
The VLDB Journal
https://doi.org/10.1007/s00778-024-00873-w

REGULAR PAPER

Enabling space-time efficient range queries with REncoder

Zhuochen Fan1 · Bowen Ye1 · Ziwei Wang1 · Zheng Zhong1 · Jiarui Guo1 · Yuhan Wu1 · Haoyu Li1 ·
Tong Yang1 · Yaofeng Tu2 · Zirui Liu1 · Bin Cui3

Received: 28 October 2023 / Revised: 5 May 2024 / Accepted: 18 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
A range filter is a data structure to answer range membership queries. Range queries are common in modern applications, and
range filters have gained rising attention for improving the performance of range queries by ruling out empty range queries.
However, state-of-the-art range filters, such as SuRF and Rosetta, suffer either high false positive rate or low throughput.
In this paper, we propose a novel range filter, called REncoder. It organizes all prefixes of keys into a segment tree, and
locally encodes the segment tree into a Bloom filter to accelerate queries. REncoder supports diverse workloads by adaptively
choosing how many levels of the segment tree to store. In addition, we also propose a customized blacklist optimization
for it to further improve the accuracy of multi-round queries. We theoretically prove that the error of REncoder is bounded
and derive the asymptotic space complexity under the bounded error. We conduct extensive experiments on both synthetic
datasets and real datasets. The experimental results show that REncoder outperforms all state-of-the-art range filters, and the
proposed blacklist optimization can effectively further reduce the false positive rate.

Keywords Range queries · Range filters · Segment tree · False positive rate · Throughput

Co-first authors: Zhuochen Fan, Bowen Ye, and Ziwei Wang.

The preliminary version of this paper titled “REncoder: A Space-Time
Efficient Range Filter with Local Encoder" [55] was published in the
Proceedings of the 2023 IEEE 39th International Conference on Data
Engineering (ICDE), Apr. 3–7, 2023, Anaheim, California, USA.

B Tong Yang
yangtong@pku.edu.cn

Zhuochen Fan
fanzc@pku.edu.cn

Bowen Ye
bwye@stu.pku.edu.cn

Ziwei Wang
wangziwei@stu.pku.edu.cn

Zheng Zhong
zheng.zhong@pku.edu.cn

Jiarui Guo
ntguojiarui@pku.edu.cn

Yuhan Wu
yuhan.wu@pku.edu.cn

Haoyu Li
lihy@pku.edu.cn

Yaofeng Tu
tu.yaofeng@zte.com.cn

1 Introduction

1.1 Background andmotivation

Range queries are common operations in modern database
applications [10, 12, 18, 27, 49]. A range filter is a data struc-
ture to answer range membership queries [2, 37, 60]. Unlike
a Bloom filter [6] that only supports point queries (e.g., is key
87 in the set?), a range filter determines whether a queried
range contains any item (e.g., is any key ranging from 56 to
7982 in the set?). Range filters have gained much attention

Zirui Liu
zirui.liu@pku.edu.cn

Bin Cui
bin.cui@pku.edu.cn

1 National Key Laboratory for Multimedia Information
Processing and School of Computer Science, Peking
University, Beijing, China

2 ZTE Nanjing Research and Development Center, Nanjing,
China

3 Key Laboratory of High Confidence Software Technologies
(MOE) and School of Computer Science, Peking University,
Beijing, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00778-024-00873-w&domain=pdf
http://orcid.org/0000-0003-0042-1828
http://orcid.org/0000-0003-2402-5854

Z. Fan et al.

because they can reduce the number of I/Os by eliminating
empty range queries.

Below we introduce three use cases of range filters.
Usecase1:Log-structuredmerge (LSM)-tree [42]LSM-trees
arewidely used inDBMS [3, 4, 9, 15, 18, 21, 34, 46] and have
many applications such as time-series databases [31, 32] and
graph databases [16, 33], thanks to their excellent writing
performance. However, because an item can reside in Sorted
String Tables (SSTables) from all levels in the LSM-tree, we
have to access multiple SSTables from disk when retriev-
ing the item. It wastes expensive disk I/Os when the item
does not exist in the SSTables. For point queries, an LSM-
tree typically maintains a Bloom filter in memory for each
SSTable to check the existence of items before issuing disk
I/Os [14, 38]. For range queries, range filters can benefit an
LSM-tree in a similar way. When processing a range query,
before accessing an SSTable, we first query the correspond-
ing range filter to check whether there are items within the
queried range. If the filter returns true, there is a high prob-
ability that the range contains at least one item (could be a
false positive), and we should load the SSTable from disk
to verify and retrieve the desired item(s). Otherwise, we can
skip searching the SSTable becausewe are 100% sure that the
result set is empty for this range. Empty ranges are common
especially for LSM-trees with many levels/runs. Therefore,
range filters are effective in reducing the number of I/Os and
thus improving query performance.
Use case 2: B+tree [11] B+trees are the most widely used
index structures in DBMSs. Typically, a B+tree has a large
fanout and its leaf nodes are not cached in memory. To save
unnecessary leaf node accesses, we can maintain a range fil-
ter in memory for each leaf node so that we visit a particular
leaf node only when the corresponding range filter returns
positive. In this way, empty point and range queries do not
incur any disk I/Os. Range filters can also be applied to opti-
mize many other B-tree variants [23].
Use case 3: R-tree [5] Range filters can also benefit an R-tree
and its variants [24, 50]. An R-tree is a generalization of a B-
tree in multi-dimensional space. Take 2-dimensional R-trees
(i.e., the keys in the R-tree are 2-dimensional) as an exam-
ple. We denote the 2-dimensional key using (x, y). A spatial
query such as retrieving the items satisfying 42 < x < 100
and 58 < y < 111 can be regarded as a 2-dimensional range
query. Similar to a B+tree, for each leaf node of an R-tree, we
include an in-memory range filter to avoid unnecessary disk
I/Os. Since the keys in R-tree are 2-dimensional, we first
transfer them to 1-dimensional by Z-order1 [40] and then
store them in the range filers.

Designing an efficient rangefilter is challenging. There are
three primary goals. First, a range filter must be compact so

1 For a 2-dimensional key, interleave the binary representations of its
x and y to obtain the corresponding 1-dimensional key.

that it can fit inmemory. Second, itmust be accurate (i.e., low
false positive rate) to save asmany unnecessary I/Os as possi-
ble. Finally, it must be fast so as not to significantly increase
the CPU usage of target applications. As the state-of-the-art
solution [37] has approached the theoretical lower bound in
space [22], in this paper, we focus on improving range filters’
performance while retaining the space-efficiency.

1.2 Prior works

There are four current state-of-the-art (SOTA) range filters:
SuRF [60],Rosetta [37], SNARF [53] andProteus [30]. SuRF
is based on trie, its key idea is to prune the lower levels of the
trie and then succinctly encode the remaining trie. Because
of pruning, however, SuRF does not provide theoretical guar-
antee on the false positive rate (FPR), and the FPR increases
significantly in correlated workloads.2 Rosetta overcomes
the shortcomings of SuRFbyusingBloomfilters. It organizes
all prefixes of keys in a segment tree [39, 45] (refers to binary
segment tree by default), and uses a series of Bloom filters to
store the segment tree. However, Rosetta has a relatively low
in-memory performance because of many queries to Bloom
filters. SNARF learns a CDF model of the keys, then uses
the model to store information of the data and answer range
queries. By using the learned model, SNARF achieves lower
FPR. However, like SuRF, the FPR of SNARF increases
significantly in correlated workloads. Proteus combines the
trie and the Bloom filter. It proposes Contextual Prefix FPR
(CPFPR) model, by which it can choose a design (of trie and
Bloom filter) that achieves a low FPR. However, using the
CPFPR model requires sampling the workload before con-
structing the range filter, which is impractical for some use
cases.

1.3 Our proposed solution

We propose Range Encoder (REncoder), a novel range
filter that improves over the state-of-the-art solutions in
the aforementioned design goals. Based on REncoder, we
also propose REncoderSS and REncoderSE for different use
cases. We define three use cases: (A) REncoderSS version:
sampling queries is forbidden, and the theoretical error bound
is not required, with the relevant scenario being the real-time
trading system; (B)REncoderSEversion: sampling queries is
allowed, and the theoretical error bound is required, with the
relevant scenario being the metadata management of the dis-
tributed file system; (C) REncoder version: sampling queries
is forbidden, but the theoretical error bound is required, with
the relevant scenario being the consistency checking mecha-
nism of the distributed database. According to evaluation on
both synthetic and real-world datasets: (1) REncoder(SS/SE)

2 The queried keys are similar to the stored keys.

123

Enabling space-time efficient range queries with REncoder

Ta
bl
e
1

C
om

pa
ri
so
n
of

ra
ng
e
fil
te
rs

U
se

ca
se

R
an
ge

fil
te
r

FP
R
(r
at
io
)

Fi
lte
r
th
ro
ug
hp
ut

(r
at
io
)

O
ve
ra
ll
th
ro
ug
hp
ut

(r
at
io
)

T
he
or
et
ic
al
er
ro
r
bo
un
d

N
ee
d
sa
m
pl
e
qu
er
y

A
Su

R
F

0
4.
5

1
N
o

N
o

SN
A
R
F

3.
8

1.
3

16
.8

N
o

N
o

Pr
ot
eu
sN

S
0.
7

7.
2

0.
3

N
o

N
o

R
E
nc
od
er
SS

3.
1

5.
2

24
.3

N
o

N
o

B
R
os
et
ta

2.
2

1
1.
9

Y
es

Y
es

Pr
ot
eu
s

5.
1

4.
2

23
.8

Y
es

Y
es

R
E
nc
od
er
SE

3.
9

5.
3

24
.8

Y
es

Y
es

C
R
E
nc
od
er

2.
4

4.
6

2.
5

Y
es

N
o

1101
[13,13]

001
[2,3]

01
[4,7]

110
[12,13]

11
[12,15]

1
[8,15]

0
[0,7]

0 1 2 3 12 13 14 15…

01 : Prefix
[4,7] : Range

: Inserted Node
: Queried Node

00
[0,3]

Segment Tree

000
[0,1]

0000
[0,0]

0001
[1,1]

: Queried Range

Fig. 1 Example of segment tree

is compact, with a size close to the theoretical lower bound;
(2) it is accurate, with an FPR ranking in the top two for all
use cases; (3) it is fast, with a filter throughput ranking in the
top two for all use cases; (4) it has the best overall throughput
for all use cases. The comparison results are summarized in
Table 1.

Similar toRosetta, REncoder organizes all prefixes of keys
in a segment tree and use the segment tree to support range
queries. Eachnodeof the segment tree corresponds to a range,
and the range of the parent node is the union of the ranges
of its child nodes. Note that the ranges of the nodes at the
same level are non-overlapping. The node of the segment tree
records whether there is a key in its range. It means that for
each key, the segment tree records the existence of not only
the key itself but also all of its prefixes (ranges containing the
key). Figure1 shows an example. Inserting binary key 1101
(13) into a segment tree will record not only 1101 but also
110 ([12, 13]), 11 ([12, 15]), and 1 ([8, 15]). In this way, we
can divide the range query into up to log2(R) point queries
of prefixes, where R is the range size. For example, querying
range [0010, 1111] ([2, 15]) is equivalent to querying the
existence of prefix 001 ([2, 3]), 01 ([4, 7]), and 1 ([8, 15]).

Below are the key techniques of REncoder. REncoder
stores the segment tree by using Bloom filter, and uses a
compact encoding algorithm to improve the speed. The key
idea of our encoding method is to leverage the query locality
of the segment tree, so as to reduce the number of mem-
ory accesses. Specifically, as shown in Fig. 2, we first divide
the entire segment tree intomanymini-trees. Thenwe encode
each mini-tree into a bitmap: wemake each node in the mini-
tree correspond to a bit in the bitmap. If the node exists, the
corresponding bit will be set to 1. Otherwise, the correspond-
ing bit will be set to 0. The encoded bitmap is called Bitmap
Tree (BT). After encoding, we insert each BT into a Bloom
filter independently, so that the information in the same BT,
i.e., the nodes in the same mini-tree, will be encoded into

123

Z. Fan et al.

Bloom Filter

…

: Mini-tree
: Query Path
: Local Encoding

BT BT BT

Fig. 2 REncoder takes advantage of query locality in segment tree.

Table 2 Space cost of REncoder

Version FPR

50% 25% 10% 1% 0.1%

REncoder 6.5 8.5 10.5 16 21

REncoderSS(SE) 2 3 4.5 9.5 14.5

the Bloom filter locally. For a mini-tree with N nodes, the
size of its corresponding BT is N bits. When N � 512 (the
maximum data size that SIMD instructions can handle [25]),
we only need one memory access to obtain the information
of all nodes in the mini-tree. Figure2 shows an example of
N = 31. Following the query path, the traditional method
used by Rosetta needs to query a total of 8 nodes (8 mem-
ory accesses). In contrast, REncoder only needs to query 2
mini-trees (2 memory accesses).

