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Abstract. Many applications require the management of
spatial data in a multidimensional feature space. Cluster-
ing large spatial databases is an important problem, which
tries to find the densely populated regions in the feature
space to be used in data mining, knowledge discovery, or
efficient information retrieval. A good clustering approach
should be efficient and detect clusters of arbitrary shape.
It must be insensitive to the noise (outliers) and the order
of input data. We proposeWaveCluster, a novel clustering
approach based on wavelet transforms, which satisfies all
the above requirements. Using the multiresolution property
of wavelet transforms, we can effectively identify arbitrar-
ily shaped clusters at different degrees of detail. We also
demonstrate thatWaveClusteris highly efficient in terms of
time complexity. Experimental results on very large datasets
are presented, which show the efficiency and effectiveness
of the proposed approach compared to the other recent clus-
tering methods.

1 Introduction

Following the current research achievements [JM95,
COM95], the visual content in an image may be represented
by a set of features such as texture, color and shape. In a
database, the features of an image can be represented by a
set of numerical numbers, termed a feature vector. Various
dimensions of feature vectors are used for content-based re-
trieval. We use the termspatial datato refer to those data
which are 2D and 3D points, polygons, and points in some
d-dimensional feature space [EKSX98]. In this paper we
explore adata-clusteringmethod in the spatial data-mining
problem. Spatial data mining is the discovery of interesting
characteristics and patterns that may exist in large spatial
databases. Usually the spatial relationships are implicit in
nature. Because of the huge amounts of spatial data that
may be obtained from satellite images, medical equipments,
geographic information systems (GIS), image database ex-
ploration, etc., it is expensive and unrealistic for the users to
examine spatial data in detail. Spatial data mining aims to

automate the process of understanding spatial data by repre-
senting the data in a concise manner and reorganizing spatial
databases to accommodate data semantics. It can be used in
many applications such as seismology (grouping earthquakes
clustered along seismic faults), minefield detection (group-
ing mines in a minefield), and astronomy (grouping stars in
galaxies) [AF97, BR95].

The aim ofdata-clusteringmethods is to group the ob-
jects in spatial databases into meaningful subclasses. Due
to the huge amount of spatial data, an important challenge
for clustering algorithms is to achieve good time efficiency.
Also, due to the diverse nature and characteristics of the
sources of the spatial data, the clusters may be of arbitrary
shapes. They may be nested within one another, may have
holes inside, or may possess concave shapes. A good cluster-
ing algorithm should be able to identify clusters irrespective
of their shapes or relative positions. Another important issue
is the handling of noise. Noise objects (outliers) refer to the
objects which are not contained in any cluster and should be
discarded during the mining process. The results of a good
clustering approach should not become affected by the dif-
ferent ordering of input data and should produce the same
clusters. In other words, it should be order-insensitive with
respect to input data.

The complexity and enormous amount of spatial data
may hinder the user from obtaining any knowledge about
the number of clusters present. Thus, clustering algorithms
should not assume to have the input of the number of clusters
present in the spatial domain. To provide the user maximum
effectiveness, clustering algorithms should classify spatial
data at different levels of detail. For example, in an image
database, the user may pose queries like whether a particu-
lar image is of type agricultural or residential. Suppose the
system identifies that the image is of agricultural category.
The user may be just satisfied with this broad classification.
Again, the user may enquire about the actual type of the crop
that the image shows. This requires clustering at hierarchi-
cal levels of coarseness, which we call themultiresolution
property.

In this paper, we propose a spatial data-mining method,
termedWaveCluster. We consider the spatial data as multi-
dimensional signals and apply signal-processing techniques
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– wavelet transforms to convert the spatial data into the fre-
quency domain [SCZ98]. In wavelet transform, convolution
with an appropriate kernel function results in a transformed
space where the natural clusters in the data become more
distinguishable. We then identify the clusters by finding the
dense regions in the transformed domain. WaveCluster con-
forms with all the requirements of good clustering algorithms
as discussed above. It can handle any large spatial datasets
efficiently. It discovers clusters of any arbitrary shape and
successfully handles noise, and it is totally insensitive to
the ordering of the input data. Also, because of the signal-
processing techniques applied, themultiresolutionproperty
is attributed naturally to WaveCluster. To our knowledge,
no method currently exists which exploits these properties
of wavelet transform in the clustering problem in spatial data
mining. It should be noted that use of WaveCluster is not
limited only to the spatial data, and it is applicable to any
collection of attributes with ordered numerical values.

The rest of the paper is organized as follows. Section 2
formalizes the problem and defines its scope. We discuss
the related work in Sect. 3. In Sect. 4, we present the mo-
tivation behind using signal-processing techniques for clus-
tering large spatial databases. This is followed by a brief
introduction on wavelet transform. Section 5 discusses our
clustering method WaveCluster and analyzes its complexity.
In Sect. 6, we present the experimental evaluation of the ef-
fectiveness and efficiency of WaveCluster using very large
datasets. Finally in Sect. 7, concluding remarks are offered.

2 Problem formalization

Following the definition of Agrawal et al. [AGGR98], let
A = A1, A2, . . . , Ad be a set of bounded, totally ordered
domains andS = A1 × A2 × . . . × Ad be ad-dimensional
numerical space or feature space.A1, . . . , Ad are referred as
dimensions ofS. The input dataset is a set ofd-dimensional
points O = {o1, o2, . . . , oN}, whereoi = 〈oi1, oi2, . . . , oid〉,
1 ≤ i ≤ N . Thej-th component ofoi is drawn from domain
Aj .

We first partition the original feature space into nonover-
lapping hyper-rectangles, which we callcells. The cells are
obtained by segmenting every dimensionAi into mi num-
ber of intervals. Each cellci is the intersection of one inter-
val from each dimension. It has the form〈ci1, ci2, . . . , cid〉,
wherecij = [lij , hij) is the right open interval in the parti-
tioning of Aj . Each cellci has a list of statistical parameters
ci · param associated with it.

We say that a pointok = 〈ok1, . . . , okd〉 is contained
in a cell ci if lij ≤ oki < hij for 1 ≤ j ≤ d. The list
ci · param keeps track of the statistical properties such as
aggregation, mean, variance, and the probability distribution
of the data points contained in the cellci . In general, in
grid-based approaches the containment relations are discov-
ered by a single pass through the dataset and appropriate
statistical parameters are computed. Each cell has informa-
tion about the density of the data contained in the cell. Thus,
the collection ofci · param summarizes the dataset.

We choose the number of points contained in each cell as
the only statistic to be used. That is, we useci · count to be
the ci · param. In our approach, we apply wavelet transform

on ci · count values. We define thetransformed spaceas the
set of cells after wavelet transformation on the count values
of the cells in the quantized space.

