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Abstract
The densest subgraph problem (DSP) is of great significance due to its wide applications in different domains. Meanwhile,
diverse requirements in various applications lead to different density variants for DSP. Unfortunately, existing DSP algorithms
cannot be easily extended to handle those variants efficiently and accurately. To fill this gap, we first unify different density
metrics into a generalized density definition. We further propose a new model, c-core, to locate the general densest subgraph
and show its advantage in accelerating the search process. Extensive experiments show that our c-core-based optimization
can provide up to three orders of magnitude speedup over baselines. Methods for maintenance of c-core location are designed
to accelerate updates on dynamic graphs. Moreover, we study an important variant of DSP under a size constraint, namely
the densest-at-least-k-subgraph (DalkS) problem. We propose an algorithm based on graph decomposition, and it is likely
to give a solution that is at least 0.8 of the optimal density in our experiments, while the state-of-the-art method can only
ensure a solution with a density of at least 0.5 of the optimal density. Our experiments show that our DalkS algorithm can
achieve at least 0.99 of the optimal density for over one-third of all possible size constraints. In addition, we develop an
approximation algorithm for the DalkS problem that can be more efficient than the state-of-the-art algorithm while keeping
the same approximation ratio of 1

3 .

Keywords Densest subgraph · Dense subgraph · Graph density · Cohesive subgraph

1 Introduction

Graph data plays essential roles in modeling relationships
among objects in various domains, such as social networks,
transportation, and biology [39]. To name a few, the Face-
book community has been studied using a graph model with
a mapping between users and vertices [65]. The pages and
hyperlinks in the World Wide Web can be viewed as vertices
and edges in a directed graph [37]. In a graph representing
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proteins and their interactions, chemical molecules and cova-
lent bonds are mapped to vertices and edges, respectively
[66]. To study the alternation of patterns and functional con-
nectivity in brains, neuroscientists examine weighted 3-D
graphs transformed from brain images [2].

The densest subgraph problem (DSP) has received much
attention and lies in the heart of graph mining [9] since it has
applications in many fields such as anomaly detection [15],
bioinformatics [26], community detection [14], and financial
markets [19]. The original density definition of a graph is
given by the number of edges over the number of vertices,
i.e., m

n , where m and n denote the edge and vertex number,
respectively.

1.1 Generalized density

However, there are many scenarios that cannot be covered by
the original density, such as weighted density, denominator
weighted density, and h-clique density. The relationship of
different densities is depicted in Fig. 2 and will be illustrated
soon. First, the edges of graphs in real applications often carry
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weights. For example, in the flight network [16] airports are
denoted as vertices, flights are denoted as edges, and the
weight of an edge represents the flight frequency between
two airports. Second, Goldberg [29] proposed the denomi-
nator weighted density where the weights of vertices are on
denominators, and such a weighted density is also adopted
by several follow-up studies such as [13, 56]. For instance,
Sawlani and Wang [56] developed a method to solve DSP
on directed graphs by transforming the directed graph into
a set of vertex-weighted graphs and solving the DSP upon
the weighted density, where vertex weights are on denomi-
nators. Beyond the above, to extract near-clique subgraphs,
Tsourakakis [62] introduced the h-clique density. This den-
sity metric was found to help identify cohesive groups in
large networks.

There are ample applications for the above density met-
rics. Taking the weighted density where all weights are on
the numerator as an example, a method to detect fraud-
sters in camouflage adopts the weighted density on weighted
graphs and solves the corresponding DSP [33]. Goldberg’s
max-flow-based algorithm [29], and Chandra’s flow-based
near-optimal algorithm [13] can be modified to handle the
weighted density. Charikar’s peeling algorithm [12] and
Greedy++ [11], which repeats the peeling algorithm sev-
eral times, can also be extended to handle some of the above
density metrics.

However, the limitation of these aforementioned methods
under new density metrics is that they are either not scalable
to large graphs or not capable of yielding a dense graphwith a
near-optimal density guarantee. Meanwhile, previous work
barely targets building a general framework to boost DSP
algorithms over a diverse range of density metrics. To fill this
gap, we propose to use a generalized supermodular density
to unify different metrics and develop a framework to speed
up the generalized densest subgraph problem (GDS).

1.2 DalkS

In some circumstances, users demand for finding large dense
graphs. For example, an activity organizer may want to have
at least k participants who are familiar with each other. Given
such a kind of demand, the densest at-least-k-subgraph prob-
lem (DalkS) [3], which is an important yet well-studied
variant of DSP, is proposed to ensure that the dense graph
has at least k vertices. Large dense subgraphs are useful in
many domains such as distributed system [55], spam detec-
tion [27] and social networks [47]. Finding the exact solution
for DalkS has been proven to be NP-hard [6, 46]. Therefore,
some algorithms [3, 9, 13, 36, 55] are developed to approxi-
mate the exact DalkS. However, no existingwork has devised
a method to generate a solution with guarantees better than

0.5 · OPT , i.e. half of the optimal density.1 In this paper,
we will propose a new algorithm based on graph decompo-
sition, which can obtain a solution better than the 0.5 · OPT
solution with a very high likelihood.

1.3 Contributions

In this paper, one of our main goals is to devise a method
to accelerate the densest subgraph discovery w.r.t. the gen-
eralized density, particularly on large graphs, so that the
near-optimal densest subgraphs can be found within a short
time. For dynamic graphs, we develop efficient algorithms
to make the acceleration effective even when updates on
graphs are very frequent. Another breakthrough we make
for DalkS, an important variant of DSP, is proposing a new
algorithm that is likely to obtain a solution better than the
0.5 · OPT solution achieved by the state-of-the-art. More-
over, we devise an algorithm that has a lower time cost than
the fastest existing algorithm in practice. We briefly summa-
rize our contributions below.

• We introduce a new dense subgraphmodel, c-core, which
is general to cover many density metrics for GDS. We
propose a framework to accelerate algorithms for GDS
based on the c-core location.

• Based on c-cores, we propose an exact algorithm and
an approximation algorithmwith advanced pruning tech-
niques for flow-based computations and a new strategy to
search for the optimal density for the algorithm proposed
by Chekuri et al. [13].2

• For dynamic graphs where edges can be inserted and
deleted, we develop efficient algorithms to maintain c-
core locations.

• We successfully derive the upper bound for the size of the
exact solution for DalkS and devise a new approximation
to DalkS based on our density-friendly decomposition.

• We devise an algorithm for DalkS that can be more effi-
cient than the fastest algorithms in the literature, while
still ensuring the same approximation ratio.

• We conduct experiments on 12 real-world weighted and
unweighted graphs with up to 1.8 billion edges. Our pro-
posed algorithms are faster than existing algorithms on
both static and dynamic graphs. Additionally, we empir-
ically show that our proposed approximation algorithm
for the DalkS problem can output a solution very close
to the optimal solution in most scenarios.

1 A solution with at least f · OPT density (0 < f ≤ 1) means its
density is at least f of the optimal density. For simplicity, we call this
solution an f · OPT solution.
2 Empirically, the method based on [13] is slower than Greedy++
equipped with c-core location in our experiments.
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Remark An earlier version of this work has appeared in the
SIGMOD 2023 conference [68]. Additional contributions in
this work mainly include the maintenance of c-core location
for dynamic graphs and fast DalkS algorithms with experi-
ments to verify their performance.

1.4 Outline

The organization of the paper is as follows. In Sect. 2, we
review the related work. In Sect. 3, we unify different density
metrics and define theGDSproblem. Section4 introduces the
new c-core model and builds its connection with the GDS
problem. Section5 follows with GDS algorithms based on
c-core. We introduce efficient methods to maintain c-core
location in Sect. 6. An approximation algorithm and a faster
algorithm toDalkSwill be presented in Sect. 7. Experimental
results are shown in Sect. 9, and Sect. 10 concludes our work.

2 Related work

Among different types of dense subgraphs, the Densest Sub-
graph Problem (DSP) [23] lies at the core of large-scale data
mining [9]. We focus on the densest subgraph problem and
its variants in the following.

2.1 Densest subgraph problem (DSP)

A fundamental focus which lies in the heart of graph mining
is to find dense subgraphs [28]. The commonly used edge-
density of an undirected unweighted graph G(V , E) is m

n
with n = |V | and m = |E | [29]. Works on weighted graphs
mainly use two density metrics: one places all the weights on
the numerator [29, 33], and the other places the weights of
vertices on the denominator [29, 56]. We will give a general-
ized density definition to cover both cases and more variants.

To solve the densest subgraph problem (DSP), Goldberg
[29] devised a max-flow-based algorithm to obtain exact
solutions. Despite its high accuracy, the flow-based approach
fails to be scaled to very large graphs with tens of mil-
lions of edges. Later, a new concept, clique-density, was
proposed and efficient exact algorithms for finding the cor-
responding DS were developed in [22, 63]. Saha et al. [54]
then studied the most probable DS using clique-density and
pattern-density in uncertain graphs. To scale up k-clique DS
detection, He et al. [32] proposed SCT*-Index to compactly
organize the k-cliques. Generally, the exact DSP algorithms
[29, 41, 63] work well on graphs of small or moderate size,
but suffer from large graphs.

To further boost efficiency, several approximation algo-
rithms have been developed. Charikar [12] proposed a

1
2 -approximation method3 for unweighted graphs by repeat-
edly peeling the vertex with the smallest degree. Bahmani
et al. [9] introduced a new algorithm over streaming models
running in O(m · log n

ε
) to guarantee a 1

2+2ε -approximation.
Feng et al. [25] used spectral theory to develop an algorithm
faster than Charikar’s peeling to yield a solution with compa-
rable accuracy. In order to avoid callingmaximumflow,Boob
et al. [11] designed an empirically efficient method called
Greedy++ by repeating the peeling process multiple times.
Chandra et al. [13] gave a flow-based (1− ε)-approximation
algorithm by performing a limited number of blocking flows
on the flow network.

Despite the focus on DSP, little can find an approximation
close to the exact solutionwhilemaintaining efficiency, espe-
cially for the generalized density definition. This bottleneck
becomes even trickier when large-scale graphs of up to bil-
lions of edges are considered. Therefore, some applications
involving DSP on large graphs only utilize naive peeling to
make the approximation. For instance, Hooi et al. [33] used a
1
2 -approximation DSP algorithm on weighted graphs to find
the fraudsters as the alternative to the exact solution.

2.2 Variants of DSP

DSP has also been studied on other graphs, e.g., directed
graphs [12, 36, 42, 43, 45], dynamic graphs [21, 35], and
hypergraphs [10, 34]. Tatti et al. [61] and Danisch et al.
[17] studied the density-friendly decomposition problem to
decompose the graph into a chain of subgraphs, where each
inner subgraph is denser than the outer ones. Qin et al. [52]
andMa et al. [44] studied the locally densest subgraphs prob-
lem to find multiple locally dense regions from the graph.

When size-bound restrictions are imposed, the dens-
est subgraph problem becomes NP-hard [6, 8, 24, 46].
Specifically, Andersen andChellapilla [3] utilizedCharikar’s
peeling algorithm to always yield a 1

3 · OPT solution to
the densest at-least-k-subgraph problem (DalkS), where an
at-least-k-subgraph means a subgraph with at least k ver-
tices. Chekuri et al. [13] then extended the 1

3 -approximation
method to the densest at-least-k supermodular subset prob-
lem. To achieve better solutions, Khuller and Saha [36] pro-
vided a combinatorial algorithm and a linear-programming-
based algorithm to output a 1

2 · OPT solution. However, the
existing DalkS solution cannot obtain a better guarantee than
a solution with density of at least 0.5 of the optimal density.

3 f -approximation method/algorithm means that for every input, the
algorithm can guarantee a f · OPT solution, 0 < f ≤ 1. In general,
all solutions output by the f -approximation algorithm are called f -
approximation.
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Fig. 1 Doubly weighted graph and c-core

2.3 Comparison

Since some parts of our work are based on [13], we iden-
tify our related contributions compared to it: First, Chekuri
et al. [13] devised a flow network and a brief idea for find-
ing DSP with this flow network. Based on the flow network,
we complete the implementation detail of how to search for
subgraphs with guessed densities and developed the algo-
rithm FlowApp. We observe that FlowApp is not efficient
enough and propose a faster algorithmFlowApp* to achieve
acceleration (Sect. 5). Second, Chekuri et al. [13] directly
investigated the generalized supermodular density, while we
manage to show that multiple density metrics are special
cases of the generalized supermodular density (Sect. 3). To
the best of our knowledge, we propose to unify weighted
density (Definition 3.4), denominator weighted density (Def-
inition 3.5) and h-clique density (Definition 3.6) by the
generalized supermodular density (Definition3.3) for thefirst
time.

3 Problem definition

In this section, we first review the concept of generalized
supermodular density and the generalized densest subgraph
based on this density.We then show that several existingDSP
variants can be viewed as special cases of the generalized
densest subgraph.

Definition 3.1 (Doubly Weighted Graph [67]) A doubly
weighted graph is a 4-tupleG(V , E,WV ,WE ), where V and
E denote the sets of vertices and edges, respectively, WV =
{wv|v ∈ V } contains vertex weights, and WE = {we|e ∈ E}
contains edge weights.