Due to the diversity of dataset/workload (keys/queries)
in practice, we also propose an optimized REncoder. It can
adaptively choose how many levels of the segment tree
to store to remain efficient in different datasets. Based on
the optimized REncoder, we propose two new versions:
one Selects the Start level (from which level to start stor-
ing) according to the dataset, called REncoderSS; the other
Selects the End level (to which level to end storing) accord-
ing to the workload, called REncoderSE. In addition, we
also propose an optimization called blacklist that can be
applied to all the above REncoder versions specifically for
multi-round queries. Then, we prove that REncoder has a
theoretical error bound, and we derive the asymptotic space
complexity under the bounded error. When the keys (64-bit
integers) and queries are uniformly-distributed, given vari-
ous bounded error (FPR), the space (bits per key) required
by each version of REncoder is shown in Table 2. The source
code of REncoder is available on GitHub [51].

We make the following contributions in this paper.

1. We propose a novel range filter, called REncoder. It
achieves great query performance by taking advantage
of the locality. The core design is locally encoding the
segment tree into the Bloom filter. The encoding scheme
is generic, and it can be applied to various tree structures.

2. We propose an optimized REncoder which can adaptively
adjust the number of stored levels according to the work-
load. Based on the optimized REncoder, we propose two
new versions for different use cases: REncoderSS and
REncoderSE.

3. We propose a blacklist optimization specifically formulti-
round queries, which is applicable to all REncoder ver-
sions.

4. We theoretically prove that the error (i.e., FPR) of REn-
coder is bounded. Given the bounded error ε, the space
that REncoder needs is O

(
N

(
k + log 1

ε

))
, where N is

the number of the items, and k is the number of the hash
functions of the Bloom filter.

5. We carry out extensive experiments on synthetic and real
datasets. The results show that when using the same
amount of memory, REncoder outperforms the SOTA
solutions. 3

2 Preliminaries and related work

2.1 Definition

Range filter is a data structure for representing a set S, Given
a query range R = [a, b]: (1) if the range contains any item
in the set (i.e., R ∩ S �= ∅), the range filter must report true;
(2) if the range contains no item in the set (i.e., R ∩ S = ∅),
the range filter reports false with probability 1 − ε, while ε

is false positive rate of the range filter.

2.2 Range filters

Most range filters can be divided into two categories: trie-
based solutions [2, 60] and Bloom filter-based solutions [17,
37]. There are some range filters that do not fall into either of
the two categories. We denote them as novel solutions [30,
53].
Trie-based solutions Trie-based range filters include Adap-
tive Range Filter (ARF) [2], Succinct Range Filter (SuRF)
[60], etc.. ARF first builds a full trie, then determines which
nodes to truncate by training on sample queries, finally
encodes the truncated trie into a bit sequence. Different from

3 FPR= ln(FPRof SuRF / FPRof current range filter) Filter Throughput
(FT) = FT of current range filter / FT of Rosetta Overall Throughput
(OT) = OT of current range filter / OT of SuRF FPR and FT take the
average of all experiments, and OT takes the average of experiment on
range queries.

123

Enabling space-time efficient range queries with REncoder

ARF, SuRF does not need training, the trie is truncated at
a certain length. In addition, SuRF uses a hybrid encod-
ing scheme [26] to encode the trie. SuRF also have some
advanced versionswhich save various additional information
for each key including hashed key suffixes, real key suffixes
and mixed key suffixes.
Bloom filter-based solutions Bloom filter-based range filters
include Prefix Bloom filter [17], Robust Space-Time Opti-
mized Range Filter (Rosetta) [37], and bloomBF [41], etc.
Prefix Bloom filter inserts predefined-length prefixes of each
key intoBloomfilters, and it can only be used for correspond-
ing fixed-prefix queries. In contrast, Rosetta inserts every
prefix of each key into Bloom filters. For L-bits keys, there
are L Bloomfilters in Rosetta. Prefixes of length i of each key
are inserted into i th Bloom filter. In essence, Rosetta builds
an “implicit segment tree” on the Bloom filters. bloomRF
mainly guarantees the local order of sub-ranges by proposing
monotonic hashing. However, under the premise of guaran-
teeingFPR, the number of hash functions it requires increases
as the data sparsity increases, thereby affecting its query
speed, while REncoder’s can remain unchanged.
Novel solutions Novel range filters include Sparse Numer-
ical Array-Based Range Filters (SNARF) [53], and Self-
designing Approximate Range Filter (Proteus) [30]. SNARF
learns a CDF model of the keys, and uses the model to map
the keys into a sparse bit array. Then, the sparse bit array is
compressed to save space. To answer a range query, SNARF
uses the learnedmodel to obtain the bit positions correspond-
ing to the left and right boundaries of the query. Then SNARF
checks whether there is a bit between the two bit positions in
the compressed bit array (i.e., whether there is a key within
the range). The key of Proteus is the CPFPR model, which
formalizes the FPR of prefix-based filters in various design
spaces. Proteus combines the trie-based range filters and
Bloom filter-based range filters. It uses both an FST (Fast
Succinct Trie) [60] and a prefix bloom filter, and uses the
CPFPR model to design (the depth of FST and the prefix
length of prefix bloom filter) to achieve optimal FPR.

2.3 Variants of bloom filters

Bloom filters [6] are widely used in database and network,
thanks to their three advantages: fast, compact and only have
one-sided errors. There are many variants of Bloom Filters
for different uses [8, 29, 35, 36, 43, 47, 52, 54, 56–58].
Among them, the closest to REncoder are Shifting Bloom
filter (ShBF) [58] and Persistent Bloom Filters (PBF) [43].
ShBF is proposed to improve the performance of standard
Bloom filter. Its key novelty is encoding partial information
of an item in a location offset. Both ShBF and REncoder take
advantage of the locality to reduce hash operations. However,
ShBF takes advantage of the locality by locally encoding par-
tial information of the item, while REncoder takes advantage

Table 3 Terms used in this paper

Term Meaning

L Length of key

p Prefix of key

k Number of hash functions

hi The i th hash function

Ls Number of stored levels

R Range query size

Rmax Maximum range query size

P1 The proportion of 1 in the bit array of RBF

of the locality by locally encoding prefixes of the item. In fact,
ShBF is orthogonal to REncoder.

PBF is used for temporal membership queries, e.g., has
this item appeared between 6am and 8am? Both PBF and
REncoder use segment trees andBloomfilters, but in a totally
different way. The segment tree of PBF records time ranges,
while that of REncoder records key ranges. PBF uses sev-
eral Bloom filters to store the segment tree, while REncoder
onlyneedoneBloomfilter.Moreover,REncoder takes advan-
tage of locality to significantly improve its performance, and
can adaptively choose the stored levels of the segment tree
according to datasets.

3 Range encoder

In practice, take LSM-tree as an example, a REncoder is
constructed for each SSTable of a LSM-tree. When execut-
ing a point or range query, before accessing an SSTable, we
first query the corresponding REncoder, and only when the
REncoder returns true, we will load the SSTable from the
disk. Whenever the LSM-tree performs a merge operation,
the REncoder needs to be rebuilt using the new items. Below
we will discuss the construction and the query of REncoder
in detail. The terms used in this paper are shown in Table 3.

3.1 Constructing REncoder

Similar to Rosetta, REncoder organizes all prefixes of all
keys into a segment tree, and stores the segment tree using
the Bloom filter. However, REncoder uses a novel encoding
scheme toutilize the locality,which can significantly improve
performance. For each key,we first encode all its prefixes into
several BTs. Then we insert the BTs into one special Bloom
filter named Range Bloom Filter (RBF). RBF is similar to
the standard Bloom filter. The difference is that the standard
Bloom filter can only insert one item at a time, i.e., set one bit
to 1 at a time, while RBF can insert a bitmap in one memory

123

Z. Fan et al.

access, so as to set multiple bits to 1 simultaneously. Once all
keys are encoded and inserted into the RBF, the construction
of the REncoder is done. Take the example of encoding 4
consecutive prefixes into one BT. The insertion procedure is
described in Algorithm 1. Thanks to RBF, the construction
efficiency of REncoder is significantly improved compared
with Rosetta. Theoretically, the magnitude of the improve-
ment is proportional to the number of consecutive prefixes
encoded into one BT.

Algorithm 1: Insert
Input: key to be inserted

1 i ← 4;
2 while i � L do
3 keysu f f i x ← key & 0x0000000F | 0x FFFFFFE0;
4 bt ← CodeIntoBitmap(keysu f f i x);
5 RBF.Insert(key >> 4, bt);
6 key ← key >> 4;
7 i ← i + 4;
8 end

Algorithm 2: RBF.Insert
Input: phash , bt

1 i ← 1;
2 while i � k do
3 pos ← hi (phash);
4 ∗(array + pos) ← ∗(array + pos) | bt ;

// array is the start address of the
array of RBF

5 i ← i + 1;
6 end

We now explain the insertion of RBF. The procedure is
presented in Algorithm 2. Similar to the standard Bloom
filter, the insert position is calculated by the hash function
(Line 3). However, RBF takes the insert position as the start-
ing point and inlays the bitmap using OR operation, instead
of only setting the bit of insert position to 1 (Line 4).

An insertion exampleThe left part of Fig. 3 shows an inser-
tion example of REncoder. The insertion is divided into three
steps: (1) We split the key 164 (corresponding to 10100100)
into prefix 1010 and suffix 0100. Note that the suffix 0100
actually represents the last 4 consecutive prefixes of key 164
(10100, 101001, 1010010, 1010 0100). (2) We encode suf-
fix 0100 into a 32-bit (4-byte) BT. First, we build a virtual
segment tree with a depth of 5, which can record the range
[0000,1111]. Then we number each node of the segment tree
in breadth-first order. The root node is the 1st node, 0, 01, 010
and0100 corresponds to 2nd, 5th, 10th and 20th node, respec-
tively. Next we set the corresponding positions in the BT to
1, and obtain BT 11001000010000000001000000000000. In
this way, we encode the segment tree recording key 0100 into

a BT. (3) We hash the prefix 1010 into k indices of RBF, and
inlay the BT using operation.
OR In this way, we store the built virtual segment tree in RBF.
Note that we do not build a real segment tree, but use the
structure of the segment tree to organize keys. The insertion
of the next suffix 1010 is the same. Note that there is no prefix
before 1010. Therefore, the prefix for hash functions can be 0
or any other constant. Obviously, after insertion, the number
of bits set to 1 in RBF is the same as that in Bloom filters
of Rosetta, which guarantees that the accuracy of REncoder
can match Rosetta.

3.2 Range queries with REncoder

The difference between REncoder and Rosetta in range
queries lies in the queries to Bloom filter. In Rosetta, each
query to Bloom filter can check the existence of one prefix.
In REncoder, each query to RBF obtains one BT which can
check the existence of several (e.g., 4) consecutive prefixes.
Thanks to the locality of range queries, i.e., consecutive pre-
fixes are often accessed in the same range query, REncoder
significantly improves query efficiency.

We now illustrate how a range query is executed in REn-
coder. The procedure of query is divided into two stages:
Decomposition stage and Verification stage. In Decomposi-
tion stage, similar to Rosetta, we decompose the target range
(Rt) into several non-overlapping sub-ranges, each of which
corresponds to a prefix that can exactly cover all keys in
the range. Specifically, we denote the range corresponding
to the current prefix as Rp. We start from the shortest prefix
(the empty prefix), which means Rp is [0,maxkey]. We then
compare Rp with Rt . There are three cases: (1) if Rp is non-
intersected with Rt , we do nothing; (2) if Rp is contained in
Rt , we record Rp as a sub-range; (3) if Rp is intersected
with Rt , we append 0 (and 1) to the current prefix to get
the new Rp [0,maxkey/2] (and [maxkey/2+1,maxkey]),
then compare the new Rp with Rt . Here, “append 0” and
“append 1” correspond to the first half and second half of the
range, respectively. We repeat the above process until there
is no new Rp. Take the 4-bit key as an example. For the tar-
get range [0, 4], we start from the max Rp [0, 15]. [0, 15] is
intersected with [0, 4], we compare [0, 7] ([0000, 0111], pre-
fix 0) and [8, 15] ([1000, 1111], prefix 1) with [0, 4]. [8, 15]
is non-intersected with [0, 4], we do nothing. [0, 7] is inter-
sected with [0, 4], we compare [0, 3] (append 0 by [0, 7]→
[0000, 0011], prefix 00) and [4, 7] (append 1 by [0, 7]→
[0100, 0111], prefix 01) with [0, 4]. [0, 3] is contained in
[0, 4], we record [0, 3] as a sub-range. Similarly, we can get
another sub-range [4, 4] (corresponding to the prefix 0100).