In our approach, we take an all point stand on defining
clusters, i.e., we consider that all the points within a cluster
are representatives of the cluster. We introduce the following
definitions to be used for the rest of the paper.

Definition 1. (Empty cell) A cell in the quantized space with
0 count value is called an empty cell.

Definition 2. (Nonempty cell) A cell in the quantized space
with nonzero count value is called a nonempty cell.

Definition 3. (Significant cell) A cell is a significant cell if
its count field1 in the transformed space is above a certain
thresholdτ .

Definition 4. (ε-neighbor) A cellc1 is an ε-neighbor of cell
c2 if either both are significant cells (in transformed space)
or nonempty cells (in quantized space) andD(c1, c2) ≤ ε,
whereD is an appropriate distance metric andε > 0.

We can extend the definition ofε-neighborhood tok-ε-
neighborhood.

Definition 5. (k-ε-neighbor) A cellc1 is a k-ε-neighbor of a
cell c2 if both are significant cells (in transformed space) or
both are nonempty cells (in quantized space) and ifc1 is one
of thek prespecifiedε-neighbors ofc2.

Definition 6. (k-connected) Two cellsc1 and c2 are k-
connected if there is a sequence of cellsp1, p2, . . . , pj such
that p1 = c1 and pj = c2 and pi+1 is a k-ε-neighbor ofpi ,
1 ≤ i ≤ j.

Definition 7. (Cluster) A clusterC is a set of significant
cells {c1, c2, . . . , cm} which are k-connected in the trans-
formed space.

Given a set ofN database pointsO = {o1, o2, . . . , oN}
in the d-dimensional feature spaceS, our goal is to find the
clusters as defined above. After clustering, each cell in the
feature spaceS will have a label indicating the cluster that it
belongs to. In this paper, we propose WaveCluster to cluster
very large databases with low number of dimensions, that
is, we assume thatN is very large andd is low.

3 Related work

We can categorize the clustering algorithms into four main
groups: partitioning algorithms, hierarchical algorithms,
density-based algorithms and grid-based algorithms.

3.1 Partitioning algorithms

Partitioning algorithms construct a partition of a database
of N objects into a set ofK clusters. Usually, they start

1 In case we keep more elaborate information about each cell, then we
can specify a range of values for each of the parameters of each cell for
determining whether it is a significant cell.
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with an initial partition and then use an iterative control
strategy to optimize an objective function. There are mainly
two approaches: i)k-means algorithm, where each cluster
is represented by the center of gravity of the cluster; ii)k-
medoid algorithm, where each cluster is represented by one
of the objects of the cluster located near the center.

PAM [KR90] uses ak-medoid method to identify the
clusters. PAM selectsK objects arbitrarily as medoids and
swaps with other objects until allK objects qualify as
medoids. PAM compares an object with an entire dataset
to find a medoid; thus, it has a slow processing time,
O(K(N − K))2. CLARA (Clustering LARge Applications)
[KR90] draws a sample of the dataset, applies PAM on the
sample, and finds the medoids of the sample.

Ng and Han introduced CLARANS (Clustering Large
Applications based on RANdomized Search), which is an
improvedk-medoid method [NH94]. This is the first method
that introduces clustering techniques into spatial data-mining
problems and overcomes most of the disadvantages of tradi-
tional clustering methods on large datasets. Although
CLARANS is faster than PAM, but still slow and, as men-
tioned in [WYM97], its computational complexity isΩ
(KN2). Moreover, because of its randomized approach, for
large values ofN , quality of results cannot be guaranteed.

In general,k-medoid methods do not present enough
spatial information when the cluster structures are complex.

3.2 Hierarchical algorithms

Hierarchical algorithms create a hierarchical decomposition
of the the database. The hierarchical decomposition can be
represented as adendrogram[Gor81]. The algorithm iter-
atively splits the database into smaller subsets until some
termination condition is satisfied. Hierarchical algorithms do
not needK as an input parameter, which is an obvious ad-
vantage over partitioning algorithms. The disadvantage is
that the termination condition has to be specified.

BIRCH (Balanced Iterative Reducing and Clustering us-
ing Hierarchies) [ZRL96] uses a hierarchical data structure
called CF-tree for incrementally and dynamically clustering
the incoming data points. CF-tree is a height-balanced tree
which stores the clustering features. BIRCH tries to produce
the best clusters with the available resources. They consider
that the amount of available memory is limited (typically
much smaller than the dataset size) and want to minimize
the time required for I/O. In BIRCH, a single scan of the
dataset yields a good clustering, and one or more additional
passes can (optionally) be used to improve the quality fur-
ther. So, the computational complexity of BIRCH isO(N ).
BIRCH is also the first clustering algorithm to handle noise
[ZRL96]. Since each node in a CF-tree can only hold a lim-
ited number of entries due to its size, it does not always
correspond to a natural cluster [ZRL96]. Moreover, for dif-
ferent orders of the same input data, it may generate different
clusters. In other words, it is order-sensitive. In addition, as
our experimental results showed, if the clusters are “spher-
ical” or convex in shape, BIRCH performs well; however,
for other shapes it does not do as well. This is because it
uses the notion of radius or diameter to control the boundary
of a cluster.

3.3 Density-based algorithms

Pauwels et al. proposed an unsupervized clustering algorithm
to locate clusters by constructing a density function that re-
flects the spatial distribution of the data points [PFG97].
They modified the nonparametric density estimation prob-
lem in two ways. Firstly, they use cross-validation to select
the appropriate width of the convolution kernel. Secondly,
they use difference-of-gaussians(DOGs)that allows for bet-
ter clustering and frees the need to choose an arbitrary cut-off
threshold. Their method can find arbitrary shape clusters and
does not make any assumptions about the underlying data
distribution. They have successfully applied the algorithm to
color segmentation problems. This method is computation-
ally very expensive [PFG97]. So it can make the method
impractical for very large databases.

Ester et al. presented a clustering algorithm DBSCAN
relying on a density-based notion of clusters. It is designed
to discover clusters of arbitrary shapes [EKSX96]. The key
idea in DBSCAN is that, for each point of a cluster, the
neighborhood of a given radius has to contain at least a mini-
mum number of points, i.e., the density in the neighborhood
has to exceed some threshold. DBSCAN can separate the
noise (outliers) and discover clusters of arbitrary shape. It
uses R∗-tree to achieve better performance. But the average
runtime complexity of DBSCAN isO(NlogN ).

3.4 Grid-based algorithms

Recently a number of algorithms have been presented which
quantize the space into a finite number of cells and then do
all operations on the quantized space. The main characteris-
tic of these approaches is their fast processing time, which
is typically independent of the number of data objects. They
depend only on the number of cells in each dimension in the
quantized space.