We denote the subgraph induced by S ⊆ V as G[S], and
the edge set in G[S] as E(S).

Example 3.1 Fig. 1 presents an instance of doubly weighted
graph. The numbers on vertices and edges are their weights,

respectively. For instance, node c hasweight 4 and edge (c, e)
has weight 3.

The doubly weighted graph is general and it covers the
concept of the weighted graph. Many density metrics can
be defined on the doubly weighted graph such as weighted
density and clique density. We propose to unify these density
metrics by a generalized supermodular density. Before intro-
ducing the generalized supermodular density definition, we
first review the concepts of supermodular and submodular as
its foundation.

Definition 3.2 (Supermodular & Submodular [13]) Given
a space 2V , a real-valued set function f : 2V → R is super-
modular if and only if f (W )+ f (U ) ≤ f (W ∪U )+ f (W ∩
U ), whereW andU are any two subsets of V . A set function
g : 2V → R is submodular if and only if−g is supermodular.

Definition 3.3 (Generalized Supermodular Density [13])
Given a doubly weighted graph G(V , E,WV ,WE ) and
S ⊆ V , the generalized supermodular density of S can be
described as

ρ(S) = f (S)

g(S)
(3.1)

where f : 2V → R
+ is a nonnegative supermodular function

and g : 2V → R
+ is a nonnegative submodular function.

Next, we show that several well-known density variants
can be regarded as special cases of the generalized super-
modular density.

Definition 3.4 (WeightedDensity [29, 33])Given aweighted
graph G(V , E,WV ,WE ) and S ⊆ V , the weighted density
of S is given by

ρW (S) =
∑

e∈E(S) we + ∑
v∈S wv

|S| (3.2)

Proposition 3.1 The weighted density (Definition 3.4) is a
special case of the generalized supermodular density (Def-
inition 3.3) with g(S) = |S| and f (S) = ∑

e∈E(S) we +
∑

v∈S wv .

Proof g(S), the denominator, is both supermodular and sub-
modular. For f (S), given any two subsets U ,W ⊆ V , we
have f (W ∪ U ) + f (W ∩ U ) ≥ f (W ) + f (U ), as the
left hand side contains extra edge weights for all e = (u, v)

where u ∈ W \U and v ∈ U \ W . 	

Definition 3.5 (Denominatorweighted density [29]) Given
aweighted graphG(V , E,WV ,WE ) and S ⊆ V , the denom-
inator weighted density of S is given by

ρDW (S) =
∑

e∈E(S) we
∑

v∈S wv

(3.3)

123



Efficient and effective algorithms... 1431

Fig. 2 Relationship of different densities

Proposition 3.2 The denominator weighted density is a spe-
cial case of the generalized supermodular density (Defini-
tion 3.3).

Definition 3.6 (h-clique density [41, 64]) Given a graph G,
for any S ⊆ V its h-clique density can be defined as

ρh(S) = ch(S)

|S| ,

where ch(S) is the number of h-cliques induced by S.

Proposition 3.3 The h-clique density is a special case of the
generalized supermodular density (Definition 3.3).

Proposition 3.2 and Proposition 3.3 can be proved simi-
larly as Proposition 3.1. The relationship of different density
definitions is also illustrated in Fig. 2.

Figure 2 depicts the relationships among different den-
sity metrics. As can be seen, the generalized supermodular
density covers the original density, the weighted density, the
denominator density and the h-clique density. The original
density is a special case of all of the other density metrics.

Based on the generalized supermodular density definition,
we can define the generalized densest subgraph problem.

Problem 3.1 (GeneralizedDensest Subgraph (GDS)Prob-
lem [13])Given a doublyweighted graphG and a generalized
supermodular density metric ρ(S) = f (S)

g(S)
, the GDS prob-

lem aims to find the generalized densest subgraph, i.e.,G[S∗]
where S∗ = argmaxS⊆V ρ(S).

Example 3.2 Taking the graph on Fig. 1 as an example, if the
generalized supermodular density ρ(S) = ρW (S), i.e., the
weighted density (Definition 3.4), then the GDS will be a
subgraph induced by {c, g, e} with the density of 17

3 . Simi-
larly, if ρ(S) = ρDW (S), then the GDS will be G[{e, f , d}]
with a density of 1.5; if ρ(S) = ρh(S) with h = 3, then the
GDS will be G[{c, d, e, f , g}] with a density of 3

5 .

In some applications, the densest subgraph with a size
constraint is desired. For example, when organizing confer-
ences, the organizer may want to have at least k participants.
Hence, the densest at least k subgraph problem (DalkS) is
one kind of DSP with size constraint.

Problem 3.2 (Densest at-least-k-subgraph (DalkS) prob-
lem [3]) Given a doubly weighted graph G, a corresponding
density metric ρ(S) and a size lower bound k, DalkS aims
to find the densest at-least-k-subgraph G[K ∗], where K ∗ =
argmaxK⊆V∧|K |≥k ρ(K ).

In this paper, we mainly consider the weighted density
(Definition 3.4) for the DalkS problem. Example 3.3 can
show what are the exact solutions for DalkS for different
size constraints k.

Example 3.3 If ρ(S) = ρW (S) is adopted for DalkS on the
graph shown in Fig. 3, the DalkS is just the GDSwhen k ≤ 3.
When k = 4, the DalkS is induced by {c, d, e, g} with a den-
sity 11

2 ; when k = 5, the DalkS is induced by {c, d, e, f , g}
with a density 27

5 ; when k = 6, the DalkS is induced by
{a, c, d, e, f , g} with a density 31

6 ; when k = 7, the whole
graph serves as the DalkS.

4 c-core and GDS

In this section, we introduce a new core model inspired by
k-core [57] on unweighted graphs. Next, we present an algo-
rithmic framework that leverages the connection between the
cores and the GDS to speed up the GDS searching process.

4.1 Contribution and c-core

The new core model is based on a novel concept, namely
contribution.

Definition 4.1 (Contribution) Given a doubly weighted
graph G(V , E,WV ,WE ), a generalized supermodular den-
sity ρ(S) = f (S)

g(S)
, and a subset S ⊆ V , where f and g are

defined on space 2V . The contribution of a vertex v ∈ S is

cS(v) = f (S) − f (S\v)

g(S) − g(S\v)
(4.1)

The subscript of contribution notationmeans the contribution
of the node is calculated with respect to a specific subset
S ⊆ V .

Definition 4.2 (c-core)Given aweightedgraphG(V , E,WV ,

WE ), a positive real value c, and a generalized supermodular
density ρ(S) = f (S)

g(S)
, where S ⊆ V , a subgraph G[S] is a

c-core w.r.t. G if it satisfies

1. ∀v ∈ S, cS(v) ≥ c;
2. �S′ ⊆ V , s.t. S ⊂ S′ and S′ satisfies (1).

Next,weuse an example to illustrate c-cores on aweighted
graph when the generalized supermodular density ρ(S) =
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ρDW (S) (Definition 3.5). Specifically, we have ρ(S) =
f (S)
g(S)

=
∑

e∈E(S) we∑
v∈S wv

.

Example 4.1 Reconsider the graph in Fig. 1. According to
Definition 4.1, the contribution of a vertex u w.r.t. a subset

S ⊆ V is cS(u) =
∑

e:v∈e∧e∈E(S) we

wu
. Based on the contribution

formula, the whole graph G[V ] is a 0.25-core, as cV (a) =
0.25 is the smallest contribution value among all vertices.
If we remove the vertices whose contribution values are not
larger than 0.25, we will obtain a subset S1 = {c, d, e, f , g},
i.e., a and b are removed. G[S1] is a 1-core, as cS1(c) = 1 is
the smallest among S1. Peeling vertex with a contribution not
larger than one will give us a new subset S2 = {d, e, f , g},
where G[S2] is a 2-core. Similarly, we can also obtain the
2.5-core, G[S3], where S3 = {e, f , d} by peeling vertices
with a contribution not larger than two.

The above example shows that a series of c-cores with
increasing coreness of a graph can be obtained by keep-
ing peeling vertices. Similar to the generalized supermodular
density covering several density variants, the c-core model
can also cover several well-known core models. s-core [20],
related to theweighted density (Definition 3.4), is one of such
core models.

Definition 4.3 (Strength [20]) Given a doubly weighted
graph G(V , E,WV ,WE ) and a vertex v ∈ V . The strength
of the node w.r.t. a subset S is defined as

sS(v) = wv +
∑

e:u∈e∧e∈E(S)

we (4.2)

Definition 4.4 (s-core [20]) Given a doubly weighted graph
G(V , E,WV ,WE ) and a vertex set S ∈ V . A subgraphG[S]
is a s-core w.r.t G if it satisfies

1. ∀v ∈ S, sS(v) ≥ s;
2. �S′ ⊆ V , s.t. S ⊂ S′ and S′ satisfies (1).

Proposition 4.1 Strength (Definition 4.3) is a special case of
contribution (Definition 4.1) and thus s-core is a special case
of c-core.

Proof Let g(S) = |S| and f (S) = ∑
v∈S wv + ∑

e∈E(S) we

in the generalized supermodular density. Observe that g is
submodular and f is supermodular. We specialize contribu-
tion to strength by definition, i.e. cS(v) = sS(v). 	

Definition 4.5 (h-cliquedegree [41])Given agraphG(V , E)

and a vertex v ∈ V . The h-clique degree of the node v w.r.t.
a subset S is defined as

degS(v, h) = |{ψ |ψ ∈ G[S], v ∈ ψ}|, (4.3)

where ψ is an instance of h-clique.

Definition 4.6 (h-clique-core [41]) Given a graph G(V , E)

and a vertex set S ∈ V , a subgraph G[S] is a h-core w.r.t. G
if it satisfies

1. ∀v ∈ S, degS(v, h) ≥ h;
2. �S′ ⊆ V , s.t. S ⊂ S′ and S′ satisfies (1).

Proposition 4.2 h-clique degree (Definition 4.5) is a special
case of contribution (Definition 4.1) and thus h-clique-core
is a special case of c-core.

Proof Let g(S) = |S| and f (S) = |{ψ |ψ ∈ G[S]}| in the
generalized supermodular density. Observe that g is submod-
ular and f is supermodular. We specialize contribution to
h-clique-degree by definition, i.e. cS(v) = degS(v, h). 	


Based on the above discussions, we can find that c-core is
efficient to compute via peeling and general to cover different
core models. Next, we will show that c-core can also be used
to locate the GDS in a small subgraph to speed up the GDS
searching.

4.2 Locating GDS in c-cores

We derive some useful properties of c-core and show that
these properties are powerful to locate theGDS in somecores.
Lemma 4.1 reveals that the contribution (Definition 4.1) of
any vertex in the GDS is at least the density of the GDS.

Lemma 4.1 Given a doubly weighted graph G and a gener-
alized supermodular density ρ(S) = f (S)

g(S)
, suppose G[S∗] is

the GDS w.r.t. ρ. For any U ⊆ S∗, we have f (S∗)− f (S∗\U )
g(S∗)−g(S∗\U )

≥
ρ(S∗).

Proof We prove the lemma by contradiction. Suppose we
have f (S∗)− f (S∗\U )

g(S∗)−g(S∗\U )
< ρ(S∗).

ρ(S∗) · (g(S∗) − g(S∗\U )) > f (S∗) − f (S∗\U )

�⇒ f (S∗\U ) > ρ(S∗) · g(S∗\U )

�⇒ ρ(S∗\U ) = f (S∗\U )

g(S∗\U )
> ρ(S∗) (4.4)

	


To locate the GDS in c-cores, we first introduce an impor-
tant property of vertex contribution.

Lemma 4.2 Suppose there are two vertex subsets S1 and S2
satisfying S1 ⊆ S2 ⊆ V . We have ∀v ∈ S1, cS1(v) ≤ cS2(v).

Proof cS2(v) = f (S2)− f (S2\v)
g(S2)−g(S2\v)

≥ f (S1)− f (S1\v)
g(S1)−g(S1\v)

= cS1(v).
The inequality holds because f (S) is supermodular and g(S)

is submodular. 	
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Based on Lemmas 4.1 and 4.2, we can derive the theorem
to locate the GDS in some c-cores. Let the GDS be G[S∗]
and its density be ρ(S∗) which is the optimal density. The-
orem 4.1 indicates that the GDS G[S∗] is a subgraph of the
c-core with c equal to the optimal density.

Theorem 4.1 Given a doubly weighted graph G(V , E,WV ,

WE ), suppose G[S∗] is the GDS. Denote the ρ(S∗)-core as
G[C]. Then, S∗ ⊆ C.

Proof We prove the theorem by contradiction. SupposeU =
S∗\C �= ∅. By Lemma 4.1, for any u ∈ U ⊆ S∗, we have
cS∗(u) ≥ ρ(S∗). By Lemma 4.2, ∀u ∈ U , ρ(S∗) ≤ cS∗(u) ≤
cS∗∪C (u).Hence,G[S∗∪C] is a largerρ(S∗)-core thanG[C],
which contradicts the definition of c-core. 	


