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Abstract
Cardinality estimation is one of the most important problems in query optimization. Recently, machine learning-based
techniques have been proposed to effectively estimate cardinality, which can be broadly classified into query-driven and
data-driven approaches. Query-driven approaches learn a regression model from a query to its cardinality, while data-driven
approaches learn a distribution of tuples, select some samples that satisfy a SQL query, and use the data distributions of
these selected tuples to estimate the cardinality of the SQL query. As query-driven methods rely on training queries, the
estimation quality is not reliable when there are no high-quality training queries, while data-driven methods have no such
limitation and have high adaptivity. In this work, we focus on data-driven methods. A good data-driven model should achieve
three optimization goals. First, the model needs to capture data dependencies between columns and support large domain
sizes (achieving high accuracy). Second, the model should achieve high inference efficiency, because many data samples are
needed to estimate the cardinality (achieving low inference latency). Third, the model should not be too large (achieving a
small model size). However, existing data-driven methods cannot simultaneously optimize the three goals. To address the
limitations, we propose a novel cardinality estimator FACE, which leverages the normalizing flow-based model to learn a
continuous joint distribution for relational data. FACE can transform a complex distribution over continuous random variables
into a simple distribution (e.g., multivariate normal distribution) and use the probability density to estimate the cardinality
for both sequential queries and parallel queries. First, we design a dequantization method to make data more “continuous.”
Second, we propose encoding and indexing techniques to handle Like predicates for string data. Third, we propose a Monte
Carlomethod to estimate the cardinality based on theFACEmodel. Fourth, we propose a grouping technique to process parallel
queries. Fifth, we discuss how to support join queries. Experimental results show that our method significantly outperforms
existing approaches in terms of estimation accuracy while keeping similar latency and model size.
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1 Introduction

Cardinality estimation (CE) is a fundamental and signifi-
cant problem that has been widely studied for many years. It
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aims to estimate the number of records that satisfy a given
query in a database. CE has widespread applications in the
database community, such as query optimization, approxi-
mate query processing. In particular, a precise CE approach
directly influences the quality of the optimized query plan,
leading to orders of magnitude performance improvement.
Since traditional methods, e.g., histograms [43], sampling
[29, 58] or kernel density-based methods [16, 22], cannot
capture the column correlations, recently machine learning
(ML)-based CE methods [12, 17, 25, 31–35, 46–48, 50, 55–
57, 59] have been proposed, which can achieve superior
performance, because they have high representation capa-
bility and strong learning ability.

Generally speaking, a good learning-based CE model
should achieve the following optimization objectives.
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High accuracy (O1): The estimated cardinality should be
close to the real cardinality, so as to obtain an optimized
query plan, and the generalization ability is also important.
Low latency (O2): During a query plan generation, the CE
module has to be triggered multiple times, so its latency is
very important to generate an optimized plan efficiently.
Lightweight model size (O3): Considering the memory lim-
itation, the model should not be large [55, 60], because a
database has many schemas and requires to train a model
for each schema. Moreover, a lightweight model can achieve
high inference efficiency.

To achieve these optimization goals, query-driven and
data-driven learned models have been proposed. The for-
mer [25, 46] learns a regression model that learns a mapping
from a query to its cardinality. However, this approach relies
on training queries and has a limited generalization ability on
query changes and data changes. For example, if the training
workload is different from the testworkload, the performance
is not reliable. Data-driven [17, 55, 56] approaches learn the
joint distribution of data in a relational tablewithout the query
workload and use the distribution to infer the cardinality.
They do not need to know the query workload in advance
and can generalize to unseen queries, and thus the general-
ization ability of data-driven methods is stronger than the
query-driven ones.

However, existingdata-drivenmethods suffer from the fol-
lowing limitations. (1) Sum-product-network-based method
[17] assumes different levels of independence between
columns, based on which they recursively split rows and
columns to learn the distribution, but the accuracy is low
due to the assumption (cannot achieve O1). Thus, the first
challenge is how to capture the dependencies between dif-
ferent columns (C1). (2) Although Naru [55, 56], DQM-D
[15] and UAE [54] can leverage the auto-regressive model to
capture dependencies by factorizing the joint distribution into
conditional probability distributions, they cannot handle the
table with a large domain size well, where the large domain
size means that in the table there exist attributes with a large
number of distinct cell values. Since the number of model
parameters scales with the domain size [15, 56], it leads to
high training cost and high storage overhead (cannot achieve
O3). Even if NeuroCard [55] can alleviate this problem by
dividing the column with the large domain size into multiple
sub-columns, it sacrifices the accuracy (cannot achieve O1).

Besides, existing data-driven methods cannot efficiently
support Like predicates on string data, because (i) strings
naturally have large domain size, and (ii) for inference, it is
slow to find strings satisfying the predicates (cannot achieve
O2). Hence, how to support large domain size (including
string data) while keeping high accuracy is the second chal-
lenge (C2). (3) In the inference step, for range queries, most
data-driven methods [15, 55, 56] need to sample data points
from the ranges, feed them into the trained model and use the

Fig. 1 Performance comparison of CE methods

inferred results to estimate the cardinality. This step is inef-
ficient because it has to trigger the model inference many
times for estimation (cannot achieve O2). Therefore, how to
reduce the latency of the inference step is the third challenge
(C3).

To address these challenges, we propose a Normalizing
Flow-based Cardinality Estimator, FACE, which approxi-
mates the joint distribution using the normalizing flow (NF)
model. NF is a generative model that learns the joint prob-
ability distribution of data points. It [27, 38] consists of a
sequence of invertible and differentiable transforms and can
transform a complex distribution over continuous random
variables into a simple distribution (e.g., multivariate nor-
mal distribution), and vice versa. So the probability density
of each tuple can be computed. Intuitively, the term “Flow”
refers to the trajectory that the data are gradually transformed
by the sequence of transformations. The term “normalizing”
refers to the fact that these data points are mapped into a sim-
ple distribution, usually multivariate normal distribution. As
shown in Fig. 1, FACE shows superiority on all dimensions,
and the reasons are as follows.

In general, since NF regards all columns in the table as a
whole without any decomposition during training and infer-
ence, it can capture the dependencies of columns (addressing
C1, forO1). First, as NF is adequate formodeling continuous
data, it naturally can be utilized to handle large domain size
data without expensive embeddings (addressingC2, for O3).
Second, for discrete data (e.g., categorical data), we propose
a dequantization technique tomake themmore “continuous,”
so as to fit the NF model and obtain accurate estimation (for
O1). Third, we propose an effective method to encode string
data, transform Like predicates to range ones and efficiently
search qualified strings (for O2). In addition, we propose
strategies to enable FACE to support join queries. Fourth,
given the joint distribution learned by NF, we infer the cardi-
nality byMonteCarlo integration over the distribution,which
is computed through sampling data points from ranges in
query predicates. In this situation, for an incoming query, it
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can reuse the samples from previous similar queries, so as to
improve the efficiency (addressing C3, for O2). Finally, for
parallel queries, we propose to leverage the query similari-
ties to judiciously group similar ones such that queries in the
same group can share sampled data points. In this way, the
number of sampled data points can be greatly reduced, and
thus the inference latency can be accelerated (addressingC3,
for O2). In summary, we make the following contributions.

(1) Wepropose a normalizingflow-based framework that can
efficiently and effectively address the CE problem.

(2) We propose a dequantization technique to handle discrete
data and design a string data encoding method to support
strings.

(3) We adopt the Monte Carlo integration to conduct CE
inference, where query similarities are considered to
accelerate the process.

(4) We further accelerate CE for parallel queries by grouping
them according to their similarities to avoid duplicated
computation.

(5) We conducted extensive experiment on 4 datasets and
compared with 12 baselines to show our superior perfor-
mance.

2 Preliminary

2.1 Problem definition

Consider a relation T with N tuples and m attributes
{A1, A2, · · · Am}. Each tuple t ∈ T is t = (a1, a2, · · · , am),
where ai is a cell value in Ai , i = 1, · · · ,m. o(t) denotes the
number of occurrences of t . The task of cardinality estimation
(CE) is to estimate the result size without actually executing
the query. The predicate θ of the query can be viewed as a
function that takes as input t , and outputs θ(t) = 1 if t satis-
fies the predicate, otherwise θ(t) = 0. Hence, the cardinality
can be formally defined as car(θ) = |{t ∈ T : θ(t) = 1}|,
and the selectivity of θ is denoted by sel(θ) = car(θ)/N .

Note that sel(θ) can be computed using the joint data
distribution over the attribute domains in T [56]:

sel(θ) =
∑

t∈A1×···×Am

θ(t) · P(t) (1)

where P(t) = o(t)/n denotes the probability of tuple t . Thus
one can estimate car(θ) by computing the probability distri-
bution.
Supported query predicate. In this part, we show the predi-
cates of queries that we can support for CE. (1) Like previous
works [15, 56], we support queries that are conjunctions of
any number of single-column predicates, while disjunctions
can be transformed to conjunctions using the inclusion–

exclusion principle. (2) Any single predicate for Ai can be
an equality predicate (e.g., A = ai ), an open range predicate
(e.g., A ≥ li ) or a close range predicate (e.g., li ≤ A ≤ hi ).
Here, we use Ri to denote the range if Ai is a range predicate.
For instance, in the above examples, Ri = [li , Ai .max] or
Ri = [li , hi ]. Since our method will transform the equality
predicate to range (see Sect. 3), we also abuse Ri to represent
the equality predicate for ease of representation. (3) We also
support LIKE for matching the prefix, suffix or substring of
string attributes, like ab%, %tion and %tri%, respectively.
As we also transfer LIKE predicates to ranges, Eq. 1 can be
written as:

sel(θ) =
∑

t∈R1×···×Rm

P(t) (2)

2.2 Normalizing flow-basedmodel

The joint data distribution is modeled via generative mod-
els, where GAN [13], VAE [24], Autoregressive [11] and
Normalizing Flow (NF) [6, 42] are typical models. However,
GAN and VAE perform well on tasks like image genera-
tion, but cannot be applied to the CE problem. The reason
is that these models do not explicitly output the probability
density, so it is intractable for them to estimate the cardinal-
ity. Although the autoregressive model [11] has been applied
in CE recently, it still suffers from the large domain size
problem, as discussed in Sect. 1. Therefore, we adopt the
normalizing flow, another representative generative model
to solve the CE problem.

Generally speaking, NF provides a method for model-
ing flexible probability distributions over continuous random
variables. It can transform a complex probability distribution
into a simpler distribution (e.g., a standard normal) using
a sequence of invertible and differentiable transformations.
These transformations can be parameterized by neural net-
works. Formally, suppose x is an m-dimensional dataset that
we want to learn a joint distribution. The basic idea of NF is
to represent x as the output of a sequence of transformations
(uniformly denoted by f) of a real vector u sampled from a
simpler distribution π(u), i.e., x = f(u) where u ∼ π(u)

[38].
Leveraging the transformation of the NF, the probability

density of x can be obtained using a change of variables,

p(x) = π(f−1(x)) |det(∂f
−1

∂x
)|. (3)

For example, given a data point after pre-processing, e.g.,
x = (−1.05, 2.31, 0.27), as the input of the NF model. It
infers the estimated probability density of this point, e.g.,
p(x) = 3.18, based on learned data distribution. Then the
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Fig. 2 An example of coupling-based flow models

probability densities of multiple data points can be utilized
to compute the cardinality of a query.

Since we need to compute f−1 and its Jacobian matrix in
the above equation, f has to be invertible and differentiable.
Intuitively, the transformation not only maps between x and
u, but also quantifies the change of density by the Jacobian
matrix. For efficiency, π(u) is usually simple, e.g., standard
normal distribution.

In NF, f should be carefully designed for invertible, differ-
entiable and efficient computation, so we adopt the coupling
transformation [6, 36, 61] for f , which consists of a series of
coupling layers, denoted as a loop in Fig. 2. The number of
layers cp is a hyper-parameter, say 5. Each coupling layer
has the same input/output dimension, which is designed by
the following steps:

– Divide input x into two equal parts:
[
x1:d , xd+1:m

]
, d =

m
2 .

– Feed the former part into a lightweight neural network
(e.g., MLP), θ =MLP(x1:d).

– Set x′
1:d = x1:d directly.