After the decomposition of the target range, we turn to
Verification stage. First, we query RBF for the existence of
the prefix corresponding to the first sub-range. If it returns
negative, we continue to query for the prefix corresponding

123

Enabling space-time efficient range queries with REncoder

Fig. 3 Examples of REncoder

to the next sub-range until all prefixes have been queried. If
none of them returns positive, REncoder reports that the tar-
get range is empty. If one of the queries returns positive, we
perform a depth-first traversal of the mini-tree corresponding
to the prefix to further verify the existence of it. The traver-
sal procedure is as follows: Starting from the root node of
the mini-tree, we query RBF for the existence of the pre-
fix corresponding to the current node, if it returns positive,
continue to traverse down the tree, otherwise terminate the
current path. If the traversal reaches a leaf node and the query
to RBF returns positive, REncoder reports that the sub-range
is not empty, which also indicates that the target range is not
empty. Otherwise, REncoder reports that the sub-range is
empty. Note that only when all the sub-ranges in Verification
stage are empty will REncoder report that the target range is
empty.

Still take the example of encoding 4 consecutive prefixes
into one BT, the procedure of a range query is shown in
Algorithm 3. We first decompose the target range into sev-
eral sub-ranges, and get the corresponding prefixes (Line 1).
Then, we verify the prefixes one by one (Lines 2–7). If there
is a verification returns true, the query returns true (Lines 4–
6). If none of the verification returns true, the query returns
false (Line 8). In Verification stage (Lines 9–20), we first

query RBF for the existence of the current prefix (i.e., check
root node), there are three conditions: (1) If the query returns
false, the verification stops and returns false (Lines 10–12).
(2) If the query returns true and the length of prefix is equal to
that of the key, the verification stops and returns true (Lines
13–15). (3) Otherwise, we query RBF for the existence of
the current prefix appended with 0 (i.e., check left mini-tree)
and 1 (i.e., check right mini-tree) and return the result of the
query (Lines 16–19).

We now specially discuss the query to RBF, the procedure
is shown in Algorithm 4. We first extract the hash prefix
from the queried prefix by GetHashPrefix function (Line 1).
If the current hash prefix is the same as the hash prefix of the
previous query, it indicates that the target information of the
two queries is in the same BT, so we can directly use the BT
obtained from the previous query (Lines 2–3). Otherwise, we
have to perform hash operations on the current hash prefix to
get the BT that contains information about the queried prefix
(Lines 4–12). We also need to store the current hash prefix
and BT for the next query (Lines 13–14). Finally, we extract
the bit that indicates the existence of the queried prefix from
BT by GetBitFromBitmap function and return it (Line 16).

A range query example The right part of Fig. 3 shows a
range query example of REncoder. Suppose the target range

123

Z. Fan et al.

Algorithm 3: Range Query
Input: low, high
// [low, high] is the target range

1 plist ← Decompose(low, high);
// plist is a list of the prefixes

corresponding to sub-ranges
2 for each p ∈ plist do
3 l ← length of p;
4 if Verify(p,l) then
5 return true;
6 end
7 end
8 return false;
9 Function Verify(p,l):

10 if !RBF .Query(p, l) then
11 return false;
12 end
13 if l == L then
14 return true;
15 end
16 if Verify(p,l+1) then
17 return true;
18 end
19 return Verify(p + 2L−l−1, l + 1);
20 end

Algorithm 4: RBF.Query
Input: pquery , l

1 phash ← GetHashPrefix(pquery , l);
2 if phash = pcache then

// pcache is the hash prefix of the
previous query

3 v ← vcache;
// vcache is the BT obtained from the

previous query
4 else
5 pos ← h1(phash);
6 v ← ∗(array + pos);
7 i ← 2;
8 while i � k do
9 pos ← hi (phash);

10 v ← v & ∗ (array + pos);
11 i ← i + 1;
12 end
13 pcache ← phash ;
14 vcache ← v;
15 end
16 return GetBitFromBitmap(v, pquery, l);

is [160, 165] (corresponding to [10100000, 10100101]), and
key 164 and some other keys (not included in the target
range) have been inserted. We first decompose the tar-
get range into two sub-ranges [10100000, 10100011] and
[10100100, 10100101]. Then it turns to Verification stage.
For the sub-range [10100000, 10100011] (corresponding to
prefix 101000), we extract the hash prefix 1010 by which we
can obtain the BT 11111010010000100001000000000010
from RBF. As discussed in the insert example, each bit in the
BT corresponds to a node in the segment tree. Therefore, we
candecode theBT to a segment tree.Wefind that the bit corre-

sponding to the 4th node (prefix 101000) of the segment tree
in the BT is 1, so the traversal of the mini-tree corresponding
to 4th node begins: We first check the prefix 1010000, i.e.,
traverse to 8th node. Since the hash prefix of prefix 1010000
is still 1010, there is no need to query RBF again, we can
directly use the BT (segment tree) obtained from the pre-
vious query. It turns out that the bit corresponding to the
8th node in the BT is 0, so the current path is terminated;
Then we check the prefix 1010001, i.e., traverse to 9th node.
We can still use the BT obtained from the previous query
because of the same hash prefix, and the bit corresponding to
the 9th node is 0 too. It indicates that the current sub-range
is empty, while the 4th node is a false positive node which is
coincidentally set to 1 by other BTs. Thus, we turn to verify
the next sub-range [10100100, 10100101] (corresponding to
prefix 1010010). Since the hash prefix of this sub-range has
not changed, the previously obtained BT is still available.
We first query prefix 1010010 (10th node), its corresponding
bit in BT is 1, so we continue to check the prefix 10100100,
i.e., traverse to 20th node, the corresponding bit is also 1.
Because the 20th node is a leaf node, the verification returns
true, which reports that the current sub-range, as well as the
target range are not empty. Note that in this example, REn-
coder only queries RBF once, while Rosetta needs to query
Bloom filter 5 times, so the performance of REncoder should
be almost 5 times that of Rosetta.

3.3 FPR optimization through choice of stored levels

A natural question arises: how many levels of the segment
tree should we store in RBF? i.e., how many prefixes should
be stored for each key? For keys with a size of 64 bits, if
we store all 64 prefixes of them, the required space will be
unacceptable. Therefore, we have to make a trade-off and
only store partial prefixes for each key.

In Verification stage, the queries for prefixes start from the
prefix that can exactly cover all keys in the sub-range, which
means the prefixes before will not be queried. It is obvious
that when the maximum range query size is Rmax , only the
last log2Rmax + 1 prefixes need to be stored. Considering
that analytical systems (e.g., column store [1]) serve range
queries of R > 64, while filters are more suitable for range
queries of R � 64 [37], the maximum number of prefixes
that need to be stored is log264+ 1, i.e., 7. However, during
the experiments, we found that when the memory is given:
in some datasets, only storing the last log2Rmax + 1 pre-
fixes still takes up excessive space, resulting in high FPR; in
other datasets, the last log2Rmax + 1 prefixes only occupy
little space. In this case, we can store more prefixes and
perform additional queries for them to further reduce FPR,
e.g., for range [10100000, 10100011], before querying prefix
101000, query prefix 1, 10, 101, 1010, 10100 in turn. There-

123

Enabling space-time efficient range queries with REncoder

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035
False Positive Rate Proportion of 1

Number of Stored Levels

Fa
ls

e
Po

si
tiv

e
R

at
e

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Pr
op

or
tio

n
of

 1

Fig. 4 FPR and P1 with different Ls

fore, how to adaptively choose the number of stored levels
Ls for different datasets is the key to optimizing FPR.

Algorithm 5: Insert_SelfAdapt
Input: keys
Output: Ls

1 start_level ← 0;
2 while true do
3 P1 ← 0;
4 for key ∈ keys do
5 Insert(key, start_level);
6 end
7 P1 ← RBF.GetOneRate();
8 if 0.5 − P1 ≤ threshold or P1 ≥ 0.5 then
9 break;

10 end
11 start_level ← start_level + 4;
12 end
13 Ls = start_level + 4;
14 return Ls ;

Although RBF is not exactly the same as the standard
Bloom filter, they share some characteristics, such as when
the proportion of 1 in the bit array of the Bloom filter (P1) is
close to 0.5, the FPR is almost the lowest [6]. As the length
of the bit array and the number of hash functions are deter-
mined, P1 is only related to the number of inserted keys (ni).
Given a dataset containing n distinct keys, ni of the standard
Bloom filter is n regardless of the key distribution (Stan-
dard Bloom filter only inserts the key itself). REncoder also
inserts several prefixes of the key, thus ni of it is related to the
key distribution and the number of prefixes to be inserted for
each key (i.e., the number of stored levels, Ls). For example,
given two different datasets A{000, 001, 010}, B{000, 010,
100}. We denote ni of REncoder for A and B as An and Bn ,
respectively. When Ls is 1, An is 3 ({000, 001, 010}), Bn

is 3 ({000, 010, 100}). When Ls is 2, An is 5 ({000, 001,
010,00,01}), Bn is 6 ({000, 010, 100,00,01,10}). When Ls

is 3, An is 6 ({000, 001, 010, 00, 01,0}), Bn is 8 ({000, 010,
100, 00, 01, 10,0,1}). Suppose when ni is 6, P1 is close to
0.5 (FPR is the lowest). In order to achieve optimal FPR,
REncoder needs to store 3 levels for dataset A, and 2 levels
for dataset B. In practice, it is time-consuming to calculate
ni and corresponding P1 under various Ls . Therefore, we
can gradually increase Ls during insertion until ni is close
to optimal (P1 is close to 0.5). The modified insertion pro-
cedure is described in Algorithm 5. We insert the prefixes of
the keys by round. In the first round, we only insert the last 4
prefixes of each key, and then count the P1 of the bit array of
RBF (Lines 4–7). If the difference between P1 and 0.5 is less
than a predetermined threshold or P1 is greater than 0.5, the
insertion is terminated (Lines 8–10). Otherwise, continue to
the next round of insertion and insert 4 more prefixes of each
key. The Insert(key, start_level) in Line 5 is an overload of
Insert(key), which inserts the next 4 prefixes of key starting
from start_level into RBF. Its implementation is similar to
Insert(key), so we will not discuss it here due to the space
limitation. Note that the number of prefixes inserted for each
key in each round can be set according to different needs:
set large for better insertion performance, set small for better
query performance.

The modified insertion procedure realizes the adaptive
choice of Ls , but its adjustment granularity is coarse, i.e.,
Ls can only be a multiple of 4. It is obvious that we cannot
choose the best Ls in most datasets. An example is shown in
Fig. 4. In this dataset, when Ls is 5, P1 is close to 0.5, and
the FPR is the lowest. However, using Algorithm 5, we can
only choose Ls as 4 or 8. To address this problem, we can
reduce the number of prefixes inserted for each key in each
round, so as to achieve more fine-grained tuning. When only
1 prefix is inserted for each key in each round, the optimal Ls

can always be chosen, but it will also significantly reduce the
insertion efficiency. Therefore, we need to make a trade-off
between insertion performance and query performance on a
case-by-case basis. When the filter needs to be constructed
quickly, we can increase the number of prefixes inserted for
each key in each round. When there is no requirement for
construction efficiency, we can reduce the number of pre-
fixes inserted for each key in each round to improve query
performance.

Here comes another question: should storing always start
from the lowest level? The answer is no. Still take the dataset
B{000, 010, 100} as an example. There is no need to store
the lowest level ({000, 010, 100}), as the penultimate level
({00, 01, 10}) is enough to distinguish all keys. It means
that we can start from a higher level to store more sig-
nificant information. Therefore, we propose REncoderSS.
Before inserting keys, REncoderSS counts the maximum
length of the longest common prefix (LCP) between any key-
key pair (denoted as lkklcp). Instead of the lowest level (i.e.,
Lth level), REncoderSS starts storing from the (lkklcp + 1)th

123

Z. Fan et al.

level, which is enough to distinguish all keys. Normally,
the FPR of REncoderSS is lower than REncoder. But in
correlated workloads, the FPR of REncoderSS increase sig-
nificantly like SuRF because of the absence of the lower
levels. To compensate for this shortcoming of REncoderSS,
weproposeREncoderSE.REncoderSEneeds to sample some
queries before inserting.After sampling,REncoderSE counts
not only lkklcp but also the maximum length of the LCP
between any key-query pair4 (denoted as lkqlcp). Levels
below the (lkqlcp)th level are necessary because only they can
distinguish between certain stored keys and queries. There-
fore, when lkqlcp ≤ lkklcp, REncoderSE starts storing from
the (lkklcp + 1)th level like REncoderSS (necessary levels
(lkqlcp, lkklcp + 1] are stored). When lkqlcp > lkklcp, REn-
coderSE starts storing from the (lkqlcp + 1)th level, but in
the opposite direction. In this case, the (lkqlcp + 1)th level
is regarded as the end level. By storing the necessary levels
(levels below the (lkqlcp)th level), REncoderSE remains low
FPR in correlated workloads.