Wang et al. propose a STatistical INformation Grid-based
method (STING) for spatial data mining [WYM97]. They
divide the spatial area into rectangular cells using a hierar-
chical structure. They store the statistical parameters (such
as mean, variance, minimum, maximum, and type of distri-
bution) of each numerical feature of the objects within cells.
STING goes through the dataset once to compute the statis-
tical parameters of the cells; hence, the time complexity of
generating clusters isO(N ). The other previously mentioned
clustering approaches do not explain if (or how) the cluster-
ing information is used to search for queries, or how a new
object is assigned to the clusters. In STING, the hierarchi-
cal representation of grid cells is used to process such cases.
After generating the hierarchical structure, the response time
for a query would beO(K), whereK is the number of grid
cells at the lowest level [WYM97]. UsuallyK << N , which
makes this method fast. However, in their hierarchy, they
do not consider the spatial relationship between the children
and their neighboring cells to construct the parent cell. This
might be the reason for theisotheticshape of resulting clus-
ters, that is, all the cluster boundaries are either horizontal or
vertical, and no diagonal boundary is detected. It lowers the
quality and accuracy of clusters, despite the fast processing
time of this approach.
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Xu et al. proposed DBCLASD (Distribution Based Clus-
tering of LArge Spatial Databases) [XMKS98]. DBCLASD
assumes that the points inside a cluster are uniformly dis-
tributed. For each point in the cluster, the nearest point which
is not inside the cluster is detected. Then it defines anearest
neighbor distance setas the set of all distances between each
point in the cluster and its nearest point outside the cluster.
Then it defines aclusterto be a nearest neighbor distance set
that has the expected distribution with a required confidence
level. DBCLASD incrementally augments an initial cluster
by its neighboring points as long as the nearest neighbor dis-
tance set of the resulting cluster still fits the expected distri-
bution. DBCLASD is able to find arbitrarily shaped clusters.
Furthermore, DBCLASD does not require input parameters
to do the clustering. The experimental results presented by
Xu et al. shows that it is slower than DBSCAN which has
a complexity ofO(NlogN ). Also, it assumes that points in-
side a cluster are uniformly distributed, which may not be
the case in many applications.

We propose WaveCluster, which is a grid-based ap-
proach. The proposed approach is very efficient, especially
for very large databases. The computational complexity of
detecting clusters in our method isO(N ). The results are not
affected by noise and the method is not sensitive to the order
of input objects to be processed. WaveCluster is well capable
of finding arbitrary-shape clusters with complex structures
such as concave or nested clusters at different scales, and
does not assume any specific shape for the clusters. A priori
knowledge about the exact number of clusters is not required
in WaveCluster. However, an estimation of expected num-
ber of clusters helps in choosing the appropriate resolution
of clusters.

4 Relating spatial data to multidimensional signals

In this section, we discuss the relationship between spatial
data and multidimensional signals, and show how to use
wavelet transforms to illustrate the inherent relationships in
spatial data.

4.1 Spatial data versus multidimensional signals

The primary motivation for applying signal-processing prim-
itives to spatial databases comes from the observation that
the multidimensional spatial data objects can be represented
in a d-dimensionalfeature space. The numerical attributes
of a spatial object can be represented by afeature vector,
where each element of the vector corresponds to one numer-
ical attribute, orfeature. These feature vectors of the spatial
data can be represented in the spatial area, which is termed
feature space, where each dimension of the feature space
corresponds to one of the features (numerical attributes).
For an object withd numerical attributes, the feature vector
will be one point in thed-dimensional feature space. The
feature space is usually not uniformly occupied by the fea-
ture vectors. Clustering the data identifies the sparse and the
dense places, and hence discovers the overall distribution of
patterns of the feature vectors.

Fig. 1. A sample 2D feature space

4.2 Wavelet-based clustering

We propose to look at the feature space from a signal-
processing perspective. The collection of objects in the
feature space composes ad-dimensional signal. The high-
frequency parts of the signal correspond to the regions of
the feature space where there is a rapid change in the dis-
tribution of objects, that is, the boundaries of clusters. The
low-frequency parts of thed-dimensional signal which have
high amplitude correspond to the areas of the feature space
where the objects are concentrated, in other words, the clus-
ters themselves. For example, Fig. 1 shows a 2D feature
space, where the 2D data points have formed four clus-
ters. Note that Fig. 1 and also the figures in Sect. 5 are the
visualizationsof the 2D feature spaces, and each point in
the images represents the feature values of one object in
the spatial datasets. Each row or column can be considered
as a 1D signal, so the whole feature space will be a 2D
signal. Boundaries and edges of the clusters constitute the
high-frequency parts of this 2D signal, whereas the clusters
themselves, correspond to the parts of the signal which have
low frequency with high amplitude. When the number of
objects is high, we can apply signal-processing techniques
to find the high-frequency and low-frequency parts of thed-
dimensional signal representing the feature space, resulting
in detecting the clusters.

Wavelet transform is a signal-processing technique that
decomposes a signal into different frequency subbands (for
example, high-frequency subband and low-frequency sub-
band). The wavelet model can be generalized tod-
dimensional signals in which a 1D transform can be ap-
plied multiple times. Methods have been used to compress
data [HJS94], or to extract features from signals (images)
using wavelet transform [SC94, JFS95, SZ97, SZB97]. For
each object, the extracted features form a feature vector that
can be represented by a point in thed-dimensional fea-
ture space. A spatial database will be the collection of such
points. Wavelet transform has been applied on the objects to
generate the feature vectors (feature space). The key idea in
our proposed approach is to apply wavelet transform on the
feature space(instead of the objects themselves) to find the
dense regions in the feature space, which are the clusters.
The next subsection discusses the strategy and motivation of
using wavelet transform ond-dimensional feature spaces.
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Fig. 2. Cohen-Daubechies-Feauveau (2,2) biorthogonal wavelet

4.3 Applying wavelet transform

Wavelet transform is a type of signal representation that can
give the frequency content of the signal at a particular in-
stant of time by filtering. A 1D signals can be filtered by
convolving the filter coefficientsck with the signal values:

ŝi =
M∑
k=1

cksi+k− M
2
,

whereM is the number of coefficients in the filter and ˆs is
the result of convolution [HJS94]. Wavelet transform pro-
vides us with a set of attractive filters. For example, Fig. 2
shows the Cohen-Daubechies-Feauveau (2,2) biorthogonal
wavelet.

The motivation for using wavelet transform and thereby
finding connected components in the transformed space is
drawn from the following observations.

