ (Z*d) > ter centers are first placed at certain locations in the space.

The data points of each cluster are generated according to a
- 2D normal distribution whose mean is the center and whose
1— (279 4 variance is specified. Datasets DS1, DS2 and DS3 are the
15| =0 (K) same as used by [ZRL96]. They are shown in Fig.6a—c
respectively. Each dataset consists of WD points. The
That means the cost to apply wavelet transform for multi-points in DS3 are randomly distributed, while those of DS1
ple levels would be at mos{f)(%K). It shows that we can and DS2 are distributed in a grid and sine curve pattern,
have multiresolution presentation of the clusters very costrespectively.
effectively. To find the connected components in the trans- We designed our own synthetic dataset generator for per-
formed feature space, the required time will O¢cK) = forming further experiments. The data generator allows con-
O(K), wherec is a small constant. Making the lookup table trol over the structure, number of clusters, probability dis-
requiresO(K) time. After reading data objects, the process-tribution, and size of the datasets. It also allows us to add
ing of data is performed in steps 2 to 5 of the algorithm. different proportion of noise to the generated datasets. We
Thus, the time complexity of processing data (without con-generated 14 new datasets to perform experiments.
sidering 1/O) would, in fact, bé&(K), which is independent We generated DS4 by spreading points in 2D space fol-
of the number of data objectsV(. The time complexity lowing uniform random distribution in the shapes of rectan-
of the last step of WaveCluster algorithm @4N). Since  gles and annular region. DS4 contains 2288 data objects
this algorithm is applied on very large databases with a lowspread in two clusters as shown in Fig.6d. For generating
number of dimensions, we can assume tNat K. As an  dataset DS5, we spread points around two parabolas follow-
example, for a database with 1,000,000 objects where thang uniform random distribution. Dataset DS5 has ZBID
number of dimensiong is less than or equal to six, and data objects, containing two concave clusters in the shape
the number of intervals: is 10, this condition holds. Thus, of parabolas.
based on this assumption, the overall time complexity of the Dataset DS6 was generated by spreading, 279 ran-
algorithm will be O(N). It should be noted that, because of dom data objects following uniform distribution in two con-
the way that we find the connected components (and henceentric annulus regions. We randomly generate two floating-
the clusters), the number of clusters does not affect the tim@oint numbers in the feature space, one for each dimension.
complexity of WaveCluster. In other words, WaveCluster's We then check whether the data object defined by these
time complexity is independent of the number of clusters. two features falls in the annular region defined by the inner
During applying wavelet transform on each dimensionradius, center and the width. The parameters used for gen-
of the feature space, the required operations for each featurating this dataset are shown in Table 1. The parameter
space cell can be carried out independent of the other cellss the radius of the void circle inside the annulusjs the
Thus, using parallel processing can speed up transforminwvidth of the annulus, and andy define the location of the
the feature space. The connected component analysis caenter of the annulus.
also be speeded up using parallel processing [NS80, SV82]. We used a technique similar to one described in [ZRL96]
Parallel processing algorithms will be especially useful whento generate the dataset DS7. Two cluster centers are first
the number of cellsm or the number of dimensiond placed on the 2D plane and then 5000 data objects
is high. For a large number of dimensions, we may haveare spread following 2D normal distribution around these
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Table 1. Parameters for generating DS6

Parameters w oz Yy N A S ol
Inner Circle  20.0 15.0 60.0 60.0 - Tl e
Outer Circle 400 20.0 60.0 60.0 ﬁf iy, ﬁ B O W A Ay e
o T e e

Table 2. Parameters for generating DS7 ” _\* ﬁ‘&’ ﬁ x % (: % Lo
T SraTEsIIs:
Clusterl 125.0 55.0 60.0 13.0 0.7 .
Cluster 1250 1200 50.0 300 0.5 Fig. 7. WaveCluster on D51

) ) ) the clustering results for a dataset with more than 500,000
points. After that, 75000 (15%) random noise objects were gpjects.

added to the dataset, making the total number of data objects

575 000. For the 2D normal distribution, we used the po-

lar method proposed by Box et al. as described in [Knu98].Clustering arbitrary shapes

The dataset is shown in Fig. 6g. The parameters used for this

are shown in Table 2, wheye, and ., specify the mean in  As we mentioned earlier, spatial data-mining methods should

each dimension, i.e., the location of the cluster center, be capable of handling any arbitrarily shaped clusters. Fig-

ando, specify the variance in each dimension gndpeci-  ure 6d presents the DS4 dataset. There are two arbitrarily

fies the correlation coefficient between the variables in eacishaped clusters in the original data. Figure 8a shows clus-

dimension. tering of DS4 using WaveCluster and BIRCH. This result
Generation of dataset DS8 follows a combination of emphasizes effectiveness of the methods which do not as-

strategies used for generating DS6 and DS4. We createume the shape of the clusters a priori.