3.4 FPR optimization through proposed blacklist

In order to further reduce the FPR, we propose another opti-
mization called blacklist based on the original REncoder,
which is specially designed for multi-round queries. Multi-
round queries are common for range queries, e.g., a specified
range may need to be periodically queried in many network
scenarios [13, 20, 59], so improving its accuracy is very
important in many practical applications. Note that the pre-
viously proposed REncoder, REncoderSS, and REncoderSE
are mainly for single-round queries, and the blacklist in this
section have no optimization effect on single-round queries.
The basic data structure of the blacklist is a hash table. Next,
we will show the related operations.
Insertion For a given range R, if true is returned after query-
ing Rencoder, we will try to find it on the disk: if we find
that it does not actually exist, we need to insert all keys con-
tained in R into the blacklist. The specific insertion process
is as follows. First, we divide the range R into multiple sub-
ranges (such as decomposition in the query described above);
Second, we find the shortest common prefix length l among
all sub-ranges; Finally, for each sub-range, we take the first
l bits as the key, encode the remaining bits into a bitmap as
the value, and insert them into the blacklist.
Example 1 Suppose a false positive occurs in the range
[10100000, 10100101]. First, we divide it into two sub-
ranges [10100000, 10100011] and [10100100, 10100101],
whose common prefixes are 101000 and 1010010, with
lengths of 6 and 7, respectively. Second, we get the short-

4 Define lcp(x, y) as the length of LCP between x and y. The
length of LCP between key and query[left,right] is max(lcp(key,left),
lcp(key,right))

est common prefix is 101000 with a length of 6. For the first
sub-range, its key is the first 6 common bits (101000), and
its value is encoded by the last two bits. Specifically, the last
two bits include four values 00, 01, 10, and 11, using one-hot
encoding: 00 corresponds to 0001, 01 corresponds to 0010,
10 corresponds to 0100, and 11 corresponds to 1000, so the
value of the entire range is 1111. For the second sub-range,
its key is the first 6 common bits (101001), and the next two
bits have only two values 00 and 01, corresponding to 0001
and 0010, so the value of this range is 0011. Just insert them
into the blacklist.
Query The process of querying the blacklist can wait for
the blacklist to be built after the first round of range queries
in REncoder, or it can be performed at the same time as the
above insertion.When querying range R for the second time,
Rencoder returns true when querying a certain leaf node.
Then, we try to query the leaf node from the blacklist: if it
does exist, this is actually a false positive and we should con-
tinue querying instead of reporting its existence. Generally,
there are no false positives in the second round and all sub-
sequent rounds of queries, because the blacklist has already
been used in the first round of queries.
Example 2Suppose for the range [10100000, 10100101], true
is returned when the leaf node 10100000 is queried. Then,
we try to query the leaf node from the blacklist. The key is
101000 and the value is 1111, which means that the suffix 00
exists, i.e., 10100000 is in the blacklist and does not exist in
the disk. Therefore, we should continue the query.

In summary, we further trade off reduction in FPR for
multi-round range queries at the cost of a small memory
footprint through blacklist optimization.

3.5 Future work: support for float/double types

In this section, we propose Two-Stage REncoder to support
float/double types. For convenience, we only discuss the float
type (the solution is similar for the double type). We only
discuss positive keys, as negative keys can be converted to
positive keys by adding the absolute value of the smallest
key.
Strawman solution We multiply all float keys by a factor,
and discard the decimal part. The factor is set as large as
possible while ensuring that all multiplied float keys do not
exceed 264 − 1. In this way, we convert float keys into 64-
bit integer keys, which are supported by REncoder. Since the
decimal part is discarded, the FPR increases, especially when
the stored keys and queries can only be distinguished by the
decimal part.
Two-stage REncoder Float key consists of a sign bit, an 8-
bit exponent, and a 23-bit mantissa. As discussed before, we
ignore the sign bit, then the float key can be regarded as a 31-
bit integer key.We design a Two-Stage REncoder to store the
integer key. In Stage 1, we store the exponent. Storing starts

123

Enabling space-time efficient range queries with REncoder

Table 4 Test of independence in Bloom filter

P. P.|0 P.|1 P.|00 P.|01 P.|10 P.|11

0 0.5233 0.5250 0.5214 0.5367 0.5264 0.5121 0.5160

1 0.4767 0.4750 0.4786 0.4633 0.4736 0.4879 0.4840

from the 8th level and goes up (the higher the level, the larger
the range). Storing ends when P1 reaches a predetermined
threshold (Texp < 0.5). In Stage 2, we store the mantissa.
Storing starts from the 9th level and goes down (the lower
the level, the higher the precision). Storing ends when P1 is
close to 0.5. The query of Two-Stage REncoder is the same
as REncoder. We can set Texp according to dataset/workload
to achieve better performance, which is left for future work.

4 Mathematical analysis

In this section, we analyze the detail of the implementation
of the algorithm and provide an error bound. Let [a, b] be the
range in Verification stage and Lq = log(b − a + 1) be the
number of query levels. For convenience, we assume that:

1. The range in Verification stage consists of a complete
binary tree, i.e. there exists some s > 0 satisfying
b − a = 2s − 1, 2s |a.

2. The number of query levels shall be no more than the
number of stored levels, i.e. Lq ≤ Ls .

3. We always assume that the first L − Ls bits of the key
exists in the Bloom filter, so we just find a match for the
last Ls bits.

4. When P1 is not too small, whether every bit in the Bloom
filter will be set to 1 is independent (Table 4).

Based on the assumptions above, false positive occurs if
and only if all nodes from the root to the mini-tree are set to
1 and there exists a path to one of its leaves.

4.1 Overall error bound for REncoder

Lemma 1 Let {an} be a sequence with a1 = 1, an+1 =
2pan − p2a2n , where 0 < p < 1 is a constant. Then:

1. If 0 < p < 1
2 , then an converges exponentially to 0.

2. If p = 1
2 , then an = O(1n).

3. If 1
2 < p < 1, then lim

n→∞ an = 2p−1
p2

.

Theorem 1 Let p = P1. If there is no item in range [a, b],
then the probability that our algorithm reports false positive
is bounded.

P([a, b] reported false positive) ≤ (P
Ls−Lq
1 · aLq)

k, (1)

where k is the number of hash functions.

Proof If our algorithm reports false positive, then the query
shall first enter themini-tree, then find a path to one of its leaf.
Since the number of queried levels is Lq and the number of
stored levels is Ls , the query enters themini-tree after Ls−Lq

steps, and this attempt succeeds if and only if all nodes here
are set to 1. After entering the mini-tree, it shall find a path to
one of its leaves. If we define an as the probability of finding
a path when the height of mini-tree is n and l, r be the bit of
the left and right son of the root, by induction we know that

an+1 = P(l + r = 1)an + P(l + r = 2)[1 − (1 − an)
2]

= 2P1(1 − P1) · an + P2
1 · (2an − a2n)

= 2P1 · an − P2
1 a

2
n .

(2)

Hence an satisfies the equation in Lemma1. Finally, we know
that for one hash function hi , the following inequality holds:

P([a, b] reported false positive byhi) ≤ P
Ls−Lq
1 · aLq . (3)

Assume that whether every hash function reports false posi-
tive is independent, we get

P([a, b] reported false positive) ≤ (P
Ls−Lq
1 · aLq)

k . (4)

�

4.2 Trade-off for hash functions and stored levels

However, we need to make some trade-offs in the algorithm.
When there are too many hash functions, the P1 will exceed
0.5, which can lead to the sharp increase of FPR. Also, while
the increase of stored levels can decrease the number in the
right hand side of Eq.1, it can increase P1 as well. In this
part, we analyze the relationships between number of hash
functions, number of stored levels and P1. We assume that
we will adjust the memory to keep P1 stable.

Lemma 2 Let M denote the memory of Bloom filter and N
denote the number of items inserted into the Bloom filter, then

P1 ≤ kLs N

M
. (5)

Proof Each insert operation will set at most Ls bits to 1 for
every hash function. There are k hash functions and N items
to be inserted, so

P1 ≤ kLs N

M
. (6)

�

123

Z. Fan et al.

The lemma above shows that P1 is approximately a linear
function with respect to k and Ls . As a result, to keep P1
constant without extra memory, we shall keep k · Ls nearly
constant.

Theorem 2 When both P1 and kLs are kept constant, the
right hand side of Eq.1 is a monotonous increasing function
with respect to k. As a result, the number of hash functions
shall not be set too large.

Proof We can figure out that

(P
Ls−Lq
1 · aLq)

k = PkLs
1 ·

(
aLq

P
Lq
1

)k

(7)

We can prove that lim
n→∞

an
Pn
1

= +∞. Hence the value above

increases when k increase. Moreover, if we want to keep it
small, k shall not be set too large. �

The inferiority of more hash functions compared to more
stored levels can be explained by the fact that every more
hash function results in one more copy of every prefix, but
one more stored levels will only add one bit into the Bloom
filter for each item. However, simply increasing stored levels
is not necessarily effective. We will analyze it in depth in
Sect. 4.3.

Theorem 3 Assume that P1 is kept constant. For a given
range [a, b], to ensure that FPR is less than ε, our algorithm
needs O(N (k + log 1

ε
)) memory.

Proof We require

P([a, b] reported false positive) ≤ (P
Ls−Lq
1 · aLq)

k ≤ ε

⇒ Ls ≥ Lq −
log 1

aLq

log 1
P1

+ log 1
ε

k log 1
P1

.

(8)

Hence,

M ≈ kLs N

P1
= kN

P1

⎛

⎝Lq −
log 1

aLq

log 1
P1

⎞

⎠ + N log 1
ε

P1 log 1
P1

= O(N (k + log
1

ε
)).

(9)

�
Since we always use a limited number of hash functions,

the asymptotic space complexity in Theorem 3 can be writ-
ten as O(N log 1

ε
), which perfectly demonstrates the overall

better performance.

4.3 Analysis for more complex situation

In the proof above, we assume that every node from the root
to leaf is set to 0 as to query range. However, this assumption
can be problematic when some items inserted into RBF are
close to the range in the query. These items share the same
prefix with some items in the range and can set some nodes
to 1 in advance. We define a distance as following:

d([a, b]) = min
a≤x≤b,
y∈keys

{k : x >> k = y >> k} (10)

Clearly d([a, b]) = 0 when [a, b]∩ keys �= ∅. Also, if false
positive never occurs, the last d([a, b]) nodes in the tree shall
all be set to 0. So the distance measures the difficulty of false
positive as the number of wrongly-set 1 in the tree shall be
d([a, b]) when reporting false positive.

Theorem 4 If d([a, b]) > 0, the right hand side of Eq.1 has
a lower bound.

P([a, b]reported false positive) ≤
⎧
⎨

⎩

akd([a,b])
(
Lq ≥ d([a, b]))

(
P
d([a,b])−Lq
1 · aLq

)k (
Lq < d([a, b]))

(11)

Proof By the definition of d we know that ∃y ∈ keys which
shares the same Ls − d([a, b]) bits with the range [a, b].
Hence, false positive occurs when the last d([a, b]) bits in
the mini-tree are set to 1. If d([a, b]) ≤ Lq , the probability is
just akd([a,b]). If d([a, b]) > Lq , the probability can be figured
out by replacing Ls with d([a, b]). Finally, we get

P([a, b]reported false positive) ≤
⎧
⎨

⎩

akd([a,b])
(
Lq ≥ d([a, b]))

(
P
d([a,b])−Lq
1 · aLq

)k (
Lq < d([a, b]))

(12)

�
The theorem above shows that despite the superiority of

more stored levels compared to more hash functions, simply
increasing stored levels is not an effective approach to lower
error rate because finally Ls will be greater than d([a, b]) in
this case. As a result, more hash functions still play a role in
our algorithm.

5 Experimental results

In this section, we illustrate the experimental results of REn-
coder. We compare three versions of REncoder with the
SOTA range filters: SuRF, Rosetta, SNARF and Proteus.

123

Enabling space-time efficient range queries with REncoder

All the experiments are conducted based on LSM-tree.
We run the experiments on a server with 18-core CPU (36

threads, Intel CPU i9-10980XE @3.00 GHz), which have
128GB memory. The operating system is Ubuntu version
18.04 LTS. All the algorithms are implemented in C++ and
built by g++ 9.3.0 and -O2 option. The hash functions we use
are 32-bit Bob Hash [7] with random initial seeds. We use
SIMD [25] to accelerate the process of inserting/extracting a
bitmap into/from RBF.

5.1 Datasets and workload

Synthetic dataset Synthetic dataset contains 50M64-bit inte-
ger keys which are generated from uniform distribution.
SOSD Dataset SOSD [28] is a benchmark for Learned
Indexes. It contains four real datasets:
amzn is the book sale data of amazon.com,
face is user ID data of Facebook,
osmc is uniformly sampled data of OpenStreetMap,
wiki is edit timestamps of Wikipedia article. All of these
datasets contain 200M 64-bit integer keys. We uniformly
sample 10M keys from each of them for experiments.
Ordered by skewness, there is wiki > face > amzn > osmc.
Workload We generate four types of queries: range queries
of range 2–32 and 2–64, correlated range queries and point
queries. The number of each type of queries is 10M. For 2–
32 range queries, we first generate 10M integer keys from
uniform distribution as left boundaries of the range queries.
Then we randomly select an integer from 2 to 32 as the range
size for each query. 2–64 range queries and point queries
are the same as 2–32 range queries, except that the range
sizes of 2–64 range queries are randomly selected from 2
to 64, and the range sizes of point queries are set to 1. For
correlated range queries, we first randomly select 10M keys
from datasets, then we increment the keys by 32 and set
them as left boundaries of the range queries. In this way,
all queried ranges are very similar to stored keys. The range
sizes of correlated range queries are randomly selected from
2 to 32. For each real dataset, we generate 1M real range
queries. We randomly select 1M keys from the remaining
190M keys in the dataset, and set them as left boundaries of
the range queries. The range sizes of real range queries are
randomly selected from 2 to 32. Since a range filter is best
evaluated by empty queries, all five types of queries above
are set to empty.