– Set x′
d+1:m = gθ (xd+1:m), where g is a differentiable

and invertible element-wise function parametrized by θ .
Return x′ = [

x′
1:d , x′

d+1:m
]
.

– x′ is permuted and fed into the next coupling layer. Note
that different coupling layers have different parameters
for capturing correlations of multiple columns.

Hence, f is invertible, i.e., given x′ in each layer, we can sim-
ply restore x. The reason is that x1:d equals to x′

1:d , and we
can get xd+1:m from x′

d+1:m , x1:d and the invertible g. f is nat-
urally differentiable because g is differentiable. It is efficient
as each coupling layer has lightweight network structures.
From the above steps, we can see that the Jacobian matrix J
of a coupling layer is lower triangular, which means that the
determinant of J can be computed efficiently in O(m) as the
product of the diagonal elements.

For training the NF, given a dataset D = {x(i)}Ni=1, a flow
is trained to maximize the total log likelihood

∑
i log p(xi ).

The CE problem can be solved by transforming each tuple t

to a data point x(i) and modeling the joint probability distri-
bution.

2.3 Related work

Query-driven learned CE methods. In the training step,
they collect a pool of queries with their real cardinalities as
labels and then train a model to map a query to its cardi-
nality. For inference, query is encoded and then fed into the
regression model. Different models are used, including fully
connected neural networks [7, 37], CNN [26],RNN [37, 46].
In general, query-driven CE methods need a large amount
of training data, i.e., queries. If the query distribution shifts,
the model is likely to behave poorly. Therefore, query-driven
approaches are expensive and not generalizable enough.
Data-driven learned CEmethods. They learn the joint data
distribution with different models. When inference, they use
the model to infer the probability of tuples satisfying the
query predicates.

(1) Normalizing flow model [52]. The conference version of
this paper leverages the Normalizing Flow based model
to learn a continuous joint distribution for relational
data. To estimate the cardinality of a query, it samples
some data points from the ranges in query predicates and
applies Monte Carlo integration over the learned joint
distribution. In this paper, we extend it to better support
parallel queries and multi-table queries.

(2) Sum-Product network [17]. The idea is to divide the table
into clusters of rows and columns recursively. Then it uses
sum nodes to combine different row clusters. For column
clusters, it assumes that they are independent and utilizes
product nodes to combine them. It is inaccurate because
the independence assumption is made.

(3) Autoregressive models [15, 55, 56]. The autoregressive
model factorizes the joint distribution into conditional
distributions using themultiplication principle. However,
the methods cannot handle large domain size data well.
Specifically, Naru [56] and DQM-D [15] require to com-
pute the embeddings of each data point, so a large domain
size column induces a large number of parameters, lead-
ing to high training cost and large model size. Although
NeuroCard [55] can alleviate this problem by factorizing
the column into several sub-columns, it sacrifices accu-
racy. Thus existing data-driven methods cannot capture
dependencies between columns and cannot handle large
domain size, and thus FACE is proposed to address this
issue.

3 FACE framework

We propose FACE, a cardinality estimation framework using
the NF model. In this section, we first introduce the basic
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Fig. 3 The framework of FACE

idea of using NF (Sect. 3.1), and then the overall architecture
(Fig. 3) of FACE (including training (Sect. 3.2) and inference
(Sect. 3.3)). Finally, we summarize how FACE can estimate
join queries in Sect. 3.4.

3.1 NF for cardinality estimation

We first present the overall framework of FACE, discuss the
advantages and summarize the challenges.
Overall framework. FACE learns a continuous joint distri-
bution of the input data using NF. As Fig. 3 shows, it first
takes as input the original data. Then for different columns
with different data types, FACE encodes appropriately and
generates the encoded data that can be fed into the NF model
(Sect. 3.2). After training, we can compute the probability
density using the NF model, i.e., p(x).

For inference, as the learned joint distributions are con-
tinuous, we use Eq.4 to estimate the cardinality on range
predicates:

sel(θ) =
∫

x∈R1×···×Rm

p(x) dx. (4)

Note that not all predicates are range predicates. There-
fore, to apply Eq.4, we transfer other predicates to ranges
(see Sect. 3.3). Then, as the inference part in Fig. 3 shows,
we sample some data points from these ranges (see Sect. 6),
call NFmodel to estimate the probability density of them and

finally compute the estimated cardinality using Monte Carlo
(MC) integration [30].
Advantages. (1) FACE can capture the column dependencies
because in each coupling layer as shown in Fig. 2, the former
half part of columns interact with the latter half part. Then
the output is permuted and the above step is repeated several
times, and thus the dependency between columns is likely to
be fully captured. (2) NF can naturally support continuous
data well, which is a typical type in large domain size data.
It takes as input continuous data with simple transformations
(e.g., normalization) rather than embedding, which leads to
large model size and high training costs.
Challenges. (1) Besides continuous data, there are several
common data types in a relational table, and thus using NF
to support them is challenging. To address this, we propose
an effective dequantization method to make any type of data
continuous (see Sect. 4) and build an index to tackle Like
predicates with string data (see Sect. 5). (3) The repetitive
sampling is time-consuming in the inference step, so an accel-
eration method is proposed in Sect. 6.

3.2 Training

Theupper part of Fig. 3 outlines the training process ofFACE.
It first takes as input batches of tuples in T and encodes them
inorder tomake thembewellmodeled byNF.Then themodel
is trained using NF with maximum likelihood estimation.
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3.2.1 Encoding the training data

Generally, there are three common types of data in databases:
numerical, categorical and string. Since NF model naturally
works on continuous data, we need to conduct a preprocess-
ing step on different types of data. As shown in encoding
outline of Fig. 3, numerical data can be classified into con-
tinuous data and discrete data. The former one can be handled
directly by NF, and we propose a dequantization method to
make the discrete data continuous. For categorical data, we
discretize them as done by most existing works [15, 56] and
then tackle them as discrete data. For string data, we encode
them using a tree index and use trie encoding to convert
strings to discrete data. Next, we introduce the above steps
in detail using the example in Fig. 3.
Categorical data. We transform the categorical data into
continuous space. We first convert them into discrete data
(E(ai ) → w), e.g., E(Cook) → 0. However, if we fit dis-
crete data directly with a continuous density model, it will
produce a degenerate solution that places all probabilitymass
on the discrete data points. Therefore, we use the dequanti-
zation [19, 49] method that adds noise to discrete data over
the width of each discrete bin. This method makes data more
continuous, and thus the probability of each discrete point
can be converted to integration over a range. For the Name
attribute in the example, the values are encoded to {0, 1, 2},
and they have the equal length of bins, i.e., bin = 1. Then for
each discrete point with value v ∈ {0, 1, 2}, we add a noise
that follows a certain distribution in [0, bin], say uniform dis-
tribution. Then E(Job)={0, 0, 0, 1, 2} may become more
continuous like {0.312, 0.668, 0.996, 1.123, 2.886}, which
is fed into NF for training after normalizing. When we want
to predict P(Job = Cook), i.e., P(0), hopefully, we can
compute it by integration over [0, 1], i.e., ∫ 1

0 p(x)dx = 0.6,
where p(x) is learned by NF. The dequantization technique
is significant in accuracy improvement for NF models, so
in Sect. 4, we propose an effective strategy considering the
continuity of noised data.
Numerical data. As discussed above, we encode categorical
data to discrete data and then dequantize it. Therefore, for dis-
crete data in numerical data,we can directly dequantize it. For
continuous data, intuitively, we feed it into NF with no pro-
cessing. However, any data in a computer are represented by
a finite number of bits, so there is no real sense of continuity.
To make data more continuous, we also apply dequantiza-
tion on these seemingly “continuous” data, which makes a
probability density easier for NF to learn. For example, in
attribute Height, the length of bin is 1.78 − 1.73 = 0.05,
so we add noise in [0, 0.05]. Then the two 1.73 become 1.744
and 1.771.
String data. Like predicates are widely used for string data
in database queries. To handle this, for Like predicates with
patterns ab%, %tion and %tri%, we build a trie-based

index to encode each string to discrete data so that the Like
predicates can be converted to range ones. Then we can use
the above method to further encode these discrete data using
dequantization and feed into NF. Specifically, we initialize
a global ID as 0 and then traverse the trie in depth first
search (DFS) order. For each leaf node (corresponding to
a full string), we assign the node with the current ID and add
ID by 1. For example, the DFS order of Name in Fig. 3 is
Amy.M→ Andy.G→ Ann→ Ann.S→ Tom.H, and they
are encoded as [0, 1, 2, 3, 4].

Normalization is applied after all the above transforma-
tions to get the final training data, which is sent to the NF
model for training.
Flow model training. Data encoding transforms each tuple
in table T to x with the same dimension. Then x is fed into
NF model for training iteratively using maximum likelihood
estimation.

3.3 Inference

Given a model and a query, we show how to utilize the
NF model to estimate the cardinality of the query. First, we
introduce how to encode queries for inference. Second, con-
sidering the query similarities, we illustrate how to accelerate
the inference step.

3.3.1 Query encoding

In this paper, we do not distinguish between point and range
queries, since we convert every equality predicate into a
range. The reason is that the equality predicate is applied
on categorical and discrete data that are modeled as contin-
uous data by NF. In fact, in our scenario, query encoding is
equivalent to encode the predicates of the query, i.e., how to
transfer the predicates (including equality and Like predi-
cates) to range predicates.
Equality predicates. We first encode the equality predicate
A = ai to a range. If ai is categorical, we encode it to the
same discrete value as the encoding in the training phase i.e.,
E(ai ) → w. Then the range is constructed by [w,w + bin),
where bin is the bin width of w. For example, the predicate
Job = Cook is encoded as [0, 1). Then the cardinality can
be estimated by integration over the range. If ai is a discrete
value, we can directly construct the range.
Range predicates. For predicates with a close range, we
can compute integration straightforwardly over the range.
For open ranges, we will simply find the MAX/MIN of the
attribute and construct the range. For example, the predicate
Height ≥ 1.6 is encoded as [1.6, 2.0) because 2.0 is the
MAX of the Height attribute.
Like predicates.Wealso convert Like predicates to ranges
based on the trie-based index. For a prefix Like predicate
(e.g., An%), we search An on the tree, and the node is asso-
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ciated with the range corresponding to An%, i.e., [1, 3]. For
suffixpredicates (e.g.,%on),we searchon a suffix-basedTrie.
For substrings (e.g., %on%), we construct multiple ranges
based on prefix-based Trie (see Sect. 5).

3.3.2 Similarity-based CE acceleration

Given the trained NF model, we compute the probability
density of each data point. Together with the given ranges,
ideally, we want to obtain the cardinality by computing
the integration over these ranges using Eq.4. Unfortunately,
the integration is infeasible to compute, because it has no
closed-form solution. Thus, MC integration [39] is applied
to approximate this. The basic idea is to sample a number of
data points from the range, compute the probability density
of them using NF and integrate the results to estimate the
cardinality. Thus, sampling largely determines the efficiency
and accuracy of inference.
Adaptive importance sampling. A simple sampling strategy
is uniformly sampling from the range Ri , but it degrades the
accuracybecausedata in Ri maynot beuniformlydistributed.
Therefore, we adopt the adaptive importance sampling [30,
39] strategy as shown in Fig. 3. It samples from the range
adaptively according to the data distribution, described by
buckets for different attributes. At the beginning, we ini-
tialize equi-width buckets (B1 in the example) as we know
nothing about the distribution. Then we sample data points
from the buckets, use NF to compute the probability density
of them and update the buckets. We repeat the above steps
until convergence and use the buckets (Bi ) that can accu-
rately describe the distribution of range data to conduct the
MC integration.We can observe that although themethod can
capture the data distribution, the repetitive sampling leads to
inefficiency, so we propose to accelerate this process based
on query similarities.
Accelerate subsequent queries. In real scenarios, the queries
can arrive at any time. For example, in Fig. 3, Q′ comes
after Q and they seem to be similar. We can measure the
similarity of queries by comparing each pair of ranges of
two queries. We observe that ranges of similar queries are
mostly overlapped, and thus their sampled data follow similar
distributions. Therefore, we initialize the buckets of the new
arrival query using that of the most similar one (Initialize
B ′
1 using Q). In this way, we can obtain B ′

i in much fewer
iterations, making the inference more efficient.
Accelerate parallel queries. In real scenarios, hundreds of
queries may come simultaneously in peak hours. Suppose
every single query has to sample K data points for MC inte-
gration, n queries lead to nK data points. When n is large,
nK data points lead to numerous computations, thus bringing
high inference latency. Note that similar queries have similar
query predicates and thus they can use similar sampled data

points. To this end, we can share these data points among
similar parallel queries.