4.3 c-core-based algorithmic framework

Based on Theorem 4.1, we know that the GDS can be located
in the ρ(S∗)-core. However, we do not know the exact value
ρ(S∗) as a priori before the GDS is found. Fortunately, the
density of the densest c-core via peeling can serve as a lower
bound of ρ(S∗). In practice, utilizing the density of the dens-
est c-core can help reduce the graph size.

We present an algorithmic framework to accelerate the
GDS searching in Algorithm 1. Let G[S̃] be the densest
c-core obtained by peeling on G. In the framework for accel-
eration, we first find the G[S̃] via peeling (line 1), use the
density of the G[S̃] as the lower bound ρ̂ of ρ(S∗) (line 2)
and find the ρ̂-core, G ′ (line 3). Note that G[S∗] ⊆ ρ(S∗)-
core ⊆ ρ̂-core = G

′
. Next, we can run any GDS algorithm

GDSalg on G ′ to find the (approximate) GDS (line 4). We
can observe that this framework can locate the GDS in a
small subgraph. Hence, the invoked GDS algorithm will be
boosted as it only needs to process a small subgraph.

Algorithm 1: cCoreGDS
Input: G(V , E,WV ,WE ), density metric ρ(·)
Output: The GDS G[S∗] or its approximation

1 G[S̃] ← densest c-core in G via peeling;

2 ρ̂ ← ρ(S̃);
3 G ′ ← ρ̂-core in G via peeling ;
4 S∗ ← GDSalg(G ′);
5 Return G[S∗];

Example 4.2 This example shows the process of Algo-
rithm 1 cCoreGDS on the graph in Fig. 1 with denominator
weighted density (Definition 3.5). Following Example 4.1,
we obtain a series of c-cores, S1 = {c, d, e, f , g}, S2 =
{d, e, f , g} and S3 = {d, e, f } with density 1, 16

11 ,
12
7 and

3
2 respectively. Observe that in this case, the densest c-core
is the subgraph induced by S2, which is not the c-core with

the largest coreness. Then we let S̃ in Algorithm 1 be S2
and ρ̂ = ρ(S2) = 12

7 . Starting from the whole graph, we
peel all vertices with their contribution less than the coreness
ρ̂. Vertices a, b, c are peeled sequentially and the remain-
ing vertices all have at least ρ̂ contributions. The subgraph
induced by {d, e, f , g} is a ρ̂-core by definition and it is the
G

′
in Algorithm 1. Finally, we run the GDS algorithm on the

graph G
′
.

5 GDS Algorithms

In this section, we first review existing DSP algorithms on
unweighted graphs and discuss how they can be adapted to
the GDS problem and fitted into our algorithmic framework.
Next, we propose new acceleration techniques for flow-based
algorithms to improve their efficiency.

5.1 Existing algorithms

The flow-based exact algorithm [29] The main idea of Gold-
berg’s flow-based approach [29] is to compare the density of
the densest subgraph with a guess value g via max-flow com-
putation and do the binary search to narrow the guess range.
Although it can provide accurate results, the max-flow com-
putation is very time costly, especially on large-scale graphs.

Algorithm 2 gives the pseudo-code of Goldberg’s
FlowExact [29]. First, the guess range of the density is
initialized as l = 0 and r = maxv∈V cV (v), the maximum
contribution (Definition 4.1) amongall vertices (line 1).Next,
the while loop repeats the binary search to shrink the guess
range until the range is smaller than a given coreness (lines
2–8). For each guessed g, the algorithm constructs a flow
network (line 4), computes the minimum st-cut (line 5), and
updates the range as well as S∗ based on st-cut (lines 6–7).
FlowExact can be extended to handle the weighted den-
sity (Definition 3.4).When the weights on edges and vertices
are integers, we can guarantee an exact solution by requiring
δ < 1

|V |·(|V |−1) [29].

Algorithm 2: FlowExact [29]
Input: G(V , E,WV ,WE ), δ ∈ R

+
Output: The densest subgraph G[S∗]

1 Initialize l ← 0, r ← maxv∈V cV (v), S∗ ← ∅;
2 while r − l > δ do
3 g ← r+l

2 ;
4 Construct flow network F based on G and g;
5 〈S, T 〉 ← the min st-cut on F ;
6 if S = {s} then r ← g
7 else l ← g, S∗ ← S \ {s}
8 Return G[S∗]
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Fig. 3 Flow network constructed from the 2.5-core

The flow-based approximation algorithm [13] The flow-
based approximation algorithm FlowApp is proposed by
Chekuri et al. [13] to solve DSP. Compared to Goldberg’s
FlowExact, FlowApp does not need to run the full max-
imum flow algorithm. In other words, it can terminate in
advance for a given error tolerance ε. But it also suffers from
the huge cost of performing flow computations on large-scale
graphs.

Both FlowExact and FlowApp can be applied to dou-
bly weighted graphs. For example, if the weighted density
(Definition 3.4) is adopted as the generalized supermodu-
lar density, the flow network can be constructed as shown
in Fig. 3 for the 2.5-core in Fig. 1. Besides, [13, 29] provide
the flow network for GDS on denominator weighted density
(Definition 3.5).

Example 5.1 Figure3 shows the flow network built upon the
2.5-core in Fig. 1 to solve GDS based on Definition 3.4.
Each element in the vertex set {e, f , d} and the edge set
{(e, f ), ( f , d), (e, d)} is treated as a node in the constructed
flow network. A source node s is linked to vertex nodes and
edge nodes by arcs. The capacity of arcs from s to vertex
nodes are weights on the vertices, while the capacity of arcs
from s to edge nodes are weights on the edges. Each vertex
node is connected to its incident edge nodes by arcs having
infinite capacity. Finally, arcs with the capacity of guessed
value g will be built between each edge node and the sink
node t .

Apart from the above two flow-based algorithms,
Greedy++ [11] and the Frank-Wolfe-based algorithm [17]
can also be adapted to doublyweighted graphs, and fitted into
the cCoreGDS framework by replacing GDSalg in line 4
of Algorithm 1 with the corresponding algorithm. Fang et al.
[22] devised methods to accelerate DS algorithms with h-
clique density. However, they did not study the generalized
super-modular density. Our cCoreGDS framework encom-
passes their approach as a specialized instance. By wrapping
the algorithms into the cCoreGDS framework, we can per-
form the GDS searching on smaller subgraphs instead of the
whole large graph.

5.2 Boosting flow-based algorithms via cores

Taking a closer look at the flow-based algorithms,we can find
that the searching range of the optimal density is shrinking
along with the binary search. Hence, the lower bound of the
density is monotonically increasing during the binary search.
In this case, when the lower bound l inAlgorithm 2 increases,
we can locate the GDS in a c-core with a higher coreness and
smaller size. Replacing the if statement (lines 6–7) in Algo-
rithm 2with the following lines (Algorithm 3), FlowExact
may be possibly boosted by c-cores with smaller sizes dur-
ing the binary search. 4 Similar code with minor changes can
also be added to FlowApp.

Algorithm 3: c-core-based pruning in flow-based algos
1 if S = {s} then r ← g
2 else
3 l ← g, S∗ ← S \ {s};
4 G ← the l-core in G via peeling;

5.3 New density search strategy for FlowApp

FlowApp [13] as a flow-based approximation can enrich
the library of DS algorithms with interpretation related to
linear programming [11]. However, it needs a strategy to
search for the optimal density value, because only a brief idea
about it was given (see Corollary 2.1 in [13]). That is one can
initialize the error tolerance as ε̃ = 0.5 and then decrease it
by half once the (1-ε̃)-approximation of the subgraph with
the new guessed density is found. However, they did not
elaborate on how to find the (1-ε̃)-approximation. We give
the details and present the strategy in Algorithm 4. Next, to
further reduce the searching cost, we develop an advanced
searching strategy, which will be given in Algorithm 5.

Similar to the binary search in FlowExact, the search-
ing strategy in FlowApp [13] also needs to guess the density
g within a range (l, r) with some error tolerance ε0. For the
guessed g, FlowApp will perform a fixed number of block-
ing flows [1, 4, 30, 58, 60] on the constructed flow network
such as the one in Fig. 3. On the residual network after block-
ing flows, either there exists an easy-to-get subgraph with a
density of at least (1 − ε̃) · g, or there exists no subgraph
of density larger than g. The searching range (l, r) will be
shrunk accordingly based on one of the two possible out-
comes until the error tolerance given by the user is fulfilled.

Algorithm4gives thepseudo-codeofFlowApp.FlowApp
first initializes the error bound ε̃ to 1

2 , and the density range

4 We implementAlgorithm3 inour experiments. The algohas no signif-
icant influence on the time cost because the located core in Algorithm 2
is already very small.
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Algorithm 4: FlowApp [13]
Input: G(V , E,WV ,WE ), ε ∈ (0, 1)
Output: The (1 − ε)-approximation GDS

1 Initialize ε̃ ← 1
2 , l ← 0, r ← maxv∈V cV (v);

2 while ε̃ > ε
2 do

3 g ← r+l
2 ;

4 Construct flow network F based on G and g;
5 h ← the number of blocking flows needed;
6 for i = 1 → h do perform blocking flow on F if there

exists an augmenting path in F then
7 if (1 − ε̃) · g ≤ l then ε̃ ← ε̃

2 else l ← (1 − ε̃) · g, Rl ←
the residual graphs of F

8 else
9 r ← g;

10 if 1 − l
r < ε̃ then ε̃ ← ε̃

2

11 Extract the approximate GDS G[S̃∗] from Rl ;

12 Return G[S̃∗];

Fig. 4 Illustration of density searching strategies

(l, r) to (0,maxv∈V cV (v)) (line 1). Then, we have a while
loop to keep guessing the density g and shrink the density
range (l, r) based on the result of blocking flows (lines 2–
12). In each iteration, the algorithm guesses g, constructs
the flow network F , and performs a fixed number of block-
ing flows (lines 3–6). If there exists an augmenting path in
F after blocking flows, this means that there exists a sub-
graph with the density of at least (1 − ε̃) · g (lines 7–9). If
(1 − ε̃) · g ≤ l, FlowApp reduces the error guarantee ε̃

by half, as shown in Case 2 in Fig. 4a; otherwise l will be
updated to (1 − ε̃) · g, as shown in Case 1 in Fig. 4a and
FlowApp saves the residual graph of F to Rl (lines 8–9).
If no augmenting path exists, FlowApp updates r to g (line
11), and halves the error bound ε̃. FlowApp terminates the
loop until the error bound ε̃ satisfies the requirement ε (line
2). Finally, it extracts the (1− ε)-approximation GDS G[S̃∗]
from the residual graph Rl and returns it as the output (lines
13–14).

Reviewing the above process, we can find that when the
while loop is terminated, we have the possible density range
(l, r) satisfying l

r > (1−ε). Hence, we can extract a (1−ε)-
approximateGDS from the residual graph Rl byTheorem2.1
in [13].

Observations. In practice, we find the strategy to update ε̃

inFlowApp [13],which initializes ε̃ = 1
2 and decreases it by

half when appropriate, is sometimes not efficient. The reason
lies in the case where there exists a subgraph with density at
least (1 − ε̃) · g, as shown in Fig. 4a. The narrowing of the
density range is slow when (1− ε̃) · g is only slightly greater
than l in Case 1 or even unchanged in Case 2. Meanwhile,
the error bound ε̃ is halved only in Case 2 and can stay the
same for several iterations. Hence, the error bound ε̃ cannot
fall below ε

2 quickly to fulfill the requirement.
To overcome the inefficiency caused by the above intricate

strategy, we propose a novel and simple strategy, where the
error bound ε̃ is decided adaptively based on the density range
(l, r). The advantage of our strategy is that the density range

1. reduces by 1
4 steadily, when there exists a subgraph with

density at least (1 − ε̃) · g, as shown in Fig. 4b, where l
is set as (1 − ε̃)g = l+g

2 in the next iteration;
2. reduces by half, when there exists no such subgraph.

Based on this novel strategy, we design a new (1 − ε)-
approximation algorithm, FlowApp*, in Algorithm 5. The
steps of FlowApp* are similar to FlowApp. The differ-
ences are mainly related to the density searching strategy, as
listed below:

1. the error bound ε̃ is given by g−l
2 g , where g = r+l

2 is the
guessed density, and does not follow a fixed decreasing
strategy like that in FlowApp (line 3);

2. if there exists a augmenting path in F , l can be safely
updated to (1 − ε̃) · g = g+l

2 (lines 7–8);
3. the while loop will be terminated when ε̃ < ε

3−2ε (line
2).

Algorithm 5: FlowApp*
Input: G(V , E,WV ,WE ), ε ∈ (0, 1)
Output: The (1 − ε)-approximation GDS

1 Initialize ε̃ ← 1
2 , l ← 0, r ← maxv∈V cV (v);

2 while ε̃ ≥ ε
3−2ε do

3 g ← r+l
2 , ε̃ ← g−l

2g ;

4 Construct flow network F based on G and g;
5 h ← the number of blocking flows needed;
6 for i = 1 → h do perform blocking flow on F if there

exists an augmenting path in F then
7 l ← g+l

2 , Rl ← the residual graphs of F ;
8 else
9 r ← g

10 Extract the approximate GDS G[S̃∗] from Rl ;

11 Return G[S̃∗];
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With the new density searching strategy, our FlowApp*
can still output a (1 − ε)-approximation result.