– Unsupervised clustering.The hat-shapefilters empha-
size regions where points cluster, but simultaneously
tend to suppress weaker information in their boundary.
Intuitively, dense regions in the original feature space act
asattractors for the nearby points and at the same time
as inhibitors for the points that are not close enough.
This means clusters in the data and clear regions around
them automatically stand out, so that they become more
distinct [PFG97]. It makes finding the connected compo-
nents in the transformed space easier than in the original
feature space, because the dense regions in the feature
space will be more salient. Figure 3a shows an exam-
ple of a feature space before and after transform. In this
case, we have used Cohen-Daubechies-Feauveau (2,2)
biorthogonal transform. Two cluster centers were first
placed in a 2D feature space and then 500,000 points
were generated around them following bivariate normal
distribution. Then 25,000 uniformly distributed random
noise points were added to the data to check the effect
of applying wavelet transform on them. As the figure
shows, the clusters in the transformed space are more
salient and thus easier to be found.

– Effective removal of noise objects.Noise objects are
the objects that do not belong to any of the clusters,
and usually their presence causes problems for the cur-
rent clustering methods. Applying wavelet transform re-
moves the noise in the original feature space, resulting
in more accurate clusters. As we will show, we take ad-
vantage of low-pass filters used in the wavelet transform
to automatically remove the noise. Figure 3 shows that

majority of the noise objects in the original space are
removed after the transformation.

– Multiresolution. The multiresolution property of wavelet
transform can help in detecting the clusters at different
levels of detail. As will be shown later, wavelet trans-
form provides multiple levels of decompositions, which
results in clusters at different scales from fine to coarse.
The appropriate scale for choosing clusters can be de-
cided based on the user’s needs.

– Cost efficiency. Since applying wavelet transform is
very fast, it makes our approach cost-effective. As will be
shown in the experiments, clustering very large datasets
takes only a few seconds. Using parallel processing, we
can obtain even faster responses.

Applying wavelet transform on a signal decomposes it
into different frequency subbands [Mal89a]. We now briefly
review wavelet-based multiresolution decomposition. More
details can be found in Mallat’s paper [Mal89b]. To have
multiresolution representation of signals, we can use discrete
wavelet transform. We can compute a coarser approximation
of the 1D input signalS0 by convolving it with the low-pass
filter H̃ and downsampling the signal by 2 [Mal89b]. By
downsampling, we mean skipping every other signal sam-
ple (For example, one row in a 2D feature space). All the
discrete approximationsSj , 1 < j < J (J is the maximum
possible scale), can thus be computed fromS0 by repeating
this process. Resolution becomes coarser with increasingj.
For example, the third approximation ofS0 (that is S3) is
coarser than the second approximationS2. Figure 4 illus-
trates the method.

We can extract the difference of information between the
approximation of signal at scalej−1 andj. Dj denotes this
difference of information and is calleddetail signal at the
scalej. We can compute the detail signalDj by convolving
Sj−1 with the high-pass filterG̃ and returning every other
sample of output. The wavelet representation of a discrete
signalS0 can therefore be computed by successively decom-
posingSj into Sj+1 andDj+1 for 0 ≤ j < J . This represen-
tation provides information about signal approximation and
detail signals at different scales.

We can easily generalize the wavelet model to 2D feature
space, in which we can apply two separate 1D transforms
[HJS94]. We can represent a 2D feature space as an image
where each pixel of image corresponds to one cell in the fea-
ture space. The 2D feature space (image) is first convolved
along the horizontal (x) dimension, resulting in a low-pass
image L and a high-pass imageH. We then downsample
each of the convolved images in thex dimension by 2. Both
L and H are then convolved along the vertical (y) dimen-
sion, resulting in four subimages:LL, LH, HL, andHH.
Once again, we downsample the subimages by 2, this time
along they dimension. The 2D convolution decomposes an
image into anaverage signal(LL) and threedetail signals
which are directionally sensitive:LH emphasizes the hor-
izontal image features,HL the vertical features, andHH
the diagonal features.

Figure 5 shows the wavelet representation of the image
in Fig. 1 at three scales. At each level, subbandLL (wavelet
approximation of original image) is shown in the upper left
quadrant. SubbandLH (horizontal edges) is shown in the
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a b

Fig. 3a. Original feature space.b Transformed space
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Fig. 4. Block diagram of multiresolution wavelet transform

upper right quadrant, subbandHL (vertical edges) is dis-
played in the lower left quadrant, and subbandHH (corners)
is in the lower right quadrant.

The above wavelet model can similarly be generalized
for d-dimensional feature space, where 1D wavelet trans-
form will be applied d times. As mentioned earlier, we
apply wavelet transform on the feature vectors of objects.
At different scales, it decomposes the original feature space
into an approximation, oraverage subband (feature space),
which has information about content of clusters, andde-
tail subbands (feature spaces), which have information about
boundaries of clusters. The next section describes how we
use this information to detect the clusters.

5 WaveCluster

In this section, we introduce our proposed algorithm and
discuss its properties. The time complexity analysis of the
algorithm is then presented.

5.1 Algorithm

Given a set of spatial objectsoi , 1 ≤ i ≤ N , the goal of
the algorithm is to detect clusters and assign labels to the

objects based on the cluster that they belong to. The main
idea in WaveCluster is to transform the original feature space
by applying wavelet transform and then find the dense re-
gions in the new space. It yields sets of clusters at different
resolutions and scales, which can be chosen based on the
user’s needs. The main steps of WaveCluster are shown in
Algorithm 1.

Algorithm 1
Input: Multidimensional data objects’ feature vectors

Output: clustered objects

1. Quantize feature space, then assign objects to the cells.
2. Apply wavelet transform on the quantized feature space.
3. Find the connected components (clusters) in the sub-

bands of transformed feature space, at different levels.
4. Assign labels to the cells.
5. Make the lookup table.
6. Map the objects to the clusters.

5.1.1 Quantization

The first step of the WaveCluster algorithm is to quantize the
feature space, where each dimensionAi in thed-dimensional
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a b c

Fig. 5. Multiresolution wavelet representation of the feature space in Fig. 1 ata scale 1;b scale 2;c scale 3

feature space will be divided intomi intervals. If we assume
that mi is equal tom for all the dimensions, there would
be md cells in the feature space. Then, the corresponding
cell for the objects will be determined based on their feature
values. A cellci = 〈ci1, ci2, . . . , cid〉 contains an objectok =
〈ok1, . . . , okd〉, if

lij ≤ oki < hij , 1 ≤ j ≤ d.

We may recall thatcij = [lij , hij) is the right open inter-
val in the partitioning ofAj . For each cell, we count the
number of objects contained in it to represent the aggrega-
tion of the objects. The number (or size) of these cells and
the aggregation information in each cell are important is-
sues that affect the performance of clustering. We discuss
these quantization issues in the next section. Because of the
multiresolution property of wavelet transform, we consider
different cell sizes at different scales of transform.