5.2 Metrics

False positive rate (FPR) FPR measures the accuracy of
range filters. In general, FPRmeans the ratio of the negatives
that are incorrectly reported as positives to all negatives, it is

defined as:

FPR = FP

FP + T N
(13)

where FP is the number of negatives that are incorrectly
reported as positives, T N is the number of negatives that
are correctly reported as negatives. For range filters, positive
means the queried range contains stored item, while negative
means the queried range does not contain stored item.
Filter throughput Filter throughput measures the probing
speed of range filters. Its unit is million operations per sec-
ond. (Mops/s).
Overall throughputOverall throughputmeasures the probing
speed of queries using range filters. In experiments, we build
a simulation environment with two-level storage. The range
filters are stored in the first level, while the items (Key-Value
pairs) are stored in the second level. When a query coming,
we first query the range filters in the first level, only when the
range filters return positive, we access second level for the
items. Overall throughput measures the speed of the entire
process. Its unit is the same as filter throughput.

5.3 Experiments settings

In experiments, we implement optimized version of REn-
coder, REncoderSS and REncoderSE, and their correspond-
ing blacklist-optimized versions, denoted as REncoder-BL,
REncoderSS-BL,REncoderSE-BL, respectively. In addition,
we use SIMD to accelerate the process of inserting/extracting
a bitmap into/fromRBF. Specifically,we encode 8 successive
prefixes into one bitmap of length 512. We can store/fetch
the bitmap with a single memory access, thanks to AVX-512
of SIMD instruction sets. For SuRF, we use its mixed ver-
sion, namely SuRF-Mixed. SuRF-Mixed stores both hashed
key suffixes and real key suffixed. We allocate the same bits
for two suffix types. For Rosetta and SNARF, we use its
default setting. For Proteus, we use two versions: (1) sam-
pling queries is allowed, and the design is determined by the
CPFPR model, denoted as Proteus; (2) sampling queries is
forbidden, and the default design (a prefix Bloom filter with
a prefix length of 32) is used, denoted as.

ProteusNS (Proteus with No Sampling). The memory
allocated for each range filter is represented by bits per key
(BPK). When dataset contains 50M keys and BPK=16, the
memory allocated for each range filter is 16 × 50 × 106 =
8×108b≈ 95.37MB. Due to the space limitation, we do not
present specific statistics of range filters in following text,
but summarize them in Table 1.

123

Z. Fan et al.

20 40 60 80 100
Number of Keys (*1e6)

0
20
40
60
80

100
120

B
ui

ld
 T

im
e

(s
)

(a) Cost

18 20 22 24 26
Bits per Key

100

101

102

103

104

W
or

kl
oa

d
E

xe
cu

tio
n

Ti
m

e
(s

)
(b) Gain

Bloom filter (Default)
Proteus

SuRF
SNARF

Rosetta
REncoder

ProteusNS
REncoderSS(SE)

Fig. 5 Cost and gain of using REncoder in LSM-tree

5.4 Experiments on cost and gain

In this section, we compare REncoder with LSM-tree’s
default filter (Bloom filter) and four SOTA range filters
(SuRF, Rosetta, SNARF, Proteus & ProteusNS) in the simu-
lation environmentwe built to show the cost and gain of using
REncoder in LSM-tree. We use Synthetic Dataset and 2–32
range queries. Note that Bloom filter handles range queries
by sequentially checking the existence of all keys within the
range.
Build time (Figure 5a). We find that the build time of REn-
coder/REncoderSS(SE) is slightly slower than that of Bloom
filter, SuRF, and Proteus, and faster than that of the other
filters. Specifically, the results show that the build time of
REncoder/REncoderSS(SE) is 1.22×/1.21×, 3.06×/3.03×,
and 1.36×/1.35× slower than that of Bloom filter, SuRF,
and Proteus on average, respectively, and 4.27×/4.32×,
1.09×/1.1×, and 3.8×/3.84× faster than that of Rosetta,
SNARF, and ProteusNS on average, respectively. The build
timeofREncoder and all comparisonfilters increases linearly
with the number of keys. For each key, although REncoder
needs to insert several prefixes of the key, it can insert mul-
tiple prefixes simultaneously by using bitmaps and RBF to
speed up its build, achieving an efficiency comparable to that
of Bloom filter. Additionally, the cost in build time is negligi-
ble compared to the gain in query performance, as discussed
below.
Workload execution time (Figure 5b). We find that the
workload execution time of REncoderSS(SE) is the opti-
mal among all comparison filters. Specifically, the results
show that theworkload execution time ofREncoderSS(SE) is
87.8×, 29.2×, 11.5×, 1.67×, 83.4×, and 1.12× faster than
that of Bloom filter, SuRF, Rosetta, SNARF, ProteusNS, and
Proteus on average, respectively.REncoder/REncoderSS(SE)’s
much fewer memory accesses (normally once) means higher
throughput, and lower FPR means less I/Os, both of which
play a large role in shortening workload execution time. It
is worth noting that REncoderSS(SE) requires less workload
execution time than that of REncoder because only fewer
levels need to be queried.

18 20 22 24 26
Bits per Key

100

101

102

103

104

O
ve

ra
ll

Ti
m

e
(s

)

Bloom filter (Default)
Proteus

SuRF
SNARF

Rosetta
REncoder

ProteusNS
REncoderSS(SE)

Workload Execution Time Build Time

Fig. 6 Experimental comparisons on overall time

Overall time (Figure 6) Here, the overall time is obtained by
adding the build time andworkload execution time of the cor-
responding BPK. The results show that REncoderSS(SE)’s
overall time performance is excellent and can even be optimal
at some BPKs. The build time only accounts for a small part
of the overall time, although this percentage will increase as
the BPK increases.Moreover, the degradation in build is neg-
ligible compared to the improvement in workload execution.
In other words, the overhead of building range filters can be
overshadowed by the improvement of query performance.

5.5 Experiments on range queries

In this section, we compare the performance of range filters
in 2–32 range queries and 2–64 range queries using synthetic
dataset.
FPR (Figure 7)

The FPR of REncoder(SS/SE) is the lowest or comparable
to the lowest among all range filters no matter how the BPK
changes. For the 2–32 range queries, when the BPK is 14,
the FPR of SuRF and Rosetta is 0.041 and 0.029, respec-
tively, while the one of REncoder reaches 0.027. As the BPK
increases, the FPR of REncoder can reach 0.00016 which is
comparable to 0.00011 of Rosetta, while the FPR of SuRF
is 0.00064 at least. For the 2–64 range queries, the FPR of
REncoder also remains the lowest.
Filter throughput (Figure 8a, b) The filter throughput of
REncoder(SS/SE) is much better than that of Rosetta and
comparable to that of SuRF no matter how the BPK changes.
For the 2–32 range queries, the filter throughput of each
rangefilters generally remains stablewith the change ofBPK.
The filter throughput of REncoder is between 5.37× and 6×
higher than that of Rosetta. For the 2–64 range queries, the
filter throughput of REncoder is between 5.06× and 7.08×
higher than that of Rosetta.
Overall throughput (Figure 8c, d) The overall throughput of
REncoder(SS/SE) is higher than SuRF and Rosetta no matter
how the BPK changes. For the 2–32 range queries, the over-
all throughput of REncoder is respectively between 4.56×
and 6.51×, 2.11× and 2.39× higher than that of SuRF and
Rosetta. For the 2–64 range queries, the filter throughput of

123

Enabling space-time efficient range queries with REncoder

REncoder is respectively between 2.64× and 2.97×, 1.89×
and 2.62× higher than that of SuRF and Rosetta.
Analysis SuRF truncates part of nodes in the lower levels to
save space,whichmay result in the loss of important informa-
tion for range queries. While Rosetta and REncoder reserve
these information through Bloom filters, and use additional
queries to further guarantee the accuracy of the information.
Therefore, Rosetta and REncoder achieve much lower FPR
than SuRF. For filter throughput, SuRF performs much bet-
ter than Rosetta because it uses a truncated trie internally.
When the range query coming, SuRF only needs to traverse
in the succinct trie which is very fast, while Rosetta needs
to perform many time-consuming queries to Bloom filters.
In contrast, REncoder utilizes the locality of the queries to
Bloom filters to achieve higher filter throughput than Rosetta
while remaining low FPR. Overall throughput indicates the
performance of range filters in practice. Since the speed
of computations in first-level storage (e.g., memory) are
much faster than that of data fetching in second-level storage
(e.g., disk), although SuRF has higher filter throughput, it
suffers in overall throughput because of more unnecessary
data fetching in second-level storage caused by its higher
FPR. In contrast, Rosetta and REncoder have higher overall
throughput, thanks to their lower FPR. On the other hand,
computations in first-level storage still take a non-negligible
part in overall throughput. Therefore, REncoder has higher
overall throughput than Rosetta because of its better per-
formance in first-level storage. SNARF achieves low FPR
by using a learned model, but the queries to compressed bit
array severely limit thefilter throughput. Proteus has both low
FPR and high filter throughput, because the CPFPR model
gives the optimal design by sampling queries. However,
when sampling queries is forbidden, Proteus using default
design (i.e., ProteusNS) hasmuchworse FPR thanREncoder.
Since both keys and queries are uniformly distributed, REn-
coderSS can achieve the same performance as REncoderSE,
and we denote them as REncoderSS(SE). Compared with
REncoder, REncoderSS(SE) stores higher levels that con-
tain more significant information, leading to lower FPR and
higher filter throughput. REncoderSS(SE) has the highest
overall throughput among all range filters across all BPKs
(except 22).

5.6 Experiments on point queries

In this section, we compare the performance of range filters
in point queries using synthetic dataset. For the sake of fair-
ness, we make Rosetta allocate memory according to 2–64
range queries instead of point queries. In this way, Rosetta
maintains the performance for range queries.
FPR (Figure 9a)

REncoder(SS/SE) remains low FPR in point queries for
all BPK settings.With the increase of BPK, the FPR of SuRF

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6
7

Fa
ls

e
Po

si
tiv

e
R

at
e(

*1
E

-2
)

(a) 2~32 range queries

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6
7

(b) 2~64 range queries

SuRF
SNARF

Rosetta
REncoder

ProteusNS
REncoderSS(SE)

Proteus

Fig. 7 FPR of range queries

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6

Fi
lte

r
T

hr
ou

gh
pu

t

(a) 2~32 range queries

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6

(b) 2~64 range queries

18 20 22 24 26
Bits per Key

0

1

2

3

O
ve

ra
ll

T
hr

ou
gh

pu
t

(c) 2~32 range queries

18 20 22 24 26
Bits per Key

0

1

2

3

(d) 2~64 range queries

SuRF
SNARF

Rosetta
REncoder

ProteusNS
REncoderSS(SE)

Proteus

Fig. 8 Throughput of range queries

is changed from 0.0101 to 0.000002, the FPR of Rosetta is
changed from 0.0115 to 0.000038, while the FPR of REn-
coder is changed from 0.0014 to 0.000003.
Filter throughput (Figure 9b). REncoder(SS/SE) has slightly
lower filter throughput than Rosetta. The filter throughput
of Rosetta is between 1.47× and 1.77× higher than that of
REncoder.
Analysis The FPR of SuRF, Rosetta and REncoder in point
queries significantly decreases compared with range queries.
For SuRF, its hashed key suffix provides additional reliable
information for point queries which can help reduce FPR.
For Rosetta and REncoder, they need fewer queries to Bloom
filters in point queries than in range queries, thus their FPR
which is the combination of the FPR of queries to Bloom
filters is lower. REncoder still have much lower FPR than
SuRF because of the accuracy provided by Bloom filters.
However, Rosetta’s FPR becomes higher than SuRF because
it only queries the lowest level of Bloomfilter and ignores the
information stored in other Bloom filters. On the other hand,
the filter throughput of SuRF, Rosetta and REncoder in point
queries increase compared with range queries. For SuRF,

123

Z. Fan et al.

14 16 18 20 22 24 26
Bits per Key

0
2
4
6
8

10
12
14

Fa
ls

e
Po

si
tiv

e
R

at
e(

*1
E

-3
)

(a) FPR

14 16 18 20 22 24 26
Bits per Key

0
2
4
6
8

T
hr

ou
gh

pu
t

(b) Filter Throughput

SuRF
SNARF

Rosetta
REncoderPO

ProteusNS
REncoder(SS/SE)

Proteus

Fig. 9 Performance of point queries

18 20 22 24 26 28 30
Bits per Key

0
1
2
3
4
5

T
hr

ou
gh

pu
t Rosetta

REncoderPO
REncoder(SS/SE)

Fig. 10 Overall throughput of point queries

compared with range queries, point queries perform much
simpler traversal of its inner tries which greatly shortens the
latency of queries. For Rosetta and REncoder, fewer queries
to Bloom filters reduces computations for hash and raises
overall performance. SNARF and Proteus perform similarly
in point queries as they do in range queries because their
structures are robust to different range sizes. REncoderSS
and REncoderSE have the same performance as REncoder
because higher levels and lower levels are equally important
in point queries.
Optimization Since Rosetta only queries the lowest level of
Bloom filter, it has higher filter throughput than REncoder.
Inspired by Rosetta, we propose an optimized version of
REncoder for POint queries, called REncoderPO. REn-
coderPO only queries the longest prefix of the key (i.e., the
key itself) for higher filter throughput at the cost of worse
FPR. The overall throughput of Rosetta, REncoder and REn-
coderPO is shown in Fig. 10.WhenBPK< 26, all filters have
relatively high FPRs, thus the overall throughput is domi-
nated by queries in second-level storage. REncoder has the
highest overall throughput because of its lowest FPR. When
BPK≥ 26, the FPRs of all filters are negligible, thus the over-
all throughput is dominated by queries in first-level storage
(i.e., filter throughput). REncoderPO has the highest overall
throughput because of its highest filter throughput.