Proposition 5.1 Algorithm 5 can output a (1 − ε)-
approximation.

Proof Consider the last iteration of the while loop. If there
exists a subgraph with a density of at least (1 − ε̃)g, we
have (1− ε̃)g < ρ(S∗) ≤ (1+ 2ε̃)g. The second ineuqality
can be obtained from (1 + 2ε̃)g = (1 + g−l

g )g = 2 g −
l = r ≥ ρ(S∗). The condition maxρ(S∗)(1 − l

ρ(S∗) ) < ε

can guarantee that we have a (1 − ε)-approximation. Then
we get 1 − (1−ε̃)g

(1+2ε̃)g < ε which is equivalent to ε̃ < ε
3−2ε .

Otherwise, we do not have a subgraph with density larger
than g, l < ρ(S∗) ≤ g and maxρ(S∗)(1 − l

ρ(S∗) ) = 1 −
l
g = 2( 12 − l

2 g ) = 2 g−l
2 g = 2ε̃ < ε can imply ε̃ < ε

2 .
But this condition is satisfied automatically when we require
ε̃ < ε

3−2ε when ε < 1
2 . 	


We further analyze why FlowApp* (Algorithm 5) is
faster than FlowApp (Algorithm 4). Comparing (a) and (b)
in Fig. 4, we observe that FlowApp cannot guarantee how
much the searching range is decreased, while FlowApp*
ensures that it can reduce the searching range by at least 1

4 .
From the perspective of the termination condition, the faster
the decrease of ε̃, the faster the speed of the whole algo-
rithm. In FlowApp, ε̃ cannot decrease (Case 1 in Fig. 4a).
In FlowApp*, we notice that ε̃ always decreases during the
while loop, shown in the following proposition.

Proposition 5.2 In Algorithm 5, ε̃ strictly decreases. ε̃ in the
(i+1)-iteration is smaller than the value in the i-th iteration,
i.e., ε̃i+1 < ε̃i .

Proof Suppose in the i-th loop, there is an augmenting path

in F . Then ε̃i+1
ε̃i

=
gi+1−li+1

2gi+1
gi−li
2gi

= gi
gi+1

· gi+1−li+1
gi−li

, where the

subscripts (i or i + 1) denote the values in the correspond-
ing iteration of the while loop. Observe that gi

gi+1
< 1 and

gi+1−li+1
gi−li

= 3
4 . Consequently

ε̃i+1
ε̃i

< 3
4 . On the other hand,

if there is no augmenting path, we have ε̃i+1
ε̃i

< 1 since

ε̃i+1 =
gi+li
2 −li

2· gi+li
2

= gi−li
2gi+2li

<
gi−li
2gi

= ε̃i . 	


6 GDSmaintenance for dynamic graphs

Dynamic graphs involving frequent updates have a wide
range of applications in the real world, such as social net-
work analysis and human epidemiology [59]. The DSP in
dynamic graphs refers to maintaining the densest subgraph
with respect to the updates [48]. In Sect. 5, we have devised
efficient algorithms to find GDS based on c-cores over static

graphs. In this section, we study how to maintain a small
dense c-core G[C] that contains the densest subgraph in
dynamic graphs. We can effectively apply our c-core-based
acceleration technique in dynamic graphs when fast updates
and queries are required. Since maintenance with different
density metrics is similar, we focus on weighted density
(Definition 3.4) for doubly weighted graphs. Without loss
of generality, two types of updates are considered: insertion
and deletion of edges. The vertex updates can be regarded as a
series of edge updates.5 The increase and decrease of weights
resemble the insertion anddeletion respectivelywhendesign-
ing efficient maintenance algorithms. We aim to efficiently
maintain a dense c-core as the approximate GDS whenever
a graph update is made.

Many efficient methods for the maintenance of k-core
have been proposed [5, 40, 69]. However, they cannot be
directly applied to maintain G[C] because k-core mainte-
nance concerns the coreness6 for each vertex while our goal
is to keep a small GDS approximate containing the GDS.
Besides, the k-core maintenance only considers unweighted
graphs, while we study doubly weighted graphs.

A straightforward way to maintain the dense c-core con-
taining the GDS is to perform a peeling from scratch each
time an edge is inserted or deleted. The pseudocode is pre-
sented in Algorithm 6 cCoreRecomp. In cCoreRecomp,
we define G[Vo], G[S̃o], and G[Co] as subgraphs and ρ̂o
as densities of G[S̃o] before the current update (inser-
tion/deletion). The elements marked with a subscript ±
represent the outcomes following the current update. The
algorithm first finds the densest c-core G[S̃±] via peeling
and the corresponding density ρ̂± (lines 1-2). Next, it peels
the graph again to obtain the ρ̂±-core (lines 3-4).

Algorithm 6: cCoreRecomp
Input: G(Vo, Eo,WVo ,WEo )

Output: G[C±]
1 G[V±] ← updated from the original graph G[Vo];
2 G[S̃±] ← densest c-core in G[V ] via peeling;
3 ρ̂± ← ρ(S̃±);
4 Perform peeling on G[V±];
5 G[C±] ← ρ̂±-core;
6 Return G[C±];

We will shortly show that G[C±] maintained in this
algorithm is an approximation to the GDS in G[V±] by The-
orem 6.1. Before formally introducing Theorem 6.1, we first
give Lemma 6.1.

5 The process of adding a new vertex can be decomposed into the fol-
lowing: add an isoloated vertex; add its adjacent edges; increase its
vertex weight.
6 The coreness of a vertex is defined as the highest value of c for which
the vertex is part of the corresponding c-core.
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Lemma 6.1 Given a weighted graph G(V , E,WV ,WE ),
suppose R is the vertex set that induces the c-corewith thresh-
old c, then c

2 ≤ ρ(R) ≤ cmax , where cmax is the maximum
contribution among V .

Proof LetWVR andWER be the sum of weights of all vertices
and edges within G[R]. Suppose r is the number of vertices
in R. We have

r × c ≤ WVR + 2WER

r × c

2
≤ WVR

2
+ WER

c

2
≤

WVR
2 + WER

r
≤ WVR + WER

r
= ρ(R) (6.1)

For the upper bound, we have

WER + WVR ≤ 2WER + WVR ≤ r · cmax

ρ(R) = WER + WVR

r
≤ cmax (6.2)

	

Theorem 6.1 G[S̃±] and G[C±] in cCoreRecomp are
1
3 · OPT and 1

6 · OPT solutions to the DS, respectively, in a
doubly weighted graph G[V±] with weighted density (Defi-
nition 3.4). Besides, the approximation ratios for G[S̃±] and
G[C±]will be improved to 1

2 ·OPT and 1
4 ·OPT, respectively,

in unweighted graphs with original edge density.

Proof G[C±] is a ρ̂-core. Thus, it has a density at least 1
2 ρ̂±

by Lemma 6.1. We have inequalities ρ̂± ≥ 1
3OPT [3] and

ρ̂± ≥ 1
2OPT [12] for weighted density and original edge

density. 	

Remark G[S̃±] has a higher density than G[C±]. It is guar-
anteed that G[C±] contains the GDS, while the GDS may
not be contained in G[S̃±].

Repeated peeling is time costly when updates become
very frequent. Following the intuition that inserting or delet-
ing a single edge will not impose a great impact on the
c-core location, we develop efficient algorithms that focus
on maintaining G[C±] for edge insertion and edge deletion
in Sects. 6.1 and 6.2, respectively.

In the following, we denote G[V+] and G[V−] as the
updates from G[Vo] due to insertion and deletion, respec-
tively, G[S̃+] and G[S̃−] as updates from G[S̃o], ρ̂+ and ρ̂−
as densities of G[S̃+] and G[S̃−], and G[C+] and G[C−] as
the ρ̂+-core and ρ̂−-core that contains the GDS after the edge
insertion and edge deletion, respectively.

6.1 Edge insertion

To avoid the aforementioned recomputation from scratch for
each edge insertion, we develop Algorithm 7 cCoreIns for

efficient incremental maintenance. The algorithm is com-
posed of the computation of ρ̂+ and the maintenance of
G[C+].

6.1.1 Computing �̂+

The first step is the computation of the new estimate ρ̂+. For
insertion, the optimal density cannot decrease. Therefore, ρ̂+
is expected to be larger than or equal to ρ̂o.

• If (u, v) ∈ G[S̃o], a c-core potentially denser than G[S̃o]
may be contained in G[S̃o]. Peeling on G[S̃o] suffices to
find any larger estimate and G[S̃+] (lines 5–6).

• If (u, v) /∈ G[S̃o], a c-core denser than ρ̂o is less likely
since the edge does not exist in the dense G[S̃o]. In
this case, we simply retain G[S̃o] and ρ̂o (line 8). Note
ρ̂+ from cCoreIns should not greatly differ in the
long term from cCoreRecomp, ascCoreRecompwill
recompute ρ̂+ via peeling G[V+] occasionally (line 18).

6.1.2 Maintaining G[C+]

After computing ρ̂+, we need tomaintain the ρ̂+-coreG[C+]
in G[V+]. We utilize Theorem 6.2 and Theorem 6.3 to illus-
trate the procedure, analyzing two cases:

• If both endpoints of the inserted edge are in Co, then
G[C+] is contained in G[Co]. We peel G[Co] to obtain
G[C+] (line 10).

• If one endpoint is not in Co, we check whether Co is a
proper subset of C+.

• If su < ρ̂+ or sv < ρ̂+, we have that (u, v) /∈ G[C+]
by Theorem 6.2. By Theorem 6.3, this means Co �⊂
C+, soC+ ⊆ Co. We peel G[Co] to get G[C+] (lines
20-21, 23-24).

• If su ≥ ρ̂+ and sv ≥ ρ̂+, whether (u, v) ∈ G[C+]
cannot be determined.We callcCoreRecomp to get
G[C+] (line 17 – 18).

Our experiments show that theG[C+]output incCoreIns
is the same as that in cCoreRecomp after each inser-
tion across all datasets. G[C±] ouput by cCoreRecomp
must be a subgraph of G[C+] output by cCoreIns, since
G[C+] is the c-core with lower threshold. Thus, G[C+]
is guaranteed to contain the GDS and algorithms using c-
location tofindGDS inG[C+] remain accurate.Additionally,
|C+| ≤ |Co| unless cCoreRecomp is called, making the c-
core-location still effective in reducing time cost. The reason
is that cCoreRecomp is invoked only if there’s a possibility
that (u, v) ∈ G[C+], while it is ensured by Theorem 6.3 that
C+ ⊆ Co when (u, v) /∈ G[C+].
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Theorem 6.2 Given the inserted edge e = (u, v), denote
∑

r∈N>(u) w(u, r) as su, where N>(u) is the vertex set
{r |(u, r) ∈ G[V+], cV+(r) ≥ ρ̂+}. sv is defined similarly.
If su < ρ̂+ or sv < ρ̂+, (u, v) /∈ G[C+].

Proof We prove this by contradiction. Suppose (u, v) ∈
G[C+].

Denote the vertex set {r |(u, r) ∈ G[C+], cC+(r) ≥ ρ̂+}
as N�(u) and

∑
r∈N�(u) s(u, r) as s̃u . N�(u) is the set of

all neighbors of u in G[C+] and s̃u is the sum of weights
of u’s adjacent edges in G[C+]. Since u ∈ C+ and G[C+]
is the ρ̂+-core, s̃u ≥ ρ̂+. C+ ⊂ V+ implies su ≥ s̃u . Thus
su ≥ ρ̂+. By the same derivation, sv ≥ ρ̂+. This contradicts
our assumption. 	


Theorem 6.3 Let e = (u, v) be the inserted edge. If (u, v) /∈
G[C+], then C+ ⊆ Co.

Proof We first prove that Co �⊂ C+. Suppose Co ⊂ C+.
Because of insertion, ρ̂+ ≥ ρ̂. Without loss of generality,
suppose u /∈ C+. Deletion of e from G[V+] does not influ-
ence G[C+]. Now G[C+] is the ρ̂-core in G[Vo] instead of
G[Co], which is a contradiction. Given that Co �⊂ C+, we
have C+ ⊆ Co or C+ \ Co �= ∅. However, the facts that
(u, v) /∈ G[C+] and ρ̂+ ≥ ρ̂ imply that C+\Co �= ∅ is not
possible. 	


6.2 Edge deletion

To avoid redundant computation when deleting edges, we
proposeAlgorithm8cCoreDel to efficiently delete an edge
and maintain G[C−]. Similar to cCoreIns, cCoreDel
involves computing ρ̂− and maintaining G[C−].

ρ̂− and G[Co]. We investigate three cases in cCoreDel.
Note that G[C−] output by cCoreDel is guaranteed to be
the same as G[C] output by cCoreRecomp.

• If either u or v is not in Co ∪ S̃o, then G[S̃o] remains
the densest c-core in G[V−]. Thus, ρ̂− = ρ̂o and we set
G[C−] = G[Co] (lines 4-6).