5.1.2 Transforming and clustering

In the second step, discrete wavelet transform will be applied
on the quantized feature space. Applying wavelet transform
on the cells in{cj : 1 ≤ j ≤ J } results in a new fea-
ture space, and hence new cells{tk : 1 ≤ k ≤ K }.
Given the set of cells{tk : 1 ≤ k ≤ K }, WaveCluster
detects the connected components in the transformed fea-
ture space. Each connected component is a set of cells in
{tk : 1 ≤ k ≤ K } and is considered as a cluster. Cor-
responding to each resolutionr of wavelet transform, there
would be a set of clustersCr, where, usually at the coarser
resolutions, the number of clusters is less. In the experi-
ments, we applied each of the three-level wavelet transforms
Daubechies, Cohen-Daubechies-Feauveau ((4,2) and (2,2))
[Vai93, SN96, URB97]. Average subbands (feature spaces)
give approximations of the original feature space at differ-
ent scales, which help in finding clusters at different levels
of details. For example, as shown in Fig. 5, for a 2D feature
space, the subbandsLL show the clusters at different scales.

We use the algorithm in [Hor88] to find the connected
components in the 2D feature space (image). The same con-
cept can be generalized for higher dimensions. In our imple-
mentation, we havek = 8 andε =

√
2 for k-ε-neighborhood

as defined in Sect. 2. That is, a significant cella in the trans-
formed feature space isk-ε-neighbor of another cellb if
a lies within one of the eight grid cells surrounding cell

b. The connected component analysis consists of scanning
through the image once to find all the connected compo-
nents, and then equivalence analysis to relabel the compo-
nents. This takes care of components with holes and concave
shapes. There are many well-known algorithms for finding
connected components in images and we used the one men-
tioned in [Hor88] for our purpose. Figure 9 in Sect. 5 shows
the clusters that WaveCluster found at each scale in different
colors.

5.1.3 Label cells and make lookup table

Each clusterw, w ∈ Cr, will have a cluster numberwn.
In the fourth step of the algorithm, WaveCluster labels the
cells in each cluster in the transformed feature space with
its cluster number. That is,

∀w ∀tk , tk ∈ w =⇒ ltk
= wn, w ∈ Cr,

where ltk
is the label of the celltk . The clusters that are

found are in the transformed feature space and are based on
wavelet coefficients. Thus, they cannot be directly used to
define the clusters in the original feature space. WaveClus-
ter makes a lookup tableLT to map the cells in the trans-
formed feature space to the cells in the original feature space.
Each entry in the table specifies the relationship between one
cell in the transformed feature space and the corresponding
cell(s) of the original feature space. So the label of each
cell in the original feature space can be easily determined.
Finally, WaveCluster assigns the label of each cell in the
feature space to all the objects whose feature vector is in
that cell, and thus the clusters are determined. That is,

∀w ∀cj , ∀oi ∈ cj , loi = wn, w ∈ Cr, 1 ≤ i ≤ N,

whereloi
is the cluster label of objectoi .

5.2 Properties of WaveCluster

When the objects are assigned to the cells of the quantized
feature space at step 1 of the algorithm, the final content of
the cells is independent of the order in which the objects
are presented. The following steps of the algorithm will be
performed on these cells. Hence, the algorithm will have
the same results for any different order of input data, so it
is order insensitive with respect to input objects. As will
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a DS1 b DS2

c DS3 d DS4

e DS5 f DS6

g DS7 h DS8

Fig. 6a–h.Visualization of some of the datasets used in the experiments.

be formally and experimentally shown later, the required
time for WaveCluster to detect the clusters is linear in terms
of number of input data, and it cannot go below that, be-
cause all the data should be at least read. After reading the
data, the processing time will be only a function of number

of cells in the feature space. Thus, it makes WaveCluster
very efficient, especially for very large numbers of objects.
WaveCluster will be especially very efficient for the cases
where the number of cellsm and the number of feature
space dimensionsd are low. Minefield detection and some
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seismology applications are examples where we have low-
dimensional (two dimensions) feature spaces.

All the grid-based approaches for clustering spatial data
suffer from themodifiable areal cell problem (MAUP)first
addressed by Openshaw in 1977, and Openshaw and Tay-
lor in 1981 [Ope77, OT81]. The problem occurs in terms
of scaling and aggregation. The problem of scaling is in
selecting the appropriate size and number of cells to repre-
sent the spatial data. There are infinitely large numbers of
ways in which the cells may be organized and their size
be specified. Aggregation is the problem of summarizing
the datacontainedin each cell. In our case, we use a sim-
ple accumulative approach where the number of the data
points contained in a cell summarizes all information about
the cell. But there might be other measures which charac-
terize the data more appropriately. In his paper, Openshaw
[Ope77] defines this problem mathematically and discusses
some heuristics to solve the problem.

All the present grid-based algorithms suffer from these
problems. In general, when the quantization valuem is too
low (very coarse quantization), more objects will be assigned
to the same cell, and there is higher probability for the ob-
jects from different clusters to belong to the same cell. We
call this caseunder-quantizationproblem. This results in
merging of the two clusters and mislabeling their objects;
thus, the quality of clustering decreases. In contrast, if the
quantization valuem is too high (very fine quantization),
each object will be in a separate cell, which might be far
from the other cells. We call thisover-quantizationprob-
lem. Over-quantization can result in many unnecessary small
clusters (that might be later removed as noise) and does not
find the real clusters; thus, it will also decrease the qual-
ity of clustering. Aggregation also plays a role in clustering
and it depends on the kind of algorithm used for clustering.
In STING, each cell maintains a list of statistical attributes,
like number of objects in the cell, mean of values, stan-
dard deviation of values, min, max, type of distribution of
the values in the cell [WYM97]. In CLIQUE proposed by
Agrawal et al., each cell is classified as dense or not based
on the count value in each cell [AGGR98]. But none of the
methods discusses the problems regarding aggregation.

We argue that, in this context, scaling is an inherent
problem in what a human user can call a cluster, in other
words, the definition of cluster. As Openshaw and Taylor
stated, it seems very unlikely that there will ever be ei-
ther a purely statistical or mathematical solution for MAUP
[OT81]. To have an optimal quantization, application domain
information should be incorporated. Openshaw provided a
geographical solution to scale and aggregation problems in
region-building, partitioning, and spatial modeling [Ope77].
However, as he mentions, although his approach seems to
work, and perhaps provides the only real solution to a com-
plicated problem, it has its own weaknesses [OT81]. Quan-
tization is a problem thatall grid-based algorithms suffer
from. However, while other existing grid-based clustering
methods ignore this problem, WaveCluster has the advan-
tage of producing clusters at multiple scales at the same
time. This means that the results of WaveCluster implicitly
reflect multiple quantizations of the feature space, resulting
in multiple sets of clusters that can be selected based on the
user’s requirements.