Accordingly, we can reduce the total number of sampled
data points and improve the overall efficiency.

In Sect. 6, we introduce how to compute the query simi-
larity. We then illustrate how to accelerate the inference of
sequential queries using buckets. After that, in Sect. 7, we
propose how to group parallel queries into similar groups,
within which queries share sampled data points to improve
efficiency.

3.4 Supporting joins

FACE can be extended to support join querieswith two strate-
gies: Single model and Multi-models.

Single model applies the technique in NeuroCard [55]
that leverages one estimator to learn the distribution of the
full-outer-join table to support joins. However, full outer
join can differ in distribution with the join results of queries
because of duplicates and NULL values. To address this,
following [17, 55], we need to add additional columns to
record these duplicates and NULL values, so as to correct
the distribution considering the queries. For inference, we
will leverage the values in additional columns to correct the
probability densities.

For the Singlemodel, the full-join tablemay be very sparse
and the trained model may not be effective for different
queries. To address this, we propose Multi-models to esti-
mate cardinalities with multiple models. Specifically, we can
train multiple models, i.e., training a model for each possible
join query, and then given a query, we use the corresponding
model to estimate the cardinality. We will describe Multi-
Models in detail in Sect. 8.

4 Dequantization

In this section, we will introduce the spline dequantization
designed by us for making data “more continuous,” which is
inevitable if one wants to encode data for feeding into NF.
We first show the basic idea of the dequantization and then
how to implement it.
Basic idea of dequantization.We begin with an example for
modeling a continuous distribution of an attribute Ai with 5
categories. If we encode them to discrete data (Sect. 3.2.1)
and use NF to fit them, we will derive a probability density
function (PDF) as shown in Fig. 4a. This way has two limita-
tions. On the one hand, fitting a continuous model to discrete
data will produce a degraded solution [18] because all the
probability mass is placed on discrete data points. On the
other hand, while inference, it is infeasible to compute the
probability of a category using p because the integral interval
is unknown. Therefore, dequantization has to be applied.
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Fig. 4 Visualization of dequantization methods

Dequantization distribution. As discussed in Sect. 3.2.1,
dequantization is utilized to add noise on discrete data so
that NF can learn the continuous probability distribution bet-
ter. Formally, given a discrete data point x , the noise u can
be generated following a dequantizing distribution q(u|x),
u ∈ [0, bin). Here bin is the width of the discrete bin of
x , which is the difference between x and the smallest value
bigger than x in Ai . After dequantizing all values that equal
to x , these values will all lie in the bin [x, x + bin), so the
integration over the bin precisely captures the probability of
x .

Then the noise is generated based on q, and each discrete
value becomes dequantized v = x + u (note that for explicit
representation, we use v to denote data after dequantization,
while in other sections, x is still used to denote the data after
all pre-processings). Recap from Sect. 3 that NF learns the
PDF p based on these dequantized data. Then the probability
of any discrete point, P(x), can be computed by integration.

Ideally, we hope that P(x) = ∫ x+bin
x p(v)dv, but it cannot

hold exactly in real case, which can be well approximated by
a sophisticated dequantization distribution.
Motivation of spline dequantization. There exist many
optional dequantization distributions, and uniform dequanti-
zation [49] is a representative one. Suppose that we use it to
model q(v|x), which generates noise uniformly for each dis-
crete point. In our example, these data points have bin = 1.
Figure 4b visualizes the distribution (green rectangles) of
dequantized data, i.e., q(v) = Ex∼P [q(v|x)]. The objec-
tive of a well-performed dequantization method is to make
p learned by NF well fit the data dequantized by q. How-
ever, it is hard for NF to fit the data dequantized by uniform
dequantization. The reason is that p is a continuous distribu-
tion that we want to learn, but it is naturally difficult to learn
from data obtained by a discontinuous distribution q. Also,
other existing works [18, 19] cannot guarantee the continuity
property.

Therefore, we propose a spline dequantization technique
that utilizes spline interpolation to construct a continuous
dequantizing distribution for each attribute.

Implementation of Spline Dequantization.Next we discuss
how to dequantize discrete data using the continuous spline
dequantization distribution. The general solution consists of
two steps. (1) Construct a cumulative distribution function
(CDF) of each attribute using spline interpolation. (2) Use
the CDF to generate dequantized data v, which will be lever-
aged by NF for training. The basic idea of the above steps is
that, to derive a continuous dequantization distribution q, we
construct a continuously differentiable CDF. Hence, since q
is the derivative of the CDF, q is naturally continuous.

For example, as shown in Fig. 4b, the CDF of the uniform
dequantization is not continuously differentiable, so q is not
continuous and the generated dequantized data are hard to
fit. Therefore, it requires to construct a high-quality CDF.
CDF construction. Considering a discrete attribute Ai with
domain size s = |Ai |, we abuse a to denote the random
variable that Ai can take. For each x j ∈ Ai (x j denotes the
j-th smallest value in Ai ), we can easily compute the prob-
ability that the attribute will take a value less than x j , i.e.,
P(a < x j ), which can be used to construct a CDF. To be
specific, first, we plot the points, i.e., (x1 = 0, P(a < x1)),
(x2 = 1, P(a < x2)),…, (x j , P(a < x j )),…, (xs + bin, 1)
on coordinates, as shown in Fig. 4c. Second, we use Mono-
tone Piecewise Cubic Spline Interpolation [9] to compute a
piecewise polynomial function, namely the CDF (denoted by
g). It consists of s polynomial pieces, each of which (g j ) is a
cubic function corresponding to values in range [x j , x j+1].
The reasons why we use such a method to construct a CDF
are threefold. (1) The spline interpolation holds monotonic-
ity, which is necessary to represent the naturally monotonic
CDF. (2) The spline interpolation guarantees the continu-
ously differentiable property, so q is continuous because it is
the derivative of the CDF. As shown in Fig. 4c, NF can well
fit the dequantized data generated from such dequantization
distribution. (3) The computation of spline interpolation is
efficient.
Generate dequantized data. Next we will generate dequan-
tized data using the CDF, which comprises two phases. Sup-
pose that we want to dequantize a discrete value x j . First, we
sample a probability pr from the range [g j (x j ), g j (x j+1)].
Second, we compute the inverse function g−1

j , which maps
each probability between g j (x j ) and g j (x j+1) to a value
between x j and x j+1. g

−1
j can be calculated fast and easily,

because g j is a cubic function. Then we obtain dequantized
v = g−1

j (pr).

Remark One may wonder why we do not use q to infer the
cardinality directly rather than the PDF p. The reason is that
q is themarginal distribution of each attribute in our example,
but what we want to learn (the PDF p) is a joint distribution.
To address this issue, we can extend spline dequantization
to multiple attributes by constructing continuously differen-
tiable CDF onmulti-dimensions [1, 14]. As it is prohibitively
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Fig. 5 String encoding example

expensive to construct q on all dimensions, we usually use
small dimensions (1 or 2 dimensions).

5 String encoding and inference

To support Like predicates in data-driven CE that suffers
from challenges of large domain size and inefficient infer-
ence, we build a trie-based tree to index strings, encode each
string to discrete data based on the trie and convert Like
predicates to range predicates.

5.1 Trie encoding

We first build a trie-based index and introduce how to
encode strings based on it. For example, given Ai =
{art,ate,car,cat}, we can build a trie T as shown in
Fig. 5a. The leaf nodes (green) denote strings in Ai , and the
non-leaf nodes (yellow) represent the prefixes.1

Trie encoding.We aim to encode the strings in Ai , i.e., these
leaf nodes. Each node n in T records three kinds of infor-
mation. (1) The string (n.str ) represented by the node. (2)
Encoding ID (n.e) of a leaf node, which is a unique ID of the
node. We can assign each leaf node an ID in DFS order. Note
that non-leaf nodes do not need encodings. (3) The encoding
range (n.r ) denotes the range (n.min, n.max) of encodings
among strings in the subtree rooted at n, i.e., n.min(n.max)
is the minimal (maximal) ID of leaf nodes under n. Now
strings in Ai are encoded as discrete values. After dequantiz-

1 If there are some strings in Ai that correspond to non-leaf nodes in
the trie, we can easily add dummy leaf nodes to represent them.

ing, they can be fed into NF for training in the same way as
numerical data. Next, we discuss how to conduct inference.
Inference of prefix-based predicates. For the prefix-based
predicates, i.e.,str%, if there exists a nodewithn.str =str,
we will integrate the learned p over the range n.r . For exam-
ple, suppose that a predicate is Ai Like c%. On the Trie,
we match c with n2.str , fetch the range ([2,3]) and estimate
the cardinality.
Inference of suffix-based predicates. For the suffix-based
predicates, i.e., %te, we also tackle them using trie as fol-
lows. For each string attribute Ai , we add another column
A′
i , where each string value is the one-to-one reverse of that

in Ai . In the above example, A′
i = {tra,eta,rac,tac}.

Then similar to prefix-based predicates, we use A′
i to build

another trie for training and inference.
Another Like pattern is substring, i.e.,%str%. It ismore

challenging to estimate because we cannot directly locate
which strings contain str using the trie. Next, we discuss
how to solve this case.

5.2 Inference of substring predicates

We discuss how to find qualified strings satisfying the
substring predicates and transform them to several ranges
for efficient inference. For example, for a predicate Like
%at%, there are two nodes (ranges) that should be consid-
ered in the inference step. To this end, we build an auxiliary
Trie Ta to index the nodes in T , i.e., pre-computing some
nodes that have common strings. We first introduce how to
build Ta and then use it to support inference.
Auxiliary index Ta . Ta tries to match all possible substrings
with nodes in T . Hence, given a substring, we efficiently find
the matching nodes as well as ranges, and CE is computed
by their integrations. Assuming that the character set size is
C and the maximum length of strings is M , theoretically,
the number of possible substrings is O(CM ), which is pro-
hibitively expensive to enumerate. To address this, we build
trie Ta layer by layer to prune the space.

Specifically, each node in Ta maintains two types of infor-
mation. One is the substring, denoted by u.str . The other
one is a set u.s of nodes in T , s.t., ∀n ∈ u.s, n.str has
the pattern %u.str. For example, u7.str = at, and thus
u7.s = {n4, n9} because n4.str = at and n9.str = cat.
To build Ta , we start with the root that u0.str = NULL.
Then for the second layer, we expand the root by generating
C children, each of which corresponds to a character. Then
we fill the u.s in the second layer by searching on T . We
repeat the above steps iteratively. To accelerate, we propose
a pruning strategy. We limit the height of the tree to H . In
this way, the space and time complexity of the search can be
greatly reduced, but for inference, one has to explore T if
just the prefix of str matches a leaf node in Ta (see Case
2). Figure 5 (b) shows the example with H = 3.
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Inference for substrings.Given Ta , T , and a substring pred-
icate, we introduce how to estimate the cardinality for three
cases of str.
Case 1: ∃u ∈ Ta, u.str= str. Then ∀n ∈ u.s, we union
all ranges, i.e., n.r and integrate over them. For example,
suppose that we have a predicate Like %a%. Since in Ta ,
u1.str =a, and u1.s = {n1, n5}, we can integrate over
[0, 1] ∪ [2, 3], i.e., the union of n1.r and n5.r .
Case 2: ∀u ∈ Ta , u.str �=str, but ∃u ∈ Ta , u.str
is the prefix of str and u is a leaf node of Ta . In
this case, ∀n ∈ u.s, we check the descendants of n in
T , and if there exist nodes that contain str , their ranges
will be used for estimation. Suppose a Like %art%
predicate. In Ta , we go to u6 and it is a leaf. Then
we iterate descendants of nodes in u6.s, i.e., n3 and
n8 in T , and find that n6.str=art. Hence, we return
n6.r = [0, 0] for estimation. Note that [0, 0] is a discrete
point, we address this using the method as discussed in
Sect. 3.2.1.
Case 3: If str does not satisfy the above two cases, we come
to the last one, which indicates that there is no string in Ai

satisfying the predicate. Given a Like %act% predicate,
after coming to u1, there is no edge c, indicating that act
does not exist in Ai .
Complexity analysis. In the last layer of Ta , the number of
nodes is at most CH , and |u.s| of each leaf node is |T |

CH on
average, where |T | denotes the number of nodes in T . Thus,
the complexity is O(

|T |
CH ) because for ∀n ∈ u.s, it takes

constant time to search on T .
Discussion of string updates. Our data structure supports
data updates by efficient incremental training. (1) Insert.
For inserted string str’, if it can be found in T , we do
not change anything. Otherwise, we insert it on T , assign
a new encoding and update the range of its ancestors. For
example, suppose that str’=aa. We insert a node n′ and
encode it as n′.e = 4,n′.r = [4, 4]. Then its ancestors com-
bine with n′.r (the dotted red nodes in Fig. 5b). Ta also
changes. If many strings are inserted, a training from scratch
is triggered. (2)Delete. Deletion does not have a large impact
on training. But for inference, similar to insert, we need to
delete the node and update the ranges of its ancestors and
Ta .