• If one endpoint is in Co \ S̃o and both are in S̃o ∪Co, then
ρ̂− = ρ̂o. However, the ρ̂−-core G[C−] in G[V−] may
differ from G[Co] in G[Vo]. We peel G[Co] to obtain
G[C−] (lines 10-11), since vertices outside Co cannot be
in the ρ̂−-core.

• In the worst case, both u and v are in S̃o, possibly making
ρ̂− < ρ̂o. Then, we must invoke cCoreRecomp to find
the ρ̂−-core.

Algorithm 7: cCoreIns

Input: G(Vo, Eo,WV ,WE ), S̃o, ρ̂o, Co, an edge e = (u, v) to be
inserted, cVo for all vertices

Output: Updated G[C+] after insertion of e
1 Insert e into G[Vo] and obtain G[V+];
2 cV+ (u) ← cVo (u) + we ;
3 cV+ (v) ← cVo (v) + we ;

4 if u ∈ S̃o and v ∈ S̃o then
5 G[S̃+] ← the densest c-core by peeling G[S̃o];
6 ρ̂+ ← ρ(S̃+);
7 else
8 ρ̂+ ← ρ̂o;

9 if u ∈ Co and v ∈ Co then
10 Perform peeling on G[Co], G[C+] ← ρ̂+-core;
11 else
12 if cV+ (u) ≥ ρ̂+ and cV+ (v) ≥ ρ̂+ then
13 N>(u) ← {r |(u, r) ∈ G[V+], cV+ (r) ≥ ρ̂+} ;
14 su ← ∑

r∈N>(u) w(u, r) ;
15 N>(v) ← {r |(v, r) ∈ G[V+], cV+ (r) ≥ ρ̂+} ;
16 sv ← ∑

r∈N>(v) w(v, r) ;
17 if su ≥ ρ̂+ and sv ≥ ρ̂+ then
18 G[C+] ← cCoreRecomp(G[V+]);
19 else
20 Perform peeling on G[Co];
21 G[C+] ← ρ̂+-core;

22 else
23 Perform peeling on G[Co];
24 G[C+] ← ρ̂+-core;

25 Return G[C+] ;

Algorithm 8: cCoreDel

Input: G(Vo, Eo,WVo ,WEo ), S̃o, ρ̂o, Co, an edge e = (u, v) to
be deleted, cVo for all vertices

Output: Updated G[C−] after deletion of e
1 Delete e from G[Vo] and obtain G[V−];
2 cV− (u) ← cVo (u) − we ;
3 cV− (v) ← cVo (v) − we ;

4 if u /∈ S̃o ∪ Co or v /∈ S̃o ∪ Co then
5 ρ̂− ← ρ̂o ;
6 G[C−] ← G[Co];
7 else
8 if u ∈ Co \ S̃o or v ∈ Co \ S̃o then
9 ρ̂− ← ρ̂o ;

10 Perform peeling on G[Co];
11 G[C−] ← ρ̂−-core;
12 else
13 G[C−] ← cCoreRecomp(G[V−]) ;

14 Return G[C−] ;

7 Our DalkS approximation algorithms

7.1 Decomposition-based DalkS algorithm

The densest at-least-k-subgraph (DalkS) problem is one kind
of DSP with a size constraint, which has been proven to be
NP-hard [6–8, 24, 46]. Although the peeling-based DalkS
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algorithm [3] is fast, it can only output a 1
3 · OPT solu-

tion result, which is far from optimal. To the best of our
knowledge, the state-of-the-art approach based on linear pro-
gramming proposed by Khuller and Saha [36] can output a
0.5 · OPT solution, which is still not satisfactory. In this
section, we propose a new algorithm based on our theory
(Theorem 7.2) bridging decomposed graphs and DalkS to
extract subgraphs close to the optimal solution of DalkS
from the density-friendly graph decomposition [36, 61]. We
show that although DalkS is NP-hard for general k’s, find-
ing exact solutions within polynomial time for k’s that are
corresponding to the size of subgraphs returned by density-
friendly decomposition is possible (Theorem 7.4). In Sect. 9,
we verify that our solution is usually better than a 0.5 ·OPT
solution in terms of approximation ratio guarantee. Our
decomposition-based DalkS algorithm is particularly use-
ful for users requiring a high approximation ratio guarantee
when the ground-truth DalkS is unknown.

Akeyfinding inspires ourDalkSalgorithmDecomDalkS
that the GDSG[S∗]must be contained in the DalkSG[K ∗] if
|S∗| ≤ k, as shown in Theorem 7.1. In this paper, we focus on
the weighted density (Definition 3.4) for DalkS. The reason
for choosing the weighted density is that it is more general
than the original density. Existing works on DalkS only con-
sider the original density. Thus, our algorithm ismore general
than existing ones in the literature.

Theorem 7.1 Given a doublyweighted graphG and size con-
straint k, let G[S∗] denote the GDS and G[K ∗] denote the
DalkS. If k ≥ |S∗|, we have S∗ ⊆ K ∗.

Proof Suppose for contradiction, |S∗\K ∗| �= ∅. Adding
S∗\K ∗ to K will result in a subgraph denser than G[K ∗]
by Lemma 4.1. 	


Motivated by Theorem 7.1 that the GDS is contained in
DalkS, can we adopt the following strategy to obtain the
near-optimal DalkS?

1. Find the GDS from doubly weighted graph G;
2. Remove the GDS from G and redistribute some weights;
3. Repeat the above process until the size of the union of all

GDS’s is larger than k, and use the union as a result.

The above strategy can give us a high-quality result, which
will be proven later. Meanwhile, [61] used the above pro-
cess to perform the density-friendly graph decomposition
on unweighted graphs. By deriving properties of density-
friendly graph decomposition, which are not shown in [61]
and other decomposition work [17], we successfully extract
the solution close to the exact DalkS from the decomposition
for the first time.

We present our DalkS algorithm DecomDalkS for dou-
bly weighted graphs in Algorithm 9. DecomDalkS first

Algorithm 9: DecomDalkS
Input: G(V , E,WV ,WE ), size lower bound k
Output: The k

|K̃ ∗| -approximation DalkS G[K̃ ∗]
1 K̃ ∗ ← ∅;
2 while |K̃ ∗| < k do
3 G[S∗] ← the GDS in G via cCoreGDS (Algorithm 1);
4 foreach e = (u, v) ∈ E ∩ (S∗ × (V \ S∗)) do
5 wv ← wv + we

6 Remove S∗ and its adjacent edges from G;

7 K̃ ∗ ← K̃ ∗ ∪ S∗;
8 Return the subgraph induced by K̃ ∗;

initializes the approximate DalkS as an empty set (line 1).
Next, we repeat extractions of the GDS G[S∗] from G (line
3), redistribute weights of edges between vertices inside and
outside S∗ to corresponding vertices outside S∗ (lines 4–5),
remove S∗ and its adjacent edges from G (line 6), and merge
S∗ to K̃ ∗ (line 7), until K̃ ∗ contains at least k vertices (line
2). We return G[K̃ ∗] as the approximate DalkS (line 8).

Example 7.1 Take the graph inFig. 1 as an example to demon-
strate steps in DecomDalkS with different required k. For
clarity, we first list the result of decomposition beforehand. It
is easy to obtain S∗

1 = {c, g, e}, S∗
2 = { f , d}, S∗

3 = {a} and
S∗
4 = {b}. If k ≤ 3, the output is exactly the GDS induced by
S∗
1 ; if k = 4, the output is the subgraph induced by S∗

1 ∪ S∗
2 ,

which is a 0.8 · OPT solution; if k = 5, the output is the
same with the case when k = 4, but this time it is an exact
solution; similarly when k = 6 or k = 7, DecomDalkS is
able to return an exact solution.

By the following theorem, our algorithm DecomDalkS
is likely to give a solution with density larger than 0.5·OPT ,
which is the density of the solution given by the state-of-the-
art approximation.

Theorem 7.2 G[K̃ ∗] output byDecomDalkS (Algorithm 9)
is a k

|K̃ ∗| -approximation to the DalkS, G[K ∗], with size lower
bound k.

According to our experimental results, the approximation
ratio guarantee given by DecomDalkS, k

|K̃ ∗| is at least 0.8 in
most cases. Before delving into the details of Theorem 7.2,
we use a real data case study in Example 7.2 to illustrate the
practical usefulness of DecomDalkS, particularly when a
high approximation ratio guarantee is required.

Example 7.2 Suppose one wants to find an approximation to
DalkS with k around 50, 000 from the LiveJournal graph
that has close to 4, 000, 000 vertices in total. Without our
method, the best approximation ratio one can expect to guar-
antee is 0.5 within polynomial time. However, on the other
hand, one can first do density-friendly decomposition over
the LiveJournal. Having vertex size close to k, some sub-
graphs G[S1],G[S2],G[S3] with |S1| = 49, 992, |S2| =
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Table 1 Notations in the while loop of DecomDalkS

Notations Meaning

Gi Updated G at the start of i-th iteration

Gi [S∗
i ] The GDS in Gi

Gi [Hi ] The DalkS in Gi with at least (k − | ⋃i−1
j=1 S

∗
j |) vertices

50, 006, |S3| = 50, 021 can be found in the return of the
decomposition. In DecomDalkS, the G[S2] will be out-
put as the approximate solution with the guaranteed ratio
k

|K̃ ∗| = k
|S1| = 50000

50006 = 0.99988 > 0.5 when k = 50, 000.

Though one does not know the exact DalkS, he is likely to be
satisfied with a solution that is guaranteed to have a density
larger or equal to 0.99988 of the optimal density. Further, one
can obtain the exact DalkS solution if the query k is adjusted
to be 49, 992, 50, 006, or 50, 021. Since DecomDalkS has
the nice k

|K̃ ∗| theoretical ratio lower bound, one can possibly
obtain better approximation guarantee of solutions output by
other methods when k

|K̃ ∗| > 1
2 fromDecomDalkS and those

solutions from other methods have larger empirical density
than the G[K̃ ∗] output by DecomDalkS.

In the followings, we present our theoretical findings. As
DecomDalkS keeps updating G at each iteration, we use
Table 1 to denote the related variables in i-th iteration of the
while loop to facilitate the explanation of the procedure and
relevant derivation.

To prepare for the proof of Theorem 7.2, we define the so-
called marginal weights as the extension of marginal edge
number in [61].

Definition 7.1 (Marginal weight) Suppose we have two dis-
joint vertex subsets X ⊆ V and Y ⊆ V . Denote the edge
set to connect X and Y as E(X ,Y ) = {e = (u, v) ∈
E |u ∈ X , v ∈ Y }. The marginal weight of X w.r.t Y is
W�(X ,Y ) := ∑

e∈E(X) we + ∑
v∈X wv + ∑

e∈E(X ,Y ) we.

We denote the weight of X as W (X) = ∑
e∈E(X) we +∑

v∈X wv . Hence, the marginal weight of X w.r.t. Y contains
more weights of edges connecting X and Y compared to
W (X).

Next,we introduce someuseful lemmas related tomarginal
weights.

Lemma 7.1 Let G[S∗] be the GDS in G. Then we have ∀X ⊆
V \S∗, W (S∗)

|S∗| >
W�(X ,S∗)

|X | .

Proof BecauseG[S∗] is theGDSofG, the following inequal-
ity holds

ρ(S∗ ∪ X) = W (S∗) + W�(X , S∗)
|S∗| + |X | <

W (S∗)
|S∗| = ρ(S∗).

Then the result will be straightforward to see. 	


Fig. 5 Relationship among subgraphs

Lemma 7.2 Suppose we have vertex subsets D, A, and B,
where D is disjoint from both A and B and nonempty. If
0 < |A| < |B| and W (D)

|D| >
W�(A,D)

|A| >
W�(B,D)

|B| , we have

ρ(A∪D) = W (D)+W�(A,D)
|D|+|A| >

W (D)+W�(B,D)
|D|+|B| = ρ(B∪D).

Proof Firstly we let

W1 =
(
W (D)

|D| − W�(A, D)

|A|
)

· (|B| − |A|) · |D|

W2 =
(
W�(A, D)

|A| − W�(B, D)

|B|
)

· |B| · (|D| + |A|)
(7.1)

Taking the difference between W (D)+W�(A,D)
|D|+|A| and

W (D)+W�(B,D)
|D|+|B| yields

W (D) + W�(A, D)

|D| + |A| − W (D) + W�(B, D)

|D| + |B|
= W1 + W2

(|D| + |B|) · (|D| + |A|) > 0 (7.2)

	

In the following, we refer readers to Fig. 5a for visualiz-

ing Lemma 7.3 and Theorem 7.3; and Fig. 5b for visualizing
Theorem 7.4.

Lemma 7.3 For any iteration in the while loop, we have ∀i ,
|Hi | ≤ |S∗

i | + |Hi+1|.
Proof Firstly, S∗

i ⊆ Hi by Theorem 7.1. Let Hi = Bi ∪ S∗
i ,

where Bi is disjoint from S∗
i . We claim that |Bi | ≤ |Hi+1|.