We may use a heuristic-based approach to experimentally
find a good quantization. We can start with very small size
grid cells (over-quantized feature space) and try to find the
clusters. Most likely, no clusters will be found at this step.
We can then increase the size of cells and find the possible
clusters. If no acceptable clusters are found, we repeat the
process after enlarging the size of cells. This process can
be continued until we obtain some acceptable clusters. At
this phase, WaveCluster, using the multiresolution property
of wavelet transform, can provide multiple sets of clusters
at different scales. This approach to finding an appropri-
ate quantization will increase the overall time to cluster the
database. However, given the appropriate quantization, the
required time complexity of WaveCluster will still beO(N ).
Finding the suitable quantization is a common problem for
all grid-based methods and this cost should be considered
for all of them.

WaveCluster finds the connected components in theav-
erage subband (LL) of the wavelet transformed feature
space, as the output clusters. As mentioned in Sect. 4.3, av-
erage subband is constructed by convolving the low-pass
filter along each dimension and downsampling by two. So a
wavelet-transformed cell will be affected by the content of
cells in the neighborhood covered by the filter. It means that
the spatial relationships between neighboring cells will be
preserved. The algorithm to find the connected components
labels each cell of feature space with respect to the cluster
that it belongs to. The label of each cell is determined based
on the labels of its neighboring cells [Hor88]. It does not
make any assumptions about the shape of connected com-
ponents and can find convex, concave, or nested connected
components. Hence, WaveCluster can detect arbitrary shapes
of clusters.

WaveCluster applies wavelet transform on the feature
space to generate multiple decomposition levels. Each time
we consider a new decomposition level, we ignore some de-
tails in the average subband and effectively increase the size
of a cell’s neighborhood whose spatial relationship is consid-
ered. This results in sets of clusters with different degrees of
details after each decomposition level of wavelet transform.
In other words, we will have multiresolution clusters at dif-
ferent scales, from fine to coarse. For example, in Sect. 6,
Fig. 9 shows an example where a three-level wavelet trans-
form is applied and the output clusters after each transform
are presented. At scale 1, we have the four fine clusters,
and at the next scale, two of those clusters are merged. At
scale 3, we have only two coarse clusters representing orig-
inal feature space. In our approach, a user does not have
to know the exact number of clusters. However, a good es-
timation of the number of clusters helps in choosing the
appropriate scale and the corresponding clusters. One of the
effects of applying a low-pass filter on the feature space is
the removal of noise. WaveCluster takes advantage of this
property, and removes the noise from the feature space auto-
matically. Figure 3a shows an example where about 25,000
noise objects are scattered in the feature space. After apply-
ing wavelet transform, the noise objects are removed, and
thus WaveCluster can detect the clusters correctly.
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5.3 Time complexity

Let N be the number of objects in the database, whereN is a
very large number. Assume the feature vectors of objects are
d-dimensional, resulting in ad-dimensional feature space. As
we mentioned in Sect. 2, the current version of WaveCluster
is designed for the cases whereN is very large andd is
low. The time complexity of the first step of WaveCluster
algorithm isO(N ), because it scans all the database objects
and assigns them to the corresponding cells. Assumingm
cells in each dimension of feature space, there would beK =
md cells. Complexity of applying wavelet transform on the
quantized feature space (step 2) will beO(ldK) = O(dK),
where l is a small constant representing the length of the
filter used in the wavelet transform. Since we assume that
the value ofd is low, we can consider it as a constant, thus
O(dK) = O(K). If we apply wavelet transform forT levels
of decomposition, since for each level, we downsample the
space by 2, ford ≥ 2, the required time would be

O

(
K +

K

2d
+

K(
2d
)2 + . . . +

K(
2d
)T
)

= O

(
K

T∑
i=0
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2d
)i
)

= O

(
K
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i=0

(
2−d

)i)

= O

(
K

1 − (2−d
)T +1

1 − 2−d

)
≤ O

(
4
3
K

)
.

That means the cost to apply wavelet transform for multi-
ple levels would be at mostO( 4

3K). It shows that we can
have multiresolution presentation of the clusters very cost-
effectively. To find the connected components in the trans-
formed feature space, the required time will beO(cK) =
O(K), wherec is a small constant. Making the lookup table
requiresO(K) time. After reading data objects, the process-
ing of data is performed in steps 2 to 5 of the algorithm.
Thus, the time complexity of processing data (without con-
sidering I/O) would, in fact, beO(K), which is independent
of the number of data objects (N ). The time complexity
of the last step of WaveCluster algorithm isO(N ). Since
this algorithm is applied on very large databases with a low
number of dimensions, we can assume thatN ≥ K. As an
example, for a database with 1,000,000 objects where the
number of dimensionsd is less than or equal to six, and
the number of intervalsm is 10, this condition holds. Thus,
based on this assumption, the overall time complexity of the
algorithm will beO(N ). It should be noted that, because of
the way that we find the connected components (and hence
the clusters), the number of clusters does not affect the time
complexity of WaveCluster. In other words, WaveCluster’s
time complexity is independent of the number of clusters.

During applying wavelet transform on each dimension
of the feature space, the required operations for each feature
space cell can be carried out independent of the other cells.
Thus, using parallel processing can speed up transforming
the feature space. The connected component analysis can
also be speeded up using parallel processing [NS80, SV82].
Parallel processing algorithms will be especially useful when
the number of cellsm or the number of dimensionsd
is high. For a large number of dimensions, we may have

N < K = md. For such cases, we can also perform princi-
ple component analysis [Sch92] to find the most important
features and to reduce the number of dimensions to a value
f such thatN > mf . We have provided another solution
using a hash-based data structure for the cases when number
of dimensions is high, which is presented in [YCSZ98].

6 Performance evaluation

In this section, we evaluate the performance of WaveCluster
and demonstrate it’s effectiveness on different types of dis-
tributions of data. Tests were done on synthetic datasets gen-
erated by us and also on datasets used to evaluate BIRCH
[ZRL96]. We mainly compare our clustering results with
BIRCH.

Synthetic dataset generation

For the experiments, we used the datasets generated by both
our own synthetic generator and the ones used by [ZRL96].
In the dataset generation method described in [ZRL96], clus-
ter centers are first placed at certain locations in the space.
The data points of each cluster are generated according to a
2D normal distribution whose mean is the center and whose
variance is specified. Datasets DS1, DS2 and DS3 are the
same as used by [ZRL96]. They are shown in Fig. 6a–c
respectively. Each dataset consists of 100, 000 points. The
points in DS3 are randomly distributed, while those of DS1
and DS2 are distributed in a grid and sine curve pattern,
respectively.

We designed our own synthetic dataset generator for per-
forming further experiments. The data generator allows con-
trol over the structure, number of clusters, probability dis-
tribution, and size of the datasets. It also allows us to add
different proportion of noise to the generated datasets. We
generated 14 new datasets to perform experiments.