6 Inference acceleration

In this paper, we propose to use adaptive importance sam-
pling (AIS) [30, 39] to conduct the inference. We first
introduce its motivation and the basic solution in Sect. 6.1.
Since AIS is time-consuming and we observe that similar
queries can be accelerated through sharing sampled data, we
discuss how to leverage this property to make the inference
more efficient (Sect. 6.2).

Fig. 6 An example of adaptive importance sampling

6.1 Adaptive importance sampling

Basic idea. For inference, as discussed in Sect. 3.3, given
the trained model p and predicates of a query Q, we need
to first convert the predicates to ranges and integrate over
them (Eq.4). However, as shown in Fig. 6, the probability
density function p is always too complicated to integrate, so
MC integration [30, 39] is always applied to approximate the
result.
Naive solution.The basic idea is to sample K data points uni-
formly for each range Ri (corresponding to each attribute),
join them to K tuples, compute probability densities, and
use them to get the integration. However, as shown in Fig. 6
(B1), this sampling method fails to generate enough points
in high-probability-density areas (dark points in the Figure),
leading to an inaccurate approximation.
AIS. AIS [30, 39] is proposed to split each range Ri

2 into
a sequence of successive buckets B = [b1, b2, . . . , b|B|],
and then sample uniformly in each bucket, in order to make
sampling points following the distribution of p as exactly as
possible. The bucket number |B| (e.g., 10) and the ranges are
given, and the AIS task is to adjust the length of each bucket.
Intuitively, the shorter a bucket is, the higher the probability
densities of the corresponding points in the bucket are, i.e.,
more important. We adjust the length of each bucket adap-
tively until converge, i.e., adjacent buckets differ a little.

In the first iteration, AIS initializes a bucket sequence B1,
where each bucket has the same length, and then samples
K
|B| points (denoted by a set D1) uniformly in each bucket.
Next, based on D1, AIS computes a new sequence B2 with
the objective that ∀b ∈ B2, they have the same total proba-
bility, which is computed by data points of D1 lying in each
b. Then we use B2 to sample D2 using the same sampling
strategy. We repeat this until Bi+1 (generated from Di ) dif-
fers a little with Bi , i.e., convergence. As Fig. 6 shows, using
AIS, more data are sampled in high-density areas. Finally,
we use D1, D1, . . . Di to compute a weighted MC integra-
tion, where Di will have a large weight because we think that
points in Di are sampled mainly based on p.
Observation. AIS is time-consuming because it always
needs multiple sampling iterations to converge. However, we
observe that similar queries always generate similar samples,

2 Substring-based predicates are likely to generatemultiple ranges. Our
solution can sample them simultaneously.
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so we can share these samples to reduce the number of sam-
ples, so that similar queries take less time to converge. Next,
we first define how to measure the query similarity and then
show how to do acceleration.

6.2 Sampled data sharing

Query similarity. Supposing the table has m attributes, we
construct m ranges for a query Q, i.e., R1, R2,…, Rm , and
each range is denoted by Ri = [li , ri ] (see Sect. 2.1). Given
another query Q′, we define sim(Q, Q′) = 1

m

∑m
i=1

|Ri∩R′
i |

|Ri∪R′
i | .

The similarity score is in [0, 1]. The higher sim(Q, Q′) is,
the more similar Q and Q′ are.
Share with subsequent queries. Inmanycases, queries come
in the formof streaming data. If theCEof each query requires
to sample iteratively for many times until convergence, the
performance of the system will be greatly reduced. Fortu-
nately, a query can leverage the information of the previous
most similar query to accelerate the convergence. Specifi-
cally, given a new coming query (e.g., Q′ in Fig. 6), we find
the most similar query among all estimated queries, say Q.
Then we share Di to initialize the first bucket sequence of
Q′, i.e., B ′

1, because the ranges in both queries have similar
distributions. However, as shown in Fig. 6c, their correspond-
ing ranges, i.e., Ri and R′

i are a little different, so we have to
slightly adjust Di to fix the difference. On the one hand, if
there exist data points of Di that do not lie in R′

i (e.g., range
[30,35] in Fig. 6), we directly drop them from Di . On the
other hand, if R = Ri ∪ R′

i − Ri is not NULL (e.g., range
[76,80] in Fig. 6), we sample K

|B| points from R and add them
to Di . The reason is that these added points do not appear in
origin Di but are required in R′

i .
The number of iterations of Q′ can be reduced, and thus

the inference will be accelerated. This method will improve
the efficiency without sacrificing the accuracy because after
the initialization, the following sampling iterations of Q′ can
still navigate the bucket sequence to further approximate the
true distribution p. Note that we cannot store all the sampled
data points of all previous queries in reality due to the storage
overhead. To address this, we set a storage limit, count the
number of times that each query is shared and maintain a
priority queue of queries. We discard queries that are not
commonly shared when the storage limit is achieved.

7 Inference acceleration for parallel queries

In some real scenarios, hundreds of queries may come simul-
taneously in peak hours. Suppose every single query has to
sample K data points for MC integration, n queries lead
to nK data points. When n is large, nK data points lead
to numerous computations, thus bringing high latency for

estimating their cardinalities. Fortunately, given the obser-
vation that similar queries are always associated with similar
sampled data points, we can share these data points among
similar parallel queries such that the total number of data
points to be sampled is reduced, and thus the overall effi-
ciency can be improved. Based on this idea, we formulate
the problem of inference acceleration for parallel queries as
how to group similar queries to achieve the largest efficiency
improvement. We first show the overall solution in Sect. 7.1.
Then, we formally define the optimization problem on how
to group queries, and then prove its NP-hardness and inap-
proximability (Sect. 7.2), and finally introduce our solution
(Sect. 7.3).

7.1 Overview

Consider n queriesQ = {Q1, Q2, . . . , Qn} that come simul-
taneously3 over a relation T with m attribute.4 Each Qi is
associated with an attribute subset Ai of the m attributes.
In addition, each query Q can be represented as m ranges
R1, R2, . . . , Rm (Sect. 2). For ease of representation, we use
Q.Rk, k ∈ [1,m] to denote the m ranges of query Q and
Q.Bk, k ∈ [1,m] to denote the corresponding buckets.

As discussed above, we can partition Q into g groups
G = {G1,G2, . . . ,Gg} such that each group contains similar
queries that can well share sampled data points. For each
group Gi , we should have sampled K · |Gi | data points for
estimation, but under this group-based optimization, we can
sample a small batch (suppose that the size is denoted by
b, b 
 K · |Gi |) of data points to be shared by these |Gi |
queries. In this way, the total number of sampled data points
is reduced, thus improving the efficiency of CE for Q.
Generate samples for each group. Suppose that we have
already partitioned the queries into groups. Then, for each
group Gi , since none of the queries in Gi has already been
estimated in advance, we have to first generate some sam-
pled data points for data sharing, so as to make the queries
in group Gi share these data points better. To be specific, we
first simulate a proxy query S based on all the Q j ∈ Gi

such that S is similar to each Q j ∈ Gi . We set S as
S.Rk = ∪Q j∈Gi Q j .Rk, k ∈ [1,m]. Since queries within Gi

are similar to each other, S is also similar to each Q j ∈ Gi .
Therefore, the data points of S can be well shared within Gi .
Besides, since the query range of each Q j ∈ Gi is com-
pletely covered by S.R, each Q j ∈ Gi can leverage the data
points of S without generating other data points as described
in Sect. 6.2. Therefore, we just need to sample b data points

3 We approximately assume that the queries appearing within a small
time window (e.g., 1ms) are coming simultaneously.
4 Our method can support multiple relations with joins. We use one
relation here for ease of representation.
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Algorithm 1: Parallel CE Acceleration (PCEA)
Input: Query set Q = {Q1, Q2, . . . , Qn}.
Output: Estimated cardinalities for Q.

1 /* Partition Q into groups */
2 G = CAGroup (Q)
3 for i = 1 to |G| do
4 Create S, where S.Rk = ∪Q j∈Gi Q j .Rk , k ∈ [1,m];
5 while AIS is not converged do
6 Sample b data points for S;
7 for query Q j ∈ Gi do
8 Select data points in Q j .R from the b samples;
9 Update Q j .B by selected data points;

10 Compute car(Q j ) for Q j ∈ Gi ;

11 return {car(Q1), car(Q2), . . . , car(Qn)};

to accurately estimate the cardinalities of queries in Gi and
thus achieving high efficiency.
Overview. Next, we overview our parallel CE acceleration
algorithm (PCEA) in Algorithm 1. PCEA takes the query set
Q as input, partitionsQ into groups (line 2) and shares sam-
ples within each group (lines 3–9) and finally computes the
estimated cardinalities for queries in Q (lines 10, 11). Note
that in this part, we only focus on how to accelerate CE for
Q given G, and leave how to partition Q into G to Sect. 7.3.
Partition Q. PCEA first partitionsQ into groups G according
to the similarities between queries by CAGroup algorithm
(line 2), which will be introduced in Sect. 7.3.
Data sharing. Next, PCEA performs AIS for each group of
queries by sharing data points (line 3–9). For group Gi , S
is first created to generate data points to be shared by Q j ∈
Gi . As discussed above, the query range of S is the union
of Q j .Rk, k ∈ [1,m] for all Q j ∈ Gi . For example, in
Fig. 7, the union of Q1.R1 ([30, 76]) and Q2.R1 ([35, 80])
over the columnAge leads to a query Swith S.R1 = [30, 80].
Then for each iteration of AIS, S will generate b data points
and use the NF model to calculate their densities. After that,
from the b data points, each Q j ∈ Gi will select the data
points falling into its own ranges Q j .Rk , and next update the
corresponding buckets Q j .Bk (see Sect. 6). For example, in
Fig. 7, S generated 7 data points, 33, 45, 54, 57, 58, 65, 79.
Then Q1 used 6 data points except 79 to update its buckets
Q1.B, because only 79 is outside Q1.R ([30, 76]). We can
see that although the total number of data points is less (from
|Gi | · K to b), the number of data points that each query
can leverage just decreases slightly, which is close to b. Thus
PCEA can achieve efficient and accurate estimation.

CE for each group. The above data sharing process is
iterated for several times until AIS of each Q j ∈ Gi con-
verges. After that, for each Q j ∈ Gi , Q j uses the data points
selected in each iteration and Q j .B to compute a weighted
MC integration so as to obtain car(Q j ) (see Sect. 6.1). After
all groups of queries Gi have been estimated, we can get
the estimated cardinalities of the whole Q (line 11). Thus,

Fig. 7 An example of parallel sampled data sharing

the only problem that remains unsolved in PCEA is how to
group queries (line 2), which will be discussed next.

7.2 Query grouping problem

In general, query grouping is to partition then parallel queries
into g disjoint groups Gi ,Gi ⊆ Q, 1 ≤ i ≤ g. Apparently,
we expect that the grouping strategy leads to both high accu-
racy and high efficiency CE. To ensure accuracy, any two
queries Qi and Q j in the same group should have large sim-
ilarity in order to well share data points with each other.
To ensure efficiency, since the total number of sampled data
points is proportional to the number of groups, g should be
as small as possible as long as the data points within each
group are similar.