Otherwise suppose that |Bi | > |Hi+1|. By the definition of S∗
i

and Lemma 7.1, we have
W (S∗

i )

|S∗
i | >

W�(Hi+1,S∗
i )

|Hi+1| >
W�(Bi ,S∗

i )

|Bi |
w.r.t. Gi . We use Lemma 7.2 and conclude that

W (Hi )

|Hi | = W (S∗
i ) + W�(Bi , S∗

i )

|S∗
i | + |Bi |

≤ W (S∗
i ) + W�(Hi+1, S∗

i )

|Hi+1| + |Bi | = W (S∗
i ∪ Hi+1)

|S∗
i | + |Hi+1|

(7.3)
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Observe that the graph induced by S∗
i ∪Hi+1 is now a denser

subgraph than Hi with at least k−| ⋃i−1
j=1 S

∗
j | vertices onGi .

It contradicts with the fact that Hi is the densest subgraph
with at least k−|⋃i−1

j=1 S
∗
j | vertices. Because |Bi | ≤ |Hi+1|,

we have |Hi | = |S∗
i | + |Bi | ≤ |S∗

i | + |Hi+1|. 	

Theorem 7.3 Suppose the exact solution forDalkS is G[K ∗].
Then we have |K ∗| ≤ |K̃ ∗|, where K̃ ∗ is the vertex set of the
final output in Algorithm 9.

Proof Because S∗
i ’s are disjoint, we have

∣
∣
∣
∣
∣
∣

i⋃

j=1

S∗
j ∪ Hi+1

∣
∣
∣
∣
∣
∣
=

i∑

j=1

|S∗
j | + |Hi+1| (7.4)

Suppose the while loop is executed for p iterations. Based on
Lemma 7.3, the following inequality holds ∀0 ≤ i ≤ p − 2

i∑

j=1

|S∗
j | + |Hi+1| ≤

i+1∑

j=1

|S∗
j | + |Hi+2| (7.5)

Then, combining the above two, we have the sequence of
inequalities, where let S∗[1,p] = ⋃p

j=1 S
∗
j

|K ∗| = |H1| ≤ |S∗
1 ∪ H2| ≤ |S∗

1 ∪ S∗
2 ∪ H3| ≤ · · ·

≤ |S∗[1,p−1] ∪ Hp| = |S∗[1,p]| = |K̃ ∗| (7.6)

We can see that Hp = S∗
p, so |Hp| = |S∗

p|. 	


Theorem 7.4 G[K̃ ∗] is the DalkS with at least |K̃ ∗| vertices.
Proof Suppose G[J ] is any subgraph of the original whole
graph G[V ], where |J | = |K̃ ∗|. Let I = J ∩ K̃ ∗, B = J\I
and S

′
i = S∗

i ∩ (V \I ),∀1 ≤ i ≤ p, where p is the number
of iterations executed in the while loop. By Lemma 7.1, we
have a sequence of inequalities

W�(B, I )

|B| <
W�(S∗

p, S
∗[1,p−1])

|S∗
p|

< · · ·

<
W�(S∗

2 , S
∗[1,1])

|S∗
2 |

) <
W (S∗

1 )

|S∗
1 |

(7.7)

Taking a closer look at the weights that K̃ ∗ \ I and B bring
to I , one can verify the following results with the aid of
Lemma 4.1. Note that in the i-th iteration, we transform the
problem of density-friendly decomposition to solving GDS
on the doubly weighted graph Gi .

W�(K̃ ∗\I , I ) =
p∑

i=1

W�(S
′
i , S

∗[1,i−1])

≥
p∑

i=1

|S′
i | · W�(Si , S∗[1,i−1])

|Si |

>
W�(B, I )

|B| ·
p∑

i=1

|S′
i |

= W�(B, I )

|B| · |B| = W�(B, I ) (7.8)

Adding both sides by W (I ) and dividing by |K̃ ∗| yields

W (K̃ ∗)
|K̃ ∗| = W (I ) + W�(K̃ ∗ \ I , I )

|K̃ ∗|
>

W (I ) + W�(B, I )

|K̃ ∗| = W (J )

|J | (7.9)

	

Based on the above theorems and lemma, we can prove

Theorem 7.2 now.

Proof of Theorem 7.2 From Theorem 7.3, we know that |K ∗|
≤ |K̃ ∗|. Therefore,W (K ∗) ≤ W (K̃ ∗) because G(K̃ ∗) is the
densest subgraph with |K̃ ∗| vertices. Then the result follows
naturally

W (K̃ ∗)
|K̃ ∗| /

W (K ∗)
|K ∗| = |K ∗|

|K̃ ∗| · W (K̃ ∗)
W (K ∗)

≥ k

|K̃ ∗| (7.10)

	

When |K̃ ∗| is close to k, our approximation will be a good

solution. In particular, we have the exact solution if |K̃ ∗| = k.
In Sect. 9.5, we will show that our approximate DalkS’s have
guaranteed ratio close to 1 in most cases.

We remark that when |K̃ ∗| > 2k, one can use the com-
binatorial algorithm [13] (Combinatorial-DalkSS) to
generate a 1

2 -approximation naturally. In other words, if
|K̃ ∗| = |S∗[1,p]| > 2k, one can extract S∗[1,i],∀1 ≤ i ≤ p
and randomly add max(k − |S∗[1,i]|, 0) vertices to each S∗[1,i],
and choose the densest induced subgraph among them,which
will yield a 0.5 · OPT solution.

7.2 A faster 1
3 -approximation algorithm to DalkS

DecomDalkS based on decomposition delivers powerful
accuracy improvements over existing work for the DalkS
problem. A natural question arises – can the fastest algo-
rithm, GreedyDalkS, be further accelerated?

GreedyDalkS, proposed by Andersen and Chellapilla
[3], uses a greedy peeling to guarantee 1

3 · OPT solutions.
To our best knowledge, it is the fastest algorithm with a the-
oretical guarantee. Notably, the spectral approach proposed
by Feng et al. [25] is comparably fast but it lacks density
guarantees.
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We propose FastDalkS, the first algorithm that can be
faster than the greedy peeling and meanwhile hold matching
density guarantees. For a small k, it returns 1

3 · OPT densi-
ties more efficiently. Empirically, FastDalkS consistently
meets or exceeds the densities returned by GreedyDalkS.

The bottleneck for GreedyDalkS lies in maintaining a
min-heap of all vertices during peeling. FastDalkS instead
first estimates the optimal density ρ̂ on a small graph. With
ρ̂ and the relationship between the 1

3 · OPT solution and
certain c-cores, it performs peeling on a smaller graph to
achieve the approximation.

Details of FastDalkS are shown in Algorithm 10.
Firstly, we collect 2 j · k vertices with top contribution in
V (Definition 4.1) to form W , where j is a hyperparameter.
For small k, |W | is also small. Peeling G[W ] gives a good
estimate ρ̂ (lines 2-4). To guarantee 1

3 · OPT solutions, ver-
tices with contribution at least 23 ρ̂ are added toC formingW ′
(line 5). This aligns with the intuition that only vertices with
contribution≥ ρ̂ can potentially increase the density. Finally,
peeling G[W ′] yields the solution (lines 6-7). We verify the
1
3 · OPT guarantee for FastDalkS in Theorem 7.5.

Algorithm 10: FastDalkS
Input: G(V , E,WV ,WE ), size lower bound k, integer j ≥ 1.
Output: The 1

3 -approximation DalkS G[C ′ ]
1 W ← 2 j · k vertices with top contribution;
2 Obtain series of vertex sets {Ck ,Ck+1, · · · ,C|W |} via peeling
G[W ], where |Ci | = i,∀i = k, · · · , |W |;

3 G[C] ← densest graph among graphs induced by
{Ck ,Ck+1, · · · ,C|W |};

4 ρ̂ ← ρ(C);

5 W
′ ← C ∪ {v|cV (v) ≥ 2

3 ρ̂} ;
6 Obtain series of vertex sets {C ′

k ,C
′
k+1, · · · ,C

′
|W ′ |} via peeling

G[W ′ ];
7 G[C ′ ] ← densest graph among graphs induced by

{C ′
k ,C

′
k+1, · · · ,C

′
|W ′ |};

8 Return G[C ′ ];

Theorem 7.5 G[C ′ ] output by FastDalkS is a 1
3 · OPT

solution to DalkS in G[V ].
Proof Denote DalkS as G[K ∗] and its density as ρ∗. Let
2
3ρ

∗-core of G[V ] be G[H ]. By Lemma 6.1, ρ(H) ≥ 1
3ρ

∗.
Because W

′
is the union of C and {v|cV (v) ≥ 2

3 ρ̂}, W ′

contains the 2
3 ρ̂-core of G[V ]. Then W

′
also contains H by

the fact that ρ∗ ≥ ρ̂.

1. If |H | ≥ k, ρ(C
′
) ≥ ρ(H), i.e. 1

3ρ
∗, since H must be

one of vertex sets in {C ′
k,C

′
k+1, · · · ,C

′
|W ′ |}.

2. Otherwise suppose the |H | < k. In the followings, We
prove that ρ(C

′
k) ≥ 1

3ρ
∗. The optimal density can be

calculated as ρ∗ = W (K ∗)
|K ∗| . We have

ρ(C
′
k) = W (C

′
k)

|C ′
k |

= W (C
′
k)

k
≥ 1

3

W (K ∗)
k

≥ 1

3

W (K ∗)
|K ∗| ,

(7.11)

where theW (C ′
k) ≥ W (K ∗)

3 comes from Lemma 2 in sec-
tion 3 of [3] that the 2

3ρ
∗-core of G[V ] has total weights

at least 1
3W (K ∗), where W (K ∗) is the total weights

of G[K ∗] by extending the lemma to doubly weighted
graphs.

Since C
′
induces the densest graph during peeling W

′
,

ρ(C
′
) ≥ ρ(C

′
k) ≥ 1

3ρ
∗. Thus G[C ′ ] is a 1

3 · OPT solu-
tion to G[K ∗]. 	


Although designed forDalkS, setting the least vertex num-
ber equal to 0 in FastDalkS gives an algorithm for the DSP
problem, which we call as FastDS. Its processing pipeline
is shown in Algorithm 11. FastDS collects the top 1% con-
tributing vertices into W for estimating the optimal density.
For DSP with original edge densities, Theorem 4.1 guaran-
tees that fewer vertices need to be added to W ′ (line 5). We
verify in Theorem 7.6 that FastDS guarantees a 1

2 · OPT
solution for solving DSP.

Algorithm 11: FastDS
Input: G(V , E).
Output: The 1

2 -approximation DS G[C ′ ]
1 W ← 0.01 · |V | vertices with top contribution;
2 Obtain series of vertex sets {C1,C2, · · · ,C|W |} via peeling
G[W ] where |Ci | = i,∀i = k, · · · , |W |;

3 G[C] ← densest graph among graphs induced by
{C1,C2, · · · ,C|W |};

4 ρ̂ ← ρ(C);

5 W
′ ← C ∪ {v|cV (v) ≥ ρ̂} ;

6 Obtain a series of vertex sets {C ′
1,C

′
2, · · · ,C

′
|W ′ |} via peeling

G[W ′ ];
7 G[C ′ ] ← densest graph among graphs induced by

{C ′
1,C

′
2, · · · ,C

′
|W ′ |};

8 Return G[C ′ ];

Theorem 7.6 G[C ′ ] output by FastDS in Algorithm 11 is a
1
2 · OPT solution to DS in G[V ].

Proof Denote DS as G[S∗] and its density as ρ∗. S∗ is con-
tained in ρ∗-core, so it is also contained in ρ̂-core. Given that
W

′
is the union of C and {v|cV (v) ≥ ρ̂},W ′

contains ρ̂-core
and thus contains S∗. Therefore, G[C ′ ] yielded by peeling is
1
2 -approximation to G[S∗] [12]. 	
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Fig. 6 FastDalkS reduces time complexity

FastDalkS is the most effective when the constraint k
is relatively small compared to |V | for two reasons:

1. The expected size of W , i.e. 2 j · k, does not exceed |V |,
so we do not bother to adjust the value of j to make sure
that 2 j · k < |V |.

2. W remains small, so computing ρ̂ is fast. Even if no ver-
tices are ruled out for W ′, FastDalkS has comparable
speed to GreedyDalkS.

We further use Example 7.3 to compare GreedyDalkS and
FastDalkS.

Example 7.3 We use the unweighted graph in Fig. 6 to
illustrate why FastDalkS is faster than GreedyDalkS
usually. Thewhole graph is composed of 26 subgraphsG[A],
G[B], G[C], · · · , G[X ], G[Y ], G[Z ]. G[A] is a d∗-clique,
that is |A| = d∗ and all vertices in A are adjacent. The
other 25 subgraphs are identical d-cliques. Let d∗ = 6d + 1
and d be a large integer. Note that ρ(A) = (d∗−1)·d∗

2d∗ =
d∗−1
2 = 6d+1−1

2 = 3d, while ρ(B) = ρ(C) = · · · =
ρ(Y ) = ρ(Z) = d−1

2 . Suppose we are required to find the
1
3 -approximation to DalkS in this graph when k = � d∗

12 �. By
observation, we know that the exact DalkS is G[A] and the
optimal density is 3d.