We generated DS4 by spreading points in 2D space fol-
lowing uniform random distribution in the shapes of rectan-
gles and annular region. DS4 contains 228, 828 data objects
spread in two clusters as shown in Fig. 6d. For generating
dataset DS5, we spread points around two parabolas follow-
ing uniform random distribution. Dataset DS5 has 250, 000
data objects, containing two concave clusters in the shape
of parabolas.

Dataset DS6 was generated by spreading 275, 429 ran-
dom data objects following uniform distribution in two con-
centric annulus regions. We randomly generate two floating-
point numbers in the feature space, one for each dimension.
We then check whether the data object defined by these
two features falls in the annular region defined by the inner
radius, center and the width. The parameters used for gen-
erating this dataset are shown in Table 1. The parameterr
is the radius of the void circle inside the annulus,w is the
width of the annulus, andx andy define the location of the
center of the annulus.

We used a technique similar to one described in [ZRL96]
to generate the dataset DS7. Two cluster centers are first
placed on the 2D plane and then 500, 000 data objects
are spread following 2D normal distribution around these
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Table 1. Parameters for generating DS6

Parameters r w x y

Inner Circle 20.0 15.0 60.0 60.0
Outer Circle 40.0 20.0 60.0 60.0

Table 2. Parameters for generating DS7

Parameters µx µy σx σy ρ

Cluster1 125.0 55.0 60.0 13.0 0.7
Cluster2 125.0 120.0 50.0 30.0 0.5

points. After that, 75, 000 (15%) random noise objects were
added to the dataset, making the total number of data objects
575, 000. For the 2D normal distribution, we used the po-
lar method proposed by Box et al. as described in [Knu98].
The dataset is shown in Fig. 6g. The parameters used for this
are shown in Table 2, whereµx andµy specify the mean in
each dimension, i.e., the location of the cluster center,σx

andσy specify the variance in each dimension andρ speci-
fies the correlation coefficient between the variables in each
dimension.

Generation of dataset DS8 follows a combination of
strategies used for generating DS6 and DS4. We create
two concentric annular region, one filled circle and an “L-
shaped” cluster. There is a total 252, 869 data objects in
DS8.

We also had several other datasets to study certain char-
acteristics of WaveCluster. One group of datasets was used
to verify the sensitivity of processing time of WaveCluster
with increasing number of clusters. To make a fair compari-
son, we made the total number of data objects the same, but
varied the number of clusters in these datasets. Each dataset
has 1, 000, 000 data objects and 20, 000 noise objects. The
number of clusters in these datasets range from 2 to 100. The
clusters are either rectangles (following a uniform random
distribution) or ellipsoids (following 2D normal random dis-
tribution, as described before). The results for these experi-
ments are reported in Table 3. The generation of rectangular
clusters closely follows the method described in [ZM97].
We also generated several noisy versions of the DS7 dataset
to verify the noise removal property of WaveCluster. We
added different proportions (5%, 10%, 15%, 20%, 25%) of
noise to the original DS7 dataset to create these datasets. The
number of objects in them are 525, 000, 550, 000, 575, 000,
600, 000, and 625, 000, respectively. The visualizations of
these datasets and WaveCluster’s results on them are pre-
sented in Fig. 10.

Clustering very large datasets

All the datasets used in the experiments contain typically
more than 100,000 data points. DS1,DS2 and DS3 each has
100,000 data points. WaveCluster can successfully handle
an arbitrarily large number of data points. Figure 7 shows
WaveCluster’s performance on DS1. Here, a map-coloring
algorithm has been used to color the clusters. Neighboring
clusters have different colors. But nonneighboring clusters
might be allocated the same color. In Fig. 3, we showed

Fig. 7. WaveCluster on DS1

the clustering results for a dataset with more than 500,000
objects.

Clustering arbitrary shapes

As we mentioned earlier, spatial data-mining methods should
be capable of handling any arbitrarily shaped clusters. Fig-
ure 6d presents the DS4 dataset. There are two arbitrarily
shaped clusters in the original data. Figure 8a shows clus-
tering of DS4 using WaveCluster and BIRCH. This result
emphasizes effectiveness of the methods which do not as-
sume the shape of the clusters a priori.

Clustering at different resolutions

WaveCluster has the remarkable property that it can be used
to cluster at different granularities according to the user’s
requirement. Figure 9 displays the results of WaveCluster on
DS8 (Fig. 6h). At scale 1, we have the four fine clusters, and
at the next scale, two of those clusters are merged. At scale
3, we have only two coarse clusters representing original
feature space. This illustrates how WaveCluster finds clusters
at different degrees of detail. This property of WaveCluster
provides the user with the flexibility to modify queries based
on initial results.

Handling noise objects

WaveCluster is very effective in handling noise. The dataset
presented in Fig. 3 has 500,000 objects in two clusters
plus 25,000 (5%) noise objects. We generated new datasets
from it, where 50,000, 75,000, 100,000, and 125,000 (10%,
15%, 20%, and 25%) uniformly distributed noise objects
were added to datasets. The datasets and the correspond-
ing clusters detected by WaveCluster are shown in Fig. 10.
WaveCluster successfully removes all the random noise and
produces the two intended clusters in all cases. Also, because
the time complexity of the processing phase of WaveClus-
ter is O(K) (where K is the number of grid cells), the time
taken to find the clusters in the noisy version of the data is
the same as in the one without noise.

Clustering nested and concave patterns

WaveCluster can successfully cluster any complex pattern
consisting of nested or concave clusters. From Fig. 6f (DS6)
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a b

Fig. 8a,b. Clustering results on DS4:a WaveCluster,b BIRCH

a b c

Fig. 9a–c.WaveCluster output clusters of DS8 ata scale 1;b scale 2;c scale 3

and Fig. 11a we see that WaveCluster’s result is very accu-
rate on nested clusters. Figure 11b shows BIRCH’s result on
the same dataset.

Figure 6g (DS5) shows an example of a concave shape
data distribution. Figure 12a and b compare the clustering
produced by WaveCluster and BIRCH. From these results,
it is evident that WaveCluster is very powerful in handling
any type of sophisticated patterns.

Comparing different number of clusters

We generated nine datasets, each having 1,000,000 data ob-
jects, and added 20,000 noise objects to them. These datasets
have the same number of data objects (1,020,000), but have
a different number of clusters ranging from 2 to 100 clusters.
Table 3 summarizes the required quantization and process-
ing time for these datasets. We applied Cohen-Daubechies-
Feauveau (2,2) wavelet transform and used 256×256 quan-
tization in these experiments. As this table shows, the num-
ber of clusters has no effect on the timing requirements
of WaveCluster. It verifies our discussion in Sect. 5.3 that
WaveCluster’s time complexity is independent of the num-
ber of clusters.