two concentric annular region, one filled circle and an “L-

shaped” cluster. There is a total 2889 data objects in

DSS8. Clustering at different resolutions

We also had several other datasets to study certain char- .
acteristics of WaveCluster. One group of datasets was useavecluster has the remarkable property that it can be used
to verify the sensitivity of processing time of WaveCluster to cluster at different granularities according to the user’s
with increasing number of clusters. To make a fair compari-'équirement. Figure 9 displays the results of WaveCluster on
son, we made the total number of data objects the same, bS8 (Fig. 6h). At scale 1, we have the four fine clusters, and
varied the number of clusters in these datasets. Each datasd the next scale, two of those clusters are merged. At scale
has 1000,000 data objects and 2000 noise objects. The 3, we have only two coarse clusters representing original

number of clusters in these datasets range from 2 to 100. Thf@atgre space. This iIIustratgs hovy WaveCluster finds clusters
clusters are either rectangles (following a uniform random@t different degrees of detail. This property of WaveCluster
distribution) or ellipsoids (following 2D normal random dis- Provides the user with the flexibility to modify queries based
tribution, as described before). The results for these experion initial results.

ments are reported in Table 3. The generation of rectangular

clusters closely follows the method described in [ZM97].
We also generated several noisy versions of the DS7 datas
to verify the noise removal property of WaveCluster. We
added different proportions (5%, 10%, 15%, 20%, 25%) of

Epndling noise objects

WaveCluster is very effective in handling noise. The dataset
noise to the original DS7 dataset to create these datasets. Tﬁﬁ?: %rg%%dn(SoF/:gr? oi?g Sob?ggfg o\?VeOsJeenC;‘:'atlgd th:W %Zf;rests
number of objects in them are 52Z®0, 550000, 575000, ., it where 50,000, 75,000, 100,000, and 125,000 (10%,
600,000, and 623000, respectively. The visualizations of 15%, 20%, and 25%) uniformly distributed noise objects

these datasets and WaveCluster's results on them are prz o aqded to datasets. The datasets and the correspond-

sented in Fig. 10. ing clusters detected by WaveCluster are shown in Fig. 10.
WaveCluster successfully removes all the random noise and
i produces the two intended clusters in all cases. Also, because
Clustering very large datasets the time complexity of the processing phase of WaveClus-
ter is O(K) (where K is the number of grid cells), the time

All the datasets used in the experiments contain typicallytaken to find the clusters in the noisy version of the data is
more than 100,000 data points. DS1,DS2 and DS3 each hage same as in the one without noise.

100,000 data points. WaveCluster can successfully handle

an arbitrarily large number of data points. Figure 7 shows

WaveCluster's performance on DS1. Here, a map-CO|Orinmlustering nested and concave patterns

algorithm has been used to color the clusters. Neighboring

clusters have different colors. But nonneighboring clustersVaveCluster can successfully cluster any complex pattern
might be allocated the same color. In Fig.3, we showedconsisting of nested or concave clusters. From Fig. 6f (DS6)
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a b
Fig. 8a,b. Clustering results on DS4 WaveClusterp BIRCH

a b c
Fig. 9a—c.WaveCluster output clusters of DS8ascale 1;b scale 2;c scale 3

and Fig. 11a we see that WaveCluster's result is very accu‘_rable 3. Required tlme (in seconds) for different number of clusters with
same number of points

rate on nested clusters. Figure 11b shows BIRCH'’s result on

the same dataset. Number of clusters2 4 5 10 20 25 40 50 100
Figure 6g (DS5) shows an example of a concave shape —

data distribution. Figure 12a and b compare the cIusteringguam'z‘rf‘t'on.t'me 49.1 49.1 54.7 509 52.0 52.0 51.7 52.0 54.1

rocessing time 21 21 21 22 21523 21 21 22

produced by WaveCluster and BIRCH. From these results,

it is evident that WaveCluster is very powerful in handling

any type of sophisticated patterns.