Consider running GreedyDalkS on the graph. All d-
cliques will be successfully peeled before vertices in A are
peeled. When a vertex is peeled, we need to maintain the
min-heap. Specifically, we place the last vertex in the heap
at the first position and then heapify it. Besides, we have to
update the strength of the peeled vertex’s neighbors. We also
heapify those neighbor vertices. Therefore, it is time costly
for GreedyDalkS to maintain themin-heap for all vertices,
i.e. A ∪ B ∪ · · · ∪ Y ∪ Z , in the peeling process.

Consider running FastDalkS on the graph. Suppose we
choose j = 3. Approximately, |W | = 23 · d∗

12 = 2
3d

∗ =
4d. We will arbitrarily choose 4d vertices in A to form W .
Note that G[W ] is a 4d-clique, so ρ̂ = ρ(W ) = 4d−1

2 . The

threshold 2
3 ρ̂ is approximately 4

3d and thus all the vertices in

d-cliques will not be included in W
′
. In this case, we avoid

a min-heap containing all vertices. Instead, we focus on a
much smaller set W

′ = K ∗ to perform peeling.

8 Complexity analysis

In this section, we analyze both the time and the space
complexity for our proposed algorithms cCoreExact,
cCoreApp*, cCoreIns, cCoreDel, DecomDalkS and
FastDalkS with the original density metric. The com-
plexity with other density metrics are similar. First, let the
input graph be G(V , E) and the c-core to locate GDS be
G

′
(V

′
, E

′
).

The space complexity for all algorithms is O(|V | + |E |)
since storing information for vertices and edges dominates
the complexity. We provide the time complexity in the fol-
lowing, along with sketches of the proof.

Proposition 8.1 The time complexity of cCoreExact is
O(|E | + |V | · log(|V |) + |V ′ |2 · |E ′ | · log(|V ′ |)).
Proof Otaining G

′
takes O(|E | + |V | · log(|V |)) time. The

Dinic’s algorithm [18] is to run log(|V ′ |) times blocking
flows on the c-core. Every time it costs O(|V ′ |2 · |E ′ |)
time to compute the blocking flow, so the total time cost
is O(|E | + |V | · log(|V |)) + O(|V ′ |2 · |E ′ | · log(|V ′ |)) and
the proposition is proved. 	

Proposition 8.2 The time complexity of cCoreApp* is
O(|E | + |V | · log(|V |) + |E ′ | · log(|V ′ |) · log(|E ′ |) ·
log( (|V ′ |+|E ′ |)2

|E ′ | )/ε).

Proof In FlowApp* (Algorithm 5), the number of block-
ing flow is set to be h = 2�log(2|E |)� + 2 [13]. When
the GDS is located in G

′
, we have h blocking flows for

every search for new densities and each of them takes

O(2|E ′ | · log(|E ′ |) · log( (|V ′ |+|E ′ |)2
|E ′ | )/ε) [31]. Using the strat-

egy we propose to search for new densities, we perform the
search for log 4

3
(|V ′ |) times. Therefore, the total time cost

for running blocking flow is O(|E ′ | · log(|V ′ |) · log(|E ′ |) ·
log( (|V ′ |+|E ′ |)2

|E ′ | ))/ε). By adding the complexity of obtaining

G
′
, the result follows.7 	


Proposition 8.3 The time complexity of cCoreIns and
cCoreDel are O(|ES̃| · log(|S̃|) + |EC | · log(|C |)) when
there is a hit, where G(S̃, ES̃) is the dense subgraph and
G(C, EC ) is the ρ̂-core.

7 This complexity is a version of Theorem 2.1 from [13] when their
algo is equipped with our c-core location and density search strategy.

123



1444 Y. Xu et al.

8.1 Efficiency of cCoreIns

Although cCoreIns and cCoreRecomp have the same
worst-case time complexity, cCoreIns is much faster in
practice. The size of S̃o is small, so computing ρ̂+ is negligi-
ble. The bottleneck lies in themaintenance ofG[C+].We call
the cases that perform peeling on G[Co] only, to get G[C+]
(lines 10, 21, 24 in Algorithm 7) hits, hence greatly reducing
the time cost versus calling cCoreRecomp (line 18). The
possibility of a hit is high since ρ̂+ is large while su or sv is
small if one of them is not in the dense region. Experiments
in Sect. 9 will verify the efficiency.

8.2 Efficiency of cCoreDel

In the worst case, cCoreDel has the same time complexity
as cCoreRecomp. Similar to insertion, we call those cases
that avoid calling cCoreRecomp the hits (lines 6, 11 in
Algorithm 8). The probability of a hit is high since S̃o is
usually small and Co is only slightly larger.

Proposition 8.4 In the worst case, the time complexity of the
algorithm DecomDalkS is O(k · |V |2 · |E | · log(|V |)).
Proof In the worst case, the time cost of cCoreExact
becomes O(|V |2 · |E | · log(|V |)). At most k times of decom-
position is needed. 	

Proposition 8.5 Let the graphs induced by W and W

′
be

G(W , EW ) and G(W
′
, EW ′ ), respectively. The time com-

plexity ofFastDalkS is O((|V |+|EW |)·log(|W |)+|EW ′ |·
log(|W ′ |)).
Proof To find W , we first use a min-heap to store |W | =
2 j · k vertices with top strength. The initialization of the
min heap takes O(

|W |
2 · log(|W |)). Comparing the strength

to maintain |W | vertices with top strength takes O((|V | −
|W |)·log(|W |)). PeelingG[W ] andG[W ′ ] to obtainC andC

′

has complexity O(|EW |·log(|W |)) and O(|EW ′ |·log(|W ′ |))
respectively. Union ofC and {v|sV (v) ≥ 2

3 ρ̂} has complexity

O(|V |). Finally, we sum all and obtain the result O(
|W |
2 ·

log(|W |) + (|V | − |W |) · log(|W |) + |EW | · log(|W |) +
|EW ′ | · log(|W ′ |) + |V |) = O((|V | + |EW |) · log(|W |) +
|EW ′ | · log(|W ′ |)). 	


9 Experiment

9.1 Setup

9.1.1 Datasets

We mainly use twelve real-world graphs to perform our
experiments. Half of them are unweighted graphs shown

Table 2 Unweighted graphs

Dataset Short # Vertices # Edges

Friendster [38] FT 65,608,366 1,806,067,135

Orkut [38] OK 30,724,41 117,185,083

LiveJournal [38] LJ 3,997,962 34,681,189

YouTube [38] YT 1,134,890 2,987,624

DBLP [38] DP 317,080 1,049,866

Amazon [38] AZ 334,863 925,872

in Table 2, while the other half are weighted graphs shown
in Table 3. The second column on both tables gives short
names for the datasets. The edge number varies from around
thirty thousand up to two billion. Besides, datasets in Table 6
are presented separately to verify the generality of our
c-core-based acceleration. Since the graphs in Tables 2
and 3 are undirected, they are not applicable for assess-
ing the efficiency of c-core-based acceleration regarding
denominator-weighted density.

We briefly introduce our weighted graphs in Table 3.
Libimseti [53] is a weighted graph where vertices represent
users, and the weights on edges are ratings given by a user to
another one. FacebookForum [51] is a social network where
vertices are users, and the weight on each edge is the num-
ber of messages. Newman [49] is a scientific collaboration
network where a vertex represents an author, and the weight
on the edge means the number of joint papers between two
authors. OpenFlights [50] contains airports as vertices, and
the weight refers to the number of routes between two air-
ports.

An unweighted graph can be viewed as a weighted graph
where each edge has a weight value of one. Depending on
the application, e.g., fraud detection [33], some methods for
weighing unweighted graphs have also been invented, and
we use the method proposed by Hooi et al. [33]. Suppose we
have vertices u and v in G with an edge e to connect them.
We assign weight we = [log( 10

degG (u)+5 )]+ [log( 10
degG (v)+5 )]

to the edge, where degG(u) denotes the degree of u inG. The
weighing method is applied to unweighted graphs, LiveJour-
nal [38] and YouTube [38].

9.1.2 Algorithm

In our experiments, several algorithms are involved, and their
performanceprovides evidence for our theoretical results.We
list them and do a short review.

• FlowExact [29] is the exact GDS algorithm based on
the flow network. Its details can be found in [29].
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Table 3 Weighted graphs Dataset Short # Vertices # Edges Weight range

LiveJournal(w) [38] LW 3,997,962 34,681,189 [2, 11]

Libimseti [53] LB 220,970 17,359,346 [1, 10]

YouTube(w) [38] YW 1,134,890 2,987,624 [2, 11]

FacebookForum [51] FF 899 142,760 [1, 1049]

Newman [49] NM 16,726 95,188 [1, 37]

OpenFlights [50] OF 7,976 30,501 [1, 11]

• cCoreExact is our exact GDS algorithm which is
based on flow network [29] and c-core acceleration
(Sects. 4.3 and 5.2) on FlowExact.

• FlowApp [13] is the (1 − ε)-approximation algo-
rithm based on max-flow computation. It differs from
FlowExact, as it does not require finding the exact
maximum flow.

• FlowApp* is our (1−ε)-approximation algorithm with
better density searching strategy. (Sect. 5.3)

• cCoreApp* is our (1 − ε)-approximation algorithm
FlowApp* with c-core-based acceleration. (Sects. 4.3
and 5.2)

• Greedy++ is an approximate algorithm to find GDS
(especially for Definition 3.4). Each time, it will use the
information obtained in previous times. The detail of it
can be found in [11].

• cCoreG++ is our accelerated Greedy++ based on c-
core.

• cCoreRecomp is the algorithm leveraging peeling on
the whole graph to maintain the approximate GDS when
an edge is inserted or deleted.

• cCoreIns and cCoreDel are our efficient algorithms
to maintain the approximate GDS via incrementally
updating c-core.

• DecomDalkS is our decomposition-based near-optimal
DalkS algorithm. (Sect. 7.1)

• FastDalkS is our faster 1
3 -approximation algorithm to

DalkS. (Sect. 7.2)

All algorithms are implemented in C++.8 We perform
experiments on a Linux machine equipped with two Intel(R)
Xeon(R) Silver 4210R CPU@ 2.40GHz processors with 10
cores and O2 optimization. In our experiments, Dinic’s algo-
rithm [18] is used to find blocking flows or attain maximum
flow for all flow-based methods. For other alternative block-
ing flow algorithms including parallelizable ones, we refer
readers to [1, 4, 30, 58, 60].

8 Our code is available at https://github.com/Xyc-arch/Efficient-and-
Effecive-algorithms-for-generalized-densest-subgraph-discovery

9.2 Evaluation of c-core-based acceleration

9.2.1 Running time

To evaluate our c-core-based acceleration techniques, we
compare the running time of two core-based algorithms,
cCoreExact and cCoreApp*, with their corresponding
baseline methods, FlowExact and FlowApp*, respec-
tively. To show how powerful the acceleration based on c-
core is, we further perform a comparison between the c-core-
based approaches and Greedy++ [11]. For FlowExact
and cCoreExact, we can obtain the exact GDS. For
FlowApp, FlowApp*, cCoreApp, and cCoreApp*, we
require them to give 0.999 · OPT solution results. For
Greedy++ and cCoreG++, we run 100 iterations to obtain
a 0.909 · OPT solution9 based on the conjecture that
Greedy++ can obtain a (1+ 1√

T
) factor approximation after

T iterations.
We present the running time of the five algorithms in

Table 4. The second to fifth columns represent the time cost of
the corresponding algorithm.The last three columns show the
corresponding time–cost ratios. The original and weighted
density are used for unweighted and weighted graphs respec-
tively in Table 4.

From Table 4, we make the following observations:

• cCoreExact is up to three orders of magnitude faster
than Flow Exact, especially on large scale-graphs.
For example, FlowExact can provide more than 6000
times speedup onLiveJournal andYouTube. The speedup
of cCoreApp* over FlowApp* is similar. The c-
core-based acceleration is also effective in Greedy++.
For example, cCoreG++ has 137.85, 32.55 and 76.95
speedup over Greedy++ on YouTube, Friendster and
Orkut, respectively.

• Accelerationusing c-coremakes theflow-based approaches
for GDS searching scalable to very large graphs. On very
large graphs such as Friendster, Orkut, LiveJournal, and

9 We require 0.909·OPT solution forGreedy++ because better solu-
tions, e.g., 0.99 · OPT solution, cost too much time.
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Table 5 Best density by cCoreExact and Greedy++

Dataset ρ(S∗) by cCoreExact ρ̂(S∗) by Greedy++

Friendster 273.52 273.51

Orkut 227.87 227.87

LiveJournal 193.51 193.20

YouTube 45.60 45.60

DBLP 56.57 56.57

Amazon 4.80 4.80

Libimseti 1068.41 1068.24

FacebookForum 1632.10 1632.10

Newman 47.75 47.75

OpenFlights 39.85 39.78

LiveJournal(w) 774.05 774.05

YouTube(w) 168.05 168.05

MovieLens, FlowExact and FlowApp* cannot give a
satisfactory answer within a reasonable running time. In
contrast, cCoreExact and cCoreApp* make it pos-
sible to find the exact or near-optimal solution within
50min for all graphs.