5.7 Experiments on correlated queries

In this section, we compare the performance of range filters
in correlated queries using synthetic dataset.

14 16 18 20 22 24 26
Bits per Key

0
2
4
6
8

10

Fa
ls

e
Po

si
tiv

e
R

at
e(

*1
E

-1
)

(a) FPR

14 16 18 20 22 24 26
Bits per Key

0

1

2

3

T
hr

ou
gh

pu
t

(b) Filter Throughput

SuRF
Proteus

Rosetta
REncoder

SNARF
REncoderSE

ProteusNS
REncoderSS

Fig. 11 Performance of correlated queries

FPR (Figure 11a) REncoder(SE) remains low FPR in corre-
lated queries for all BPK settings.With the increase of BPK,
the FPR of REncoder is changed from 0.027 to 0.00016, the
FPR of Rosetta is changed from 0.029 to 0.00011, while the
FPR of SuRF is always outrageous 1.
Filter throughput (Figure11b)REncoder(SE) remains higher
filter throughput than Rosetta in correlated queries for all
BPK settings. Specifically, the filter throughput of REncoder
is between 5.39× and 5.88× higher than that of Rosetta.
Analysis The FPR of SuRF reaches outrageous 1 even when
BPK is 26. The reason is that SuRF truncates part of nodes in
the lower levels, while the truncated nodes contain important
information for distinguishing the queried key from the sim-
ilar stored key. For Rosetta and REncoder, they are hardly
affected by the distribution of the queries. The reason is that
they both use Bloom filters to store the keys. Even if two keys
are highly similar to each other, they are totally different after
hash byBloomfilters. On the other hand, the filter throughput
of SuRF decreases a little. When a correlated query coming,
SuRF usually needs to traverse to the bottom level of the trie
which is time consuming. Similar to FPR, the filter through-
put of Rosetta and REncoder is also not affected. Note that
REncoder still outperforms Rosetta. In addition to SuRF, the
FPRs of SNARF, ProteusNS and REncoderSS also reach 1.
The learned model of SNARF cannot distinguish between
highly similar keys and queries. As for ProteusNS and REn-
coderSS, although both of them use Bloom filters, they do
not store the lower levels of the segment tree. Therefore, they
cannot distinguish between similar keys and queries either.
Proteus remains low FPR, thanks to the appropriate design
for correlated workload given by the CPFPRmodel.With the
increase of BPK, the number of hash functions used by Pro-
teus increases, leading to the decrease of its filter throughput.
REncoderSE achieves the same performance as REncoder by
selecting the end level (i.e., storing the lower levels).

5.8 Experiments on range queries with real datasets

In this section, we compare the performance of range filters
in range queries on real datasets.
FPR (Figure 12a–d)

123

Enabling space-time efficient range queries with REncoder

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6
7
8

Fa
ls

e
Po

si
tiv

e
R

at
e(

*1
E

-2
)

(a) amzn

14 16 18 20 22 24 26
Bits per Key

0
20
40
60
80

100

(b) face

14 16 18 20 22 24 26
Bits per Key

0
10
20
30
40

(c) osmc

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6
7
8
9

(d) wiki

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4
5
6
7

T
hr

ou
gh

pu
t

(e) amzn

14 16 18 20 22 24 26
Bits per Key

0

1

2

3

(f) face

14 16 18 20 22 24 26
Bits per Key

0
1
2
3
4

(g) osmc

14 16 18 20 22 24 26
Bits per Key

0

1

2

3

(h) wiki

SuRF
SNARF

Rosetta
REncoder

ProteusNS
REncoderSS(SE)

Proteus

Fig. 12 Performance of range queries on real datasets

REncoder(SS/SE) has the lowest or near-lowest FPR
among all range filters on all datasets. For the amzn dataset,
the FPR of SuRF, Rosetta, and REncoder is respectively
changed from 0.081 to 0.0042, 0.036 to 0.0001, and 0.023
to 0.0005. For the face dataset, the FPR of SuRF, Rosetta,
and REncoder is respectively changed from 0.131 to 0.0055,
0.031 to 0.0001, and 0.021 to 0.0001. For the osmc dataset,
the FPR of SuRF, Rosetta, and REncoder is respectively
changed from 0.104 to 0.0021, 0.032 to 0.0001, and 0.028
to 0.0002. For the wiki dataset, the FPR of SuRF, Rosetta,
and REncoder is respectively changed from 0.086 to 0.0786,
0.019 to 0.00006, and 0.011 to 0.00006.
Filter throughput (Figure12e–f)REncoder(SS/SE) has higher
filter throughput than that of Rosetta on all datasets. Specif-
ically, the filter throughput of REncoder is 4.7× faster than
that of Rosetta on average.
Analysis REncoder can adaptively choose the number of
stored levels Ls of the segment tree, i.e., make a space allo-
cation, according to datasets. Therefore, it remains low FPR
across all datasets. REncoderSS(SE) achieves lower FPR
than REncoder, especially in relatively unskewed datasets
(amzn and osmc). This is because in such datasets, keys
and queries are nearly uniformly distributed, enabling REn-
coderSS(SE) to store higher levels (more significant informa-
tion) than REncoder. The filter throughput of REncoder and
REncoderSS(SE) is similar, and both decrease in relatively
skewed datasets (face and wiki). This is because when keys
and queries are similar, REncoder andREncoderSS(SE) need
to query the Bloom filters more times to distinguish them.
In summary, REncoder(SS/SE) remains great FPR and filter
throughput across all real datasets.

14 16 18 20 22 24 26
Bits per Key

0
2
4
6
8

10

Fa
ls

e
Po

si
tiv

e
R

at
e(

*1
E

-2
)

(a) FPR

14 16 18 20 22 24 26
Bits per Key

0

1

2

3

T
hr

ou
gh

pu
t

(b) Filter Throughput

SuRF Rosetta SNARF REncoder

Fig. 13 Performance of range queries on the Zipf dataset

5.9 Experiments on range queries with the heavily
skewed dataset

In this section, we compare the performance of range filters
in range queries on a heavily skewed dataset. We use the
open-source performance testing tool called Web Polygraph
[48] to generate this Zipf dataset that follows the Zipf [44]
distribution. In this dataset, 99% of the keys exist within 1%
of the range (0–264), while the remaining 1% of the keys
belong to the remaining 99% of the range.
FPR (Figure 13a) We find that REncoder has the lowest or
near-lowest FPR among all range filters for all BPK settings
on the Zipf dataset. Specifically, the FPR of SuRF, Rosetta,
SNARF, and REncoder is changed from 0.058 to 0.00091,
0.044 to 0.00012, 0.096 to 0.0019, 0.019 to 0.00066, respec-
tively; and the FPR of REncoder is 3.21×, 2.03×, and 8.61×
lower than that of SuRF, Rosetta, and SNARF on average,
respectively.
Filter throughput (Figure 13b) We find that REncoder has
significantly the highest filter throughput for all BPK set-

123

Z. Fan et al.

12 16 20 24 28
Bits per Key

0

20

40

60

L
at

en
cy

 (µ
s)

SuRF SNARF REncoder

Fig. 14 The latency of range queries on RocksDB

tings on the Zipf dataset. Specifically, the filter throughput
of REncoder is 2.17×, 5.09×, and 21.54× higher than that
of SuRF, Rosetta, and SNARF on average, respectively.
Analysis Compared to those on uniform distributions, the
performance of Rencoder, SuRF, and Rosetta only slightly
degrades on highly skewed distributions. While SNARF’s
degrades significantly, mainly because its learning model
clearly degrades on highly skewed distributions.

5.10 System experiments for integration into
RocksDB

In this section, we deploy the sampling-free REncoder along
with SOTA SuRF and SNARF to the SOTALSM-tree engine
RocksDB [19], and conduct range query and point query
experiments on real datasets and mixed workloads, respec-
tively. We use a RocksDB setup that includes an LSM-tree
with a size ratio of 10 and a lazy leveling compaction policy.
We directly measure the latency as the evaluation metric.

5.10.1 Experiments on real datasets

In these experiments, we sample 10M keys and 1M queries
from the osmc dataset, ensuring that all queries are empty,
and the query range is 2 ∼ 64. For the experimental results
in Figs. 14-15, the shaded in each bar is the latency of the
rangefilters,while the rest can be approximated as the latency
of actually accessing the hard disk with false positives, i.e.,
latency of the range filters (RFL) + latency due to false pos-
itives (FPL) ≈ actual overall latency on the system (SOL),
for ease of analysis.
Range Query Latency (Figure 14) We find that the SOL
and RFL of REncoder on RocksDB are both optimal or
sub-optimal among all range filters for range query task.
Specifically, the SOL (or RFL) of SuRF, SNARF, and REn-
coder is changed from 67.70 to 11.59 (14.84 to 4.08), 18.80
to 31.71 (11.64 to 24.66), and 44.55 to 10.60 (14.97 to 3.47),
respectively; and the SOL (or RFL) of REncoder is 1.48×

12 16 20 24 28
Bits per Key

0

20

40

60

L
at

en
cy

 (µ
s)

SuRF SNARF REncoder

Fig. 15 The latency of point queries on RocksDB

(1.16×) and 1.33× (2.75×) lower than that of SuRF and
SNARF on average, respectively.
Point query latency (Figure15)Wefind that theSOLandRFL
of REncoder on RocksDB are both optimal among all range
filters for point query task. Specifically, the SOL (or RFL) of
SuRF, SNARF, and REncoder is changed from 66.42 to 8.83
(12.77 to 3.30), 16.54 to 29.54 (11.39 to 24.47), and 8.36 to
8.22 (3.00 to 3.04), respectively; and the SOL (or RFL) of
REncoder is 3.18× (2.28×) and 2.80× (5.93×) lower than
that of SuRF and SNARF on average, respectively.
Analysis For range queries on RocksDB, the filter speed
(shaded part) ofREncoder ismuch faster than that of SNARF,
with the larger BPK being more obvious; compared to that
of SuRF, the FPR of REncoder is lower, so there are fewer
redundant I/O queries, with the smaller BPK being more
obvious; In short, REncoder performs best overall. For point
queries onRocksDB,REncoder adapts better to point queries
than the other two algorithms, and the advantage is more sig-
nificant when the BPK is small.

5.10.2 Experiments onmixed workloads

In these experiments, we sample 10M keys from the osmc
dataset and insert them in advance, then sample 9M queries
and 1M keys, and randomly perform insertion query opera-
tions, i.e., with an insertion query ratio of 1:9, and the query
range is 2–64.
Total latency (Figure 16a) We find that the total latency of
REncoder onmixedworkloads forRocksDB is either optimal
or sub-optimal among all range filters for all BPK settings.
Specifically, the total latency of SuRF, SNARF, and REn-
coder is changed from 32.79 to 11.75, 14.99 to 15.68, and
22.32 to 8.71, respectively; and the total latency of REncoder
is 1.42× and 1.31× lower than that of SuRF and SNARF on
average, respectively.
Insertion latency (Figure 16b) We find that the insertion
latency of REncoder on mixed workloads for RocksDB can
remain sub-optimal among all range filters when BPK is
high. Specifically, the insertion latency of SuRF, SNARF, and

123

Enabling space-time efficient range queries with REncoder

Fig. 16 The latency of mixed
workloads on RocksDB

12 16 20 24 28
Bits per Key

10

20

30

L
at

en
cy

 (µ
s)

(a) Total

12 16 20 24 28
Bits per Key

20

25

L
at

en
cy

 (µ
s)

(b) Insert

12 16 20 24 28
Bits per Key

10

20

30

L
at

en
cy

 (µ
s)

(c) Query

SuRF SNARF REncoder

REncoder is changed from 22.70 to 19.21, 20.13 to 20.34,
and 26.36 to 20.25, respectively; and the insertion latency of
REncoder is 1.08× and 1.07× higher than that of SuRF and
SNARF on average, respectively.
Query latency (Figure 16c) We find that the query latency of
REncoder onmixedworkloads forRocksDB is either optimal
or sub-optimal among all range filters for all BPK settings.
Specifically, the query latency of SuRF, SNARF, and REn-
coder is changed from 33.92 to 10.92, 14.41 to 15.16, and
21.88 to 7.42, respectively; and the query latency of REn-
coder is 1.52× and 1.39× lower than that of SuRF and
SNARF on average, respectively.
Analysis In terms of insertion speed, when the BPK is small,
in order to ensure the FPR, REncoder performs layer-by-
layer insertion to realize the optimal memory allocation, thus
the insertion latency is larger; when the BPK is large, REn-
coder can insert multiple layers at a time, greatly improving
the insertion speed, which is almost consistent with that
of the other two algorithms. In terms of query, SNARF
basically reaches the optimal FPR when BPK=12, and the
latency bottleneck lies in the filter speed. As BPK increases,
the FPR of REncoder and SuRF decreases, and the query
latency decreases accordingly. Meanwhile, since the filter
speed of REncoder is faster, it remains optimal for the same
FPR. Taken together, except for the case of limited memory
(BPK=12), the total latency of REncoder is always optimal.