Therefore,we formally define the optimal queries group-
ing (OQG) problem as follows:

G∗ = argmin |G|, s.t.
∀Gi ∈ G,∀Q, Q′ ∈ Gi , sim(Q, Q′) ≥ ε

(5)

where ε is the threshold, and the constraint sim(Q, Q′) ≥ ε

indicates that the similarity of any pair of queries in each
group is no smaller than ε.

Now, we prove the NP-hardness of OQG by reducing the
classic NP-hard Vertex Clique Cover (VCC) prob-
lem [10] to it. For an undirected, unweighted, simple graph
G = (V , E), VCC is to partition V into as few cliques as
possible, where a clique C is a subset of V within which
every two vertices are adjacent.

Theorem 1 The OQG problem is NP-hard.

Proof Consider a graph G = (V , E), where V contains n
vertices {v1, v2, . . . , vn} and vertex vi denotes query Qi in
Q. There exist an edge connecting two vertices vi , v j , i �= j
if and only if sim(Qi , Q j ) ≥ ε. We next prove that OQG on
Q can be reduced from VCC on G.

We first prove that there is a one-to-one mapping between
cliques in G and groups in Q. Since there is a one-to-one
mapping between vertex vi and query Qi , a set of vertices
V ′ ⊆ V in G can be one-to-one mapped to a set of queries
Q′ ⊆ Q and vice versa.

If V ′ is a clique, every two vertices in V ′ should be adja-
cent. Therefore, the corresponding two queries Q and Q′ of
the two vertices should satisfy sim(Q, Q′) ≥ ε. This means
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Fig. 8 An example of Greedy

that for any two queries Q and Q′ in Q′, sim(Q, Q′) ≥ ε.
Therefore, Q′ should be a group.

On the other hand, if Q′ is a group, every two queries
Q and Q′ in Q′ should satisfy sim(Q, Q′) ≥ ε. Therefore,
the corresponding two vertices of Q and Q′ in G should be
adjacent. This means that any two vertices in V ′ are adjacent.
Therefore, V ′ should be a clique. Hence, we proved that there
is a one-to-one mapping between cliques in G and groups in
Q.

With this mapping, the VCC problem that partitions V
into as few cliques as possible can be reduced to partition
the queries in Q into as few groups as possible, which is
exactly the OQG problem. Thus, we successfully reduce VCC
to OQG. Since VCC is an NP-hard problem [21], OQG is also
an NP-hard problem. ��
Theorem 2 For all α > 0, it is NP-hard to approximate the
OQG problem to within n1−α .

Proof Since we have proved above that OQG is equivalent to
VCC, which is an NP-hard problem that has been proved to
satisfy Theorem 2 [62]. Therefore, OQG also satisfies Theo-
rem 2. ��

Since we have proved the equivalence between queries
(groups) inQ and vertices (cliques) in G, for ease of illustra-
tion, we will next use these notations interchangeably. Next,
we will propose a heuristic method to solve the OQG problem
efficiently and effectively.

7.3 Groupmethod

Naive solution. A basic Greedy heuristic is to straight-
forwardly iterate queries in Q. In each iteration, we add a
query into an existing group or create a new group for the
query [4]. To be specific, suppose that the current iterated
query is Q. Greedy checks whether Q can be added to
any existing group, where Q can be added to a group Gi if
∀Q′ ∈ Gi , sim(Q, Q′) ≥ ε. If there exist such groups, we
pick the first one for Q to be added into. Otherwise, Greedy
creates a new group for Q.

Although Greedy is practical and easy to implement,
it cannot achieve a small number of groups. To illus-
trate this, we give a simple example with 5 queries Q =
{Q1, Q2, . . . , Q5} in Fig. 8 with ε = 0.5. Suppose that
Greedy iterates Q in the order of Q1, Q2, Q3, Q4, Q5.
First, Greedy adds Q1 and creates the first new group
G1 = {Q1}. Then, since Q2 exactly satisfies the similarity
constraint with Q1, i.e., sim(Q1, Q2) = ε = 0.5, Greedy
can add Q2 to G1. Next, since sim(Q3, Q2) < 0.5 and
Q2 ∈ G1, Greedy can not add Q3 to G1, so it has to create
a new group G2 for Q3. Similarly, Greedy next adds Q4 to
G2 and creates a new group G3 for Q5, finally leading to 3
groups. However, as shown in Fig. 8, the optimal grouping
strategy only has 2 groups.

Greedy is not the optimal because when tackling Q2, it
is added into the same group with Q1. Although they satisfy
the similarity constraint, their similarity is exactly the thresh-
old (i.e., 0.5). This makes the group diverse and thus leaves
very limited room for other queries to be added into. On the
contrary, if we swap Q2 and Q3 in the iteration order, i.e.,
Q1, Q3, Q2, Q4, Q5, we can obtain the optimal number of
groups in the end as shown in Fig. 8. Because in this order,
Q3, a query more similar to Q1 compared to Q2, is added
to G1, which enables Q4 to be added into G1. Hence, we
come to the intuition that iterating queries in an order that
any two adjacent queries are highly similar allows each group
to accommodate more queries, thus leading to less number
of groups.

To address this, Iterated Greedy (IG) [5] optimizes
Greedy by repeatedly performing Greedy with different
iteration orders of Q and finally outputs the G with the min-
imum number of groups found in the above process. IG can
find a G with fewer groups compared to Greedy. However,
IG has to perform Greedy many times to discover a bet-
ter grouping strategy, which is time-consuming and the time
complexity is O(n4). There are also a line of works that
optimize VCC for graphs with special structures like planar
graphs [2, 3, 45]. However, these methods are rather ineffi-
cient for general graphs.
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Fig. 9 An example of CAGroup

Algorithm 2: CAGroup
Input: Query set Q = {Q1, Q2, . . . , Qn}, query similarity

threshold ε.
Output: Grouping G

1 G = ∅;
2 Hash Q into slots by h(Ai );
3 for each hash slot S(h) do
4 for query Qi ∈ S(h) do
5 Sort G by Gsim(Qi ,G j ) in descending order;
6 f lag = False;
7 for G j ∈ G do
8 if sim(Qi , Qk) ≥ ε,∀Qk ∈ G j then
9 Add Qi to G j ;

10 f lag = True;
11 Break;

12 if f lag = False then
13 Add {Qi } to G;

14 return G;

Basic idea.As discussed above, intuitively, an ideal iteration
order should satisfy that any two adjacent queries Qi and Q j

in the order are highly similar, but it is too costly to attempt all
the n! orders. Fortunately, we can observe that queries with
similarA are likely to have high similarity. Based on this, our
basic idea is to first hash the queries inQ to different slots by a
hash function h(A). Thus the queries in each slot, i.e., having
the same hash value h(A), are highly similar to each other. In
this way, we iterate queries slot by slot and handle the queries
in each slot one by one so that we can obtain an order where
most adjacent queries are highly similar. In addition, for each
query Qi , if there are multiple groups that Qi can be added
to, we choose to add it into the group where all queries are
similar to Qi . This allows for lower query diversity within
each group, thus leaving more room to accommodate other
queries. Finally, when queries in all slots have been iterated,
we obtain a near-optimal grouping G for Q.
Hash function h(A). We use a simple hash function h(A)

that takes A as the key and an m-dimensional 0 − 1 vector
as the hash value. To be specific, the j-th dimension of h(A)

is taken as 1 if A j ∈ A, otherwise 0. For ease of description,
we use S(h) to denote the set of queries in the same slot with

hash value h(A) = h. For example, in Fig. 9, there are 5
queries over a table with 2 attributes {a, b}. SinceA1 = {a},
the hash value h(A1) = 10. BecauseA1 = A3 = A4 = {a},
Q1, Q3, Q4 have the same hash value h = 10 and are hashed
to the same slot S(10) = {Q1, Q3, Q4}.
Our solution. Based on the above idea, we propose an effi-
cient yet effective heuristic algorithm CAGroup (Column-
Aware Grouping) to solve OQG. As shown in Algorithm 2,
CAGroup takes Q and the query similarity threshold ε

(default as 0.5) as input, and finally outputs the groups G.
Specifically, in CAGroup, we first initialize G as ∅.

(line 1). Then, we hash queries in Q to different slots
S(h(Ai )) (line 2). Next, we iterate through the slots and
handle queries Qi in each slot S(h) one by one (lines 3–13).
Since we expect each Qi to be added to the group in which
all queries are similar to Qi , we can define a query-group
similarity to measure Qi and each group G j ∈ G.

To this end,wefirst encode eachG j into anm-dimensional
vector e j as the average of h(Ak) for all Qk ∈ G j , i.e., e j =∑

Qk∈G j
h(Ak)

|G j | . Thevector e j denotes the distributionofAk for
all the queries Qk ∈ G j . For example, the t-th dimension of
e j indicates the proportion of query Qk ∈ G j that satisfies
At ∈ Ak . Therefore, we can use Gsim(Qi ,G j ) = 1 −
‖h(Ai )−e j‖1

m to reflect the similarity between Qi and queries
in G j . Gsim is between [0, 1]. The larger Gsim(Qi ,G j ) is,
the more similar Qi and queries in G j will be.

With the help of Gsim, we sort the groups in G by the
value of Gsim(Qi ,G j ) in descending order (line 5) and then
iterate them to add Qi to the first group G j that satisfies
sim(Qi , Qk) ≥ ε for all Qk ∈ G j (line 8). This allows us
to add Qi to the group most similar to it (line 9), thus leaving
more room to accommodate other queries. If Qi cannot be
added to any group (line 12), we add a new group {Qi } to
G (line 13). Finally, after we have iteratively handled all the
Qi ∈ Q, we can get a near-optimal G for Q (line 14).
Example. Figure 9 shows the same example of 5 queries that
have been used for Greedy with ε = 0.5. First, CAGroup
hashes Q into two slots according to h(A), i.e., S(h(A1))

in green and S(h(A2)) in yellow. After that, CAGroup first
handles Q ∈ S(h(A1)), and then handles Q ∈ S(h(A2)),
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that is, iteratesQ in the order of Q1, Q3, Q4, Q2, Q5. In the
first 3 steps, Q1, Q3, Q4 are added one by one to the same
groupG1, because CAGroupmakesG1 less diverse (queries
have high similarity with each other), thus leaving larger
room formore queries. Then, in step 4,CAGroup tries to add
Q2 to group G1. However, because sim(Q2, Q1) < 0.5 and
Q1 ∈ G1, Q2 cannot be added to G1. Therefore, CAGroup
makes Q2 itself as a new group G2. After that, in step 5,
since Gsim(Q5,G2) = 1 > Gsim(Q5,G1), CAGroup
first checks whether Q5 can be added to group G2 = {Q2}.
Since sim(Q5, Q2) ≥ 0.5, it adds Q5 to G2 and finally out-
puts G. G has the optimal number of groups (i.e., 2) because
CAGroup successfully reorders the queries in Q and adds
each query to the most similar group to make each group
accommodate more queries.
Complexity analysis. Recap that there are n queries in total
over a table withm columns. To compute G, we handle the n
queries Qi ∈ Q one by one (lines 3–13). Each time, groups
in G are first sorted by the value of Gsim(Qi ,G j ), which
can be done in O(|G|m) using bucket sort. After that, we
check whether Qi can be added to any group. In the worst
case, we need to check whether sim(Qi , Q) ≥ ε for all the
other Q ∈ Q. Since each sim(Qi , Q) can be computed in
O(m), the total time is O(nm). Finally, Qi is added to an
existing group or used to create a new group, both of which
can be done in O(m). Therefore, since |G| ≤ n, the total
time complexity of CAGroup is O(n2m), much faster than
IG while achieving comparable performance.

8 Supporting joins withmulti-models

In Sect. 3.4, we discussed two methods to support joins, i.e.,
Single model which uses a single model to support all tables
and Multi-models which uses multiple models where each
model supports a join template of multiple tables.