• Compared with Greedy++, cCoreExact can find a
better GDS with less time cost. All ratios in the last
column of Table 4 are greater than one. We observe
that on nine out of twelve datasets, cCoreExact
is over ten times faster than Greedy++. The den-
sities of the subgraphs found by cCoreExact and
Greedy++ are shown in Table 5. On four datasets, i.e.,
Friendster, LiveJournal, MovieLens, and OpenFlights,
Greedy++ cannot attain the optimal density achieved
by cCoreExact. This result is consistent with the iter-
ation number chosen as T = 100 for Greedy++. If a
0.999-approximation is required forGreedy++, the iter-
ation should be set as T = 1, 000, 000 according to the
convergence conjecture provided by [11]. However, the
time cost of Greedy++ with T = 1, 000, 000 is much
larger than that of cCoreExact (one can multiply the
ratio of the last column by 10, 000 to estimate).

9.2.2 Memory usage

We evaluate the memory usage of cCoreExact and
FlowExactover sevendatasets. For other datasets,FlowExact
cannot finish reasonably within 72h. Thememory evaluation
results are reported in Fig. 7. We can find that the mem-
ory cost of cCoreExact is less than FlowExact on all
seven datasets. Besides, the memory cost of cCoreExact
is smaller than FlowApp and FlowApp*, while the cost of
the latter two is comparable.
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Fig. 7 Memory cost of cCoreExact and FlowExact

Fig. 8 Number of vertices in the whole graph and ρ̂-core

9.2.3 Core size

To explain the improvement of c-core-based acceleration
over running time and memory usage, we examine the sizes
of ρ̂-core in cCoreGDS (Algorithm 1) and the whole graph
for different datasets. Given that the ρ̂-core is a much smaller
subgraph by several orders of magnitude, which is shown in
Fig. 8,10 the faster running time and the less memory usage
are not surprising.

9.2.4 Generality

We conduct additional experiments on other density metrics
to empirically show the generality of c-core acceleration.We
choose three directed graphs with different sizes and trans-
form them into bipartite vertex and edge-weighted graphs11

10 Each vertical line symbolizes a distinct graph with overall graph size
and core size compared.
11 wv = 1

2t for v in left partition and wv = t
2 for v in right partition.

We pick t = 2 in our experiment.

as described in [56] to facilitate the directed densest sub-
graph finding. The GDS is found based on the denominator
weighted density metric (Definition 3.5), where the vertex
weight is placed on the denominator. The statistics of the
three directed graphs, aswell as the time cost ofFlowExact
and cCoreExact over those graphs, are presented in
Table 6. We can find that the c-core-based acceleration can
also provide up to 100 times speedup over the baseline
method with Definition 3.5.

9.3 Evaluation of approximation algorithms

Here, we further evaluate the approximation algorithms.

9.3.1 Density searching strategies in flow-based
approximation algorithms

In Sect. 5.3, we design a new strategy to search the opti-
mal density for the flow-based approximation algorithm
and propose FlowApp* based on this new strategy. Here,
we perform an ablation study over the strategy to evaluate
the speedup provided by FlowApp* over FlowApp. Fig-
ure9 shows the ratio of time cost by FlowApp over that
by FlowApp*, i.e. time(FlowApp)

time(FlowApp∗)
. It is easy to see that

FlowApp* is faster than FlowApp on eleven out of twelve
datasets. On Orkut, the ratio is 0.98, just slightly less than
1. The average speedup for the other eleven datasets is 3.07,
and the greatest speedup is 7.88.

9.3.2 Time cost vs. accuracy

We further test the tradeoff between efficiency and accuracy
for three (1 − ε)-approximation algorithms, cCoreApp*
based on flow and Greedy++, cCoreG++ based on itera-
tive peeling.Wedisplay the time costw.r.t accuracy inFig. 10.
The time cost for Greedy++ and cCoreG++ are calculated
under the unproven conjecture of approximation ratio in [11].
From the result, we can find that cCoreApp* can achieve
high accuracy in a much shorter running time compared to
Greedy++. Though the curve of cCoreApp* is above that
of cCoreG++, it can be more naturally extended to hyper-
graph for its flow-based nature.

9.4 Performance of cCoreIns and cCoreDel

WeevaluatecCoreIns andcCoreDelon three unweighted
graphs (DP, LJ, YT) and two weighted graphs (LB, NM). For
insertion, we randomly add 1,000 edges, with weights of 1-
10 for weighted graphs. For deletion, we randomly remove
1,000 edges.
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Table 6 Performance of GDS
algorithms with Definition 3.5

Dataset # Vertex # Edges ρ(S∗) FlowExact cCoreExact

WikiVote [38] 7,115 103,689 71.68 7.18 s 3.38 s

Standford [38] 281,903 2,312,497 75.95 5h 26m 12m 34s

NotreDame [38] 325,729 1,497,134 123.73 2h 38m 1m 11s

Fig. 9 Speedup of FlowApp* over FlowApp

Fig. 10 Time cost vs. accuracy of approximation algorithms

Table 8 Hit rate for cCoreIns and cCoreDel

Datasets cCoreIns hit cCoreDel hit

DP 999/1000 993/1000

LJ 998/1000 998/1000

YT 992/1000 968/1000

LB 992/1000 945/1000

NM 999/1000 998/1000

The running time and the speedups over cCoreRecomp
are displayed in Table 7. Average speedups are 73.95× for
edge insertion and 163.45× for edge deletion, with max
speedups of 172.67× on LJ and 325.98× on LJ. After each
operation, cCoreIns/cCoreDel output the same G[C]
as cCoreRecomp, effectively maintaining the approximate
GDS during updates.

As mentioned in Sect. 6, a hit reduces the time cost by
avoiding the invocation of cCoreRecomp. We record hit
times in Table 8. cCoreIns has >990 hits for all graphs,
while cCoreDel has ≥945.

In Fig. 11, we plot ratios S̃
|V | and

|C|
|V | over updates. The

ratios do not vary much during 1000 times updates. Observe
that |S̃| and |C | are much smaller than |V |. The largest
ratio is |C|

|V | = 1.98% on LB, while the smallest one is
|S̃|
|V | = 0.0096% on LJ. We also observe that sizes of C are

larger than S̃. These facts can help explain why the likeli-
hood of a hit is high following the argument of efficiency in
Sect. 6.

Table 7 Speedup of maintenance

Dataset cCoreIns cCoreRecomp (ins) cCoreRecomp
cCoreIns cCoreDel cCoreRecomp (del) cCoreRecomp

cCoreDel

DP 5.97 s 6m 55s 69.56 3.57 s 7m 7s 119.50

LJ 1m 29s 4h 17m 172.67 47.47 s 4h 18m 325.98

YT 23.80 s 23m 9s 58.37 49.65 s 25m 26s 30.74

LB 39.11 s 14m 20s 21.99 47.83 s 14m 41s 18.43

NM 0.21 s 10.04 s 47.14 0.03 s 10.00 s 322.58

123



Efficient and effective algorithms... 1449

Table 9 Time cost of FastDalkS and GreedyDalkS

Datasets k
|V | = 0.01% k

|V | = 0.05% k
|V | = 0.10% k

|V | = 0.50% k
|V | = 1.0%

Fast Greedy Fast Greedy Fast Greedy Fast Greedy Fast Greedy

LJ 2.93 s 11.31 s 2.43 s 11.18 s 2.78 s 11.37 s 1.98 s 10.47 s 2.88 s 10.43 s

FT 8m 28s 15m 21s 5m 42s 13m 34s 5m 44s 14m 48s 8m 24s 12m 35s 5m 33s 11m 55s

OK 12.36 s 28.78 s 8.44 s 28.71 s 7.89 s 28.14 s 9.32 s 27.52 s 6.58 s 27.14 s

YT 0.30 s 1.19 s 0.33 s 1.19 s 0.33 s 1.17 s 0.24 s 1.16 s 0.32 s 1.10 s

FastDalkS is abbreviated as Fast and GreedyDalkS is abbreviated as Greedy

9.5 Evaluation of DecomDalkS

In Sect. 7, we have shown that DecomDalkS can output a
k

|K̃ ∗| · OPT solution, 12, but have not yet shown the prac-

tical usefulness of the algorithm since |K̃ ∗| is unknown
until we obtain the result K̃ ∗. We execute DecomDalkS
on four graphs and calculate the factor k

|K̃ ∗| for any posi-

tive integer parameter k, which is no larger than the total
number of vertices in the whole graph. Figure12 reports
the proportion of the factor range for k

|K̃ ∗| , i.e., 0 ∼ 0.8,

0.8 ∼ 0.95, 0.95 ∼ 0.99 and 0.99 ∼ 1, over four datasets13

We observe that on all four datasets, the fraction of k val-
ues where DecomDalkS cannot guarantee a solution with
density at least 0.8 of the optimum is less than 1%. We also
note that the factor is larger than 0.5 for any possible k on
LiveJournal, Amazon, and DBLP. Interestingly, it is found
that on all four graphs, our algorithm can output a subgraph
better than 0.99 · OPT solution for over one-third of pos-
sible k values. Therefore, our algorithm can usually return
a solution close to the exact DalkS, while the state-of-the-
art approach based on linear programming offers 0.5 · OPT
solution guarantees. The time cost ofDecomDalkS onLive-
Journal, Amazon, DBLP, and Newman is 22m 16s, 1m 53s,
54 s, and 2s, respectively.We remark thatDecomDalkS can
be comparedwith the algorithmbasedon linear programming
ensuring 0.5 · OPT solutions because both of them focus
on the theoretical guarantee rather than empirical density.
This means their objective is to quantify the gap between
the output’s density and the density of the unknown exact
DalkS. The limitation of DecomDalkS is that the accurate
quantified gap can be obtained only after the density-friendly
decomposition is performed, while the linear programming
approach can quantify the gap before running the algorithm.

12 By combining techniques from Combinatorial-DalkSS it is a
max( k

|K̃ ∗| ,
1
2 ) · OPT solution.

13 The reason we choose these datasets is that their sizes vary from
small to large, and thus are representative.

Fig. 11 The size of S̃ and C over V

Fig. 12 Approx. ratios guaranteed by DecomDalkS

Table 10 Speedup of FastDalkS over GreedyDalkS

Datasets 0.01% 0.05% 0.10% 0.50% 1.0%

LJ 3.86 4.6 4.09 5.29 3.62

FT 1.81 2.38 2.58 1.50 2.15

OK 2.33 3.40 3.57 2.95 4.12

YT 3.97 3.61 3.55 4.80 3.44

9.6 Evaluation of FastDalkS

Table 9 reports the running time cost of FastDalkS and
GreedyDalkSon four graphs,where k

|V | are 0.01%, 0.05%,
0.10%, 0.50% and 1.0%. The hyper-parameter is set as j =
3. Our FastDalkS algorithm provides significant savings.
For instance, it costs 5m44s on FT when k

|V | is 0.10% and
saves 7m4s. The speedup that FastDalkS provides can be
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Table 11 Cases when the density ouput by FastDalkS different from
GreedyDalkS

Datasets and chosen k FastDalkS GreedyDalkS

LJ 0.50% 101.52 101.48

LJ 1.0% 81.89 81.85

FT 0.01% 273.34 273.05

FT 0.05% 273.61 273.05

FT 0.01% 270.76 270.34

FT 0.05% 232.00 231.92

FT 1.0% 206.73 206.69

YT 0.50% 40.93 40.92

verified in Table 10, which ranges from 1.50× to 5.29×, with
an average of 3.38×. The densities output by FastDalkS
and GreedyDalkS are almost the same. Those cases when
the two algorithms output different densities are listed in
Table 11. Surprisingly, all densities returned byFastDalkS
are greater than the ones returned byGreedyDalkS in these
cases. FastDalkS is the first 1

3 -approximation for DalkS
faster than GreedyDalkS. Theoretically, FastDS has the
same complexity as FastDalkS for k/|V | = 1.0%. The
time complexity of greedy peeling for DSP is the same as that
of GreedyDalkS. Therefore, we do not list the statistics of
FastDS separately.

10 Conclusion

This paper investigates the densest subgraph discovery
problem with generalized supermodular density and size
constraints. We first review and discuss the limitations of
existing methods. Next, we show the generalized supermod-
ular density can cover several well-known density variants
and devise general acceleration strategies and efficient algo-
rithms to find GDS. In detail, we propose a new concept
called c-core and show its applications to find the dens-
est subgraph with generalized supermodular density. Based
on c-cores, we devise efficient algorithms cCoreExact
and cCoreApp* to find the GDS. Efficient methods
cCoreIns and cCoreDel to maintain the approximate
GDS are studied for dynamic graphs. For DalkS, we propose
DecomDalkS based on graph decomposition to guarantee
high accuracy and FastDalkS to achieve fast speed. We
perform extensive experiments for proposed algorithms on
twelve real-world graphs and show that they are efficient (by
running up to three orders of magnitude faster) and accurate
(by providing exact or near-optimal solutions).
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