Comparison of timing requirements

We now compare the timing requirements of WaveCluster,
BIRCH, and CLARANS as shown in Tables 4 and 5. We ran

Table 3. Required time (in seconds) for different number of clusters with
same number of points

Number of clusters2 4 5 10 20 25 40 50 100

Quantization time 49.1 49.1 54.7 50.9 52.0 52.0 51.7 52.0 54.1
Processing time 2.1 2.1 2.1 2.2 2.15 2.3 2.1 2.1 2.2

BIRCH on all the datasets. CLARANS requires the informa-
tion about all the database objects to be loaded into memory,
and its run time is very large when there is a large number of
objects. Thus, we were unable to run it. Based on the com-
parison of BIRCH and CLARANS presented in [ZRL96],
we estimated the performance of CLARANS. Running code
for DBSCAN and STING was not available; thus, we were
not able to do experiments with it. We observe that on an av-
erage CLARANS is 22 times slower than BIRCH. We show
the time requirements for quantization and processing sepa-
rately for WaveCluster. All the experiments were carried out
on a SUN SPARC workstation using 168 MHz UltraSparc
CPU with SunOS operating system and 1024 MB mem-
ory. We applied Cohen-Daubechies-Feauveau (2,2) wavelet
transform in the experiments reported in Table 5.

Table 5 shows the average quantization time required in
WaveCluster. It also presents the processing time when dif-
ferent number of grid cells are used in quantization. The
values ofm1 andm2 specify the number of cells in horizon-
tal and vertical dimensions, respectively. The total required
time to cluster using WaveCluster is the summation of pro-
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Fig. 10a,b.WaveCluster on datasets with different levels of noise:a noisy datasets;b clusters

cessing and quantization time. We observe that WaveCluster
outperforms BIRCH and CLARANS by a large margin when
we use the finest quantization (512×1024), which takes the
longest among the quantizations in our experiments. Even
if we add up the processing time for all different quantiza-

tions, the total time would still be less than that of the other
clustering methods.

The processing time of WaveCluster is almost indepen-
dent of the distribution of the spatial objects, and most im-
portantly it is even independent of number of objects present
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a b

Fig. 11a.WaveCluster on DS6;b BIRCH on DS6

a b

Fig. 12a.WaveCluster on DS5;b BIRCH on DS5

Table 4. Required time (in seconds) for different datasets using CLARANS
and BIRCH

Dataset DS6 DS5 DS4 DS1 DS2 DS3
Number of data 275,429 250,000 228,828 100,000 100,000 100,000

CLARANS 2378.2 2376.0 2085.6 1232.0 1093.0 1089.4
BIRCH 108.1 108.0 94.8 56.0 49.7 49.5

in the space. As Table 5 shows, the time taken by WaveClus-
ter is heavily dominated by the time to read the input data
from disk. A faster method to do I/O will make the al-
gorithm much faster. The experimental results demonstrate
WaveCluster to be a stable and efficient clustering method.

As Table 5 shows, the processing time (without consider-
ing I/O) is not a function of the number of data objects. For
datasets of different sizes, WaveCluster requires almost sim-
ilar processing time (given the same quantization). As men-
tioned in Sect. 5.3, the time complexity of processing data is
linear in terms of number of the feature space cells (O(K)).
The timing results shown in Table 5 verify this property of
WaveCluster. When we have less cells (coarser quantiza-
tion), the required time is less. Quantization time includes
the time to read the input data and assign them to the cells,
and hence is a function of number of input data. That is, as
shown in Table 5, the required quantization time for larger
datasets is larger than that of smaller datasets.

Clustering at different quantizations

In Table 5 we showed how quantization affects the process-
ing time, and thus the overall efficiency of WaveCluster. We
now present our experimental results regarding the effect of
quantization on the quality of clustering. We performed ex-
periments on the dataset DS1 that has 100 clusters. Table 6
shows the number of clusters found by WaveCluster where
different quantizations were used. In Sect. 5.2, we discussed
the problems of scaling, aggregation, under-quantization,
and over-quantization. When we used the fine quantization,
2048× 4096, almost all the 100 were eliminated as noise
(over-quantization). On the other hand, when the objects
were quantized coarsely (under-quantization), (for example
32×64 or 64×128), most of the clusters were merged to each
other, yielding low-quality results. When we used 256×512
quantization, almost all the 100 clusters were correctly de-
tected and we obtained the best results. Table 6 shows that,
for 1024×2048 quantization, WaveCluster also detects about
100 clusters. However, due to over-quantization and because
of low density of objects at the border of clusters, most such
border objects were not assigned to the clusters. Thus, for
this case, the results were not satisfactory.

7 Conclusion

In this paper, we presented the clustering approach termed
WaveCluster. This grid-based approach applies wavelet trans-
form on the quantized feature space and then detects the
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Table 5. Required time (in seconds) for different datasets using WaveCluster.

Dataset DS6 DS5 DS4 DS1 DS2 DS3
Number of data 275,429 250,000 228,828 100,000 100,000 100,000

m1 m2
512 1024 5.9 5.7 6.3 5.6 5.8 6.0
512 512 3.5 3.5 3.4 3.8 3.4 3.3
256 512 2.2 2.1 2.0 2.3 2.1 2.0

Processing 256 256 1.4 1.5 1.5 1.5 1.4 1.4
time 128 256 1.2 1.1 1.1 1.2 1.2 1.1

128 128 0.9 1.0 1.0 1.0 0.9 1.0
64 128 1.0 0.9 0.8 1.1 1.0 0.9
64 64 0.9 0.9 0.9 0.9 0.9 0.8

Quantization time 11.7 11.0 9.7 5.4 5.6 5.5

Table 6. Number of clusters found for DS1 using different quantizations.

m1 2048 1024 512 256 128 64 32
m2 4096 2048 1024 512 256 128 64

Number of Clusters 1 110 203 105 48 13 3

dense regions in the transformed space. Applying wavelet
transform makes the clusters more distinct and salient in the
transformed space, and thus eases their detection. Using the
multiresolution property of wavelet transform, WaveClus-
ter can detect the clusters at different scales and levels of
detail, which can be very useful in the user’s applications.
Moreover, applying wavelet transform removes the noise
from the original feature space, and thus enables WaveClus-
ter to handle them properly and find more accurate clus-
ters. WaveCluster does not make any assumption about the
shape of clusters and can successfully detect arbitrary-shape
clusters such as concave or nested clusters. It is a very ef-
ficient method with a time complexity ofO(N ), whereN
is the number of objects in the database, which makes it
especially attractive for very large databases. WaveCluster
is insensitive to the order of input data to be processed.
Current clustering techniques do not address these issues
sufficiently, although considerable work has been done in
addressing each issue separately. Our experimental results
demonstrated that WaveCluster can outperform other recent
clustering approaches. WaveCluster is the first attempt to
apply the properties of wavelet transform in the clustering
problem in spatial data mining.
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