5.11 Experiments on blacklist evaluation

In this section, we conduct experiments to evaluate the com-
bined effects of the blacklist (BL) optimization proposed in
Sect. 3.4.Although the proposedBLoccupies a small amount
of memory, it still cannot be ignored for a fair compari-
son. Therefore, the 3 BL-optimized schemes (REncoder-BL,
REncoderSS-BL and REncoderSE-BL) will pre-run one
round separately to obtain the size of the BL used by each.
Here, we provide the specific values of the BL sizes used by
the threeBLversions under differentBPKs, as shown inTable
5. These will be subtracted from the preset memory sizes of
the 3 original REncoder versions (REncoder, REncoderSS
and REncoderSE), respectively, to ensure the same memory
space before and after. In addition, except for the corre-

16 18 20 22 24 26 28
Bits per Key

10−6

10−4

10−2

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) FPR

16 18 20 22 24 26 28
Bits per Key

0
1
2
3
4

T
hr

ou
gh

pu
t

(b) Filter Throughput

REncoder REncoderSS(SE) REncoder-BL REncoderSS(SE)-BL

Fig. 17 Performance of range queries with BL optimization (overall)

lated query experiments in Sect. 5.11.6, REncoderSS-BL and
REncoderSE-BL are exactly the same in the uniformly dis-
tributed experiments in Sects. 5.11.1 to 5.11.5, so they are
uniformly represented as REncoderSS(SE)-BL.

5.11.1 Overall evaluation of range queries

Similar to Sect. 5.5, but we perform 2-round queries under
the same workload and take the average to compare the per-
formance of all REncoder versions in 2–32 range queries
using the synthetic dataset.
FPR (Figure 17a) No matter how the BPK changes, the FPR
of the 3 BL-optimized versions is obviously lower than that of
their respective BL-free versions, respectively. Specifically,
the FPR of REncoder-BL and REncoderSS(SE)-BL is on
average 1.78× and 1.98× lower than that of REncoder and
REncoderSS(SE), respectively.
Filter throughput (Figure 17b) The filter throughput of the 3
BL-optimized versions is slightly higher than that of their
respective BL-free versions for all BPK settings, respec-
tively. Specifically, the filter throughput of REncoder-BL and
REncoderSS(SE)-BL is on average 1.03× and 1.05× higher
than that of REncoder and REncoderSS(SE), respectively.
Analysis After being optimized by the BL, the FPR of the
3 BL-optimized versions is nearly 50% lower than the cor-
responding versions without the BL, and their throughput is
also slightly improved because the lower FPR means that
existence can be determined earlier.

123

Z. Fan et al.

Table 5 memory overhead
(KB) for 3 versions of REncoder

BL-optimized version BPK

16 18 20 22 24 26 28

REncoder-BL 907.1 379.3 169.9 78.6 37.0 18.2 10.7

REncoderSS-BL 327.2 190.2 12.8 11.5 6.5 1.6 1.1

REncoderSE-BL 327.2 190.2 12.8 11.5 6.5 1.6 1.1

16 18 20 22 24 26 28
Bits per Key

10−6

10−4

10−2

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) first round

16 18 20 22 24 26 28
Bits per Key

10−6

10−4

10−2

(b) second round

16 18 20 22 24 26 28
Bits per Key

0
1
2
3
4

T
hr

ou
gh

pu
t

(c) first round

16 18 20 22 24 26 28
Bits per Key

0
1
2
3
4

(d) second round

REncoder REncoderSS(SE) REncoder-BL REncoderSS(SE)-BL

Fig. 18 Performance of range queries with BL optimization (separate
rounds)

5.11.2 Separate rounds of range queries

The setup is similar to the above Sect. 5.11.1, but the exper-
imental results of the 2-round queries are shown separately
to observe the effects of the BL itself more intuitively.
FPR (Figure 18a, b) We find that all 3 BL-optimized ver-
sions have no advantage in FPR in the first round of queries
but a significant advantage in FPR in the second round of
queries compared to the FPR of their respective BL-free
versions, respectively. Specifically, the FPR of REncoder-
BL and REncoderSS(SE)-BL in the second round of queries
is all 0, which is significantly better than that of REncoder
and REncoderSS(SE), with average values of 0.0022 and
0.00024, respectively.
Filter throughput (Figure 18c, d) The filter throughputs
of REncoder-BL and REncoderSS(SE)-BL are both slightly
higher than those of REncoder and REncoderSS(SE), respec-
tively, with indistinguishable differences in the first and
second rounds of queries.
Analysis The BL does not work in the first round of queries,
and all false positives are subsequently inserted into the BL,
so there are no more false positives in the second round of
queries.

1 2 3 4 5 6 7
Rounds

10−6

10−4

10−2

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) FPR

1 2 3 4 5 6 7
Rounds

0
1
2
3
4

T
hr

ou
gh

pu
t

(b) Filter Throughput

REncoder REncoderSS(SE) REncoder-BL REncoderSS(SE)-BL

Fig. 19 Performance of range queries with BL optimization (multiple
rounds)

5.11.3 Multiple rounds of range queries

The setup is similar to Sect. 5.11.1, but with the BPK fixed
to 22 and the number of rounds in the workload set as the
independent variable.
FPR (Figure 19a) The FPR of REncoder-BL and
REncoderSS(SE)-BL gradually decreases as the number
of rounds increases, while that of REncoder and REn-
coderSS(SE) remains unchanged. Specifically, the FPR of
REncoder-BL andREncoderSS(SE)-BL in the seventh round
of queries is 6.98× and 7× lower than that in the first round
of queries, respectively.
Filter throughput (Figure 19b) There is no observable
change in the filter throughput of the six algorithms as the
number of rounds in the workload changes.
Analysis For multi-round query scenarios, as the number
of rounds increases, the improvement of FPR by the BL
becomes more significant, as expected.

5.11.4 Replication query ratio of range queries

The setup is similar to Sect. 5.11.1, but with BPK fixed at
22, and the workload of the second round is not exactly the
same as that of the first round, with the replication query ratio
set as the independent variable. Here, the replication query
ratio refers to the proportion of queries in the second round
of queries that are the same as those in the first round.
FPR (Figure 20a)

The FPR of REncoderSS(SE) fluctuates with the increase
of the replication ratio of the second round workload, and
that of REncoder remains almost unchanged, while the over-

123

Enabling space-time efficient range queries with REncoder

0 25 50 75 100
Replication Ratio(%)

10−6

10−4

10−2

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) FPR

0 25 50 75 100
Replication Ratio(%)

0
1
2
3
4

T
hr

ou
gh

pu
t

(b) Filter Throughput

REncoder REncoderSS(SE) REncoder-BL REncoderSS(SE)-BL

Fig. 20 Performanceof rangequerieswithBLoptimization (replication
query ratio)

0 25 50 75 100
Empty Ratio(%)

10−6

10−4

10−2

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) FPR

0 25 50 75 100
Empty Ratio(%)

0
1
2
3
4

T
hr

ou
gh

pu
t

(b) Filter Throughput

REncoder REncoderSS(SE) REncoder-BL REncoderSS(SE)-BL

Fig. 21 Performance of range queries with BL optimization (empty
query ratio)

all FPR of REncoder-BL and REncoderSS(SE)-BL shows a
downward trend.
Filter throughput (Figure 20b The filter throughput of
REncoder and REncoder-BL has almost no change as the
replication ratio of the second round workload increases,
while the overall filter throughput of REncoderSS(SE) and
REncoderSS(SE)-BL shows slight fluctuations.
Analysis In actual scenarios, it is always unlikely that the
workload of the second round will be completely consistent
with that of the first round (i.e., Replication Ratio = 100%),
andmay only be partially consistent. If this ratio is 100%, the
BL optimizes FPR optimally. Even if the ratio is only 25%,
the BL can still work.

5.11.5 Empty query ratio of range queries

The setup is similar to Sect. 5.11.1, but with BPK fixed at 22
and the empty query ratio in the same 2-round workload is
set as the independent variable.
FPR (Figure 21a) The FPR of these six algorithms does not
change significantly with the increase of the empty ratio in
the second round workload.
Filter throughput (Figure 21b) The filter throughput of the
six algorithms increases with the empty ratio in the second
round of workload.
Analysis This experiment proves the stability of the BL for
optimizing FPR. The filter throughput trends are explained
as follows. When the ratio is 0, it means that all the keys

16 18 20 22 24 26 28
Bits per Key

10−6

10−3

100

Fa
ls

e
Po

si
tiv

e
R

at
e

(a) FPR

16 18 20 22 24 26 28
Bits per Key

0
1
2
3
4

T
hr

ou
gh

pu
t

(b) Filter Throughput

REncoder
REncoder-BL

REncoderSS
REncoderSS-BL

REncoderSE
REncoderSE-BL

Fig. 22 Performance of correlated queries with BL optimization

to be checked exist, and the REncoder series needs to be
queried the most times: the existence can only be determined
by checking the bottom layer. On the contrary, if the ratio is
100%, the number of queries required is the least and the
query speed is the fastest.

5.11.6 Correlated queries

The setup is similar to Sect. 5.7, except 2-round queries are
run under the same workload. Note that REncoderSS-BL
cannot work because the FPR of REncoderSS in correlated
queries is close to 1 (see Sect. 5.7 and Fig. 11a).
FPR (Figure 22a) Except for REncoderSS and its corre-
sponding REncoderSS-BL, which do not function properly
in this scenario, the FPR of the remaining 2 BL-optimized
versions is lower than that of their respective BL-free ver-
sions, respectively. Specifically, the FPR of REncoder-BL
and REncoderSE-BL is on average 1.78× and 1.93× lower
than that of REncoder and REncoderSE, respectively.
Filter throughput (Figure 22b) The filter throughput of
the remaining 2 BL-optimized versions is slightly higher
than that of their respective BL-free versions, respectively.
Specifically, the filter throughput of REncoder-BL and
REncoderSE-BL is on average 1.02× and 1.05× higher than
that of REncoder and REncoderSE, respectively.
Analysis This experiment proves that BL is also effec-
tive/robust in different distributions, and further highlights
the role and significance of the proposed REncoderSE,
because REncoderSS is unstable in this scenario and causes
BL to shut down.

6 Conclusion

In this paper, we introduce REncoder, a novel range filter
with great space-time efficiency and accuracy. The key idea is
taking advantage of the locality to accelerate queries without
affecting accuracy. It has theoretical error bound and sup-
ports various workloads. The experimental results show the
superiority of REncoder compared with the state-of-the-arts.
Finally, we specifically propose a general blacklist optimiza-

123

Z. Fan et al.

tion framework for three original REncoder versions to cope
with multi-round range queries, and experimentally validate
that the three blacklist optimization versions can achieve a
substantial improvement in FPR with even a slight increase
in throughput.

Acknowledgements This work was supported in part by the National
Key R&D Program of China (No. 2022YFB2901504), in part by the
China Postdoctoral Science Foundation (No. 2023TQ0010, GZC2023
0055, 2024M750102), and in part by theNationalNatural ScienceFoun-
dation of China (NSFC) (No. U20A20179, 62372009).