BIRCH on all the datasets. CLARANS requires the informa-

) ) tion about all the database objects to be loaded into memory,
Comparing different number of clusters and its run time is very large when there is a large number of
oppiects. Thus, we were unable to run it. Based on the com-
&@rison of BIRCH and CLARANS presented in [ZRL96],

e estimated the performance of CLARANS. Running code
or DBSCAN and STING was not available; thus, we were
10t able to do experiments with it. We observe that on an av-
2rage CLARANS is 22 times slower than BIRCH. We show
he time requirements for quantization and processing sepa-

We generated nine datasets, each having 1,000,000 data
jects, and added 20,000 noise objects to them. These datas
have the same number of data objects (1,020,000), but ha
a different number of clusters ranging from 2 to 100 clusters.
Table 3 summarizes the required quantization and proces
ing time for these datasets. We applied Cohen-Daubechie

Feauv 2,2) wavelet transform an 2 n- ) .
eauveau (2,2) wavelet transform and used 2366 qua rately for WaveCluster. All the experiments were carried out

tization in these experiments. As this table shows, the num . .
ber of clusters has no effect on the timing requirementsOn a SUN SPARC workstation using 168 MHz UltraSparc

of WaveCluster. It verifies our discussion in Sect.5.3 thatCPU with SunOS operating system and 1024 MB mem-

WaveCluster’'s time complexity is independent of the num-2"Y: Wwe applled Coher_1-Daubech|es-Fgauveau (2,2) wavelet
ber of clusters. transform in the experiments reported in Table 5.

Table 5 shows the average quantization time required in

WaveCluster. It also presents the processing time when dif-

Comparison of timing requirements ferent number of grid cells are used in quantization. The
values ofmy andm; specify the number of cells in horizon-

We now compare the timing requirements of WaveClustertal and vertical dimensions, respectively. The total required

BIRCH, and CLARANS as shown in Tables4 and 5. We rantime to cluster using WaveCluster is the summation of pro-
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10%

15%

20%

25%

a b

Fig. 10a,b. WaveCluster on datasets with different levels of nosenisy datasetsy clusters

cessing and quantization time. We observe that WaveClusterons, the total time would still be less than that of the other
outperforms BIRCH and CLARANS by a large margin when clustering methods.

we use the finest quantization (5%2.024), which takes the The processing time of WaveCluster is almost indepen-
longest among the quantizations in our experiments. Evemlent of the distribution of the spatial objects, and most im-
if we add up the processing time for all different quantiza- portantly it is even independent of number of objects present
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a b
Fig. 11a.WaveCluster on DSéy BIRCH on DS6

O

a b
Fig. 12a.WaveCluster on DS5) BIRCH on DS5

Table 4.Required time (in seconds) for different datasets using CLARANS
and BIRCH

Dataset DS6 DS5 DS4 DSI DS2  DS3 In Table 5 we showed how quantization affects the process-
Number of data 275,429 250,000 228,828 100,000 100,000 100,000ing time, and thus the overall efficiency of WaveCluster. We
now present our experimental results regarding the effect of
quantization on the quality of clustering. We performed ex-
periments on the dataset DS1 that has 100 clusters. Table 6
shows the number of clusters found by WaveCluster where
different quantizations were used. In Sect. 5.2, we discussed
the problems of scaling, aggregation, under-quantization,
and over-quantization. When we used the fine quantization,

in the space. As Table 5 shows, the time taken by WaveCIu52048X 4096, almost all the 100 were eliminated as noise

ter is heavily dominated by the time to read the input data(OVer-quantization). On the other hand, when the objects
from disk. A faster method to do 1/O will make the al- Were quantized coarsely (under-quantization), (for example

gorithm much faster. The experimental results demonstratg’2>< 64 or 64x128), most of the clusters were merged to each

WaveCluster to be a stable and efficient clustering method.omer’ yielding low-quality results. When we used 25512

As Table 5 shows, the processing time (without Consider_quantization, almost all the 100 clusters were correctly de-

ing 1/0) is not a function of the number of data objects. I:Ortected and we obtained the best results. Table 6 shows that,

datasets of different sizes, WaveCluster requires almost sinfOr 1024x 2048 quantization, WaveCluster also detects about

ilar processing time (given the same quantization). As men00 clusters. However, due to over-quantization and because

of low density of objects at the border of clusters, most such

tioned in Sect. 5.3, the time complexity of processing data i . :
linear in terms of number of the feature space cell§K)). Sbo_rder objects were not aSS|gned_ to the clusters. Thus, for
f this case, the results were not satisfactory.

The timing results shown in Table 5 verify this property o
WaveCluster. When we have less cells (coarser quantiza-

tion), the required time is less. Quantization time includes;7 conclusion

the time to read the input data and assign them to the cells,

and hence is a function of number of input data. That is, adn this paper, we presented the clustering approach termed
shown in Table 5, the required quantization time for largerWaveClusterThis grid-based approach applies wavelet trans-
datasets is larger than that of smaller datasets. form on the quantized feature space and then detects the

Clustering at different quantizations

CLARANS 2378.2 2376.0 2085.6 1232.0 1093.0 1089.4
BIRCH 108.1 108.0 94.8 56.0 49.7 49.5
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Table 5. Required time (in seconds) for different datasets using WaveCluster.