The single model builds a single model, but the full-join
table may be very sparse and the trained model may not be
effective for different queries. To address this issue, we can
train multiple models, i.e., training a model for each possible
join query, and then given a query, we use the corresponding
model to estimate the cardinality of the query. However it is
rather expensive to enumerate all possible joins and build a
model for each join. To alleviate this issue, we use the his-
torical queries to generate query templates (a query template
is a join query by removing all predicates and only keeping
the join structure), among which frequent query templates
(e.g., frequency > 10) are leveraged for training. If there is
no historical queries, we can use the primary-key/foreign-
key to generate the templates. If a query is not covered by an
existing template, we use each single-table model to estimate
the cardinality of each table and then combine them together
using independence hypothesis.

Table 1 Real datasets

Dataset Size (MB) Rows Cols/Cate Dom Joint

Power 95 2.05 M 6/0 ≈2M 1037

IMDB 123 4.74 M 6/5 [2,1 M] 1016

BJAQ 15 380 K 5/0 [1 K,2 K] 1015

To summarize, the advantage of the multi-models method
is that it can provide more fine-grained estimation than the
single model for queries covered by existing templates. How-
ever, this method needs additional join template information,
and itmay consume largermemorywhen the number ofmod-
els is large. In Sects. 9.5–9.7, we will evaluate the above two
strategies on the benchmark JOB-light [25] with queries
over multiple tables.

9 Experiment

Wehave conducted extensive experiments to show the superi-
ority of our proposed FACE framework. We first introduced
the experimental settings, and the overall performance of
FACE comparing with existing works in Sects. 9.1–9.8. Then
we evaluated our proposed techniques in Sects. 9.9–9.10.

9.1 Experimental settings

Dataset. We used three widely used real-world datasets [7,
15, 28], andTPC-H, awidely used benchmark. Table 1 shows
the datasets statistics. The Cols/Catemeant that the over-
all number of columns/the number of categorical columns.
Dom denoted per-column domain size.Joint referred to the
number of entries in the exact joint distribution.

Our datasets covered different properties of data, includ-
ing different sizes, data types, domain sizes, etc. (1)Power
[20] is a household electric power consumption data. It
has large domain sizes in all columns (each ≈ 2M) and
all columns are numerical data. (2)IMDB [28] is a movie
dataset that originally consists of 21 tables.We selected three
tables, Company_name, Movie_companies, Title
and joined them to evaluate. Since the join result was too
large, we sampled [58] 4,740,297 tuples from the final result
uniformly. The domain size of IMDB varies a lot, from
2 to 1M. IMDB contains highly skewed attributes, e.g.,
country_code. (3)BJAQ [44] includes hourly air pol-
lutants data of Beijing, which has medium domain sizes
(1K-2K). (4)TPC-H is a commonly used synthetic bench-
mark dataset, which contains 22 query templates. We used
scale factor of 10 to generate 10 GB data and used the query
templates to generate 2000 different queries.
Baselines. We compared FACE with a variety of typical CE
algorithms, including:
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Table 2 Q-errors, latency (ms)
and model size (MB) on 4
datasets

Estimator 50th 95th 99th Max Latency Model size

(a) Power

PG 1.38 15.6 118 3 · 105 1.25 0.92

Sample 1.04 1.97 150 722 2.07 –

MHIST 5.10 135 383 2 · 105 2070 11

KDE 1.36 18.2 119 1 · 103 0.33 –

lw-nn 1.07 4.70 26.8 455 0.59 4.7

lw-xgb 1.04 3.28 8.10 501 0.35 0.94

MSCN 1.13 17.1 176 488 0.76 4.3

FCN 1.08 2.46 7.66 225 3.64 1.5

DeepDB 1.06 1.91 5.33 537 16.35 3.2

Naru – – – – – –

NeuroCard 1.03 1.51 5.09 158 71 9.9

UAE 1.02 1.48 4.35 151 72 9.9

FACE 1.02 1.16 1.60 3.00 10.74 1.2

(b) IMDB

PG 2.92 47.3 2768 1 · 104 0.15 0.16

Sample 1.03 1.38 5.00 260 1.06 –

MHIST 1.20 3.36 10.4 386 902 9.8

KDE 1.57 9.45 842 1 · 103 0.32 –

lw-nn 1.23 8.89 35.0 405 0.63 4.7

lw-xgb 1.16 11.1 36.8 1 · 103 0.3 0.99

MSCN 1.18 5.04 64.0 2 · 103 0.85 4.2

FCN 1.09 2.58 8.49 119 3.13 1.5

DeepDB 1.08 1.89 3.39 62.2 1.68 2.64

Naru – – – – – –

NeuroCard 1.02 1.51 2.76 14.9 64 6.2

UAE 1.02 1.50 2.64 14.3 62.5 6.2

FACE 1.02 1.21 1.54 2.85 11.6 1.2

(c) BJAQ

PG 1.46 9.94 30.4 1 · 103 0.37 0.12

Sample 1.04 1.33 2.51 271 1.06 –

MHIST 1.89 27 209 579 480 8.5

KDE 1.04 1.69 3.91 219 0.51 –

lw-nn 1.12 5.46 14.1 77.4 0.67 1.5

lw-xgb 1.06 4.38 18.2 106 0.39 1.9

MSCN 1.17 2.39 10.5 164 1.03 1.4

FCN 1.06 1.94 5.42 51 3.05 1.5

DeepDB 1.06 1.91 5.33 472 4.59 0.53

Naru 1.03 1.26 1.54 8.00 12.4 9.2

NeuroCard – – – – – –

UAE 1.03 1.24 1.51 7.65 12.7 9.2

FACE 1.03 1.16 1.30 2.55 11.8 0.37

(d) TPC-H

PG 1.32 97.2 216 609 0.26 0.01

Sample 1.04 92 183 571 1.67 –
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Table 2 continued Estimator 50th 95th 99th Max Latency Model size

MHIST 1.05 3.81 5.50 56.1 365 5.6

KDE 1.05 2.46 5.38 40.5 0.48 –

lw-nn 1.09 3.18 5.32 25.9 0.85 0.52

lw-xgb 1.06 3.21 4.00 21.2 0.42 0.81

MSCN 1.06 3.99 10.7 445 0.93 0.25

FCN 1.06 1.74 3.18 20.0 2.91 1.5

DeepDB 1.04 1.46 2.13 9.50 6.35 0.45

Naru 1.04 1.42 2.09 10.5 8.89 9.80

NeuroCard – – – – – –

UAE 1.04 1.37 1.81 8.49 8.85 9.80

FACE 1.03 1.17 1.41 1.74 7.90 0.22

Bold values for accuracy indicate the most accurate results achieved. For latency and model size, bold values
represent the smallest latency and model sizes, respectively

(1) PG [41]: Postgres, using independent histograms.
(2) Sample [29, 58]: the method sampled a number of

records to do CE. The sampled size was set to 1%
of each dataset.

(3) MHIST [40]: the method stored all entries in the
PDF using a compression technique.

(4) KDE [16, 22]: used kernel density estimation for CE.
(5) lw-nn [7]: a query-driven method that trained a

neural network to estimate the cardinality.
(6) lw-xgb [7]: a query-driven method that trained a

gradient boost tree to estimate the cardinality.
(7) MSCN [25]: a query-driven method that used multi-

set convolutional network.
(8) FCN [23]: a query-driven method that used a fully

connected network and pooling layer to estimate the
cardinality.

(9) DeepDB [17]: the method used sum-product net-
work.

(10) Naru [56]: the method used the autoregressive
model.

(11) NeuroCard [55]: the method extended Naru to
support multi-table. It could handle large domain
size data by splitting columns.

(12) UAE [54]: the method that extended the autore-
gressive methods, i.e., Naru and NeuroCard, to
incorporate query-driven training.

We obtained codes of baselines from the authors and an
experimental work [53]. For hyper-parameters, we set to
default values.
Workloads for testing. For each dataset except TPC-H, we
generated 2000 queries for testing in a similar way as [56].
Multidimensional queries containing both range and equality
predicates were generated using the following steps: (1) We
randomly selected the number of predicates f in a reasonable
interval considering the number of columns in the dataset,

e.g., [3, 6] for Power. (2) We randomly selected f distinct
columns to place the predicates. For numerical columns, the
predicate was drawn uniformly from {=,≤,≥}. For categor-
ical columns, we only generated equality predicates, because
range predicates on categorical attributes were not practical.
We only generated Like predicates on IMDB in Sect. 9.4.
(3) We randomly selected a tuple from the table and used
the attributes of the tuple as the literals. Since the selected
tuple always satisfies all the predicates in the query, the gen-
erated queries have a minimum cardinality of 1. For TPC-H,
we used the TPC-H benchmark query templates to generate
2000 queries.
Hyper-parameter setting. For Power, IMDB, BJAQ,
TPC-H, we set the number of coupling layers as τ =
6, 6, 6, 5. In each coupling layer, the MLP consisted of two
hidden layers with 108, 108, 56, 48 hidden units, respec-
tively. We set the number of buckets |B| = 100 and
adaptively sample until converge.
Evaluation metrics. We evaluated different methods from
three perspectives: accuracy, latency and model size. For
accuracy, we adopted the Q-error metric [26]. It was defined

as Q-error = max{ car(θ)

̂car(θ)
,

̂car(θ)
car(θ)

}, where ĉar(θ)was the esti-

mated cardinality.We reported the whole q-error distribution
(50% (Median), 95%, 99%and100%(Max) quantile) of each
workload. For latency, we reported the average query latency.
We also reported model size.
Environment.All experimentswere in Python, performed on
a server with Intel(R) Xeon(R) Silver 4110 CPU, a Nvidia
2080ti GPU and 128GB RAM.

9.2 Overall evaluation

9.2.1 Comparison of accuracy

Table 2 shows the Q-errors of different CE algorithms.
Methods are grouped as traditional, query-driven and data-
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driven, respectively. The results could be ranked as FACE >

Naru/NeuroCard/UAE > DeepDB >> FCN
> lw-nn/lw-xgb/MSCN/Sample > KDE > MHIST/PG
in summary. Next, we explained the results.

Generally speaking, the accuracy of FACE was very high
on all datasets with different characteristics. We could see
from the table that FACE outperformed all the baselinemeth-
ods on the entire distribution of Q-error for all datasets. For
example, the medians (1.02 or 1.03) on these datasets were
close to the optimum. In particular, FACE also performed
well on errors at the tail (99th, Max). For example, at the
Max-quantile inPowerdataset,FACEoutperformed the sec-
ond best solution by 50×. As a consensus [56], errors at the
tail should be taken more attention because they represent
the worst performance of estimators. Unfortunately, they are
harder to optimize than the median and indicate the stabil-
ity of estimators. Therefore, the results further demonstrated
that our solution was a well-performed yet stable estimator,
because our framework could well model the joint distribu-
tion of data with different types.

FACE performed better than Naru, NeuroCard and
UAE. Since Power and IMDB are datasets with large domain
size, it was intractable for Naru to train. Hence, we just
reported the results of NeuroCard, which alleviated this
problem by factorizing columns. For BJAQ and TPC-Hwith
median domain size,we reported the results of Narubecause
NeuroCard used the same method. UAE extended Naru
and NeuroCard to incorporate query-driven training and
had the same network structure as Naru and NeuroCard.
Therefore, we used the same model parameters for UAEwith
Naru and NeuroCard for a fair comparison. On Power
and IMDB, FACE outperformed both of NeuroCard and
UAE by more than 50× and 5× at the Max-quantile, respec-
tively, because FACE used NF tomodel the joint distribution,
which was adequate for large domain size data. Although
NeuroCard and UAE could handle large domain size data,
the accuracy decreased because of the column factorization.
For BJAQ and TPC-H, we observed that our method still
outperformed Naru and UAE by 3×. The reason was that
our dequantization technique could make our method sup-
port data without a large domain size well.

FACE outperformed DeepDB in accuracy by 1–2 orders
of magnitude. For example, on IMDB, at the Max-quantile,
FACE was 2.85 while that of DeepDB was 62.2, because
DeepDB failed to capture the correlations between all
columns.

FACE performed well as it can address this problem
through coupling layers in NF model.

FACE outperformed query-driven methods a lot. For
example, on Power at the 99% quantile, FACE had a Q-
error of 1.60, but lw-nn, lw-xgb, MSCN, FCN were 26.8,
8.10, 176, 7.66, respectively. The reason was that query-
driven methods relied on the consistence of training and test

workload, which was not generalizable enough. For other
baselines, FACE outperformed them by 1-3 orders of mag-
nitude because PG assumes independence between columns.
Sample could not handle errors at the tail because of 0-tuple
problem [46]. MHIST loses information because of the com-
pression and KDE cannot handle multi-dimensional data well
by kernel functions.