References

1. Abadi, D., Boncz, P., Amiato, S.H., Idreos, S., Madden, S.: The
Design and Implementation ofModernColumn-OrientedDatabase
Systems. Mass, Now Hanover (2013)

2. Alexiou, K., Kossmann, D., Larson, P.-Å.: Adaptive range filters
for cold data: avoiding trips to Siberia. Proc. VLDB Endow. 6(14),
1714–1725 (2013)

3. Alsubaiee, S., Behm, A., Borkar, V., Heilbron, Z., Kim, Y.-S.,
Carey, M.J., Dreseler, M., Li, C.: Storage management in Aster-
ixDB. Proc. VLDB Endow. 7(10), 841–852 (2014)

4. Apache. Accumulo. https://accumulo.apache.org
5. Beckmann, N., Kriegel, H.-P., Schneider, R., Seeger,B.: The R*-

tree: an efficient and robust accessmethod for points and rectangles.
In: Proceedings of the 1990 ACM SIGMOD International Confer-
ence on Management of Data, pp. 322–331 (1990)

6. Bloom, B.H.: Space/time trade-offs in hash coding with allowable
errors. Commun. ACM 13(7), 422–426 (1970)

7. BOB Hash Website. http://burtleburtle.net/bob/hash/evahash.html
8. Broder, A., Mitzenmacher, M.: Network applications of bloom fil-

ters: a survey. Internet Math. 1(4), 485–509 (2004)
9. Chang, F., Dean, J., Ghemawat, S., Hsieh, W.C., Wallach, D.A.,

Burrows, M., Chandra, T., Fikes, A., Gruber, R.E.: Bigtable: a dis-
tributed storage system for structured data. ACM Trans. Comput.
Syst. (TOCS) 26(2), 1–26 (2008)

10. CockroachLabs. CockroachDB. https://github.com/cockroachdb/
cockroach

11. Comer,D.:UbiquitousB-tree.ACMComput. Surv. 11(2), 121–137
(1979)

12. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.:
Benchmarking cloud serving systems with YCSB. In: Proceedings
of the 1st ACM Symposium on Cloud Computing, pp. 143–154
(2010)

13. Crainiceanu, A., Linga, P., Machanavajjhala, A., Gehrke, J., Shan-
mugasundaram, J.: P-ring: an efficient and robust p2p range index
structure. In: Proceedings of the 2007ACMSIGMODInternational
Conference on Management of Data, pp. 223–234

14. Dayan, N., Athanassoulis, M., Idreos, S.: Optimal bloom filters
and adaptive merging for LSM-trees. ACM Trans. Database Syst.
(TODS) 43(4), 1–48 (2018)

15. DeCandia, G., Hastorun, D., Jampani, M., Kakulapati, G., Laksh-
man, A., Pilchin, A., Sivasubramanian, S., Vosshall, P., Vogels, W.:
Dynamo: Amazon’s highly available key-value store. IEEE Com-
puter Society Non-profit Organization US Postage PAID Silver
Spring (2007)

16. Dgraph. Badger Key-Value DB in Go. https://github.com/
dgraphio/badger

17. Dharmapurikar, S., Krishnamurthy, P., Taylor,D.E.: Longest prefix
matching using bloom filters. In: Proceedings of the 2003 Confer-
ence on Applications, Technologies, Architectures, and Protocols
for Computer Communications, pp. 201–212 (2003)

18. Facebook. MyRocks. http://myrocks.io
19. Facebook. RocksDB. https://github.com/facebook/rocksdb/
20. Gao, J., Steenkiste, P.: An adaptive protocol for efficient support of

range queries in DHT-based systems. In: Proceedings of the 12th
IEEE International Conference on Network Protocols (ICNP), pp.
239–250 (2004)

21. Google LevelDB. https://github.com/google/leveldb
22. Goswami, M., Grönlund, A., Larsen, K.G., Pagh, R.: Approx-

imate range emptiness in constant time and optimal space. In:
Proceedings of the Twenty-Sixth Annual ACM-SIAMSymposium
on Discrete Algorithms, pp. 769–775. SIAM (2014)

23. Graefe, G., Kuno, H.: Modern B-tree techniques. In: 2011 IEEE
27th International Conference on Data Engineering, pp. 1370–
1373. IEEE (2011)

24. Guttman,A.: R-trees: a dynamic index structure for spatial search-
ing. In: Proceedings of the 1984 ACM SIGMOD International
Conference on Management of Data, pp. 47–57 (1984)

25. Intel Instructions. https://software.intel.com/sites/landingpage/
IntrinsicsGuide

26. Jacobson,G.: Space-efficient static trees and graphs. In: 30th annual
symposium on foundations of computer science, pp. 549–554.
IEEE Computer Society (1989)

27. Kahveci, T., Singh, A.: Variable length queries for time series data.
In: Proceedings 17th International Conference on Data Engineer-
ing, pp. 273–282. IEEE (2001)

28. Kipf, A., Marcus, R., van Renen, A., Stoian, M., Kemper, A.,
Kraska,T.,Neumann,T.: SOSD:ABenchmark forLearned Indexes
(2019). arXiv preprint arXiv:1911.13014

29. Kirsch, A., Mitzenmacher, M., Varghese, G.: Hash-based tech-
niques for high-speed packet processing. In: Cormode, G., Thottan,
M. (eds.) Algorithms for Next Generation Networks, pp. 181–218.
Springer, London (2010). https://doi.org/10.1007/978-1-84882-
765-3_9

30. Knorr, E.R., Lemaire, B., Lim, A., Luo, S., Zhang, H., Idreos,
S., Mitzenmacher, M.: Proteus: a self-designing range filter. In:
Proceedings of the 2022 International Conference onManagement
of Data, pp. 1670–1684 (2022)

31. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.:
Coconut palm: static and streaming data series exploration now in
your palm. In: Proceedings of the 2019 International Conference
on Management of Data, pp. 1941–1944 (2019)

32. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.:
Coconut: sortable summarizations for scalable indexes over static
and streaming data series. VLDB J. 28(6), 847–869 (2019)

33. Kyrola, A., Guestrin, C.: GraphChi-DB: Simple Design for a Scal-
able Graph Database System–on Just a PC (2014). arXiv preprint
arXiv:1403.0701

34. Lakshman, A., Malik, P.: Cassandra: a decentralized structured
storage system. ACM SIGOPS Oper. Syst. Rev. 44(2), 35–40
(2010)

35. Li, K., Li, G.: Approximate query processing: What is new and
where to go? A survey on approximate query processing. Data Sci.
Eng. 3, 379–397 (2018)

36. Liu, Q., Zheng, L., Shen, Y., Chen, L.: Stable learned bloom filters
for data streams. Proc. VLDB Endow. 13(12), 2355–2367 (2020)

37. Luo, S., Chatterjee, S., Ketsetsidis, R., Dayan, N., Qin, W., Idreos,
S.: Rosetta: a robust space-time optimized range filter for key-value
stores. In: Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data, pp. 2071–2086 (2020)

38. Luo, C., Carey, M.J.: LSM-based storage techniques: a survey.
VLDB J. 29(1), 393–418 (2020)

39. Mehta, D.P., Sahni, S.: Handbook of Data Structures and Applica-
tions. Chapman and Hall/CRC, Boca Raton (2004)

40. Morton, G.M.: A Computer Oriented Geodetic Data Base and a
New Technique in File Sequencing (1966)

123

https://accumulo.apache.org
http://burtleburtle.net/bob/hash/evahash.html
https://github.com/cockroachdb/cockroach
https://github.com/cockroachdb/cockroach
https://github.com/dgraphio/badger
https://github.com/dgraphio/badger
http://myrocks.io
https://github.com/facebook/rocksdb/
https://github.com/google/leveldb
https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://arxiv.org/abs/1911.13014
https://doi.org/10.1007/978-1-84882-765-3_9
https://doi.org/10.1007/978-1-84882-765-3_9
http://arxiv.org/abs/1403.0701

Enabling space-time efficient range queries with REncoder

41. Mößner,B.,Riegger,C.,Bernhardt,A., Petrov, I.: bloomRF: onper-
forming range-queries in bloom-filters with piecewise-monotone
hash functions and prefix hashing. In: Proceedings of the 26th Inter-
national Conference on Extending database Technology (EDBT),
vol. 26, pp. 131–143 (2023)

42. O’Neil, P., Cheng, E., Gawlick, D., O’Neil, E.: The log-structured
merge-tree (LSM-tree). Acta Inform. 33(4), 351–385 (1996)

43. Peng, Y., Guo, J., Li, F., Qian, W., Zhou, A.: Persistent bloom
filter: membership testing for the entire history. In: Proceedings
of the 2018 International Conference on Management of Data, pp.
1037–1052 (2018)

44. Powers,D.M.: Applications and explanations of zipf’s law. In: Pro-
ceedings of the Joint Conferences on New Methods in Language
Processing and Computational Natural Language Learning (NeM-
LaP3/CoNLL ’98), pp. 151–160 (1998)

45. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Intro-
duction. Springer Science & Business Media, Berlin (2012)

46. Ren, K., Zheng, Q., Arulraj, J., Gibson, G.: SlimDB: a space-
efficient key-value storage engine for semi-sorted data. Proc.
VLDB Endow. 10(13), 2037–2048 (2017)

47. Roozenburg, J.: A literature survey on bloom filters. Research
Assignment (2005)

48. Rousskov, A., Wessels, D.: High-performance benchmarking with
web polygraph. Softw. Pract. Exp. 34(2), 187–211 (2004)

49. Sears, R., Callaghan, M., Brewer, E.: Rose: Compressed, log-
structured replication. Proc. VLDB Endow. 1(1), 526–537 (2008)

50. Sellis, T., Roussopoulos, N., Faloutsos,C.: The R+-tree: A dynamic
index for multi-dimensional objects. Technical Report, University
of Maryland (1987)

51. Source code related to REncoder. https://github.com/pkufzc/
REncoder

52. Tarkoma, S., Rothenberg, C.E., Lagerspetz, E.: Theory and prac-
tice of bloom filters for distributed systems. IEEE Commun. Surv.
Tutor. 14(1), 131–155 (2011)

53. Vaidya, K., Chatterjee, S., Knorr, E., Mitzenmacher, M., Idreos, S.,
Kraska, T.: SNARF: a learning-enhanced range filter. Proc. VLDB
Endow. 15(8), 1632–1644 (2022)

54. Vairam, P.K., Kumar, P., Rebeiro, C., Veezhinathan, K.: FadingBF:
a bloom filter with consistent guarantees for online applications.
IEEE Trans. Comput. 71, 40–52 (2020)

55. Wang, Z., Zhong, Z., Guo, J., Wu, Y., Li, H., Yang, T., Tu, Y.,
Zhang, H., Cui, B.: Rencoder: a space-time efficient range filter
with local encoder. In: 2023 IEEE 39th International Conference
on Data Engineering (ICDE), pp. 2036–2049 (2023)

56. Wu, Y., He, J., Yan, S., Wu, J., Yang, T., Ruas, O., Zhang, G., Cui,
B.: Elastic bloom filter: deletable and expandablefilter using elastic
fingerprints. IEEE Trans. Comput. 71(4), 984–991 (2021)

57. Xie,R., Li,M.,Miao, Z.,Gu,R.,Huang,H.,Dai,H.,Chen,G.:Hash
adaptive bloom filter. In: 2021 IEEE 37th International Conference
on Data Engineering (ICDE), pp. 636–647. IEEE (2021)

58. Yang, T., Liu, A.X., Shahzad, M., Yang, D., Fu, Q., Xie, G., Li,
X.: A shifting framework for set queries. IEEE/ACM Trans. Netw.
25(5), 3116–3131 (2017)

59. Yi, Y., Li, R., Chen, F., Liu, A.X., Lin, Y.: A digital watermarking
approach to secure and precise range query processing in sensor
networks. In: 2013 Proceedings IEEE INFOCOM, pp. 1950–1958
(2013)

60. Zhang, H., Lim, H., Leis, V., Andersen, D.G., Kaminsky, M., Kee-
ton, K., Pavlo, A.: Surf: practical range query filtering with fast
succinct tries. In: Proceedings of the 2018 International Confer-
ence on Management of Data, pp. 323–336 (2018)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://github.com/pkufzc/REncoder
https://github.com/pkufzc/REncoder

	Enabling space-time efficient range queries with REncoder
	Abstract
	1 Introduction
	1.1 Background and motivation
	1.2 Prior works
	1.3 Our proposed solution

	2 Preliminaries and related work
	2.1 Definition
	2.2 Range filters
	2.3 Variants of bloom filters

	3 Range encoder
	3.1 Constructing REncoder
	3.2 Range queries with REncoder
	3.3 FPR optimization through choice of stored levels
	3.4 FPR optimization through proposed blacklist
	3.5 Future work: support for float/double types

	4 Mathematical analysis
	4.1 Overall error bound for REncoder
	4.2 Trade-off for hash functions and stored levels
	4.3 Analysis for more complex situation

	5 Experimental results
	5.1 Datasets and workload
	5.2 Metrics
	5.3 Experiments settings
	5.4 Experiments on cost and gain
	5.5 Experiments on range queries
	5.6 Experiments on point queries
	5.7 Experiments on correlated queries
	5.8 Experiments on range queries with real datasets
	5.9 Experiments on range queries with the heavily skewed dataset
	5.10 System experiments for integration into RocksDB
	5.10.1 Experiments on real datasets
	5.10.2 Experiments on mixed workloads

	5.11 Experiments on blacklist evaluation
	5.11.1 Overall evaluation of range queries
	5.11.2 Separate rounds of range queries
	5.11.3 Multiple rounds of range queries
	5.11.4 Replication query ratio of range queries
	5.11.5 Empty query ratio of range queries
	5.11.6 Correlated queries

	6 Conclusion
	Acknowledgements
	References