Dataset DS6 DS5 DS4 DS1 DS2 DS3
Number of data 275,429 250,000 228,828 100,000 100,000 100,000
ma mo
512 1024| 5.9 5.7 6.3 5.6 5.8 6.0
512 512 | 35 35 34 3.8 3.4 33
256 512 | 2.2 21 2.0 23 21 2.0
Processing| 256 256 | 1.4 15 15 15 1.4 14
time 128 256 | 1.2 11 1.1 1.2 1.2 1.1
128 128 | 0.9 1.0 1.0 1.0 0.9 1.0
64 128 | 1.0 0.9 0.8 11 1.0 0.9
64 64 0.9 0.9 0.9 0.9 0.9 0.8
Quantization time 11.7 11.0 9.7 5.4 5.6 55

Table 6. Number of clusters found for DS1 using different quantizations. [COMY5] Gudivada VN, Raghavan VV (1995) Special Issue on Content-

Based Image Retrieval SystentEEE Comput28(9)
[EKSX96] Ester M, Kriegel H, Sander J, Xu X (1996) A Density-Based

Algorithm for Discovering Clusters in Large Spatial Databases with
Number of Clusters 1 110 203 105 48 13 3 Noise. In:Proceedings of 2nd International Conference on KDD
[EKSX98] Ester M, Kriegel H, Sander J, Xu X (1998) Clustering for min-

ing in large spatial databaséd-Journal, Special Issue on Data Mining
[Gor81] Gordon AD (1981)Classification Methods for the Exploratory
dense regions in the transformed space. Applying wavelet Analysis of Multivariate DataChapman and Hall, London
transform makes the clusters more distinct and salient in th&J594] Hilton ML, Jawerth BD, Sengupta A (1994) Compressing Still
transformed space, and thus eases their detection. Using the and Moving Images with Waveletbultimedia Syse(5): 218-227

It uti t f let t f W cl r88] Horn BKP (1988)Robot Vision fourth edition. MIT Press, Cam-
multiresolution property or wavelet transtorm, VaveClus- bridge, Mass.

ter can detect the clusters at different scales and levels qfirsgs] Jacobs CE, Finkelstein A, Salesin DH (1995) Fast multiresolution
detail, which can be very useful in the user’s applications.  image querying. INSIGGRAPH 95Los Angeles, Calif.

Moreover, applying wavelet transform removes the noisgJM95] Jain R, Murthy SNJ (1995) Similarity Measures for Image

from the original feature space, and thus enables WaveClus- DatabasesProc. SPIE (Storage and Retrieval of Image and Video

r to handle them properly and find mor r lus- _ Databases lll) 58-67
:e tOW a cé:le tte d prope ty a kd d more a(;.cu atg CtutS Knu98] Knuth DE (1998)The Art of Computer Programminghird edi-
ers. vwavecClusier aoes not make any assumption abou e tion. Addison-Wessley, Reading, Mass.

shape of clusters and can successfully detect arbitrary-shaggroo] Kaufman L, Rousseeuw PJ (199B)nding Groups in Data: an
clusters such as concave or nested clusters. It is a very ef- Introduction to Cluster Analysislohn Wiley & Sons, Chichester
ficient method with a time complexity ad(V), where N [Malg9a] Mallat S (1989) Multiresolution approximation and wavelet or-
is the number of objects in the database, which makes it thonormal bases of?(R). Trans Am Math So815: 69-87 ,
especially attractive for very Iarge databases. WaVECluste[IMaIB%] Mallat S (1989) A theory for multiresolution signal decomposi-

Con - . tion: the wavelet representatioleEE Trans Pattern Anal Mach Intell
is insensitive to the order of input data to be processed. ;.74 o3

Current clustering techniques do not address these ISSUQSH94] Ng RT, Han J (1994) Efficient and Effective Clustering Methods
sufficiently, although considerable work has been done in  for Spatial Data Mining. IrProceedings of the 20th VLDB Conference
addressing each issue separately. Our experimental results Santiago, Chile, pp 144-155

demonstrated that WaveCluster can outperform other receriiS80] Nassimi D, Sahni S (1980) Finding connected components and

clustering approaches. WaveCluster is the first attempt to gﬁ?g.e?ff_?gis on & mesh-connected parallel com&iesd J Com-

apply the,‘ prope_rtles of W,a\{elet transform in the CIUSteIﬁ"’]g[Ope77] Openshaw S (1977) A geographical solution to scale and aggre-
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