9.2.2 Comparison of latency

We also reported the average latency on 2000 testing queries
in Table 2. We could see that the latency of FACE (around 10
ms on 4 datasets) was applicable in practice.FACEwas faster
than Naru/NeuroCard/UAE, especially on large domain
sizes. For example, on Power, FACE was 7 × faster than
NeuroCard and UAE. The reason was that Naru had to
compute all the probabilities of qualified entries in each
domain. Also, the autoregressive model had to be triggered
multiple times for computing the conditional probabilities.
FACE was fast because it used the data sharing technique
to conduct acceleration. Moreover, DeepDB was faster than
FACE on most datasets because it does not use deep neural
networks

to model the data distribution. That was the reason why
it could not completely capture the complex correlations
between columns. The query-driven methods had higher
efficiency because they did not need to sample from range
predicates, but purely conducted inference through queries,
which was also the reason why the accuracy was low. Most
traditional methods were naturally fast because they were
very simple, but suffered from low accuracy.

9.2.3 Comparison of model size

In this part, we compared the model size with baselines. In
fact, the size of each model could be adjusted by changing
the network architecture or hyper-parameters. We obtained
the model size from the default settings of each baseline or
the experimental work [53]. As shown in Table 2, PG had
the smallest model size because PG was just related to the
number of attributes. Among learning-based methods, FACE
almost performed one of the best. The query-driven methods
and DeepDB also had a relatively small model size because
the former ones did not need to model the complicated data
distribution, and the latter one used a lightweight model. For
FACE, although the coupling layer used in our model incor-
porates neural networks, it was still lightweight because of
the compact architecture, while for Naru, large domain size
led to prohibitively large model size due to the large number
of parameters. Therefore, to summarize, FACE used the NF
model with high representation ability yet compact size.
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9.3 Synthetic dataset evaluation

In this section, we evaluated how the accuracy of our models
would be affected by two important factors, i.e., domain size
and column correlation. To this end, two synthetic datasets
were generated in the same way as [53] corresponding to
these two factors. Each dataset contained 1 million rows and
two columns. The testing queries were generated based on
the same method as Sect. 9.1.

9.3.1 Evaluation of domain size

We varied the domain size on the synthetic dataset from 10
to 100,000 on both columns and compared the Q-errors with
Naru5 and DeepDB, two representative data-driven meth-
ods. The results in Fig. 10a showed that the Max-quantile of
FACE increased from about 1 to 100 along with the domain
size increasing. However, the Q-error of DeepDB and Naru
has achieved nearly 104 and 105, respectively. That was,
FACE outperformed them by 2–3 orders of magnitude.

This indicated that domain size had amuch smaller impact
on FACE compared to Naru and DeepDB. Moreover, FACE
could performwell on large domain size data due to the inher-
ent support of the NF model for modeling continuous data.
This eliminates the need for approximate learned embed-
dings (Naru) or heuristic assumptions (DeepDB), enabling
accurate modeling of large domain size data.

9.3.2 Evaluation of correlations

We varied the correlation between two columns on the syn-
thetic dataset from 0 to 1. When the correlation approached
1, it meant that the columns had strong correlation (depen-
dence), while 0 meant that they were independent. We could
see from Fig. 10b that FACE performed the best and was
not sensitive to the column correlation. The reason was that
the coupling layer in the NF model captured the column cor-
relations. For Naru, the correlation also had little impact
on it because the autoregressive model could capture the
dependency.DeepDB performed theworst because it had the
independence assumption, so when the correlation became
1, the Q-error of DeepDB was 103.

9.4 Like predicates evaluation

We evaluated the queries with Like predicates generated
in IMDB. Similar to Sect. 9.1, we first randomly selected
f columns, among which we set that at least one column
must be a string attribute. Then we randomly selected the
pattern among prefix, suffix and substring. Next, a string

5 When the domain size was large, we applied NeuroCard by factor-
izing the column.

Fig. 10 Evaluation of synthetic datasets

str should be generated. Specifically, we can sample strings
from queries in the benchmark (JOB). However, the number
of queries was limited, so we also generated some n-grams
with different lengths in the attribute and sampled from them.
Totally, we also generated 2000 queries with Like predi-
cates.

We compared with two baselines that supported Like
predicates, where E2E [46] was a query-driven cost esti-
mator. We could see from Table 3 that for accuracy, FACE
outperformed E2E by one order of magnitude, because E2E
was not as generalizable as data-driven methods. FACE out-
performed PG by 2 orders of magnitude, because PG cannot
capture column correlations.

For model size, we could see that PG only used some
simple statistics and thus consumed only 0.13MB storage.
E2E (43.7MB) and FACE (67.8MB) had competitive stor-
age usage, because E2E had to store a large number of
string embeddings and FACE needed to maintain the trie
and auxiliary index structure. For latency, PG and E2E
were faster, because the former used the simple statisti-
cal technique and the latter used the query-driven method
that directly estimated the cardinality using the encoding of
queries. FACEwas relatively slower, because the data-driven
methods needed to sample the data points to estimate the car-
dinality and searching on the trie index also incurred some
overheads.

9.5 Multi-table evaluation

In this section, we evaluated the CE methods on multiple
tables using the widely used benchmark JOB-light [25]. The
6 tables used in JOB-light collectively occupy a total size
of 2.7 GB. The results of different methods are shown in
Table 4. The Single-Model and Multi-Models methods that
are introduced in Sect. 8 were evaluated here, respectively,
and were represented as FACE-Single and FACE-Multiple.
We trained FACE-Single on 7M samples from the full outer
join table and trained FACE-Multiple on 2M samples for
each of the join templates.

As shown in Table 4, we could see that FACE-Multiple
performed the best on accuracy because our model captured
the joint distribution of different join templates well, which
wasmore fine-grained.We could also observe that forFACE-
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Table 3 Evaluation of Like
predicates

Estimator 50th 95th 99th Max Latency, ms Model size, MB

PG 2.31 35.3 207 3118 2.5 0.13

E2E 1.51 12.1 54.8 242 5.4 43.7

FACE 1.20 4.21 10.5 21.4 45 67.8

Bold values for accuracy indicate the most accurate results achieved. For latency and model size, bold values
represent the smallest latency and model sizes, respectively

Multiple, even if we trained a model for each join template,
the model size was smaller than the baselines. The reasons
were twofold. (1) Our model size was small because of the
compact architecture. (2) Training amodel for each join tem-
plate avoided adding many additional columns to support
joins, which might lead to a large model size and higher
latency. With a smaller model size and without additional
columns, FACE-Multiple achieved an average latency of 11
ms.

Besides, FACE-Single achieved better performance than
DeepDB, NeuroCard and UAE, because the dataset had
some attributes with large domain sizes. But the added
columns contained many discrete values, which limited the
superiority of the NF model. Using similar methods to learn
full outer join distribution resulted in similar model sizes for
different data-driven methods.

However, the additional columns resulted in higher latency.
On average, FACE-Single estimated each query using 60 ms.
We could see that in terms of accuracy, FACE-Multiple out-
performed the FACE-Single and other baselines because it
provided more fine-grained models for different templates.
However, FACE-Multiple is less flexible compared with
FACE-Single because it relies on historical queries to gener-
ate query templates.

We also reported the building time and the memory foot-
print for different methods on JOB-light, as shown in
Fig. 11. In terms of the building time, besides the time of
model training, for data-driven methods, it includes the time
of sampling train data points. For query-driven methods, it
includes the time to obtain labels (true cardinalities) for train-
ing queries.

Regarding the building time, Fig. 11a shows that FACE-
Multiple (92 min) has a slightly longer training time com-
pared to other data-driven methods such as FACE-Single (42
min) and NeuroCard (49 min) because it trains over multiple
(27 for JOB-light) small models. However, it is still faster
than query-driven methods like MSCN, which takes 182min.
This is because FACE-Multiple does not require obtaining
the true labels (cardinalities) for training queries, which can
be time-consuming for query-driven methods, especially in
the case of multiple tables. Therefore, the building cost of
FACE-Multiple is relatively small among all the methods.

Additionally, we have also evaluated the training and test-
ing memory footprints. From Fig. 11b and c, we can observe

that both FACE-Single and FACE-Multiple have small mem-
ory footprints comparedwith othermethods, both for training
and testing. This is attributed to the compact structures of the
normalizing flow model used in FACE.

9.6 End-to-end evaluation

To evaluate the effectiveness of different cardinality esti-
mators in practical query optimization, we injected their
estimation results into PostgreSQL (PG), awidely used open-
source database, and tested with JOB-light workload. To
be specific, for each estimator to be compared, we allowed
the query optimizer in PG to utilize the estimator’s results
to select the plan and execute the queries accordingly. This
allowed us to evaluate the impact of different CEmethods on
the overall execution performance. The results are presented
in Table 4.

In the table, on JOB-light, we first reported the esti-
mation accuracy of different methods for all the sub-plan
queries whose cardinalities have to be estimated in the plan-
ning phase for query optimization. Totally, we have 696
sub-plan queries, denoted by JOB-light-all. The column
Exec.Time in Table 4 represented the total execution time
of the selected plans, while the column Plan Time repre-
sented the planning time, including the time for plan selection
plus the cardinality estimations. Furthermore, the column
Improvement showed the improvement in total time com-
pared to the baseline PG, i.e., simply running JOB-light
workload in PG without utilizing any additional cardinality
estimator.

From Table 4, we could observe that the impact of differ-
ent CEmethods on the overall execution time of the complex
JOB-lightworkload is negligible, accounting for less than
0.5%. In terms of overall execution efficiency, more accurate
cardinality estimates of these sub-plan queries enabled the
optimizer to select better execution plans, leading to a sig-
nificant reduction in the execution time (up to 30min).

For instance, FACE-Multiple only consumed 14s while
reducing the Exec.Time from 3.06h in PG to 2.57h, which
is very close to the optimal execution time (2.55h) achieved
using true cardinalities (TrueCard). This brought a 16%
improvement in the overall execution time compared to
using PG alone because of these highly accurate cardinal-
ity estimates for the sub-plan queries. As shown in Table 4,
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Fig. 11 Building time and memory footprint on JOB-light

FACE-Multiple achieved a median q-error of only 1.04 on
JOB-light-all, significantly outperforming other methods
such as DeepDB (1.67) and FCN (1.49).

9.7 Case study

In this section, we present a case study focusing on the
60-th query of JOB-light. Figure12 illustrates the exe-
cution plans selected based on several representative meth-
ods, including TrueCard, FACE-single, FACE-multiple,
NeuroCard, DeepDB, and PG, which shows the estimated
cardinalities of thesemethods for each sub-plan node, as well
as the actual execution time of the plan. Since FACE-single
and FACE-multiple lead to the same plan, we present them
together in one graph referred as FACE and report the esti-
mated cardinality of FACE-multiple.

We can observe that FACE enables the optimizer to select
an optimal plan identical toTrueCard, resulting in a signif-
icantly reduced query execution time because of the accurate
estimated cardinality. On the other hand, NeuroCard, due
to its underestimation of the join result between table ci
and t (q-error of 10.8), failed to identify the optimal join
order. In addition, both DeepDB and PG exhibit large esti-
mation errors, with the maximum q-errors reaching 39.6 and
1058, respectively. As a consequence, the misguided opti-
mizer selected poor plans, leading to longer execution times
compared to the FACE plan.

Overall, these findings highlight the capabilities of FACE
in accurately estimating cardinalities, facilitating the selec-
tion of better plans, thus achieving significantly shorter query
execution times.

9.8 Parallel queries evaluation

In this section, we evaluated the performance of differ-
ent methods in the case of parallel queries. We com-
pared our FACE-CAGroup algorithm with six baselines:
ApproxLabel, FCN-batch, UAE-parallel, FACE,
FACE-Greedy and FACE-IG. ApproxLabel [8] refers
to a sampling approach aiming at approximating cardinality
while minimizing the number of sample points. FCN-batch
is a newly added baseline (the batch version of FCN) that
we take the encodings of all parallel queries into a batch
and send to the FCN [23] model for estimation in parallel.
UAE-parallel is another newly added baseline that refers to
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Fig. 12 A case study of JOB-light Q60

the multi-process version of UAE [54]. Specifically, we use 4
processes. FACE is the one in Sect. 9.2 without parallel data
sharing. FACE-Greedy, FACE-IG and FACE-CAGroup
first group parallel queries usingGreedy,IG and CAGroup
algorithms, respectively. After that, they use PCEA to gener-
ate data points sharedbyquerieswithin eachgroup toperform
CE.

We evaluated these 7 methods on 4 datasets: Power,
IMDB, BJAQ and TPC-H. For each dataset, all the meth-
ods used the same models in Sect. 9.2. The CE accuracy and
average latency of different methods are shown in Table 5.
The 2000 testing queries were generated based on the same
method in Sect. 9.1. We first assume that all the generated
queries come in parallel and then vary the number of parallel
queries in Sect. 8.7.3.

For the methods with parallel data points sharing, we set
the query similarity threshold ε as 0.5 and set the number of
sampled data points b for each group as K

ε
, because ε approx-

imates the proportion of the b data points that each query
within the group can use. Therefore, taking b = K

ε
allows

each query in the group to approximately have at least K
available data points. For all the methods, we set the number
of buckets |B| = 100 and adaptively sample until converge.

9.8.1 Comparison of latency

Table 5 shows the average latency of different methods. The
results were ranked as FCN-batch < FACE-CAGroup <

ApproxLabel<FACE-Greedy<FACE<FACE-IG<

UAE-parallel. For example, on dataset Power,
FACE-CAGroup (0.91 ms) was 436 times faster than
FACE-IG (397 ms), 79 times faster than UAE-parallel (71.7
ms), 12 times faster than FACE (10.74ms), and 5 times faster
than FACE-Greedy (5.03 ms).

ApproxLabel was relatively slower than
FACE-CAGroup because ApproxLabel, as a sampling-
based method, needs to execute the query on sample.
Although FCN-batch was faster than FACE-CAGroup, its
accuracy was much worse because FCN-batch is a query-
driven method that relies on the consistence of training
and test workload, which is not generalizable enough. UAE-

parallel was much slower than FACE-CAGroup, because
FACE-CAGroup reduces the amount of computation for
similar parallel queries by reducing the totally number
of sampled points. FACE was slow because supposing
that every single query has to sample K data points for
MC integration, n queries lead to nK data points. This
would yield a large number of computations that are hard
to process simultaneously by GPU with limited compu-
tation capacity. As a result, these computations had to
be splitted into batches and computed by GPU batch by
batch, which resulted in high latency. FACE-CAGroup and
FACE-Greedywere faster thanFACEbecause they reduced
the total number of sampled data points, thus reducing the
total number of computations. Besides, FACE-CAGroup
was faster than FACE-Greedy because FACE-CAGroup
divided the queries into fewer groups. FACE-IG was ineffi-
cient, because although FACE-IG could divide the queries
into few groups, it has to perform Greedy many times,
which was time-consuming. FACE-CAGroup was much
faster than UAE-parallel, because FACE-CAGroup reduces
the amount of computation for similar parallel queries by
reducing the totally number of sampled points.

Although FACE-CAGroup greatly reduced the estima-
tion latency, the accuracy did not decrease much, which we
will analyze next.

9.8.2 Comparison of accuracy

We reported the Q-errors on all the testing queries in Table 5.
We could observe from the table that all the methods
performed similarly on the entire distribution of Q-error
for all datasets. For example, the median (Max-quantile)
Q-errors on the dataset BJAQ for ApproxLabel, FCN-
batch, UAE-parallel, FACE, FACE-Greedy, FACE-IG and
FACE-CAGroup were 1.05 (184), 1.12 (77.4), 1.03 (7.65),
1.03 (2.55), 1.03 (3.05), 1.03 (4.26) and 1.03 (2.86), respec-
tively. This demonstrated that the methods using parallel
data sharing obtained comparable CE accuracy compared
to FACE. The reason is that queries in each group are sim-
ilar, and thus the data points can be well shared. Therefore,
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Table 5 Q-errors and latency
(ms) on 4 datasets for parallel
queries

Dataset Method 50th 95th 99th MAX Latency

Power ApproxLabel 1.14 2.16 103 419 1.34

FCN-batch 1.07 4.70 26.8 455 0.39

UAE-parallel 1.02 1.48 4.35 151 71.7

FACE 1.02 1.16 1.60 3.00 10.74

FACE-Greedy 1.02 1.34 1.95 4.30 5.03

FACE-IG 1.02 1.37 2.00 5.32 397

FACE-CAGroup 1.02 1.34 2.00 4.80 0.91

IMDB ApproxLabel 1.08 1.96 5.51 291 1.47

FCN-batch 1.23 8.89 35.0 405 0.34

UAE-parallel 1.02 1.50 2.64 14.3 62.2

FACE 1.02 1.21 1.54 2.85 11.6

FACE-Greedy 1.03 1.67 2.79 3.22 4.57

FACE-IG 1.03 1.72 3.01 3.92 401

FACE-CAGroup 1.03 1.59 2.85 3.46 1.31

BJAQ ApproxLabel 1.05 1.49 2.87 184 1.53

FCN-batch 1.12 5.46 14.1 77.4 0.37

UAE-parallel 1.03 1.24 1.51 7.65 12.5

FACE 1.03 1.16 1.3 2.55 11.8

FACE-Greedy 1.03 1.16 1.42 3.05 5.58

FACE-IG 1.03 1.17 1.49 4.26 382

FACE-CAGroup 1.03 1.16 1.41 2.86 0.98

TPC-H ApproxLabel 1.04 89 157 482 2.87

FCN-batch 1.06 1.74 3.18 20.0 0.40

UAE-parallel 1.04 1.37 1.81 8.49 9.55

FACE 1.03 1.17 1.41 1.74 7.90

FACE-Greedy 1.03 1.19 1.49 2.77 3.81

FACE-IG 1.03 1.19 1.62 2.48 281

FACE-CAGroup 1.03 1.18 1.59 2.03 0.74

Bold values for accuracy indicate the most accurate results achieved. For latency and model size, bold values
represent the smallest latency and model sizes, respectively

through parallel data sharing, each query can still get enough
data points to obtain high CE accuracy.

To summarize, FACE-CAGroup achieved the state-of-
the-art accuracy with an order of magnitude improvement in
efficiency over FACE for parallel queries.

9.8.3 Evaluation of hyper-parameters

In this section, we evaluated how the performance of
FACE-CAGroup would be affected by two important fac-
tors, i.e., the number of parallel queries n and the similarity
threshold ε.
Evaluation of n. We varied the number of parallel queries
n from 20 to 2000 for the 2000 queries used for Power in
Sect. 9.8.We reported the average latencyof FACE-CAGroup
with ε = 0.5 in Fig. 13.

For each batch of parallel queries, FACE-CAGroup first
divides them into several groups by CAGroup. Then it uses

Fig. 13 Evaluation of number of parallel queries on Power

PCEA to iteratively generate data points for each group to
perform CE. Between batches, the sampled data sharing in
Sect. 6.2 are also used to reuse the data points of previous
batches.
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Fig. 14 Evaluation of similarity threshold ε on Power

From Fig. 13, we could observe that when n = 20,
FACE-CAGroup had the same average latency (10.74 ms)
as FACE. This is because the computations of FACE incurred
by nK sampled data points do not exceed the computation
capacity of the GPU until n = 20. When n > 20, the
average latency of FACE will remain the same because the
overall computation exceeded the computation capacity of
GPU and had to be computed batch by batch. However, we
could observe from Fig. 13 that along with the n increas-
ing, the average latency of FACE-CAGroup decreased
from 10.74 to 0.91 ms. This is because FACE-CAGroup
reduced the total number of data points by grouping the
n queries and sharing sampling points within each group.
For the same 2000 queries, a larger n leads to a smaller
total number of groups, i.e., less data points, and is there-
fore more efficient. On the other hand, along with the n
increasing, the CE accuracy does not change. The reason
is that each query is estimated by sharing the b sam-
pled data points of its group, and b does not change with
n.
Evaluation of ε.We varied the similarity threshold ε from 0
to 1 with n = 2000 on Power. Figure 14 shows the average
latency and the 50% quantile Q-error of FACE-CAGroup.
We take b as K

ε
for ε �= 0 and take b as 10K for ε = 0.

We could observe that the latency increased from 0.28 to
10.74 ms along with the ε increasing. This is because larger
ε yields more groups and more sampled data points, thus
incurring higher latency. In addition, with the ε increasing,
the Q-error decreased from 1.36 to 1.02 and then remained
stable. The reason is that the queries in each group generated
by larger ε are more similar. Therefore, data points can be
better shared in each group, which leads to more accurate
CE. When ε reached a relatively large value, e.g., 0.5, the
queries within each group can get enough number of data
points to obtain accurate CE. After that, increasing ε brings
almost no further accuracy improvement. Thus, we set ε to
0.5 as in Sect. 9.8, so as to obtain a good trade-off between
latency and accuracy.

Fig. 15 Variance evaluation

9.9 Variance evaluation

In this section, we evaluated our proposed techniques includ-
ing dequantization and sampled data sharing.

9.9.1 Dequantization

We compared our spline dequantization (Deq-Spline,
proposed in Sect. 4) with three baselines: uniform dequanti-
zation [51], variational dequantization [18] and2-dimensional
continuity dequantization. The first one (Uniform) is dis-
cussed in Sect. 4. The second one (Var) used a learning-
based method to dequantize data, aiming to minimize the
distance between q and p, but still could not achieve conti-
nuity. The last one (Deq-2D) was to build a continuous PDF
on 2-dimensional data.

As shown in Fig. 15a, on BJAQ, FACE outperformed
Uniform and Var because it could generate more contin-
uous dequantized data and make it easier for the NF model
to fit. Besides, we could see that the accuracy of FACE is
comparable to Deq-2D, which indicated that merely ensur-
ing the continuity of marginal distribution was enough for
the NF model to fit.

9.9.2 Sampled data sharing

We evaluated the sampled data sharing proposed in Sect. 6.
FACE-noShare denoted the method without sampled data
sharing, i.e., sampling iteratively for each query from scratch.
We reported the average latency of FACE-noShare and
FACE on 3 real-world datasets. As shown in Fig. 15b, we
improved the efficiency two times because FACE shared the
sampled data with similar queries, and thus the convergence
was fast.

9.10 Data updates evaluation

We studied the impact of data updates on FACE. Follow-
ing [56], we partitioned Power into 5 parts on a time
attribute, and then each partition came in order, i.e., each
time we added 20% data into the training set. Given a query
workload, we first trained on the first 20% data. The row
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Table 6 Evaluation of data updates

20% Training +20% +20% +20% +20%

NoModelUpdate Max 24.5 24.0 21 21.37

95th 2.06 1.92 1.74 1.81

Inc-Training Max 2.55 3.23 3.43 3.20

95th 1.18 1.17 1.19 1.16

Retraining Max 2.50 3.00 2.85 3.00

95th 1.16 1.15 1.18 1.16

of NoModelUpdate denoted that we trained on current
arrived data and directly estimated the cardinality of the
workload when 20% data were added, without any model
update. The row of Inc-Training denoted that when
the 20% new data were added, we incrementally trained
the model and estimated the query workload. Retraining
denoted that we retrained the model from scratch when each
partition came.

As shown in Table 6, for NoModelUpdate, the 95%
and Max-quantiles were stable, indicating that FACE had
a good generalization ability. Besides, by comparing Inc-
Training with Retraining, we could see that FACE
can adapt to data updates effectively.

10 Conclusion

In this paper,we proposeFACE, a Flow-based novel cardinal-
ity estimator, which supports accurate estimation on different
types of data. We design a spline dequantization method and
utilize normalizing flow-based model to learn the joint dis-
tribution of data. We also build an index to handle Like
predicates for string attributes. For inference, we propose
a Monte Carlo method to estimate the cardinality based on
the FACE model and propose a grouping technique to pro-
cess parallel queries. Besides, we discuss how to support join
queries. The results show that our method gains 50× perfor-
mance improvement on accuracy.
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